Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 247-975-0 | CAS number: 26760-64-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Key value for chemical safety assessment
Additional information
Non-human information
In vitro data
The key studies are considered to be a bacterial mutation assay and a mammalian cell cytogenetic assay (SRC, 1981). These are two recognised core assay types for investigating mutation in vitro and were conducted with technically pure 2M2B.
2-Methyl-2-butene (2M2B) was tested using sealed containers for a pre-incubation phase in an Ames assay in S. typhimurium strains TA1535, TA1537, TA1538, TA100, and TA98 and E. coli strains WP2 and WP2uvrA) in both the presence and absence of rat liver S9. A range of doses up to 4000 µg/plate was used. 2M2B was negative in this assay. In the mammalian cell cytogenetic assay, 2M2B was examined in cultured rat liver cells (RL4) at a range of doses up to 50 µg/mL in the absence of auxiliary metabolic activation. Cells were arrested in metaphase after 24 hours exposure and evaluated for chromosomal damage. 2M2B was not clastogenic in this assay.
A negative result was also obtained for the endpoint of gene conversion in S. cerevisiae (SRC, 1981).
In vivo data
The key studies are considered to be cytogenetic studies (bone marrow micronucleus) in the mouse (EBSI, 1991a, BASF 2009) and rat (EBSI, 1991b). This is a recognised core assay type for investigating mutation in vivo.
Male mice or rats were exposed by the inhalation route to doses of 2M2B of 1005, 3207 or 9956 ppm for 6 hours per day for 2 days (EBSI, 1991a,b). Statistically significant increases in the incidence of micronucleated polychromatic erythrocytes (MPEs) over controls were observed at the two highest dose levels in both the mouse and the rat. The dose levels resulted in clinical signs of laboured breathing and decreased activity in a number of the animals exposed. The magnitude of the increase in MPEs was greater in the mouse, with the maximum fold-increase over controls being to 10.6x in the mouse but only 2.2x in the rat. A recent mouse bone marrow micronucleus assay in which two strains of mouse were exposed by the inhalation route to doses of 2M2B up to 11608 ppm for 6 hours per day for 2 days confirmed these findings with increases in the incidence of MPEs to 10x control or greater in both strains (BASF, 2009). An assessment of the size of the micronuclei concluded that they were mainly small in size, and thus indicated that the micronuclei were most likely chromosomal fragments rather than whole chromosomes. Appropriate positive controls of an aneugen and a clastogen were used for reference with the sizing. This would be consistent with a clastogenic effect of 2M2B in the mouse rather than an aneugenic effect.
There are also further reports of micronucleus studies in mice and rats, with results generally consistent with the studies discussed above (EBSI 1990, 1991c-f).
Human information
There is no information indicating any adverse effects of isoamylene.
Short description of key information:
Isoamylene has been examined for mutagenicity both in vitro and in vivo in a range of recognised core assay types. It has shown negative results for mutagenicity in vitro but positive results in a number of studies in vivo in the bone marrow micronucleus assay. It is concluded that the available data indicates that isoamylene is genotoxic in vivo.
Endpoint Conclusion: Adverse effect observed (positive)
Justification for classification or non-classification
Isoamylene warrants classification as Muta Cat 3, R68 under DSD. Under CLP this corresponds with Category 2 (H341): Suspected of causing genetic defects (positive in mammalian somatic cell mutagenicity tests in vivo).
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.