Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 202-486-1 | CAS number: 96-18-4
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Repeated dose toxicity: inhalation
Administrative data
- Endpoint:
- short-term repeated dose toxicity: inhalation
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 26/08/1985 - 13/05/1986
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: - scientifically sound study - generally guideline compliant - missing urinalysis, clinical chemistry and haematology are covered by respective experiments in DOW HET-K-002524-004 with the same animal strains
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 1 986
- Report date:
- 1986
Materials and methods
Test guideline
- Qualifier:
- equivalent or similar to guideline
- Guideline:
- OECD Guideline 412 (Subacute Inhalation Toxicity: 28-Day Study)
- Deviations:
- yes
- Remarks:
- : no haematology examinations, only limited biochemical and urinalysis examinations
- GLP compliance:
- yes
- Limit test:
- no
Test material
- Reference substance name:
- 1,2,3-trichloropropane
- EC Number:
- 202-486-1
- EC Name:
- 1,2,3-trichloropropane
- Cas Number:
- 96-18-4
- Molecular formula:
- C3H5Cl3
- IUPAC Name:
- 1,2,3-trichloropropane
Constituent 1
Test animals
- Species:
- other: rat and mouse
- Strain:
- other: Fischer 344 rats and B6C3F1 mice
- Sex:
- male/female
- Details on test animals or test system and environmental conditions:
- TEST ANIMALS
- Source: Charles River Breeding Laboratories, Inc. (Kingston, NY and Portage, MI, U.S.A. )
- Age at study initiation: 6-8 wk
- Weight at study initiation: rats: 211.1 g (male), 140.1 g (female); mice: 24.6 g (male), 23.3 g (female)
- Fasting period before study: not reported
- Housing: housed singly in stainless steel cages with wire bottoms
- Diet (e.g. ad libitum): Purina Certified Rodent Chow (Ralston Purina Co., St . Louis, MO), ad libitum
- Water (e.g. ad libitum): tap water, analyzed periodically by the City o f Midland, MI
- Acclimation period: 7 d
ENVIRONMENTAL CONDITIONS
- Temperature (°C): 22.2
- Humidity (%): 50
- Air changes (per hr): not reported
- Photoperiod (hrs dark / hrs light): 12/12
IN-LIFE DATES: not precisely reported
Administration / exposure
- Route of administration:
- inhalation: vapour
- Type of inhalation exposure:
- whole body
- Vehicle:
- other: unchanged (no vehicle)
- Remarks on MMAD:
- MMAD / GSD: not applicable
- Details on inhalation exposure:
- GENERATION OF TEST ATMOSPHERE / CHAMBER DESCRIPTION
- Exposure apparatus: 4.1 m³ stainless steel and glass chambers
- Method of holding animals in test chamber: Exposures were conducted i n the
same cages used for housing the animals.
- Source and rate of air: 800 L/min;
- Method of conditioning air: air supplied to the chambers controlled by a system designed to maintain temperature at approximately 21°C and relative humidity at approximately 50%; temperature and relative humidity recorded at the end of each exposure period.
- System of generating vapour:
metering the liquid test material at controlled rates into vaporization tubes as described by Miller et. al. (Miller , R. R., Letts, R. L.. Potts, W. J. and McKenna, M. J. (1980) Improved methodology for generating controlled test atmospheres. Am. Ind. Hyg. Assoc. J. 41:844-846.).
Vapors swept into the exposurechamber inlet ducts with compressed air and mixed and diluted with incoming air by turbulence.
compressed air supply to the vaporization tubes preheated (100°C) to facilitate complete vaporization of the liquid test material.
- Temperature, humidity, pressure in air chamber: 21 °C, 50 %, pressure not noted
- Air flow rate: 800 l/min
- Air change rate: 11.1
TEST ATMOSPHERE
- Brief description of analytical method used: GC-FID
- Samples taken from breathing zone: yes
- Analytical verification of doses or concentrations:
- yes
- Details on analytical verification of doses or concentrations:
- The actual concentration in each chamber was measured approximately 1-2 times/hr by gas chromatography (peak height) using a Varian Model 1400 gas chromatograph with flame ionization detector using a 6'x1/8" stainless-steel column (142°C) packed with 8% Triton X-305 on 100/120 CW-HP.
