Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Workers - Hazard via inhalation route

Systemic effects

Long term exposure
Hazard assessment conclusion:
DNEL (Derived No Effect Level)
Value:
36.7 mg/m³
Most sensitive endpoint:
repeated dose toxicity
Route of original study:
Oral
DNEL related information
DNEL derivation method:
ECHA REACH Guidance
Overall assessment factor (AF):
18
Modified dose descriptor starting point:
NOAEC
Value:
661.2 mg/m³
Explanation for the modification of the dose descriptor starting point:
There are no relevant experimental data on repeated exposure by inhalation
AF for dose response relationship:
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, for the dose-response relationship, consideration should be given to the uncertainties in the dose descriptor (NOAEL, benchmark dose…) as the surrogate for the true no-adverse-effect-level (NAEL). In this case the starting point for the DNEL calculation is a NOAEC, derived from a study which is of good quality and without uncertainties. Therefore the default assessment factor, as a standard procedure, is 1.
AF for differences in duration of exposure:
6
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, a factor allowing for differences in the experimental exposure duration and the duration of exposure for the worker and scenario under consideration needs to be considered taking into account that a) in general the experimental NOAEL will decrease with increasing exposure times and b) other and more serious adverse effects may appear with increasing exposure times. Consequently, to end up with the most conservative DNEL for repeated dose toxicity, chronic exposure is the ‘worst case’. So, as only a sub-acute toxicity study is available, default assessment factor of 6 is to be applied, as a standard procedure.
AF for interspecies differences (allometric scaling):
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, as long as route-to-route extrapolation is not needed, allometric scaling should not be applied in cases where doses in experimental animal studies are expressed as concentrations (e.g. in mg/m3 air, ppm in diet, or mg/L in the drinking water) as these are assumed to be already scaled according to the allometric principle, since ventilation rate and food intake directly depend on the basal metabolic rate. In this case the NOAEC is expressed as concentration (mg/m3), therefore a factor for allometric scaling is not needed. In ECETOC Derivation of Assessment Factors for Human Health Risk Assessment – Technical Report No. 86 and ECETOC Guidance on Assessment Factors to Derive a DNEL – Technical Report No. 110, a similar approach is followed. The rationale here is that allometric scaling should not be applied because in humans inhalation rate is 4-fold lower compared to rats according to the slower metabolic rate and thereby the allometric species difference is already implicitly taken into account.
AF for other interspecies differences:
1
Justification:
In accordance with ECETOC Derivation of Assessment Factors for Human Health Risk Assessment – Technical Report No. 86 and ECETOC Guidance on Assessment Factors to Derive a DNEL – Technical Report No. 110, potential differences in biological sensitivity between species are largely accounted for in the default assessment factor proposed for intraspecies variability.
AF for intraspecies differences:
3
Justification:
In accordance with ECETOC Derivation of Assessment Factors for Human Health Risk Assessment – Technical Report No. 86 and ECETOC Guidance on Assessment Factors to Derive a DNEL – Technical Report No. 110, a default assessment factor for the general population is based on the distributions of human data for various toxicokinetic and toxicodynamic parameters. The upper extreme of the variability in these data was estimated by calculating the 95th percentile of the distribution, which is considered sufficiently conservative to account for intraspecies variability in the general population (the data analysed included both sexes, a variety of disease states and ages). This results in recommended default assessment factor of 5 for the general population. As the worker population is more homogeneous (i.e. younger, healthier, protected from exposures), a default assessment factor of 3 is recommended. This proposal of ECETOC is based on an evaluation of the available scientific literature while the ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health refers to standard default procedures. Until the scientific basis for using an alternative approach has been established, it is proposed to follow the ECETOC guideline.
AF for the quality of the whole database:
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, the evaluation of the total toxicological database should include an assessment whether the available information as a whole meets the tonnage driven data requirements necessary to fulfil the REACH requirements, or whether there are data gaps (completeness of the database). Furthermore, the hazard data should be assessed for the reliability and consistency across different studies and endpoints and taking into account the quality of the testing method, size and power of the study design, biological plausibility, dose-response relationships and statistical association (adequacy of the database). When taking into account the standard information requirements and the completeness and consistency of the database the default assessment factor of 1, to be applied for good/standard quality of the database, is recommended.
Acute/short term exposure
Hazard assessment conclusion:
no hazard identified
DNEL related information

