Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 309-353-8 | CAS number: 100209-45-8 Substance obtained by acidic, alkaline, or enzymatic hydrolysis of mixed vegetables composed primarily of amino acids, peptides, and proteins. It may contain impurities consisting chiefly of carbohydrates and lipids along with smaller quantities of miscellaneous organic substances of biological origin.
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Ecotoxicological Summary
Administrative data
Hazard for aquatic organisms
Freshwater
- Hazard assessment conclusion:
- no hazard identified
Marine water
- Hazard assessment conclusion:
- no hazard identified
STP
- Hazard assessment conclusion:
- no hazard identified
Sediment (freshwater)
- Hazard assessment conclusion:
- no hazard identified
Sediment (marine water)
- Hazard assessment conclusion:
- no hazard identified
Hazard for air
Air
- Hazard assessment conclusion:
- no hazard identified
Hazard for terrestrial organisms
Soil
- Hazard assessment conclusion:
- no hazard identified
Hazard for predators
Secondary poisoning
- Hazard assessment conclusion:
- no potential to cause toxic effects if accumulated (in higher organisms) via the food chain
Additional information
As indicated in Assessment Report prepared in the context of the possible inclusion of the substance in Annex I of Directive 91/414/EEC prepared by the Hellenic Ministry of rural development and food (April 2008):
The Hydrolysed proteins are quickly degraded to more simple metabolites, which do not have any activityer. Waste is only superficial and it easily disappears with a simple wash or with the rainfall action.Their persistence in the environment is very short, without any tendency to bioaccumulation.
The biotic degradation of the hydrolysed proteins results in more simple metabolites called amino acids. These compounds are present in live cells; consequently, they are not considered real waste, since they can be used again by the same live cells in the protein synthesis.
The Animal and Vegetable cells are formed mainly by proteins, which constitute more than the half of the dry weight of the cell. Proteins determine the shape and structure of the cell and also function as an instrument of molecular recognition and of catalysis (ALBERTS, 1986).
Proteins have many different biological functions. The widest group of proteins are the enzymes whose function is about catalysing the biochemical processes that take place in the living organisms.
Moreover, there are proteins of reservation of amino acids such as plant nutrients; transport proteins of specific molecules; proteins that work as essential elements of the motile and contractile systems; protective proteins that are present in the blood of the vertebrates such as antibodies; proteins that function as hormones and, finally, structural proteins (LEHNINGER, 1983).
The proteins that are found in food and eaten by human beings and mammals are normally degraded metabolically by means of enzymatic processes to give rise to more simple metabolites (parotids and amino acids) that are used by the live cells for the biosynthesis of new specific proteins.
Thehydrolysed proteins comes from the enzymatic hydrolysis of the animal tissues. Therefore, they do not cause any danger to human beings and mammals in general. As it has been explained before, proteins appear in all biochemical processes that take place in every live cell being, this way, essential compounds for human life.
Furthermore, hydrolysed proteins are authorized by the EU in order to be used as attractant in the elaboration of baits in combination with appropriate insecticides of the Organic Farming (Regulation EC 1488/97 annex 2, part B). This shows the innocuousness of these compounds, since the practice of this kind of agriculture is very demanding with the use of products that can be harmful to human beings.
The use of the hydrolysed proteins is considered of low danger for the terrestrial and aquatic wildlife and ecosystems in general.
Conclusion on classification
The substance is not classified as dangerous for the environment.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.