Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 911-811-2 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Biodegradation in water and sediment: simulation tests
Administrative data
Link to relevant study record(s)
- Endpoint:
- biodegradation in water: sediment simulation testing
- Data waiving:
- other justification
- Justification for data waiving:
- other:
- Transformation products:
- not measured
Reference
Description of key information
No information on biodegradation in water and sediment: simulation tests is available. In accordance with Column 2 of REACH Annex IX, the simulation test on ultimate degradation in surface water and the sediment simulation test do not need to be conducted as the chemical safety assessment conducted according to Annex I indicates that these are not necessary. The chemical safety assessment also indicates that identification of degradation products is not necessary.
Although biodegradation in sediment has not been demonstrated for HEBMP-H and its salts, the role of abiotic removal processes is significant for analogous phosphonate complexing agents. The key data for soil adsorption for the HEBMP category are from the study by Noack (Goller, 2014) (refer to Section 5.4.1 for further information about this test). Adsorption of the linear form was rapid with high Kd values, particularly under conditions where calcium concentrations in the aqueous phase and clay content in the soil phase were both high. Phosphonates were not extracted from the solid phase. The cyclic form shows much lower adsorption constants (Goller 2014), but the continuous processes of re-establishment of the cyclic/linear equilibrium means that adsorption and binding phenomena can still be expected to continue to deplete the available HEBMP (of both cyclic and linear forms).
In general, for the phosphonate complexing agents effectively irreversible binding is consistent with the known behaviour of complexation and binding within crystal lattices. The high levels of adsorption which occur are therefore treated as a form of removal from the environment. For analogous phosphonate complexing agents, after approximately 40-50 days, the phosphonate is >95% bound to sediment with only 5% extractable by ultrasonication and use of 0.25N HCl-xylene solvent (based on radiolabelling) in river and lake water microcosms (Gledhill and Feijtal, 1992). 66-80% removal (binding) was seen after 11 days in the same test.
In the context of the exposure assessment, largely irreversible binding is interpreted as a removal process; 5% remaining after 40 - 50 days is equivalent to a half-life of 10 days, which is significant for the environmental exposure assessment in the regional and continental scales. This abiotic removal rate is used as the half-life for freshwater, marine water, freshwater sediment and marine water sediment in the chemical safety assessment of HEBMP-H and its salts.
Gledhill W.E. and Feijtel T.C.J (1992) Environmental Properties and Safety Assessment of Organic Phosphonates used for Detergent and Water Treatment Applications. The Handbook of Environmental Chemistry 3 (F), 261-285.
Key value for chemical safety assessment
- Half-life in freshwater:
- 10 d
- at the temperature of:
- 12 °C
- Half-life in marine water:
- 10 d
- at the temperature of:
- 12 °C
- Half-life in freshwater sediment:
- 10 d
- at the temperature of:
- 12 °C
- Half-life in marine water sediment:
- 10 d
- at the temperature of:
- 12 °C
Additional information
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.