Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 206-841-1 | CAS number: 382-28-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Phototransformation in air
Administrative data
Link to relevant study record(s)
Description of key information
By weight of evidence, Perfluoro-N-methylmorpholine (PMM) is expected to have an atmospheric lifetime in the range of 1600 – 4000 years.
Key value for chemical safety assessment
Additional information
PMM is expected to reside in the atmosphere. Given its uses, any releases will be solely to the atmospheric compartment. No releases to aquatic or terrestrial compartments are expected. Due to its high vapor pressure, high Henry's Law constant, and low water solubility, PMM will not partition from the atmosphere to other compartments. Therefore, phototransformation processes will control its fate. The susceptibility of PMM to phototransformation in the atmosphere was assessed in a single study. PMM was resistant to direct photolysis under medium pressure mercury lamp irradiation, as well as indirect photolysis by hydroxyl radical. PMM showed potential reactivity with O(¹D) at the limit of experimental error and no detectable reactivity with hydroxyl radical. Maximum rate constants for phototransfomation reactions are < 1.4E-17 cm³ molecule-1 s-1 [hydroxyl radical] and < 1.5E-11 cm³ molecule-1 s-1 [O(¹D)]. These correspond to minimum atmospheric lifetimes of 5570 years and 2000 years, respectively, and were lumped to provide an estimated atmospheric lifetime greater than 1600 years by indirect processes. The stability of the carbon-fluorine bond indicates that an upper limit for photochemical destruction can be made by analogy with simple perfluorocarbons (PFCs). The only important sinks for PFCs are photolysis or ion reactions in the mesosphere (1). Medium-chain perfluoroalkanes such as perfluoropentane and perfluorohexane have atmospheric lifetimes in the range of 3000 – 4000 years (1). Presence of oxygen and nitrogen in PMM does not stabilize the molecule, therefore a maximum atmospheric lifetime of 4000 years can be established by analogy with medium chain perfluoroalkanes. PMM is expected to undergo scission of carbon-carbon bonds on exposure to light in the vacuum UV range at high altitudes, with no stable degradation products formed once photoinitiation occurs (2). Ultimate degradation products are expected to be CO2, HF and NOx compounds.
1) Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz and R. Van Dorland, 2007: Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
2) C.J. Young, M.D. Hurley, T.J. Wallington, S. A. Mabury, 2006. Atmospheric lifetime and Global Warming Potential of a perfluoropolyether. Environ. Sci. Technol. Vol 40, pp. 2242-2246.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.