Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 235-045-7 | CAS number: 12061-16-4
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in bacteria
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 22 August 2012 - 22 October 2012
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: Study conducted to GLP in compliance with agreed protocols, with no or minor deviations from standard test guidelines and/or minor methodological deficiencies, which do not affect the quality of the relevant results.
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 013
- Report date:
- 2013
Materials and methods
Test guidelineopen allclose all
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- other: guidelines published by the Japanese Regulatory Authorities, including METI, MHLW and MAFF.
- Qualifier:
- according to guideline
- Guideline:
- other: USA, EPA (TSCA) OPPTS harmonised guidelines.
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- bacterial reverse mutation assay
Test material
- Reference substance name:
- Dierbium trioxide
- EC Number:
- 235-045-7
- EC Name:
- Dierbium trioxide
- Cas Number:
- 12061-16-4
- Molecular formula:
- Er2O3
- IUPAC Name:
- dierbium(3+) trioxidandiide
- Test material form:
- solid: particulate/powder
- Details on test material:
- - Appearance: pink powder
- Storage conditions: room temperature in the dark under nitrogen
Constituent 1
Method
- Target gene:
- Histidine requirement in the Salmonella typhimurium strains.
Tryptophan requirement in the Escherichia coli strain.
Species / strain
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and E. coli WP2
- Details on mammalian cell type (if applicable):
- - Type and identity of media: Stock cultures were prepared in Oxoid nutrient broth.
- Properly maintained: yes. Stored at approximately -196 °C in a liquid nitrogen freezer. Prior to use, the master strains were checked for characteristics, viability and spontaneous reversion rate (all were found to be satisfactory). - Additional strain / cell type characteristics:
- other: S. typhimurium: all strains possess rfa- and uvrB-; TA98 and TA100 also possess the R-factor plasmid pKM101. E. coli strain possesses the uvrA- mutation.
- Metabolic activation:
- with and without
- Metabolic activation system:
- Rat liver homogenate (10 % liver S9 in standard co-factors)
- Test concentrations with justification for top dose:
- Preliminary Toxicity Test
0, 0.15, 0.5, 1.5, 5, 15, 50, 150, 500, 1500 and 5000 µg/plate
Mutation Test
Experiment 1: 0, 50, 150, 500, 1500 and 5000 µg/plate
Experiment 2: 0, 5, 15, 50, 150, 500, 1500 and 5000 µg/plate - Vehicle / solvent:
- - Vehicle(s)/solvent(s) used: DMSO
- Justification for choice of solvent/vehicle: The test material was insoluble in sterile distilled water, dimethyl sulphoxide, dimethyl formamide and acetonitrile at 50 mg/mL, acetone at 100 mg/mL and tetrahydrofuran at 200 mg/mL. The test material formed the best doseable suspension in dimethyl sulphoxide, therefore, this solvent was selected as the vehicle.
The test material was accurately weighed and approximate half-log dilutions prepared in dimethyl sulphoxide by mixing on a vortex mixer and sonication for 5 minutes at 40 °C on the day of each experiment. All formulations were used within four hours of preparation and were assumed to be stable for this period.
Controls
- Untreated negative controls:
- yes
- Negative solvent / vehicle controls:
- yes
- Remarks:
- DMSO
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- 4-nitroquinoline-N-oxide
- 9-aminoacridine
- N-ethyl-N-nitro-N-nitrosoguanidine
- benzo(a)pyrene
- other: 2-aminoanthracene
- Details on test system and experimental conditions:
- - EXPERIMENT 1
METHOD OF APPLICATION: in agar (direct plate incorporation)
0.1 mL aliquots of the bacterial cultures were dispensed into sets of test tubes, followed by 2 mL molten top agar (0.6 % agar, 0.5 % NaCl with 5 mL of 1.0 mM histidine and 1.0mM biotin for Salmonella typhimurium or 1.0 mM tryptophan solution for E. coli added to each 100 mL of top agar), 0.1 mL of the appropriate test material solution or the vehicle or positive control substance and 0.5 mL S9-mix (for the plates with metabolic activation) or 0.5 mL phosphate buffer (for the plates without metabolic activation). The contents were mixed and equally distributed onto the surface of Vogel-Bonner Minimal agar plates.
DURATION
- Exposure duration: 48 hours at 37 °C
NUMBER OF REPLICATIONS: The tests were performed in triplicate
- EXPERIMENT 2
METHOD OF APPLICATION: pre-incubation
0.1 mL of the appropriate bacterial culture was dispensed into a test tube followed by 0.5 mL of S9 mix or phosphate buffer and 0.1 mL of the vehicle or test material formulation and incubated for 20 minutes at 37 °C with shaking at approximately 130 rpm prior to the addition of 2 mL of molten, trace histidine or tryptophan supplemented top agar. The contents of the tube were then mixed and equally distributed on the surface of Vogel-Bonner Minimal agar plates.
