Registration Dossier

Administrative data

Key value for chemical safety assessment

Effects on fertility

Description of key information

Read across data from a combined repeat dose and reproductive/developmental toxicity screening study reported a lack of effects on the reproductive organs of male and female rats receiving dodecan-1-ol (NOAEL > 2000 mg/kg/bw) (Hansen 1992, rel; 2). This study also reported a NOAEL for developmental effects to be 2000 mg/kg/bw.

A read across feeding studies reported a lack of effects on the reproductive organs of rats receiving 1 -hexanol (NOAEL 1127 mg/kg) (Scientific Associates Inc., 1966, rel; 2). No adverse effects were noted at any of the dose levels administered during the study.

Link to relevant study records

Referenceopen allclose all

Endpoint:
one-generation reproductive toxicity
Type of information:
experimental study
Adequacy of study:
key study
Study period:
not stated
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
comparable to guideline study with acceptable restrictions
Reason / purpose:
reference to same study
Qualifier:
equivalent or similar to
Guideline:
OECD Guideline 422 (Combined Repeated Dose Toxicity Study with the Reproduction / Developmental Toxicity Screening Test)
Principles of method if other than guideline:
Draft OECD 422 Combined Repeat dose and Reproductive/Developmental Toxicity Screening Test.
GLP compliance:
yes
Limit test:
no
Species:
rat
Strain:
Wistar
Sex:
male/female
Details on test animals and environmental conditions:
TEST ANIMALS
- Source: Moellegard breeding centre
- Age at study initiation: F 8 weeks, M 7 weeks
- Weight at study initiation: no data
- Fasting period before study: no data
- Housing: 2/cage, steel wire cages type 3 (up to day 20 of gestation); macrolon cages type 3 (from day 20 of gestation)
- Diet (e.g. ad libitum): IT chow 101, presumably ad libitum
- Water (e.g. ad libitum): acidified tapwater, ad libitum
- Acclimation period: 8 days

ENVIRONMENTAL CONDITIONS
- Temperature (°C): 22 +- 2
- Humidity (%): 55 +- 10
- Air changes (per hr): no data
- Photoperiod (hrs dark / hrs light): 12 / 12

IN-LIFE DATES: no data
Route of administration:
oral: feed
Vehicle:
unchanged (no vehicle)
Details on exposure:
DIET PREPARATION
- Rate of preparation of diet (frequency): no data
- Mixing appropriate amounts with (Type of food): IT chow 101
- Storage temperature of food:no data
- Preparation procedure: Diet preparation involved first mixing an aqueous dodecanol solution with the barley component, which varied for each dose level. The other components of the diet were then added.
Details on mating procedure:
- M/F ratio per cage: 1:1
- Length of cohabitation: 14 days
- Proof of pregnancy: vaginal plug recorded during the morning referred to as day 1 of pregnancy; vaginal plug recorded at lunch time or during the afternoon referred to as day 0 of pregnancy
- After 14 days of unsuccessful pairing replacement of first male by another male for up to 8 days
- Further matings after two unsuccessful attempts: no
- After successful mating each pregnant female was caged (how): in steel wire cages type 3 until day 20 of pregnancy, placed in macrolon cages type 3 thereafter
- Any other deviations from standard protocol: none
Analytical verification of doses or concentrations:
no
Duration of treatment / exposure:
Exposure period: Males 41-44 days , females up to 54 days
Premating exposure period (males): 14 days
Premating exposure period (females): 14 days
Duration of test: Males 41-44 days, females up to 54 days
Frequency of treatment:
continuous in diet
Details on study schedule:
- One-generation study (only parental animals mated)
Dose / conc.:
1 500 ppm (nominal)
Remarks:
approx 100 mg/kg bw/day
Dose / conc.:
7 500 ppm (nominal)
Remarks:
approx 500 mg/kg bw/day
Dose / conc.:
30 000 ppm (nominal)
Remarks:
approx 2000 mg/kg bw/day
No. of animals per sex per dose:
12
Control animals:
yes, plain diet
Details on study design:
- Dose selection rationale: preliminary test via a dermal route
- Rationale for animal assignment (if not random): 2 days prior to the start of dosing, animals randomised into four groups with same mean body weight
Positive control:
none
Parental animals: Observations and examinations:
CAGE SIDE OBSERVATIONS: Yes
- Time schedule: daily
- Cage side observations included: mortality

