Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Endpoint summary

Administrative data

Description of key information

Ammonium hydrogen sulfite dissociates into sulfite anions and ammonium cations in environmental solutions.

Ammonium is ubiquitous in the environment, occurring in minerals, soil, sediments and natural waters, and is present as a natural and essential, actively regulated element in biota. According to the OECD SIDS Initial Assessment Report (2003) on “ammonium chloride (CAS# 12125-02-9)”, ammonium chloride is not expected to be adsorbed in soil with the NH3 or NH4+ being easily mineralized by bacteria, ultimately forming nitrite (NO2-).Consequently, ammonium ions rapidly degrade and do not persist in soil. Ammonium is easily mineralized to nitrite (NO2-) by numerous bacterial species and ultimately becomes part of the global nitrogen cycle. Therefore, any quantitatively relevant adsorption onto soil, sediments or suspended matter for ammonium is not expected.

Sulfite anions are unstable under environmentally relevant conditions and become part of the natural sulfur cycle. Microorganisms control the redox state of sulfur, capable of oxidation or reduction depending on microbial species and environmental conditions. Sulfites are readily oxidized to sulfate under aerated conditions and ultimately reduced to sulfide under anoxic conditions (e.g. Lindsay, 1979, Chemical equilibria in soils. Chichester, UK: John Wiley & Sons., Zopfiet al., 2004, Findlay and Kamyshny, 2017, Lee et al. (2007) .Regarding the partitioning of sulfur in European soils, data are available from a study by Sheppard et al. (2011) based on data from five different soil types, i.e. clay till, clay gyttia, glacial clay, cultivated peat and wetland peat (n=25), yielding a median logKp(solids-water in soil) of 1.64 L/kg.

Since sulfur exists in streamwater predominantly as the free sulfate anion (Salminen et al. 2005), concentrations of sulfate in streamwater and sulfur in sediment concentrations are applied to examine the respective partitioning. Based on the FOREGS dataset (Salminen et al. 2005), sulfate concentrations of European stream waters are typically below 55 mg S/L (95thP = 55 mg S/L, 50thP = 5.6 mg S/L ) whereas sulfur concentrations of sediments are typically below 3,000 mg/kg (95thP = 2,817 mg S/kg, 50thP = 508 mg S/kg). The corresponding log sediment/water partition coefficients range from 0.11 to 4.20 with 5th and 95th percentiles of 0.99 and 3.07, respectively (Kd values range from 1.28 L/kg to 15,728.31 L/kg). A European median log Kp(solids-water in sediment) of 2.02 is derived for sulfur.In addition, data is available on marine sulfur partitioning from a reliable, non-guideline study (Sheppard et al., 2011), yielding a sediment-water partition coefficient log Kp(solids-water in sediment) for sulfur of 1.58 L/kg. Results are however based on limited sample size (n=2) and data should therefore be treated with caution.

In soils, sulfur occurs in organic and inorganic forms with the respective ratio depending on soil type and depth. Organic sulfur predominantly occurs in litter in the form of sulfuric acid esters with C–O–SO3 bonds and compounds containing C–S bonds. Sulfuric esters are choline sulfate, phenol sulfates, and polysaccharide sulfates, are of microbial origin and readily available to plants, because they are more easily mineralized compared to C–S compounds that include amino acids such as methionine and cysteine, and sulfolipides. Carbon bound sulfur origins from leaf litter and dead roots and is less mobile and less available to plants and microorganisms because of the strong C-S bond. Depending on moisture and aeration status, different inorganic sulfur forms exist is soil. Elementary sulfur and sulfides are rarely found in well-drained soils because of rapid oxidization to sulfate. In waterlogged soils, reduction to sulfides may take place with subsequent formation of solid-phase minerals and metal sulfides of very low bioavailability/solubility, including FeS, ZnS, PbS and CdS (Lindsay, 1979, Finster et al., 1998). Iron sulfides apparently cover soil particles as dark films composed of pyrite (FeS).

 

Additional information