The positive and untreated controls were dosed using the standard plate incorporation method described above.
DURATION
- Exposure duration: 48 hours at 37 °C
NUMBER OF REPLICATIONS: The tests were performed in triplicate
DETERMINATION OF CYTOTOXICITY
- Method: Examined for effects on the background lawn of bacterial growth. - Evaluation criteria:
- There are several criteria for determining a positive result. Any, one, or all of the following can be used to determine the overall result of the study:
1. A dose-related increase in mutant frequency over the dose range tested (De Serres and Shelby, 1979).
2. A reproducible increase at one or more concentrations.
3. Biological relevance against in-house historical control ranges.
4. Statistical analysis of data as determined by UKEMS (Mahon et al, 1989).
5. Fold increase greater than two times the concurrent solvent control for any tester strain (especially if accompanied by an out-of-historical range response).
A test material will be considered non-mutagenic (negative) in the test system if the above criteria are not met.
The reverse mutation assay may be considered valid if the following criteria are met:
- All bacterial strains must have demonstrated the required characteristics as determined by their respective strain checks.
- All tester strain cultures should exhibit a characteristic number of spontaneous revertants per plate in the vehicle and untreated controls.
- All tester strain cultures should be in the range of 0.9 to 9 x 10⁹ bacteria per mL.
- Diagnostic mutagens (positive control chemicals) must be included to demonstrate both the intrinsic sensitivity of the tester strains to mutagen exposure and the integrity of the S9-mix. All of the positive control chemicals used in the study should induce marked increases in the frequency of revertant colonies, both with or without metabolic activation.
- There should be a minimum of four non-toxic test material dose levels.
- There should be no evidence of excessive contamination.
Results and discussion
Test resultsopen allclose all
- Key result
- Species / strain:
- S. typhimurium TA 1535
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 1537
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Remarks:
- TA1537 (with and without S9 mix) at 5000 µg/plate
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 98
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Remarks:
- TA100 (without S9-mix only)
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- E. coli WP2 uvr A
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- RANGE-FINDING/SCREENING STUDIES: A preliminary toxicity test was performed with TA100 and WP2uvrA in both the absence and presence of S9-mix with ten different concentrations of the test material, ranging from 0.15 to 5000 µg/plate. The test material was not toxic at any concentration both in the absence and presence of S9-mix.
DEFINITIVE STUDY
Results for the negative controls (spontaneous mutation rates) are presented in Table 1 and were considered to be acceptable. These data are for concurrent untreated control plates performed on the same day as the Mutation Test.
The mean number of revertant colonies for the test material, positive and vehicle controls, both with and without metabolic activation, are presented in Table 2 and Table 3 for Experiments 1 and 2, respectively.
The test material caused a visible reduction in the growth of the bacterial background lawns of Salmonella typhimurium strains TA100 (absence of S9-mix only) and TA1537 (absence and presence of S9-mix) at 5000 µg/plate employing both exposure methods. No toxicity was noted to any of the remaining bacterial strains at any test material dose level in both experiments in either the absence or presence of S9-mix. The test material was therefore tested up to the maximum recommended dose level of 5000 µg/plate. No test material precipitate was observed on the plates at any of the doses tested in either the presence or absence of S9-mix employing each exposure method.
No significant increases in the frequency of revertant colonies were recorded for any of the bacterial strains, with any dose of the test material, either with or without metabolic activation or exposure method.
All of the positive control chemicals induced marked increases in the frequency of revertant colonies thus confirming the activity of the S9-mix and the sensitivity of the bacterial strains.