DETAILED CLINICAL OBSERVATIONS: No data

BODY WEIGHT: Yes
- Time schedule for examinations: males once per week; females premating once per week

FOOD CONSUMPTION AND COMPOUND INTAKE (if feeding study):
- Food consumption in g body weight gain/kg food per week calculated from the consumption and body weight gain data: Yes

WATER CONSUMPTION AND COMPOUND INTAKE (if drinking water study): No
Oestrous cyclicity (parental animals):
no data (exposure was for 14 days premating covering at least 2 oestrous cycles; ovaries were weighed and examined histopathologically at necropsy)
Sperm parameters (parental animals):
Parameters examined in male parental generation: testis weight, epididymis weight
Litter observations:
STANDARDISATION OF LITTERS
- Performed on day 4 postpartum: no (one-generation screening study)

PARAMETERS EXAMINED
- The following parameters were examined in F1 offspring: number of pups on days 1, 4 and 5; sex of pups on day 5; postnatal mortality from day 1 to day 4; weight gain from day 1 to day 4; mean body weight of male and female pups on day 5; presence of gross abnormalities on day 5

GROSS EXAMINATION OF DEAD PUPS: yes, on day 5, for external abnormalities including the head (especially the eyes and cleft palate), abdomen and thoracic cavity examined internally for malformations; possible cause of death was not determined for pups born or found dead
Postmortem examinations (parental animals):
SACRIFICE
- Male animals: All surviving animals after 41-44 days of dosing
- Maternal animals: All surviving animals on day 5 after birth

ORGAN WEIGHT: males - liver, kidneys, thymus, testes, epididymides; females - liver, kidneys, thymus

ORGANS FIXED IN FORMALIN: males - liver, kidneys, adrenals, brain, heart, spleen, thymus, organs with pathological changes, testes and epididymides fixed in Bouin's solution; females - liver, kidneys, adrenals, brain, heart, spleen, ovaries, thymus, other organs with observed pathological changes

HISTOPATHOLOGY: Yes, control and top dose group, all fixed organs except thymus
Postmortem examinations (offspring):
SACRIFICE
- The F1 offspring not selected as parental animals and all F2 offspring were sacrificed at [#?] days of age: not applicable (1-generation study)
Statistics:
Using the SAS-stat program; analysis of variance; all statistically significant findings further evaluated by Dunnett's t-test; chi-squared test for pregancy rate
Reproductive indices:
pregnancy rate; length of gestation; numbers of corpora lutea, implantations, resorptions and pups at birth
Offspring viability indices:
number of pups at birth and on days 4 and 5, number of pups per litter, pup deaths between days 1 and 4
Clinical signs:
no effects observed
Body weight and weight changes:
no effects observed
Food consumption and compound intake (if feeding study):
no effects observed
Organ weight findings including organ / body weight ratios:
effects observed, treatment-related
Histopathological findings: non-neoplastic:
no effects observed
Other effects:
not examined
Reproductive function: oestrous cycle:
not examined
Reproductive function: sperm measures:
not examined
Reproductive performance:
no effects observed
CLINICAL SIGNS AND MORTALITY
- Mortality and time to death: None
- Clinical signs: None reported

BODY WEIGHT AND WEIGHT GAIN
- Body weight gain: No differences between treated and controls of either sex.

