Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 919-006-8 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Basic toxicokinetics
Some information in this page has been claimed confidential.
Administrative data
- Endpoint:
- basic toxicokinetics
- Type of information:
- experimental study
- Adequacy of study:
- supporting study
- Study period:
- 1988
- Reliability:
- 4 (not assignable)
- Rationale for reliability incl. deficiencies:
- other: The documentation is from secondary literature.
- Justification for type of information:
- The justification for read across is provided as an attachment in IUCLID Section 13.
Cross-reference
- Reason / purpose for cross-reference:
- read-across: supporting information
Reference
- Endpoint:
- basic toxicokinetics
- Type of information:
- read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- supporting study
- Study period:
- 1988
- Reliability:
- 4 (not assignable)
- Rationale for reliability incl. deficiencies:
- other: The documentation is from secondary literature.
- Justification for type of information:
- The justification for read across is provided as an attachment in IUCLID Section 13.
- Reason / purpose for cross-reference:
- read-across source
- Executive summary:
This data is being read across from the source study that tested 2, 6, 10, 14-tetramethylpentadecane based on analogue read across.
The fate of pristane (2, 6, 10, 14-tetramethylpentadecane) was studied in rats after a single per os administration of 3H-labeled pristane. The balance study showed extensive fecal excretion (66%) mainly as unchanged hydrocarbon, whereas about 14% of ingested pristane was excreted in urine as pristane metabolites and tritiated water. After one week, 8.3% of the ingested 3H still was stored in the carcass and the radioactive distribution in tissues and organs showed a preferential incorporation into adipose tissue and liver. Over 75% of the radioactivity stored in the carcass was associated with pristane metabolites and tritiated water. Tissue metabolites were characterized by thin layer chromatography, gas chromatography, and mass spectrometric analyses. Four metabolites were identified: pristan-1-ol, pristane-2-ol, pristanic acid and 4, 8, 12-trimethyltridecanoic acid. These results demonstrated that pristane undergoes subterminal hydroxylation or terminal oxidation followed by the classical beta-oxidation process. Incorporation of metabolites in phospholipids and more particularly in the phosphatidylserine fraction has been observed.
Data source
Reference
- Reference Type:
- publication
- Title:
- Disposition and metabolism of pristane in rat.
- Author:
- Le Bon A M; Cravedi J P; Tulliez J E
- Year:
- 1 988
- Bibliographic source:
- Lipids, (1988 May) Vol. 23, No. 5, pp. 424-9. ISSN: 0024-4201.
Materials and methods
Test guideline
- Qualifier:
- no guideline followed
- Principles of method if other than guideline:
- Mass Balance
Test material
- Reference substance name:
- Pristane
- IUPAC Name:
- Pristane
- Reference substance name:
- 2, 6, 10, 14-tetramethylpentadecane
- IUPAC Name:
- 2, 6, 10, 14-tetramethylpentadecane
Constituent 1
Constituent 2
Results and discussion
Applicant's summary and conclusion
- Executive summary:
The fate of pristane (2, 6, 10, 14-tetramethylpentadecane) was studied in rats after a single per os administration of 3H-labeled pristane. The balance study showed extensive fecal excretion (66%) mainly as unchanged hydrocarbon, whereas about 14% of ingested pristane was excreted in urine as pristane metabolites and tritiated water. After one week, 8.3% of the ingested 3H still was stored in the carcass and the radioactive distribution in tissues and organs showed a preferential incorporation into adipose tissue and liver. Over 75% of the radioactivity stored in the carcass was associated with pristane metabolites and tritiated water. Tissue metabolites were characterized by thin layer chromatography, gas chromatography, and mass spectrometric analyses. Four metabolites were identified: pristan-1-ol, pristane-2-ol, pristanic acid and 4, 8, 12-trimethyltridecanoic acid. These results demonstrated that pristane undergoes subterminal hydroxylation or terminal oxidation followed by the classical beta-oxidation process. Incorporation of metabolites in phospholipids and more particularly in the phosphatidylserine fraction has been observed.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.