Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 259-105-7 | CAS number: 54326-11-3
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Repeated dose toxicity: oral
Administrative data
- Endpoint:
- short-term repeated dose toxicity: oral
- Remarks:
- combined repeated dose and reproduction / developmental screening
- Type of information:
- migrated information: read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- key study
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: GLP compliant, guideline study, available as an unpublished report.
Cross-reference
- Reason / purpose for cross-reference:
- reference to same study
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 013
- Report date:
- 2013
Materials and methods
Test guideline
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 422 (Combined Repeated Dose Toxicity Study with the Reproduction / Developmental Toxicity Screening Test)
- Deviations:
- no
- GLP compliance:
- yes
- Limit test:
- no
Test material
- Reference substance name:
- Aluminum, benzoate C16-18 fatty acid complexes
- IUPAC Name:
- Aluminum, benzoate C16-18 fatty acid complexes
- Reference substance name:
- Aluminum, benzoate C16-18-fatty acids complexes
- EC Number:
- 303-385-6
- EC Name:
- Aluminum, benzoate C16-18-fatty acids complexes
- Cas Number:
- 94166-87-7
- Molecular formula:
- C23H37AlO5, C25H41AlO5
- IUPAC Name:
- Aluminum, benzoate C16-18-fatty acids complexes
- Test material form:
- other: pale yellow solid
- Details on test material:
- - Aluminum, benzoate C16-18 fatty acid complexes
- Substance type: technical product
- Physical state: pale yellow solid
- Batch number: 11074091
- Expiry date: 01 July 2013
- Storage conditions: room temperature in the dark
Constituent 1
Constituent 2
Test animals
- Species:
- rat
- Strain:
- Wistar
- Sex:
- male/female
- Details on test animals or test system and environmental conditions:
- TEST ANIMALS
- source: Harlan Laboratories UK Ltd
- age at study initiation: approx 12 weeks
- weight at study initiation: males - 322 to 394g; females (nulliparous and nonpregnant) - 195 to 237g
- housing: initially in groups of 4 in solid floor propylene cages with softwood bedding. During pairing animals were transferred to polypropylene grid floor cages suspended over trays lined with absorbant paper, one male:one female basis. Following successful mating, males returned to original cages. Mated females housed individually during gestation/lactation in the solid floor cages as for mating. Enrichment: wooden chew blocks and cardboard tunnels.
-diet: Rodent 2018C Teklad Global Certified Diet, Harlan Laboratories UK Ltd
- water: mains drinking water ad libitum
- acclimation period: 12 days
ENVIRONMENTAL CONDITIONS
- temperature: 21 +/- 2 deg C
- humidity: 55+/- 15%
- photoperiod: 12h light/12h dark
Administration / exposure
- Route of administration:
- oral: gavage
- Vehicle:
- other: MOL WO M 46 Medicinal white oil
- Details on oral exposure:
- PREPARATION OF DOSING SOLUTIONS:
VEHICLE
- Justification for use and choice of vehicle (if other than water): test material synthesised in the presence of MOL WO M 46 Medicinal white oil. Same white oil used for dilution of test material and as the control vehicle
- Test substance concentration in vehicle: 15%
- Treatment volume: 5 ml/kg bw/day
- Lot/batch no. (if required): 9037038
- Purity: 100% - Analytical verification of doses or concentrations:
- yes
- Details on analytical verification of doses or concentrations:
- The concentrations of the test material in the vehicle dilutions were determined by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The test item formulations were extracted with hexane, evaporated to dryness and re-dissolved in 2% nitric acid. Homogeneity determinations were performed on samples taken from the top, middle and bottom of the container. Stability determinations were performed before and after storage for 13 days at approx +4 degC in the dark for 13 days, by IR spectroscopy using a Perkin Elmer Spectrum One Fournier-transform infrared spectrophotometer.
- Duration of treatment / exposure:
- Males dosed for 42 days and killed on day 43, beginning 14 days prior to mating.