Local effects

Long term exposure
Hazard assessment conclusion:
hazard unknown (no further information necessary)
Acute/short term exposure
Hazard assessment conclusion:
hazard unknown (no further information necessary)
DNEL related information

Workers - Hazard via dermal route

Systemic effects

Long term exposure
Hazard assessment conclusion:
DNEL (Derived No Effect Level)
Value:
10.4 mg/kg bw/day
Most sensitive endpoint:
repeated dose toxicity
Route of original study:
Oral
DNEL related information
DNEL derivation method:
ECHA REACH Guidance
Overall assessment factor (AF):
72
Modified dose descriptor starting point:
NOAEL
Value:
750 mg/kg bw/day
Explanation for the modification of the dose descriptor starting point:
There are no relevant experimental data on the systemic effects as a results of dermal exposure.
AF for dose response relationship:
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, for the dose-response relationship, consideration should be given to the uncertainties in the dose descriptor (NOAEL, benchmark dose…) as the surrogate for the true no-adverse-effect-level (NAEL). In this case the starting point for the DNEL calculation is a NOAEC, derived from a study which is of good quality and without uncertainties. Therefore the default assessment factor, as a standard procedure, is 1.
AF for differences in duration of exposure:
6
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, a factor allowing for differences in the experimental exposure duration and the duration of exposure for the worker and scenario under consideration needs to be considered taking into account that a) in general the experimental NOAEL will decrease with increasing exposure times and b) other and more serious adverse effects may appear with increasing exposure times. Consequently, to end up with the most conservative DNEL for repeated dose toxicity, chronic exposure is the ‘worst case’. So, as only a sub-acute toxicity study is available, default assessment factor of 6 is to be applied, as a standard procedure.
AF for interspecies differences (allometric scaling):
4
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, allometric scaling extrapolates doses according to an overall assumption that equitoxic doses (when expressed in mg/kg bw/day) scale with body weight to the power of 0.75. This results a default allometric scaling factor for the rat when compared with humans, namely 4. In ECETOC Derivation of Assessment Factors for Human Health Risk Assessment – Technical Report No. 86 and ECETOC Guidance on Assessment Factors to Derive a DNEL – Technical Report No. 110, a similar approach is followed. Toxicokinetic differences can be explained by basal metabolic rate which can be accounted for by allometric scaling. The underlying principle is that due to the faster metabolic rate of small animals, humans would less effectively detoxify and/or excrete xenobiotics than laboratory animals and thus are more vulnerable. The allometric scaling factor for the rat versus humans is 4.
AF for other interspecies differences:
1
Justification:
In accordance with ECETOC Derivation of Assessment Factors for Human Health Risk Assessment – Technical Report No. 86 and ECETOC Guidance on Assessment Factors to Derive a DNEL – Technical Report No. 110, potential differences in biological sensitivity between species are largely accounted for in the default assessment factor proposed for intraspecies variability.
AF for intraspecies differences:
3
Justification:
In accordance with ECETOC Derivation of Assessment Factors for Human Health Risk Assessment – Technical Report No. 86 and ECETOC Guidance on Assessment Factors to Derive a DNEL – Technical Report No. 110, a default assessment factor for the general population is based on the distributions of human data for various toxicokinetic and toxicodynamic parameters. The upper extreme of the variability in these data was estimated by calculating the 95th percentile of the distribution, which is considered sufficiently conservative to account for intraspecies variability in the general population (the data analysed included both sexes, a variety of disease states and ages). This results in recommended default assessment factor of 5 for the general population. As the worker population is more homogeneous (i.e. younger, healthier, protected from exposures), a default assessment factor of 3 is recommended. This proposal of ECETOC is based on an evaluation of the available scientific literature while the ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health refers to standard default procedures. Until the scientific basis for using an alternative approach has been established, it is proposed to follow the ECETOC guideline.
AF for the quality of the whole database:
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, the evaluation of the total toxicological database should include an assessment whether the available information as a whole meets the tonnage driven data requirements necessary to fulfil the REACH requirements, or whether there are data gaps (completeness of the database). Furthermore, the hazard data should be assessed for the reliability and consistency across different studies and endpoints and taking into account the quality of the testing method, size and power of the study design, biological plausibility, dose-response relationships and statistical association (adequacy of the database). When taking into account the standard information requirements and the completeness and consistency of the database the default assessment factor of 1, to be applied for good/standard quality of the database, is recommended.
Acute/short term exposure
Hazard assessment conclusion:
no hazard identified
DNEL related information

