Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 306-004-1 | CAS number: 95465-89-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicological Summary
- Administrative data
- Workers - Hazard via inhalation route
- Workers - Hazard via dermal route
- Workers - Hazard for the eyes
- Additional information - workers
- General Population - Hazard via inhalation route
- General Population - Hazard via dermal route
- General Population - Hazard via oral route
- General Population - Hazard for the eyes
- Additional information - General Population
Administrative data
Workers - Hazard via inhalation route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 769 mg/m³
- Most sensitive endpoint:
- repeated dose toxicity
DNEL related information
- DNEL derivation method:
- other: ECETOC, 2003; 2010
- Overall assessment factor (AF):
- 3
- Dose descriptor:
- NOAEC
- AF for dose response relationship:
- 1
- AF for differences in duration of exposure:
- 1
- AF for interspecies differences (allometric scaling):
- 1
- AF for other interspecies differences:
- 1
- Justification:
- An analysis of assessment factors conducted by ECETOC (2003, 2010) showed that a standard approach of applying a default AF for any remaining differences is not appropriate since, in the majority of cases, this is adequately covered by the inherent interdependence of the inter- and intra-species assessment factors and taken into account by allometric scaling (see, for instance, ECETOC analysis of information from Calabrese and Gilbert (1993) Reg. Tox. Pharmacol. 17: 44-51). Furthermore, data available for Category C substances, together with information available for chemically-related structures , do not raise concern for possible differences in effect within or between species. Overall, no factor for remaining differences will therefore be applied.
- AF for intraspecies differences:
- 3
- Justification:
- There are no data to quantify variability in susceptibility to the effects of exposure to Category C substances in the human population. However the population exposed in the workplace is highly homogeneous and the health of the work force is typically good (healthy worker effect) while metabolic differences due to genetic polymorphisms do not automatically require an increased assessment factor since compensating mechanisms (including alternative pathways of elimination) are often present (ECETOC, 2003, 2010). Following a review of the distribution of variability in toxicokinetic and toxicodynamic parameters for populations of different ages, genders and disease states, ECETOC concluded that human data (Renwick and Lazarus (1998) Reg. Tox. Pharmacol. 27:3-20 ; Hattis et al. (1999) Risk Anal. 19: 421-431) support the use of an assessment factor of 3 (i.e. the 90th percentile of human toxicokinetic and toxicodynamic variability) to account for intra-species variability present within workers.
- AF for the quality of the whole database:
- 1
- AF for remaining uncertainties:
- 1
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
DNEL related information
Workers - Hazard via dermal route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
Workers - Hazard for the eyes
Local effects
- Hazard assessment conclusion:
- no hazard identified
Additional information - workers
There are no specific data for member substances of the C4 low 1,3-butadiene category (CAS Numbers; 91052-98-1, 92045-23-3, 95465-89-7,95465-90-0 and 95465-91-1)
, but assessment is based on components of the streams.
A DNEL for acute toxicity should be derived if an acute hazard leading to acute toxicity (eg. C&L) has been identified and there is a potential for high peak exposures. This is not the case with the components of the C4 low 1,3-butadiene category.
Repeat dosing studies via inhalation exposure are available for but-1-ene, 2-butene and 2-methylpropene. All studies have shown minimal systemic or target organ toxicity. Exposure of rats to but-1-ene at concentrations of 500, 2000, 8000 ppm (1147, 4589, 18,359 mg/m3) did not induce systemic toxicity in males or females exposed for a minimum of 28 days or in pregnant female rats exposed for 14 days pre-mating, through mating and gestation to day 19. No treatment-related effects on body weight, clinical chemistry, organ weights or histopathology were found. Neurotoxicity screening also showed no effects on motor activity or functional observation battery. A NOAEC of 8000 ppm (18,359 mg/m3) (the highest dose level) was established (Huntingdon, 2003).
Exposure of rats to 2-butene at target concentrations of 2500 or 5000 ppm (5737 or 11,474 mg/m3) did not induce significant systemic toxicity in males and females exposed for 28 days, or in pregnant female rats exposed for 14 days pre-mating, through mating and gestation to day 19 (TNO 1992b). Mean absolute organ weights and relative weights were comparable in all groups. No abnormal, treatment-related macroscopic changes (all groups) or pathological changes (only determined in control and 5000 ppm groups) were observed. The only treatment-related changes were some small decreases in body weights and body weight gains in both sexes at both dose levels and decreased food consumption at 5000 ppm during the first week (premating). Although the authors (TNO 1992b) interpreted the NOAEC as 2500 ppm based on these findings, a reanalysis by RIVM (2007) concluded that as these effects were not dose-related and not consistently present during the study the NOAEC for 2-butene should be 5000 ppm (11,474 mg/m3) (RIVM 2007 and ammended SIDS report 2007).
