Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Endpoint summary

Administrative data

Description of key information

Biodegradation in water:

35-days Closed Bottle test following the OECD guideline 301 D was performed to determine the ready biodegradability of the test chemical. The test system included control, test item and reference item. The concentration of test and reference item ( Sodium Benzoate) chosen for both the study was 4 mg/L, while that of inoculum was 32 ml/l. ThOD (Theoretical oxygen demand) of test and reference item was determined by calculation. % degradation was calculated using the values of BOD and ThOD for test item and reference item. The BOD35 value of test chemical was observed to be 0.87 mgO2/mg. ThOD was calculated as 2.63 mgO2/mg. Accordingly, the % degradation of the test item after 35 days of incubation at 20 ± 1°C according to Closed Bottle test was determined to be 33.07 %. Based on the results, the test chemical, under the test conditions was considered to be primary inherently biodegradable at 20 ± 1°C over a period of 35 days.

Biodegradation in water and sediment:

Estimation Programs Interface (EPI Suite, 2018) prediction model was run to predict the half-life in water and sediment for the test chemical. If released in to the environment, 24.4 % of the chemical will partition into water according to the Mackay fugacity model level III and the half-life period of test chemical in water is estimated to be 15 days (360 hrs). The half-life (15 days estimated by EPI suite) indicates that the chemical is not persistent in water and the exposure risk to aquatic animals is moderate to low whereas the half-life period of test chemical in sediment is estimated to be 135 days (3240 hrs). However, as the percentage release of test chemical into the sediment is less than 1% (i.e, reported as 0.519%), indicates that test chemical is not persistent in sediment.

Biodegradation in water:

The half-life period of test chemical in soil was estimated using Level III Fugacity Model by EPI Suite version 4.1 estimation database (EPI suite, 2018). If released into the The half-life period of test chemical in soil is estimated to be  30 days (720 hrs). Based on this half-life value of test chemical, it is concluded that the chemical is not persistent in the soil environment and the exposure risk to soil dwelling animals is moderate to low.environment, 74 % of the chemical will partition into soil according to the Mackay fugacity model level III.

Additional information

Biodegradation in water:

35-days Closed Bottle test following the OECD guideline 301 D was performed to determine the ready biodegradability of the test chemical. The test system included control, test item and reference item. The concentration of test and reference item ( Sodium Benzoate) chosen for both the study was 4 mg/L, while that of inoculum was 32 ml/l. ThOD (Theoretical oxygen demand) of test and reference item was determined by calculation. % degradation was calculated using the values of BOD and ThOD for test item and reference item. The BOD35 value of test chemical was observed to be 0.87 mgO2/mg. ThOD was calculated as 2.63 mgO2/mg. Accordingly, the % degradation of the test item after 35 days of incubation at 20 ± 1°C according to Closed Bottle test was determined to be 33.07 %. Based on the results, the test chemical, under the test conditions was considered to be primary inherently biodegradable at 20 ± 1°C over a period of 35 days.

Biodegradation in water and sediment:

Estimation Programs Interface (EPI Suite, 2018) prediction model was run to predict the half-life in water and sediment for the test chemical. If released in to the environment, 24.4 % of the chemical will partition into water according to the Mackay fugacity model level III and the half-life period of test chemical in water is estimated to be 15 days (360 hrs). The half-life (15 days estimated by EPI suite) indicates that the chemical is not persistent in water and the exposure risk to aquatic animals is moderate to low whereas the half-life period of test chemical in sediment is estimated to be 135 days (3240 hrs). However, as the percentage release of test chemical into the sediment is less than 1% (i.e, reported as 0.519%), indicates that test chemical is not persistent in sediment.

Biodegradation in water:

The half-life period of test chemical in soil was estimated using Level III Fugacity Model by EPI Suite version 4.1 estimation database (EPI suite, 2018). If released into the The half-life period of test chemical in soil is estimated to be  30 days (720 hrs). Based on this half-life value of test chemical, it is concluded that the chemical is not persistent in the soil environment and the exposure risk to soil dwelling animals is moderate to low.environment, 74 % of the chemical will partition into soil according to the Mackay fugacity model level III.