Dosing of females began 14 days before mating, and continued through mating, up to and including day 4 post partum. They were killed on day 5 post partum. - Frequency of treatment:
- Daily, once per day.
Doses / concentrationsopen allclose all
- Remarks:
- Doses / Concentrations:
0, 375, 750, 1500 mg/kg bw/day
Basis:
other: nominal per unit bodyweight
- Remarks:
- Doses / Concentrations:
0, 56.3, 113, 225 mg/kg bw/day
Basis:
other: expressed as active ingredient
- No. of animals per sex per dose:
- 12 males and 12 females per dose level
- Control animals:
- yes, concurrent vehicle
- Details on study design:
- - Dose selection rationale: The dose levels were selected on the basis of a 14-day dose range finding study where three groups of 3 male and 3 female wistar rats were treated at 375, 750 and 1500 mg/kg bw/day (dosed as supplied, containing 15% active ingredient). A group of 3 males and 3 females received the vehicle (medicinal white oil). No signs of toxicity were observed, and no adverse effects on bodyweight, food consumption, or water consumption. No macroscopic changes were seen at necropsy.
- Rationale for animal assignment (if not random): The animals were allocated to dose groups using a randomised procedure based on stratified bodyweights. Group mean bodyweights were then dermined to ensure similarity between the groups.
- Rationale for selecting satellite groups: Not applicable
- Post-exposure recovery period in satellite groups: Not applicable - Positive control:
- Not included
Examinations
- Observations and examinations performed and frequency:
- CAGE SIDE OBSERVATIONS: Yes
- Time schedule: multiple occasions during each day for morbidity and mortality
- Cage side observations recorded
DETAILED CLINICAL OBSERVATIONS: Yes
- Time schedule: before dosing, 30 mins, 1 and 5h after dosing during weekdays; before dosing and 1h after dosing at weekends
BODY WEIGHT: Yes
- Time schedule for examinations: prior to dosing, then weekly for males until termination, and weekly for females until mating was evident. Then for females bodyweight was recorded on days 0, 7, 14 and 20 post coitum, and on days 1 and 4 post partum.
FOOD CONSUMPTION:
- Food consumption was recorded for each cage of adults and was continued for males after the mating phase. For females showing evidence of mating, food consumption was recorded for the periods covering post coitum Days 0-7, 7-14 and 14-20. For females with live litters, food consumption was recorded on Days 1 and 4 post partum.
WATER CONSUMPTION:
Water intake was observed daily by visual inspection of water bottles for any overt changes.
FOOD EFFICIENCY:
- Food efficiency (the ratio of body weight change/dietary intake) was calculated retrospectively for males throughout the study period (with the exception of the mating phase) and for females during the pre-pairing phase.
WATER CONSUMPTION AND COMPOUND INTAKE (if drinking water study): Yes / No / No data
- Time schedule for examinations:
OPHTHALMOSCOPIC EXAMINATION: No
HAEMATOLOGY: Yes
- Time schedule for collection of blood: Day 42 for males, day 4 post partum for females
- Anaesthetic used for blood collection: No
- Animals fasted: No
- How many animals: 5 males and 5 females per group
- Parameters checked:
Haemoglobin (Hb)
Erythrocyte count (RBC)
Haematocrit (Hct)
Erythrocyte indices - mean corpuscular haemoglobin (MCH)
- mean corpuscular volume (MCV)
- mean corpuscular haemoglobin concentration (MCHC)
Total leucocyte count (WBC)
Differential leucocyte count - neutrophils (Neut)
- lymphocytes (Lymph)
- monocytes (Mono)
- eosinophils (Eos)
- basophils (Bas)
Platelet count (PLT)
Reticulocyte count (Retic) - Methylene blue stained slides were prepared but reticulocytes were not assessed
Prothrombin time (CT) was assessed by ‘Innovin’ and Activated partial thromboplastin time (APTT) was assessed by ‘Actin FS’ using samples collected into sodium citrate solution (0.11 mol/l).