Local effects

Long term exposure
Hazard assessment conclusion:
no hazard identified
Acute/short term exposure
Hazard assessment conclusion:
low hazard (no threshold derived)
Most sensitive endpoint:
skin irritation/corrosion

Workers - Hazard for the eyes

Local effects

Hazard assessment conclusion:
no hazard identified

Additional information - workers

General Population - Hazard via inhalation route

Systemic effects

Long term exposure
Hazard assessment conclusion:
DNEL (Derived No Effect Level)
Value:
10.9 mg/m³
Most sensitive endpoint:
repeated dose toxicity
Route of original study:
Oral
DNEL related information
DNEL derivation method:
ECHA REACH Guidance
Overall assessment factor (AF):
30
Modified dose descriptor starting point:
NOAEC
Value:
326.09 mg/m³
Explanation for the modification of the dose descriptor starting point:
There are no relevant experimental data on repeated exposure by inhalation
AF for dose response relationship:
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, for the dose-response relationship, consideration should be given to the uncertainties in the dose descriptor (NOAEL, benchmark dose…) as the surrogate for the true no-adverse-effect-level (NAEL). In this case the starting point for the DNEL calculation is a NOAEC, derived from a study which is of good quality and without uncertainties. Therefore the default assessment factor, as a standard procedure, is 1.
AF for differences in duration of exposure:
6
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, a factor allowing for differences in the experimental exposure duration and the duration of exposure for the worker and scenario under consideration needs to be considered taking into account that a) in general the experimental NOAEL will decrease with increasing exposure times and b) other and more serious adverse effects may appear with increasing exposure times. Consequently, to end up with the most conservative DNEL for repeated dose toxicity, chronic exposure is the ‘worst case’. So, as only a sub-acute toxicity study is available, default assessment factor of 6 is to be applied, as a standard procedure.
AF for interspecies differences (allometric scaling):
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, as long as route-to-route extrapolation is not needed, allometric scaling should not be applied in cases where doses in experimental animal studies are expressed as concentrations (e.g. in mg/m3 air, ppm in diet, or mg/L in the drinking water) as these are assumed to be already scaled according to the allometric principle, since ventilation rate and food intake directly depend on the basal metabolic rate. In this case the NOAEC is expressed as concentration (mg/m3), therefore a factor for allometric scaling is not needed. In ECETOC Derivation of Assessment Factors for Human Health Risk Assessment – Technical Report No. 86 and ECETOC Guidance on Assessment Factors to Derive a DNEL – Technical Report No. 110, a similar approach is followed. The rationale here is that allometric scaling should not be applied because in humans inhalation rate is 4-fold lower compared to rats according to the slower metabolic rate and thereby the allometric species difference is already implicitly taken into account.
AF for other interspecies differences:
1
Justification:
In accordance with ECETOC Derivation of Assessment Factors for Human Health Risk Assessment – Technical Report No. 86 and ECETOC Guidance on Assessment Factors to Derive a DNEL – Technical Report No. 110, potential differences in biological sensitivity between species are largely accounted for in the default assessment factor proposed for intraspecies variability.
AF for intraspecies differences:
5
Justification:
In accordance with ECETOC Derivation of Assessment Factors for Human Health Risk Assessment – Technical Report No. 86 and ECETOC Guidance on Assessment Factors to Derive a DNEL – Technical Report No. 110, a default assessment factor for the general population is based on the distributions of human data for various toxicokinetic and toxicodynamic parameters. The upper extreme of the variability in these data was estimated by calculating the 95th percentile of the distribution, which is considered sufficiently conservative to account for intraspecies variability in the general population (the data analysed included both sexes, a variety of disease states and ages). This results in recommended default assessment factor of 5 for the general population. This proposal of ECETOC is based on an evaluation of the available scientific literature while the ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health refers to standard default procedures. Until the scientific basis for using an alternative approach has been established, it is proposed to follow the ECETOC guideline.
AF for the quality of the whole database:
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, the evaluation of the total toxicological database should include an assessment whether the available information as a whole meets the tonnage driven data requirements necessary to fulfil the REACH requirements, or whether there are data gaps (completeness of the database). Furthermore, the hazard data should be assessed for the reliability and consistency across different studies and endpoints and taking into account the quality of the testing method, size and power of the study design, biological plausibility, dose-response relationships and statistical association (adequacy of the database). When taking into account the standard information requirements and the completeness and consistency of the database the default assessment factor of 1, to be applied for good/standard quality of the database, is recommended.
Acute/short term exposure
Hazard assessment conclusion:
no hazard identified
DNEL related information

