Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 206-022-9 | CAS number: 288-88-0
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicity to microorganisms
Administrative data
Link to relevant study record(s)
Description of key information
EC50-3h was determined to be higher than 1000 mg/L.
Key value for chemical safety assessment
Additional information
The toxicity of 1,2,4 triazole was studied according to an OECD 209 guideline and GLP requirements (Muckle, 2009). All validity criteria were met.
The inhibition which was caused by the test item1,2,4-Triazole did not rise above 45%. The graph inhibition vs. concentration shows a very gentle slope altogether. No adequate increase in inhibition was observed. In the first experiment, 27% inhibition (mean) was observed at the lowest concentration of 1 mg/L. The inoculum in the first experiment was more sensitive than in the second experiment. Therefore, the inhibition values in the second experiment (test item and positive control) were slightly lower. But the difference within the values was in a normal range of a biological system.
Due to the test item’s properties (inhibitor of nitrification), the test item shows stronger inhibitory action to nitrifying micro-organisms which are present in the activated sludge, so that respiration of these micro-organisms is completely inhibited, whereas carbon oxidising micro-organisms are less inhibited. So in an additional experiment in presence of an inhibitor in all treatments (control, positive control and test vessels), calculation of the separate total, heterotrophic and nitrification oxygen uptake rate would have been possible. But in the highest concentrated treatment low total inhibition values (< 50%) were found; the calculated EC50 for total respiration is above 1000 mg/L. Therefore, the sponsor decided that no second experiment had to be performed in order to discern between inhibition of nitrificators and inhibition of total population.
The result of the test can be considered valid.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.