CLINICAL CHEMISTRY: Yes
- Time schedule for collection of blood: Day 42 for males, day 4 post partum for females
- Animals fasted: No
- How many animals: 5 males and 5 females per group
- Parameters checked
Urea Calcium (Ca++)
Glucose Inorganic phosphorus (P)
Total protein (Tot.Prot.) Aspartate aminotransferase (ASAT)
Albumin Alanine aminotransferase (ALAT)
Albumin/Globulin (A/G) ratio (by calculation) Alkaline phosphatase (AP)
Sodium (Na+) Creatinine (Creat)
Potassium (K+) Total cholesterol (Chol)
Chloride (Cl-) Total bilirubin (Bili)
Bile acids
URINALYSIS: No
NEUROBEHAVIOURAL EXAMINATION: Yes
- Time schedule for examinations:prior to start of treatment and weekly intervals thereafter. Functional performance tests performed on 5 selected males and females from each dose level prior to termination, together with an assessment of sensory reactivity to various stimuli.
-Behavioural assessments: Detailed individual clinical observations were performed for each animal using a purpose built arena. This test was developed from the methods used by Irwin (1968) and Moser et al (1988). The scoring system used is outlined in The Key to Scoring System and Explanation for Behavioural Assessments and Sensory Reactivity Tests.
- Functional/performance tests: motor activity, forelimb/hindlimb grip strength
- Sensory reactivity: Each animal was individually assessed for sensory reactivity to auditory, visual and proprioceptive stimuli. This assessment was developed from the methods employed by Irwin (1968) and Moser et al (1988).
- Dose groups that were examined: Each group - Sacrifice and pathology:
- GROSS PATHOLOGY: Yes
HISTOPATHOLOGY: Yes
Adrenals Ovaries
Aorta (thoracic) Pancreas
Bone & bone marrow (femur including stifle joint) Pituitary
Bone & bone marrow (sternum) Prostate
Brain (including cerebrum, cerebellum and pons) Oesophagus
Caecum Rectum
Coagulating gland Salivary glands (submaxillary)
Colon Sciatic nerve
Duodenum Seminal vesicles - Statistics:
- Where appropriate, data transformations were performed using the most suitable method. The homogeneity of variance from mean values was analysed using Bartlett’s test. Intergroup variances were assessed using suitable ANOVA, or if required, ANCOVA with appropriate covariates. Any transformed data were analysed to find the lowest treatment level that showed a significant effect, using the Williams Test for parametric data or the Shirley Test for non-parametric data. If no dose response was found, but the data shows non-homogeneity of means, the data were analysed by a stepwise Dunnett’s (parametric) or Steel (non-parametric) test to determine significant difference from the control group. Where the data were unsuitable for these analyses, pair-wise tests was performed using the Student t-test (parametric) or the Mann-Whitney U test (non-parametric).
Data not analysed by the Provantis data capture system were assessed separately using the SPSS statistical package. Initially, the homogeneity of the data was assessed using Levene’s test. Where Levene’s test was shown to be non-significant (p≥0.05), parametric analysis of the data was applied, incorporating analysis of variance (ANOVA). If this data was shown to be significant, this analysis was followed by pair-wise comparisons using Dunnett’s test. Where Levene’s test was significant, non-parametric analysis of the data was analysed incorporating the Kruskal-Wallis test which if significant, was followed by the Mann-Whitney U test. Dose response relationship was also be investigated by linear regression. Where the data was unsuitable for these analyses, then pair-wise tests were performed using the Student t-test (parametric) or the Mann-Whitney U test (non-parametric).
Due to the preponderance of non-normally distributed data, reproductive parameters (implantation losses, offspring sex ratio and offspring surface righting) were analysed using non-parametric analyses.