Local effects

Long term exposure
Hazard assessment conclusion:
hazard unknown (no further information necessary)
Acute/short term exposure
Hazard assessment conclusion:
hazard unknown (no further information necessary)
DNEL related information

General Population - Hazard via dermal route

Systemic effects

Long term exposure
Hazard assessment conclusion:
DNEL (Derived No Effect Level)
Value:
6.25 mg/kg bw/day
Most sensitive endpoint:
repeated dose toxicity
Route of original study:
Oral
DNEL related information
DNEL derivation method:
ECHA REACH Guidance
Overall assessment factor (AF):
120
Modified dose descriptor starting point:
NOAEL
Value:
750 mg/kg bw/day
Explanation for the modification of the dose descriptor starting point:
There are no relevant experimental data on the systemic effects as a results of dermal exposure.
AF for dose response relationship:
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, for the dose-response relationship, consideration should be given to the uncertainties in the dose descriptor (NOAEL, benchmark dose…) as the surrogate for the true no-adverse-effect-level (NAEL). In this case the starting point for the DNEL calculation is a NOAEC, derived from a study which is of good quality and without uncertainties. Therefore the default assessment factor, as a standard procedure, is 1.
AF for differences in duration of exposure:
6
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, a factor allowing for differences in the experimental exposure duration and the duration of exposure for the worker and scenario under consideration needs to be considered taking into account that a) in general the experimental NOAEL will decrease with increasing exposure times and b) other and more serious adverse effects may appear with increasing exposure times. Consequently, to end up with the most conservative DNEL for repeated dose toxicity, chronic exposure is the ‘worst case’. So, as only a sub-acute toxicity study is available, default assessment factor of 6 is to be applied, as a standard procedure.
AF for interspecies differences (allometric scaling):
4
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, allometric scaling extrapolates doses according to an overall assumption that equitoxic doses (when expressed in mg/kg bw/day) scale with body weight to the power of 0.75. This results a default allometric scaling factor for the rat when compared with humans, namely 4. In ECETOC Derivation of Assessment Factors for Human Health Risk Assessment – Technical Report No. 86 and ECETOC Guidance on Assessment Factors to Derive a DNEL – Technical Report No. 110, a similar approach is followed. Toxicokinetic differences can be explained by basal metabolic rate which can be accounted for by allometric scaling. The underlying principle is that due to the faster metabolic rate of small animals, humans would less effectively detoxify and/or excrete xenobiotics than laboratory animals and thus are more vulnerable. The allometric scaling factor for the rat versus humans is 4.
AF for other interspecies differences:
1
Justification:
In accordance with ECETOC Derivation of Assessment Factors for Human Health Risk Assessment – Technical Report No. 86 and ECETOC Guidance on Assessment Factors to Derive a DNEL – Technical Report No. 110, potential differences in biological sensitivity between species are largely accounted for in the default assessment factor proposed for intraspecies variability.
AF for intraspecies differences:
5
Justification:
In accordance with ECETOC Derivation of Assessment Factors for Human Health Risk Assessment – Technical Report No. 86 and ECETOC Guidance on Assessment Factors to Derive a DNEL – Technical Report No. 110, a default assessment factor for the general population is based on the distributions of human data for various toxicokinetic and toxicodynamic parameters. The upper extreme of the variability in these data was estimated by calculating the 95th percentile of the distribution, which is considered sufficiently conservative to account for intraspecies variability in the general population (the data analysed included both sexes, a variety of disease states and ages). This results in recommended default assessment factor of 5 for the general population. This proposal of ECETOC is based on an evaluation of the available scientific literature while the ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health refers to standard default procedures. Until the scientific basis for using an alternative approach has been established, it is proposed to follow the ECETOC guideline.
AF for the quality of the whole database:
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, the evaluation of the total toxicological database should include an assessment whether the available information as a whole meets the tonnage driven data requirements necessary to fulfil the REACH requirements, or whether there are data gaps (completeness of the database). Furthermore, the hazard data should be assessed for the reliability and consistency across different studies and endpoints and taking into account the quality of the testing method, size and power of the study design, biological plausibility, dose-response relationships and statistical association (adequacy of the database). When taking into account the standard information requirements and the completeness and consistency of the database the default assessment factor of 1, to be applied for good/standard quality of the database, is recommended.
Acute/short term exposure
Hazard assessment conclusion:
no hazard identified
DNEL related information

