Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 247-118-0 | CAS number: 25584-83-2
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicological Summary
- Administrative data
- Workers - Hazard via inhalation route
- Workers - Hazard via dermal route
- Workers - Hazard for the eyes
- Additional information - workers
- General Population - Hazard via inhalation route
- General Population - Hazard via dermal route
- General Population - Hazard via oral route
- General Population - Hazard for the eyes
- Additional information - General Population
Administrative data
Workers - Hazard via inhalation route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 2.4 mg/m³
- Most sensitive endpoint:
- irritation (respiratory tract)
DNEL related information
- DNEL derivation method:
- other: TLV-TWA recommended by AGGIH
- Overall assessment factor (AF):
- 10
- Dose descriptor:
- LOAEC
- Value:
- 24 mg/m³
- AF for dose response relationship:
- 3
- Justification:
- In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, consideration should be given to the uncertainties in extrapolation of the LOAEC to the NAEC. It is suggested to use an assessment factor between 3 (as minimum/majority of cases) and 10 (as maximum/exceptional cases). Taking into account the dose spacing in the experiment (5-fold), as well as the (tendency to a) concentration dependent increase in incidence and severity of the lesion from mid to high concentration in both sexes, it is suggested to use an assessment factor of 3.
- AF for differences in duration of exposure:
- 1
- Justification:
- In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, a factor allowing for differences in the experimental exposure duration and the duration of exposure for the worker and scenario under consideration needs to be considered taking into account that a) in general the experimental NOAEL will decrease with increasing exposure times and b) other and more serious adverse effects may appear with increasing exposure times. Consequently, to end up with the most conservative DNEL for repeated dose toxicity, chronic exposure is the ‘worst case’. So, as only a sub-chronic toxicity study is available, default assessment factor of 2 is to be applied, as a standard procedure. However, as the DNEL is derived based on on local effects exposure duration is not expected to influence the effect. An assessment factor of 1 is therefore considered to be sufficient.
- AF for interspecies differences (allometric scaling):
- 1
- Justification:
- In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, an assessment factor for allometric scaling is not needed because the effects are not dependent on metabolic rate or systemic absorption (i.e. it concerns a local effect).
- AF for other interspecies differences:
- 1
- Justification:
- In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, an assessment factor for allometric scaling is not needed because the effects are not dependent on metabolic rate or systemic absorption (i.e. it concerns a local effect)
- AF for intraspecies differences:
- 3
- Justification:
- In accordance with ECETOC Derivation of Assessment Factors for Human Health Risk Assessment – Technical Report No. 86 and ECETOC Guidance on Assessment Factors to Derive a DNEL – Technical Report No. 110, a default assessment factor for the general population is based on the distributions of human data for various toxicokinetic and toxicodynamic parameters. The upper extreme of the variability in these data was estimated by calculating the 95th percentile of the distribution, which is considered sufficiently conservative to account for intraspecies variability in the general population (the data analysed included both sexes, a variety of disease states and ages). This results in recommended default assessment factor of 5 for the general population. As the worker population is more homogeneous (i.e. younger, healthier, protected from exposures), a default assessment factor of 3 is recommended. This proposal of ECETOC is based on an evaluation of the available scientific literature while the ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health refers to standard default procedures. Until the scientific basis for using an alternative approach has been established, it is proposed to follow the ECETOC guideline.
- AF for the quality of the whole database:
- 1
- Justification:
- In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterization of dose [concentration]-response for human health, the evaluation of the total toxicological database should include an assessment whether the available information as a whole meets the tonnage driven data requirements necessary to fulfil the REACH requirements, or whether there are data gaps (completeness of the database). Furthermore, the hazard data should be assessed for the reliability and consistency across different studies and endpoints and taking into account the quality of the testing method, size and power of the study design, biological plausibility, dose-response relationships and statistical association (adequacy of the database). When taking into account the standard information requirements and the completeness and consistency of the database the default assessment factor of 1, to be applied for good/standard quality of the database, is recommended.
- AF for remaining uncertainties:
- 1
- Justification:
- In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, a factor allowing for remaining uncertainties should be used where necessary. As the approach used for DNEL derivation is conservative, no further assessment factors are required.