Results and discussion
Results of examinations
- Clinical signs:
- no effects observed
- Mortality:
- no mortality observed
- Body weight and weight changes:
- no effects observed
- Food consumption and compound intake (if feeding study):
- no effects observed
- Food efficiency:
- no effects observed
- Water consumption and compound intake (if drinking water study):
- no effects observed
- Ophthalmological findings:
- not examined
- Haematological findings:
- no effects observed
- Clinical biochemistry findings:
- no effects observed
- Urinalysis findings:
- not examined
- Behaviour (functional findings):
- no effects observed
- Organ weight findings including organ / body weight ratios:
- no effects observed
- Gross pathological findings:
- no effects observed
- Histopathological findings: non-neoplastic:
- no effects observed
- Histopathological findings: neoplastic:
- no effects observed
- Details on results:
- CLINICAL SIGNS AND MORTALITY
There were no unscheduled deaths and no toxicologically significant clinical observations detected.
BODY WEIGHT AND WEIGHT GAIN
There were no toxicologically significant effects detected on body weight development.
FOOD CONSUMPTION
No adverse effect on food consumption was deteted in treated animals
FOOD EFFICIENCY
No adverse effect on food efficiency was detected in treated animals
WATER CONSUMPTION
No adverse effect on water consumption was detected
OPHTHALMOSCOPIC EXAMINATION
Not examined
HAEMATOLOGY
No toxicologically significant effects were detected
CLINICAL CHEMISTRY
No toxicologically significant effects were detected
URINALYSIS
Not examined
NEUROBEHAVIOUR
There were no toxicologically significant changes in the behavioural paremeters measured, in functional performance or sensory reactivity
ORGAN WEIGHTS
No toxicologically signifcant treatment related trends were detected in the organ weights measured.
GROSS PATHOLOGY
There were no macroscopic abnormalities detected that were considered to be related to treatment
HISTOPATHOLOGY
No treatment related microscopic findings were detected
HISTORICAL CONTROL DATA (if applicable)
OTHER FINDINGSThe subchronic repeated dose oral toxicity of grease containing 15% active ingredient (aluminum, benzoate C16-18-fatty acids complexes) in MOL WO M 46 medicinal white oil to rats gave a NOAEL of 1500 mg/kg bw/day (225 mg/kg bw/day Active Ingredient)
Effect levels
- Dose descriptor:
- NOAEL
- Effect level:
- > 225 other: mg/kg bw/day Active Ingredient
- Based on:
- test mat.
- Sex:
- male/female
- Basis for effect level:
- other: No effects seen on clinical signs; mortality; body weight; food consumption; water consumption; haematology; clinical chemistry; gross pathology; organ weights; histopathology at doses up to 1500 mg/kg bw/day (225 mg/kg bw/day Active Ingredient)
Target system / organ toxicity
- Critical effects observed:
- not specified
Applicant's summary and conclusion
- Conclusions:
- The subchronic repeated dose oral toxicity of grease containing 15% active ingredient (aluminum, benzoate C16-18-fatty acids complexes) in MOL WO M 46 medicinal white oil to rats gave a NOAEL of 1500 mg/kg bw/day (225 mg/kg bw/day Active Ingredient).
- Executive summary:
The subchronic repeated dose oral toxicity of grease containing 15% active ingredient (aluminum, benzoate C16-18-fatty acids complexes) in MOL WO M 46 medicinal white oil to rats gave a NOAEL of 1500 mg/kg bw/day (225 mg/kg bw/day Active Ingredient).
The repeated dose oral toxicity of aluminum, benzoate C16 -18 -fatty acids complexes to rats is taken from data presented within an oral (gavage) combined repeat dose toxiciy study with reproduction/developmental toxicity screening test in the rat performed in compliance with, amongst others, the requirements of the OECD Guidelines for Testing of Chemicals No.422 "Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Screening Test" (adopted 22 March 1996). Since the results are taken from a regulatory and GLP compliant study, the data are considered reliable and relevant for use in assessing this endpoint.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.