2-Methylpropene also caused no toxicologically significant changes when rats were exposed to 250, 1000 or 8000ppm (573, 2294 or 18,359 mg/m3) for 13 weeks. The only clinical change was an elevation in ketone bodies detected in urine at 1000 ppm and 8000 ppm (males), the toxicological significance of this is unknown. The NOAEC was 8000 ppm (18,359 mg/m3) the highest concentration level tested (Hazleton 1982). Similar results were obtained in 14 week inhalation studies conducted by the NTP (NTP, 1998). F344/N rats and B6C3F1 mice were exposed to 2-methylpropene at concentrations of 0, 500, 1,000, 2,000, 4,000, or 8,000 ppm, (1147, 2294, 4589, 9179, 18,359 mg/m3) for 14 weeks. There were no significant exposure-related toxicologic effects in either species at any dose level. Increased kidney weights in mice; and increased liver and kidney weights and minimal hypertrophy of goblet cells lining the nasopharyngeal ducts in rats, were considered to be non-toxic adaptive responses. The NOAEL for both studies was 8000 ppm (18,359 mg/m3) the highest concentration level tested.
Carcinogenicity studies on 2-methylpropene were also conducted by the NTP. F344/N rats and B6C3F1 mice were exposed to 2-methylpropene at concentrations of 0, 500, 2,000 or 8,000 ppm, (1147, 4589, 18,359 mg/m3) for 105 weeks (NTP, 1998).The non-neoplastic findings from these studies were confined to effects on nasal tissues. In mice, hyaline degeneration of the olfactory and respiratory epithelium was increased in both sexes. The severities of hyaline degeneration increased with increasing exposure concentration. However, this was considered by the NTP to be a nonspecific adaptive response that had no adverse effect on affected animals. The NOAEC for toxicity in mice was therefore 8000ppm (18,359 mg/m3). Similar findings were observed in rats although the lesions were more severe. An additional finding in rats was that hypertrophy of goblet cells lining the nasopharyngeal duct was marginally increased with 100% incidence in males at 8000 ppm. The NOAEC for toxicity in the rat study was therefore 2000 ppm (4589 mg/m3), lower than that in mice (OECD SIDS Report for Isobutylene, 2003).
Conclusion
1 -Butene, 2 -butene, and 2 -methylpropene show a similar low degree of local and systemic toxicity in repeated-exposure studies. Therefore, the NOAEC for 2 -methylpropene derived in a 2 year cancer bioassay is considered to represent a suitable starting point for the derivation of a DNEL.
General Population - Hazard via inhalation route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 229.4 mg/m³
- Most sensitive endpoint:
- repeated dose toxicity
DNEL related information
- DNEL derivation method:
- other: ECETOC, 2003; 2010
- Overall assessment factor (AF):
- 5
- Dose descriptor:
- NOAEC
- AF for dose response relationship:
- 1
- AF for differences in duration of exposure:
- 1
- AF for interspecies differences (allometric scaling):
- 1
- AF for other interspecies differences:
- 1
- Justification:
- There are no data to quantify variability in susceptibility to the effects of exposure to Category C substances in the human population. However the population exposed in the workplace is highly homogeneous and the health of the work force is typically good (healthy worker effect) while metabolic differences due to genetic polymorphisms do not automatically require an increased assessment factor since compensating mechanisms (including alternative pathways of elimination) are often present (ECETOC, 2003, 2010). Following a review of the distribution of variability in toxicokinetic and toxicodynamic parameters for populations of different ages, genders and disease states, ECETOC concluded that human data (Renwick and Lazarus (1998) Reg. Tox. Pharmacol. 27:3-20 ; Hattis et al. (1999) Risk Anal. 19: 421-431) support the use of an assessment factor of 3 (i.e. the 90th percentile of human toxicokinetic and toxicodynamic variability) to account for intra-species variability present within workers.
- AF for intraspecies differences:
- 5
- Justification:
- There are no data to quantify variability in susceptibility to the effects of exposure to Category C substances in the human population. However an analysis of assessment factors conducted by ECETOC (2003, 2010) showed that metabolic differences due to genetic polymorphisms do not to automatically require an increased assessment factor since alternative pathways of elimination are often present. Following a review of the distribution of variability in toxicokinetic and toxicodynamic parameters for populations of different ages, genders and disease states, ECETOC concluded that human data (Renwick and Lazarus (1998) Reg. Tox. Pharmacol. 27:3-20 ; Hattis et al. (1999) Risk Anal. 19: 421-431) support the use of an assessment factor of 5 (i.e. the 95th percentile of human toxicokinetic and toxicodynamic variability) to account for intra-species variability present within the general population.