TEST SUBSTANCE INTAKE (PARENTAL ANIMALS)
Males: 102.4, 530.8 and 2046.4 mg/kg bw/day (mean of values reported for 2 weeks prior to mating and 3 weeks after mating)
Females: 130.5, 657.5 and 2870.5 mg/kg bw/day (mean of values reported 2 weeks prior to mating)

REPRODUCTIVE FUNCTION: ESTROUS CYCLE (PARENTAL ANIMALS)
no data

REPRODUCTIVE FUNCTION: SPERM MEASURES (PARENTAL ANIMALS)
no data

REPRODUCTIVE PERFORMANCE (PARENTAL ANIMALS)
- no statistically significant effects on pregnancy rate, length of gestation or numbers of corpora lutea, implantations, resorptions or pups at birth
- pregnancy rate was reduced in treated groups: 0 mg/kg bw/day 92%, 100 & 500 mg/kg bw/day 83%, 2000 mg/kg/day 75%; these were within the normal historical control range according to the investigators (actual historical control data not presented); lack of statistical significance confirmed using chi-squared test
- mean length of gestation: 23 days in all groups
- mean number of corpora lutea: 14 in all groups
- mean number of implantations: 13 in controls, 14 in all treated groups
- no resorptions in any group

ORGAN WEIGHTS (PARENTAL ANIMALS) (see table 2)
- There were no dose related changes in organ weights, including the testes, epididymides and ovaries; in males only there was a reduction in relative and absolute liver weights at the low dose level and a reduction in relative liver weight at mid doses, the top dose was comparable to controls.

GROSS PATHOLOGY (PARENTAL ANIMALS)
- There were no changes attributable to exposure to the test compound.

HISTOPATHOLOGY (PARENTAL ANIMALS)
- There were no treatment related histopathological changes.

OTHER (PARENTAL ANIMALS)
- Haematology and clinical chemistry data for parental males (reported elsewhere)
Key result
Dose descriptor:
NOAEL
Effect level:
> 2 000 mg/kg bw/day
Based on:
test mat.
Sex:
male/female
Basis for effect level:
other: No adverse effects observed
Remarks on result:
not determinable
Remarks:
no NOAEL identified
Clinical signs:
not examined
Mortality / viability:
no mortality observed
Body weight and weight changes:
no effects observed
Sexual maturation:
not examined
Organ weight findings including organ / body weight ratios:
not examined
Gross pathological findings:
no effects observed
Histopathological findings:
not examined
VIABILITY (OFFSPRING)
- no statistically significant effect
- litter size mean on day 1: controls 13.25, low dose 13.27, mid dose 13.2, high dose 13.33. 

CLINICAL SIGNS (OFFSPRING)
- no effects

BODY WEIGHT (OFFSPRING)
- no statistically significant effects
- mean litter weights at day 1 were 75, 75, 71 and 77 g and at day 4 106, 107, 101 and 104 g for control, low, mid and high dose respectively

SEXUAL MATURATION (OFFSPRING)
- not applicable (1-generation screening study)

ORGAN WEIGHTS (OFFSPRING)
- not applicable (1-generation screening study)

GROSS PATHOLOGY (OFFSPRING)
- no effects

HISTOPATHOLOGY (OFFSPRING)
- no data

OTHER FINDINGS (OFFSPRING)
- no statistically significant effects on pup body weight on day 5
Key result
Dose descriptor:
NOAEL
Generation:
F1
Effect level:
> 2 000 mg/kg bw/day
Based on:
test mat.
Sex:
male/female
Basis for effect level:
other: No adverse effects observed
Remarks on result:
not determinable
Remarks:
no NOAEL identified
Reproductive effects observed:
no
Conclusions:
In a reliable study conducted to the draft OECD guideline 422, a parental NOAEL of > 2000 mg/kg bw/day (highest dose tested) was determined for male and female rats. No adverse effects were observed on reproductive parameters and the NOAEL for reproductive and developmental effects was also > 2000 mg/kg bw/day. The study was performed in compliance with GLP. Read across froom dodecanol (CAS 112-53-8).
Executive summary:

Dodecan-1-ol has been tested for potential reproductive toxicity in a combined repeat dose reproductive/developmental toxicity screening study in rats conducted according to the draft OECD guideline 422 and in compliance with GLP. The materials were administered to male and female rats via the diet at concentrations up to 30,000 ppm (2000 mg/kg bw/day) during pre-mating, mating and gestation. Pregnancy rates, uterine parameters, time to pregnancy and gestation length indicated that fertility was not affected by exposure to octadecan-1-ol. There were no microscopic changes observed in the reproductive organs.