The analytical equipment was standardized daily by vaporizing measured volumes o f the test substance i n Saran bags filled with a measured volume (100 L) of air. The concentration o f TCP in each chamber was then determined by interpolation from a standard curve. - Duration of treatment / exposure:
- 4 h/d,
- Frequency of treatment:
- 5 d in the first week, 4d in the second week
Doses / concentrations
- Remarks:
- Doses / Concentrations:
0, 6, 18 or 60 mg/m³ (0, 1, 3 or 10 ppm)
Basis:
nominal conc.
- No. of animals per sex per dose:
- 5
- Control animals:
- other: yes, but not reported whether sham-exposed or not treated
- Details on study design:
- - Dose selection rationale: based on study Miller (1986 A) where 0.08 mg/L air (13 ppm) was a LOAEL
- Rationale for animal assignment (if not random): random - Positive control:
- no
Examinations
- Observations and examinations performed and frequency:
- CAGE SIDE OBSERVATIONS: Yes
- Time schedule: complete check: after each exposure period; check for mortality and water and food supply only: daily on weekends
- complete check: any changes in appearance were noted and recorded
BODY WEIGHT: Yes
- Time schedule for examinations: prior to the 1st , 3rd, 5th and 9th exposures.
FOOD CONSUMPTION: No
FOOD EFFICIENCY: No
WATER CONSUMPTION: No
OPHTHALMOSCOPIC EXAMINATION: No
HAEMATOLOGY: No
CLINICAL CHEMISTRY: No, as no significant findings were reported for higher concentrations in a preceding study with the same animal strains and the same study design
URINALYSIS: Yes, in rats only
- Time schedule for collection of urine: at the morning prior to the 9th exposure
- Metabolism cages used for collection of urine: No data
- Animals fasted: No data
- Parameters checked: bilirubin , glucose, ketones, occult blood, pH, protein, urobilinogen using chemstrip 7 (Bio-Dynamics/Div. o f BMC, Indianapolis, IN, U.S.A.) and specific gravity (American Optical Co., Keene, NH)
NEUROBEHAVIOURAL EXAMINATION: No - Sacrifice and pathology:
- GROSS PATHOLOGY: Yes: rats were fasted overnight prior to the scheduled sacrifice; mice were not fasted prior to the sacrifice
Weights recorded of brain, heart, liver , kidneys, thymus (rats)
HISTOPATHOLOGY: Yes: tested tissues:
liver
pancreas
peripheral nerve
adrenals
small intestine
mesenteric lymph node
epididymides
prostate
oviducts
urinary bladder
salivary glands
mediastinal lymph node
thyroid gland
larynx
eyes
lacrimal/harderian glands
oral tissues
heart
brain
spinal cord
kidneys
cecum
mesenteric tissues
seminal vesicles
uterus
cervix
lungs
thymus
aorta
parathyroid glands
skin
tongue
auditory sebac gland
gall bladder (mice only)
spleen
pituitary
bone marrow
stomach
large intestine
testes
coaguiating glands
ovaries
vagina
skeletal muscle
mediastinal tissues
esophagus
trachea
mammary gland
nasal tissues
bone - Statistics:
- Body weights, absolute and relative organ weights and urinary specific gravity were evaluated by Bartlett's test for equality of variances. Based on the outcome of Bartlett's test, exploratory data analysis was performed by a parametric or non-parametric analysis of variance (ANOVA), followed respectively by Dunnett's test or Wilcoxon Rank-Sum test with a Bonferroni correction for multiple comparisons.
Statistical outliers were identified by a sequential test and excluded at the discretion of the study director.