- AF for the quality of the whole database:
- 1
- AF for remaining uncertainties:
- 1
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
DNEL related information
General Population - Hazard via dermal route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
General Population - Hazard via oral route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
DNEL related information
General Population - Hazard for the eyes
Local effects
- Hazard assessment conclusion:
- no hazard identified
Additional information - General Population
There are no specific data for member substances of the C4 low 1,3-butadiene category(CAS Numbers; 91052-98-1, 92045-23-3, 95465-89-7,95465-90-0 and 95465-91-1)
, but assessment is based on components of the streams.
A DNEL for acute toxicity should be derived if an acute hazard leading to acute toxicity (eg. C&L) has been identified and there is a potential for high peak exposures. This is not the case with the components of the C4 low 1,3-butadiene category.
Repeat dosing studies via inhalation exposure are available for but-1-ene, 2-butene and 2-methylpropene. All studies have shown minimal systemic or target organ toxicity. Exposure of rats to but-1-ene at concentrations of 500, 2000, 8000 ppm (1147, 4589, 18,359 mg/m3) did not induce systemic toxicity in males or females exposed for a minimum of 28 days or in pregnant female rats exposed for 14 days pre-mating, through mating and gestation to day 19. No treatment-related effects on body weight, clinical chemistry, organ weights or histopathology were found. Neurotoxicity screening also showed no effects on motor activity or functional observation battery. A NOAEC of 8000 ppm (18,359 mg/m3) (the highest dose level) was established (Huntingdon, 2003).
Exposure of rats to 2-butene at target concentrations of 2500 or 5000 ppm (5737 or 11,474 mg/m3) did not induce significant systemic toxicity in males and females exposed for 28 days, or in pregnant female rats exposed for 14 days pre-mating, through mating and gestation to day 19 (TNO 1992b). Mean absolute organ weights and relative weights were comparable in all groups. No abnormal, treatment-related macroscopic changes (all groups) or pathological changes (only determined in control and 5000 ppm groups) were observed. The only treatment-related changes were some small decreases in body weights and body weight gains in both sexes at both dose levels and decreased food consumption at 5000 ppm during the first week (premating). Although the authors (TNO 1992b) interpreted the NOAEC as 2500 ppm based on these findings, a reanalysis by RIVM (2007) concluded that as these effects were not dose-related and not consistently present during the study the NOAEC for 2-butene should be 5000 ppm (11,474 mg/m3) (RIVM 2007 and ammended SIDS report 2007).
2-Methylpropene also caused no toxicologically significant changes when rats were exposed to 250, 1000 or 8000ppm (573, 2294 or 18,359 mg/m3) for 13 weeks. The only clinical change was an elevation in ketone bodies detected in urine at 1000 ppm and 8000 ppm (males), the toxicological significance of this is unknown. The NOAEC was 8000 ppm (18,359 mg/m3) the highest concentration level tested (Hazleton 1982). Similar results were obtained in 14 week inhalation studies conducted by the NTP (NTP, 1998). F344/N rats and B6C3F1 mice were exposed to 2-methylpropene at concentrations of 0, 500, 1,000, 2,000, 4,000, or 8,000 ppm, (1147, 2294, 4589, 9179, 18,359 mg/m3) for 14 weeks. There were no significant exposure-related toxicologic effects in either species at any dose level. Increased kidney weights in mice; and increased liver and kidney weights and minimal hypertrophy of goblet cells lining the nasopharyngeal ducts in rats, were considered to be non-toxic adaptive responses. The NOAEL for both studies was 8000 ppm (18,359 mg/m3) the highest concentration level tested.
Carcinogenicity studies on 2-methylpropene were also conducted by the NTP. F344/N rats and B6C3F1 mice were exposed to 2-methylpropene at concentrations of 0, 500, 2,000 or 8,000 ppm, (1147, 4589, 18,359 mg/m3) for 105 weeks (NTP, 1998).The non-neoplastic findings from these studies were confined to effects on nasal tissues. In mice, hyaline degeneration of the olfactory and respiratory epithelium was increased in both sexes. The severities of hyaline degeneration increased with increasing exposure concentration. However, this was considered by the NTP to be a nonspecific adaptive response that had no adverse effect on affected animals. The NOAEC for toxicity in mice was therefore 8000ppm (18,359 mg/m3). Similar findings were observed in rats although the lesions were more severe. An additional finding in rats was that hypertrophy of goblet cells lining the nasopharyngeal duct was marginally increased with 100% incidence in males at 8000 ppm. The NOAEC for toxicity in the rat study was therefore 2000 ppm (4589 mg/m3), lower than that in mice (OECD SIDS Report for Isobutylene, 2003).
Conclusion
1 -Butene, 2 -butene, and 2 -methylpropene show a similar low degree of local and systemic toxicity in repeated-exposure studies. Therefore, the NOAEC for 2 -methylpropene derived in a 2 year cancer bioassay is considered to represent a suitable starting point for the derivation of a DNEL.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.