Endpoint:
screening for reproductive / developmental toxicity
Type of information:
experimental study
Adequacy of study:
weight of evidence
Study period:
not stated
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
study well documented, meets generally accepted scientific principles, acceptable for assessment
Reason / purpose:
reference to same study
Qualifier:
no guideline followed
Principles of method if other than guideline:
Rats treated via the diet for 90 days with limited evaluation, but including reproductive organs
GLP compliance:
no
Limit test:
no
Species:
rat
Strain:
other: albino
Sex:
male/female
Details on test animals and environmental conditions:
TEST ANIMALS
- Source: Charles River Breeding Laboratories Inc.
- Age at study initiation: no data but "young"
- Weight at study initiation: males 103.6 g, females 90.5 g
- Fasting period before study: no data
- Housing: individually in suspended wire-mesh cages
- Use of restrainers for preventing ingestion (if dermal): not applicable
- Diet (e.g. ad libitum): Purina Laboratory Chow, ad libitum
- Water (e.g. ad libitum): ad libitum
- Acclimation period: 1 week

ENVIRONMENTAL CONDITIONS
- Temperature (°C): no data but "controlled within narrow limits"
- Humidity (%): no data but "controlled within narrow limits"
- Air changes (per hr): no data
- Photoperiod (hrs dark / hrs light): no data

IN-LIFE DATES: no data
Route of administration:
oral: feed
Vehicle:
unchanged (no vehicle)
Details on exposure:
DIET PREPARATION
- Rate of preparation of diet (frequency): weekly
- Mixing appropriate amounts with (Type of food): basal laboratory diet (Purina Laboratory Chow)
- Storage temperature of food: no data
Details on mating procedure:
no mating - screening study
Analytical verification of doses or concentrations:
no
Duration of treatment / exposure:
13 weeks
Frequency of treatment:
continuous in diet
Details on study schedule:
no mating - screening study
Dose / conc.:
0.25 other: % w/w
Remarks:
nominal in diet
Dose / conc.:
0.5 other: % w/w
Remarks:
nominal in diet
Dose / conc.:
1 other: % w/w
Remarks:
nominal in diet
Dose / conc.:
6 other: % w/w
Remarks:
nominal in diet
No. of animals per sex per dose:
10 (treated), 20 (controls)
Control animals:
yes, plain diet
Details on study design:
- Dose selection rationale: no data
- Rationale for animal assignment (if not random): no data
Positive control:
none
Parental animals: Observations and examinations:
CAGE SIDE OBSERVATIONS: Yes
- Time schedule: 5 days/week
- Cage side observations included: general physical appearance, gross signs of systemic toxicity and/or pharmacological effect, behaviour, mortality

DETAILED CLINICAL OBSERVATIONS: No

BODY WEIGHT: Yes
- Time schedule for examinations: weekly

FOOD CONSUMPTION AND COMPOUND INTAKE (if feeding study): Yes
- Time schedule for examinations: weekly
- Food consumption for each animal determined and mean daily diet consumption calculated as g food/kg body weight/day: Yes
- Compound intake calculated as mg/kg bw/day: Yes

WATER CONSUMPTION: No

OTHER: Haematology and urinalysis (reported elsewhere)
Oestrous cyclicity (parental animals):
no data
Sperm parameters (parental animals):
Parameters examined in males: testis weight
Litter observations:
no litters - no mating - screening study
Postmortem examinations (parental animals):
SACRIFICE
- Males: All surviving animals, after 13 weeks of treatment
- Females: All surviving animals after 13 weeks of treatment