The nominal alpha levels to be used and test references were as follows:
Bartlett's test (Winer, 1971) a = 0.01
Parametric ANOVA (Steel and Torrie, 1960) u = 0.10
Non-Parametri c ANOVA (Holl ander and
Wolfe, 1973) a = 0.10
Dunnett's test (Winer, 1971) a = 0.05, two-sided
Wilcoxon Rank-Sum test (Hollander and
Wolfe, 1973) a = 0.05, two-sided
Bonferroni correction (Miller, 1966)
Outlier test (Grubbs, 1969) a = 0.02, two-sided
Since multiple, interrelated parameters were statistically compared in the same group of animals, the frequency of false positive errors may have been much greater than the nominal alpha level. Thus, in addition to statistical analyses, the final toxicologic interpretation of the data includes factors such as dose-response relationships and whether or not the findings appear to be plausible and consistent in the light of other biologic findings.
Results and discussion
Results of examinations
- Clinical signs:
- no effects observed
- Mortality:
- no mortality observed
- Body weight and weight changes:
- no effects observed
- Food consumption and compound intake (if feeding study):
- not examined
- Food efficiency:
- not examined
- Water consumption and compound intake (if drinking water study):
- not examined
- Ophthalmological findings:
- not examined
- Haematological findings:
- not examined
- Clinical biochemistry findings:
- not examined
- Urinalysis findings:
- no effects observed
- Behaviour (functional findings):
- not examined
- Organ weight findings including organ / body weight ratios:
- no effects observed
- Gross pathological findings:
- no effects observed
- Histopathological findings: non-neoplastic:
- effects observed, treatment-related
- Histopathological findings: neoplastic:
- no effects observed
- Details on results:
- CLINICAL SIGNS AND MORTALITY
no significant effect in any dose group
not examined
BODY WEIGHT AND WEIGHT GAIN
no significant effect in any dose group
FOOD CONSUMPTION
not examined
FOOD EFFICIENCY
not examined
WATER CONSUMPTION
not examined
OPHTHALMOSCOPIC EXAMINATION
not examined
HAEMATOLOGY
not examined
CLINICAL CHEMISTRY
not examined
URINALYSIS
no significant effect in any dose group
NEUROBEHAVIOUR
not examined
ORGAN WEIGHTS
no significant effect in any dose group
GROSS PATHOLOGY
no significant effect in any dose group
HISTOPATHOLOGY: NON-NEOPLASTIC
rats: - very slight exposure related degenerative changes and inflammation in the olfactory epithelium of male and female rats in the 60 mg/m³ (10 ppm) group, and the thickness o f the olfactory epithelium was very slightly decreased in male and female rats in the 18 mg/m³ (3 ppm) group
- no effects on nasal tissues in the 6 mg/m³ (1 ppm) group
mice: - inflammatory reaction in the olfactory epithelial region of 60 mg/m³ (10 ppm) exposed mice, confined to the mucosa and associated with the focal change in thickness
- no effects on nasal tissues in the 16 mg/m³ (3 ppm) group
HISTOPATHOLOGY: NEOPLASTIC (if applicable)
no significant effect in any dose group
Effect levels
open allclose all
- Dose descriptor:
- NOAEC
- Effect level:
- 6 mg/m³ air (nominal)
- Sex:
- male/female
- Basis for effect level:
- other: rat: based on the absence of any adverse effects, especially absence of effects on nasal tissues
- Dose descriptor:
- NOAEC
- Effect level:
- 18 mg/m³ air (nominal)
- Sex:
- male/female
- Basis for effect level:
- other: mouse: based on the absence of any adverse effects, especially absence of effects on nasal tissues
- Dose descriptor:
- LOAEC
- Effect level:
- 18 mg/m³ air (nominal)
- Sex:
- male/female