Acute/short term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
DNEL related information
Workers - Hazard via dermal route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
Acute/short term exposure
- Hazard assessment conclusion:
- medium hazard (no threshold derived)
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- medium hazard (no threshold derived)
Acute/short term exposure
- Hazard assessment conclusion:
- medium hazard (no threshold derived)
Workers - Hazard for the eyes
Local effects
- Hazard assessment conclusion:
- medium hazard (no threshold derived)
Additional information - workers
General Population - Hazard via inhalation route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 1.2 mg/m³
- Most sensitive endpoint:
- irritation (respiratory tract)
DNEL related information
- DNEL derivation method:
- ECHA REACH Guidance
- Overall assessment factor (AF):
- 20
- Dose descriptor:
- LOAEC
- Value:
- 24 mg/m³
- AF for dose response relationship:
- 3
- Justification:
- In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, consideration should be given to the uncertainties in extrapolation of the LOAEC to the NAEC. It is suggested to use an assessment factor between 3 (as minimum/majority of cases) and 10 (as maximum/exceptional cases). Taking into account the dose spacing in the experiment (5-fold), as well as the (tendency to a) concentration dependent increase in incidence and severity of the lesion from mid to high concentration in both sexes, it is suggested to use an assessment factor of 3.
- AF for differences in duration of exposure:
- 1
- Justification:
- In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, a factor allowing for differences in the experimental exposure duration and the duration of exposure for the worker and scenario under consideration needs to be considered taking into account that a) in general the experimental NOAEL will decrease with increasing exposure times and b) other and more serious adverse effects may appear with increasing exposure times. Consequently, to end up with the most conservative DNEL for repeated dose toxicity, chronic exposure is the ‘worst case’. So, as only a sub-chronic toxicity study is available, default assessment factor of 2 is to be applied, as a standard procedure. However, as the DNEL is derived based on on local effects exposure duration is not expected to influence the effect. An assessment factor of 1 is therefore considered to be sufficient.
- AF for interspecies differences (allometric scaling):
- 1
- Justification:
- In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, an assessment factor for allometric scaling is not needed because the effects are not dependent on metabolic rate or systemic absorption (i.e. it concerns a local effect).
- AF for other interspecies differences:
- 1
- Justification:
- In accordance with ECETOC Derivation of Assessment Factors for Human Health Risk Assessment – Technical Report No. 86 and ECETOC Guidance on Assessment Factors to Derive a DNEL – Technical Report No. 110, potential differences in biological sensitivity between species are largely accounted for in the default assessment factor proposed for intraspecies variability.
- AF for intraspecies differences:
- 6
- Justification:
- In accordance with ECETOC Derivation of Assessment Factors for Human Health Risk Assessment – Technical Report No. 86 and ECETOC Guidance on Assessment Factors to Derive a DNEL – Technical Report No. 110, a default assessment factor for the general population is based on the distributions of human data for various toxicokinetic and toxicodynamic parameters. The upper extreme of the variability in these data was estimated by calculating the 95th percentile of the distribution, which is considered sufficiently conservative to account for intraspecies variability in the general population (the data analysed included both sexes, a variety of disease states and ages). This results in recommended default assessment factor of 6 for the general population. This proposal of ECETOC is based on an evaluation of the available scientific literature while the ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health refers to standard default procedures. Until the scientific basis for using an alternative approach has been established, it is proposed to follow the ECETOC guideline.
- AF for the quality of the whole database:
- 1
- Justification:
- In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterization of dose [concentration]-response for human health, the evaluation of the total toxicological database should include an assessment whether the available information as a whole meets the tonnage driven data requirements necessary to fulfil the REACH requirements, or whether there are data gaps (completeness of the database). Furthermore, the hazard data should be assessed for the reliability and consistency across different studies and endpoints and taking into account the quality of the testing method, size and power of the study design, biological plausibility, dose-response relationships and statistical association (adequacy of the database). When taking into account the standard information requirements and the completeness and consistency of the database the default assessment factor of 1, to be applied for good/standard quality of the database, is recommended.
- AF for remaining uncertainties:
- 1
- Justification:
- In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, a factor allowing for remaining uncertainties should be used where necessary. As the approach used for DNEL derivation is conservative, no further assessment factors are required
Acute/short term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
DNEL related information
General Population - Hazard via dermal route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
Acute/short term exposure
- Hazard assessment conclusion:
- medium hazard (no threshold derived)
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- medium hazard (no threshold derived)
Acute/short term exposure
- Hazard assessment conclusion:
- medium hazard (no threshold derived)
General Population - Hazard via oral route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
DNEL related information
General Population - Hazard for the eyes
Local effects
- Hazard assessment conclusion:
- no hazard identified
Additional information - General Population
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.