GROSS NECROPSY
- Gross necropsy included external and internal examinations of the cervical, thoracic, and abdominal viscera

ORGAN WEIGHTS: brain, thyroid, heart, liver, spleen, kidneys, adrenals, gonads (testes or ovaries)

HISTOPATHOLOGY: Yes
- brain, thyroid, parathyroid, heart, lung, liver, spleen, stomach, small intestine, large intestine, pancreas, kidney, urinary bladder, adrenal, gonads (testes or ovaries), lymph node, bone, bone marrow
- all listed tissues from 5/sex from high dose and controls examined
Postmortem examinations (offspring):
no offspring - no mating - screening study
Statistics:
Chi-squared test for comparing relative organ weights (but see 'Any other information on materials and methods')
Reproductive indices:
no mating - screening study
Offspring viability indices:
no offspring - no mating - screening study
Clinical signs:
no effects observed
Body weight and weight changes:
no effects observed
Food consumption and compound intake (if feeding study):
no effects observed
Organ weight findings including organ / body weight ratios:
effects observed, treatment-related
Histopathological findings: non-neoplastic:
no effects observed
Other effects:
no effects observed
Reproductive function: oestrous cycle:
not examined
Reproductive function: sperm measures:
not examined
Reproductive performance:
not examined
CLINICAL SIGNS AND MORTALITY
- one male in low dose group died during week 9; cause of death was said to be unrelated to treatment
- occasional bloody encrustations of the eyes and nose
- otherwise no effects

BODY WEIGHT
- no effects

FOOD CONSUMPTION AND COMPOUND INTAKE (if feeding study)
- food consumption 87.8% of controls in females in high dose group during week 13
- otherwise no effects

REPRODUCTIVE FUNCTION: ESTROUS CYCLE (PARENTAL ANIMALS)
- not examined

REPRODUCTIVE FUNCTION: SPERM MEASURES (PARENTAL ANIMALS)
- not examined

REPRODUCTIVE PERFORMANCE (PARENTAL ANIMALS)
- not mated - screening study

ORGAN WEIGHTS (PARENTAL ANIMALS)
- some statistically significant effects (but see 'Remarks on results')

GROSS PATHOLOGY (PARENTAL ANIMALS)
- no effects

HISTOPATHOLOGY (PARENTAL ANIMALS)
- no effects
Dose descriptor:
NOAEL
Effect level:
1 127 mg/kg bw/day (actual dose received)
Based on:
test mat.
Sex:
male
Basis for effect level:
other: see 'Remark'
Dose descriptor:
NOAEL
Effect level:
1 243 mg/kg bw/day (actual dose received)
Based on:
test mat.
Sex:
female
Basis for effect level:
other: see 'Remark'
Clinical signs:
not examined
Mortality / viability:
not examined
Body weight and weight changes:
not examined
Sexual maturation:
not examined
Organ weight findings including organ / body weight ratios:
not examined
Gross pathological findings:
not examined
Histopathological findings:
no effects observed
no offspring - no mating - screening study
Remarks on result:
other: screening study, no mating was performed.
Reproductive effects observed:
not specified

ACTUAL DOSE RECEIVED BY DOSE LEVEL BY SEX (means calculated from individual weekly dietary intake data)
0.25% M 182 mg/kg/day; F 216 mg/kg/day
0.5% M 374 mg/kg/day; F 427 mg/kg/day
1% M 1127 mg/kg/day; F 1243 mg/kg/day

Terminal organ weights (including gonads) were sporadically different from controls at different times. The original study report indicated significant differences between control and treated testes weights at all dose levels and indicated that a chi-squared test had been used to analyse the data. Weinberg Associates reanalysed the data using a Tukey test and found that male gonad weights were not significantly different from the controls at any test concentration. There were no histopathological changes in any organs examined including the gonads. The NOAEL for reproductive endpoints is therefore the highest dose level administered (1243 mg/kg bw for females and 1127 mg/kg/day for males).