- Basis for effect level:
- other: rat: thickness o f the olfactory epithelium was very slightly decreased in both sexes, degenerative changes and inflammation in this tissue at higher concentrations
- Dose descriptor:
- LOAEC
- Effect level:
- 60 mg/m³ air (nominal)
- Sex:
- male/female
- Basis for effect level:
- other: see 'Remark'
Target system / organ toxicity
- Critical effects observed:
- not specified
Any other information on results incl. tables
- table 1: exposure concentrations and chamber conditions
Target Conc. (ppm) |
Analytical concentration |
Nominal Concentration |
Temp. (°C) (c) |
|
||||
Analytical concentration (a) |
Coefficient of variation (b) |
Rangeof |
Mean ± SD |
Rangeof |
Max. |
Min. |
Rel. Hum. (%) (c) |
|
0 |
|
|
- |
|
|
21.1 |
19.6 |
64.7 |
1 |
1.0±0.0 |
0% |
0 |
0.9±0.1 |
0.8- 1.0 |
20.2 |
21.4 |
66.3 |
3 |
2.9±0.2 |
7% |
2.5-3.2 |
2.6±0.2 |
2.3- 2.7 |
20.0 |
21.0 |
68.6 |
10 |
9.7±0..3 (d) |
3% |
9.2-10.0 |
12.1±0.9 |
11.0-13.2 |
20.6 |
21.6 |
69.3 |
(a) Numbers are X ± SD daily time-weighted average (TWA) values for 9 exposures.
(b) Coefficient of variation is the SD of the daily TWA measurements divided by X (X100).
(c) X ± SD of daily measurements for 9 exposure days.
(d) On day 8, the 10 ppm exposures were conducted for. only 4.5 hours instead of 6 hours as a result of an operational error.
- None
Applicant's summary and conclusion
- Conclusions:
- 1,2,3-Trichloropropane was tested in a 14 d repeated dose inhalation study (exposure: 5d/ wk, 4 h/d) following generally TG OECD 412. Clinical chemistry and haemotological examinations were not conducted no effects were found even at higher concentrations in an accompanying study (Miller 1986 A). Histopathological changes in the nasal tissues of rats and mice were found leading to NOAECs of 6 mg/m³ (1 ppm) for the rat and 18 mg/m³ (3 ppm ) for the mouse.
- Executive summary:
The present study DOW HET-K-002524-006 / (F344 rat and B6C3F1 mouse, 14d repeated dose inhalation toxicity lower doses) was a follow up study to DOW HET-K-002524-004 / (F344 rat and B6C3F1 mouse, 14d repeated dose inhalation toxicity, higher doses) and conducted to asses the NOAEC for 1,2,3 -Trichloropropane for rats and mice after repeated inhalation exposure (4 h/d, 9 exposures in 14 d, concentrations: 0, 6, 18 or 60 mg/m³ (0, 1, 3 or 10 ppm)). NOAECs of 6 mg/m³ (1 ppm) for the rat and 18 mg/m³ (3 ppm ) for the mouse were found, the corresponding LOAECs are 18 mg/m³ (3 ppm) for the rat and 60 mg/m³ (10 ppm) for the mouse.
Male and female Fischer 344 rats and B6C3F1 mice were analyzed daily for clinical signs, expect on weekends. Body weights were measured prior to the 1st , 3rd, 5th and 9th exposures. In rats urinalysis was conducted at the morning prior to the 9th exposure. At the end of the study the animals were sacrificed and subjected to gross necroscopy and histological analysis of various tissues.
Body weights, organ weights and urinalyses were unaffected by the TCP exposures. Histopathologic examinations of the nasal tissues revealed very slight exposure-related changes in the olfactory epithelium of rats in the 3 ppm and 10 ppm groups, as well as in mice in the 10 ppm group. Similar effects on the olfactory epithelium had previously been found in rats and mice exposed to 13 ppm TCP vapors in a previous study; more pronounced effects on nasal tissues occurred in animals exposed t o 40 or 132 ppm (DOW HET-K-002524-004 / (F344 rat and B6C3F1 mouse, 14d repeated dose inhalation toxicity, higher doses)).
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.