Any other information on results incl. tables
Table 1 Spontaneous Mutation Rates (Concurrent Negative Controls)
Experiment |
Mean number of colonies/plate |
||||
Base-pair Substitution Type |
Frameshift Type |
||||
TA100 |
TA1535 |
WP2uvrA |
TA98 |
TA1537 |
|
1 |
82 |
18 |
26 |
32 |
9 |
2 |
77 |
17 |
31 |
14 |
12 |
Table 2 Experiment 1
+/- S9 Mix |
Concentration (µg/plate) |
Mean number of colonies/plate |
||||
Base-pair Substitution Type |
Frameshift Type |
|||||
TA100 |
TA1535 |
WP2uvrA |
TA98 |
TA1537 |
||
- - - - - - |
Solvent 50 150 500 1500 5000 |
91 82 85 85 80 70* |
16 15 14 17 15 14 |
26 28 26 30 26 25 |
28 22 28 26 26 27 |
17 13 12 15 15 10* |
+ + + + + + |
Solvent 50 150 500 1500 5000 |
99 94 102 97 99 84 |
13 12 10 10 11 12 |
31 33 31 27 35 26 |
27 27 27 26 29 27 |
11 12 11 11 12 7* |
Positive Controls |
||||||
- |
Name |
ENNG |
ENNG |
ENNG |
4NQO |
9AA |
Concentration (µg/plate) |
3 |
5 |
2 |
0.2 |
80 |
|
Mean no. colonies/plate |
749 |
541 |
267 |
159 |
113 |
|
+ |
Name |
2AA |
2AA |
2AA |
BP |
2AA |
Concentration (µg/plate) |
1 |
2 |
10 |
5 |
2 |
|
Mean no. colonies/plate |
1281 |
261 |
264 |
176 |
217 |
*Sparse bacterial background lawn
ENNG = N-ethyl-N’-nitro-N-nitrosoguanidine
4NQO = 4-Nitroquinoline-1-oxide
9AA = 9-aminoacridine
2AA = 2-aminoanthracene
BP = benzo(a)pyrene
Table 3 Experiment 2
+/- S9 Mix |
Concentration (µg/plate) |
Mean number of colonies/plate |
||||
Base-pair Substitution Type |
Frameshift Type |
|||||
TA100 |
TA1535 |
WP2uvrA |
TA98 |
TA1537 |
||
- - - - - - - - |
Solvent 5 15 50 150 500 1500 5000 |
79 77 75 74 71 70 70 70* |
17 19 11 21 15 14 16 15 |
27 24 24 29 26 25 27 29 |
15 13 13 13 14 11 11 16 |
12 11 7 10 8 10 10 7* |
+ + + + + + + + |
Solvent 5 15 50 150 500 1500 5000 |
85 85 74 82 84 85 76 72 |
12 12 12 12 10 10 10 11 |
26 26 27 24 31 24 23 29 |
26 23 15 20 20 18 18 19 |
11 8 8 12 9 8 8 6* |
Positive Controls |
||||||
- |
Name |
ENNG |
ENNG |
ENNG |
4NQO |
9AA |
Concentration (µg/plate) |
3 |
5 |
2 |
0.2 |
80 |
|
Mean no. colonies/plate |
514 |
590 |
484 |
141 |
714 |
|
+ |
Name |
2AA |
2AA |
2AA |
BP |
2AA |
Concentration (µg/plate) |
1 |
2 |
10 |
5 |
2 |
|
Mean no. colonies/plate |
1455 |
246 |
200 |
223 |
281 |
*Sparse bacterial background lawn
ENNG = N-ethyl-N’-nitro-N-nitrosoguanidine
4NQO = 4-Nitroquinoline-1-oxide
9AA = 9-aminoacridine
2AA = 2-aminoanthracene
BP = benzo(a)pyrene
Applicant's summary and conclusion
- Conclusions:
- Interpretation of results: negative with and without metabolic activation.
Under the conditions of this study, the test material was considered to be non-mutagenic. - Executive summary:
The potential of the test material to cause mutagenic effects in bacteria was assessed in accordance with the standardised guidelines OECD 471 and EU Method B.13/14. Furthermore, the test method was designed to be compatible with the guidelines for bacterial mutagenicity testing published by the major Japanese Regulatory Authorities including METI, MHLW and MAFF and the USA, EPA (TSCA) OPPTS harmonised guidelines.
Salmonella typhimurium strains TA1535, TA1537, TA98, TA100 and Escherichia coli strain WP2uvrA were treated with the test material, using the plate incorporation and pre-incubation methods, at five and seven dose levels, respectively, both with and without metabolic activation. The dose levels assessed were 50, 150, 500, 1500 and 5000 µg/plate using the plate incorporation method and 5, 15, 50, 150, 500, 1500 and 5000 µg/plate using the pre-incubation method.
The test material caused a visible reduction in the growth of the bacterial background lawns of S. typhimurium strains TA100 (absence of S9-mix only) and TA1537 (absence and presence of S9-mix) at 5000 µg/plate employing both exposure methods. No toxicity was noted to any of the remaining bacterial strains at any test item dose level in both experiments in either the absence or presence of S9-mix.
No toxicologically significant increases in the frequency of revertant colonies were recorded for any of the bacterial strains.
The vehicle controls gave revertant colony counts within the normal range. The positive controls gave the expected increases in revertants, validating the sensitivity of the assay and the efficacy of the S9-mix.
The test material was considered to be non-mutagenic under the conditions of this test.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.