Conclusions:
In a reliable screening study, a repeated oral dose NOAEL of 1243 mg/kg/day in females and 1127 mg/kg/day for males was determined for effects on reproductive organs in the rat.
Executive summary:

In view of the structural and chemical similarities, it is considered that the results of this study can be used for read-across to Undecanol linear and branched.

Effect on fertility: via oral route
Endpoint conclusion:
no adverse effect observed
Dose descriptor:
NOAEL
2 000 mg/kg bw/day
Study duration:
subacute
Species:
rat
Effect on fertility: via inhalation route
Endpoint conclusion:
no study available
Effect on fertility: via dermal route
Endpoint conclusion:
no study available
Additional information

The conclusion that the members of the aliphatic alcohol category (C6 to C24) are not expected to impair fertility is based on a weight of evidence approach using data from reproductive screening studies [C12 (dodecan-1-ol), C18 (octadecan-1-ol)], a fertility study [C22 (docosan-1-ol)], together with a lack of effect on the reproductive organs in repeat dose studies over the range of linear and essentially linear alcohols. The available data have been reviewed and discussed (Veenstra G, Webb C et al., 2009). Based on this it is concluded that tetradecan-1-ol is not expected to impair fertility.

The read-across substances were chosen as representative of the lack of effects of the category. A full discussion of the Category can be found in the Human Health Alcohols C6-24 Category report (PFA, 2016)..

Dodecan-1-ol and octadecan-1-ol have been tested for potential reproductive toxicity in a combined repeat dose reproductive/developmental toxicity screening study in rats. The materials were administered to male and female rats via the diet at concentrations up to 30,000 ppm during pre-mating, mating and gestation. Pregnancy rates, uterine parameters, time to pregnancy and gestation length indicated that fertility was not affected by exposure to dodecan-1-ol or octadecan-1-ol. There were no microscopic changes observed in the reproductive organs (Hansen, 1992 a and Institute of Toxicology, 1992b). Docosan-1-ol (C22) did not affect reproductive parameters when administered orally at levels up to 1000 mg/kg/day to male and female rats during pre-mating (10 weeks for males and 2 weeks for females), mating and gestation (Iglesias et al., 2002b).

In a research publication, the test material (Alcohols, C10-16) was dissolved in polyethylene glycol 300 and administered to male rats by oral gavage at 209 mg/kg bw/day for 14 days. There were no adverse effects on testis weight relative to body weight; absolute testis weight data were not presented. An NOAEL of 209 mg/kg bw/day was identified from this very limited study (Central Toxicology Laboratory, 1984).

A read-across feeding study reported a lack of effects on the reproductive organs of rats receiving hexan-1-ol (NOAEL 1127 mg/kg bw/day) and no adverse effects were noted at any of the dose levels administered during the study (Scientific Associates Inc. 1966).

A 90-day dietary repeat dose study on Alcohols, C14-15 showed an absence of effects on reproductive organs (Ito, 1978). In this study relative testes and ovary weights were increased at the 1% and/or 5% incorporation level, but at these levels a considerable reduction in bodyweight gain due to inanition was induced. The effects on relative organ weights were considered to be associated with the effects on body weight rather than a direct toxic effect. More importantly, there was no evidence of microscopic changes in the gonads. (Ito, 1978, see section 5.6 of the CSR).

Discussion of trends in the Category of C6-24 linear and essentially-linear aliphatic alcohols:

Chronic and sub-chronic toxicity studies have shown that long chain alcohols (LCA) are of low toxicity, with no indication of treatment-related systemic effects. Furthermore, combined repeated-dose studies with developmental endpoints, as well as reproductive toxicity screening studies and developmental studies showed no effects at the highest dose tested for any of the Category members for which data are available.