Local effects

Long term exposure
Hazard assessment conclusion:
no hazard identified
Acute/short term exposure
Hazard assessment conclusion:
low hazard (no threshold derived)
Most sensitive endpoint:
skin irritation/corrosion

General Population - Hazard via oral route

Systemic effects

Long term exposure
Hazard assessment conclusion:
DNEL (Derived No Effect Level)
Value:
6.25 mg/kg bw/day
Most sensitive endpoint:
repeated dose toxicity
Route of original study:
Oral
DNEL related information
DNEL derivation method:
ECHA REACH Guidance
Overall assessment factor (AF):
120
Modified dose descriptor starting point:
NOAEL
Value:
750 mg/kg bw/day
AF for dose response relationship:
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, for the dose-response relationship, consideration should be given to the uncertainties in the dose descriptor (NOAEL, benchmark dose…) as the surrogate for the true no-adverse-effect-level (NAEL). In this case the starting point for the DNEL calculation is a NOAEL, derived from a study which is of good quality and without uncertainties. Therefore the default assessment factor, as a standard procedure, is 1.
AF for differences in duration of exposure:
6
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, a factor allowing for differences in the experimental exposure duration and the duration of exposure for the worker and scenario under consideration needs to be considered taking into account that a) in general the experimental NOAEL will decrease with increasing exposure times and b) other and more serious adverse effects may appear with increasing exposure times. Consequently, to end up with the most conservative DNEL for repeated dose toxicity, chronic exposure is the ‘worst case’. So, as only a sub-acute toxicity study is available, default assessment factor of 6 is to be applied, as a standard procedure.
AF for interspecies differences (allometric scaling):
4
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, allometric scaling extrapolates doses according to an overall assumption that equitoxic doses (when expressed in mg/kg bw/day) scale with body weight to the power of 0.75. This results a default allometric scaling factor for the rat when compared with humans, namely 4. In ECETOC Derivation of Assessment Factors for Human Health Risk Assessment – Technical Report No. 86 and ECETOC Guidance on Assessment Factors to Derive a DNEL – Technical Report No. 110, a similar approach is followed. Toxicokinetic differences can be explained by basal metabolic rate which can be accounted for by allometric scaling. The underlying principle is that due to the faster metabolic rate of small animals, humans would less effectively detoxify and/or excrete xenobiotics than laboratory animals and thus are more vulnerable. The allometric scaling factor for the rat versus humans is 4.
AF for other interspecies differences:
1
Justification:
In accordance with ECETOC Derivation of Assessment Factors for Human Health Risk Assessment – Technical Report No. 86 and ECETOC Guidance on Assessment Factors to Derive a DNEL – Technical Report No. 110, potential differences in biological sensitivity between species are largely accounted for in the default assessment factor proposed for intraspecies variability.
AF for intraspecies differences:
5
Justification:
In accordance with ECETOC Derivation of Assessment Factors for Human Health Risk Assessment – Technical Report No. 86 and ECETOC Guidance on Assessment Factors to Derive a DNEL – Technical Report No. 110, a default assessment factor for the general population is based on the distributions of human data for various toxicokinetic and toxicodynamic parameters. The upper extreme of the variability in these data was estimated by calculating the 95th percentile of the distribution, which is considered sufficiently conservative to account for intraspecies variability in the general population (the data analysed included both sexes, a variety of disease states and ages). This results in recommended default assessment factor of 5 for the general population. This proposal of ECETOC is based on an evaluation of the available scientific literature while the ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health refers to standard default procedures. Until the scientific basis for using an alternative approach has been established, it is proposed to follow the ECETOC guideline.
AF for the quality of the whole database:
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, the evaluation of the total toxicological database should include an assessment whether the available information as a whole meets the tonnage driven data requirements necessary to fulfil the REACH requirements, or whether there are data gaps (completeness of the database). Furthermore, the hazard data should be assessed for the reliability and consistency across different studies and endpoints and taking into account the quality of the testing method, size and power of the study design, biological plausibility, dose-response relationships and statistical association (adequacy of the database). When taking into account the standard information requirements and the completeness and consistency of the database the default assessment factor of 1, to be applied for good/standard quality of the database, is recommended.
Acute/short term exposure
Hazard assessment conclusion:
no hazard identified
DNEL related information

General Population - Hazard for the eyes

Local effects

Hazard assessment conclusion:
no hazard identified

Additional information - General Population