It is concluded that the members of the LCAAs (C6 to C22) are not expected to impair fertility based on the weight of evidence approach using data from reproductive screening studies (C12 – dodecan-1-ol, C18 – octadecan-1-ol) a fertility study (C22 – docosan-1-ol) together with a lack of effect on the reproductive organs in repeat dose studies over the range of linear and essentially linear LCAAs. In addition, weight of evidence from across the category suggests that members of the LCAAs (C6 to C22) are unlikely to cause developmental effects.

The relatively small amounts of absorption that may occur across all common physiological routes (dermal, oral, inhalation) will be rapidly and efficiently metabolised in vivo to the corresponding fatty acid; a substance family which is exempt under REACH. These metabolic products are subsequently rapidly eliminated or may be utilised by biochemical systems in vivo, meaning that bioaccumulation is very unlikely.

It is therefore considered that further reproductive toxicity testing of members of Category is not required.

Fertility data for the Category

 

 

CAS

CHEMICAL NAME

NOAEL**

(mg/kg)

Study type* / Species / Effects

(Reference)

Rel.

C5

123-51-3

Isoamyl alcohol

Supporting Substance

 RDT* Rat: None (Carpanini, 1973)

2

C6

111-27-3

Hexan-1-ol

370

RDT*: Dog: none (Sc. Ass. 1966b)

2

C6

111-27-3

Hexan-1-ol

1127

RDT: Rat: none (Sc. Ass. 1966a)

2

C7

111-70-6

Heptan-1-ol

 

Supporting substance

 

C8

111-87-5

Octan-1-ol

 

Not expected to impair fertility based on read across from structurally analogous substances.

2

C9

143-08-8

Nonan-1-ol

 

Not expected to impair fertility based on read across from structurally analogous substances.

 

C10

112-30-1

Decan-1-ol

 

Not expected to impair fertility, based on read across from structurally analogous substances.

 

C11

112-42-5

Undecan-1-ol

 

Not expected to impair fertility, based on read across from structurally analogous substances.

 

C12

112-53-8

Dodecan-1-ol

2000**

Fert* Rat: None (Hansen,1992a )

2

C13

112-70-9

Tridecan-1-ol

Supporting

 

RDT Rat: None

(Rhodes, 1984)

2

C8

60435-70-3

2-methylheptan-1-ol

 

Not expected to impair fertility based on read across from structurally analogous substances.

 

C9

68515-81-1

Nonan-1-ol, branched and linear

 

Not expected to impair fertility based on read across from structurally analogous substances.

 

C10

90342-32-8

Decan-1-ol, branched and linear

 

Not expected to impair fertility, based on read across from structurally analogous substances as weight of evidence.

 

C11

128973-77-3

Undecan-1-ol, branched and linear

 

 

Not expected to impair fertility, based on read across from structurally analogous substances as weight of evidence.

 

C13

90583-91-8

Tridecan-1-ol, branched and linear

Supporting

 

Not expected to impair fertility

2

C7-9

 

Alcohols, C7-9- linear and branched

 

 

Not expected to impair fertility, based on read across from structurally analogous substances as weight of evidence.

 

C9-11

 

Alcohols, C9-11-branched and linear

 

Not expected to impair fertility, based on read across from structurally analogous substances as weight of evidence.

 

C11-13

 

Reaction mass of 2-methyldecan-1-ol and 2-propyloctan-1-ol and 2-ethylnonan-1-ol and 2-butylheptan-1-ol

 

Not expected to impair fertility, based on read across from structurally analogous substances as weight of evidence.

 

C12-13

75782-86-4

 

Alcohols, C12-13

 

 

No data was available for the C12-13 alcohols for this endpoint. Data was therefore read across from hexan-1-ol, docosan-1-ol, dodecan-1-ol and octadecan-1-ol as weight of evidence.

 

C12-13

740817-83-8

Alcohols, C12-13-branched and linear

 

No data was available for the C12-13 alcohols for this endpoint. Data was therefore read across from hexan-1-ol, docosan-1-ol, dodecan-1-ol and octadecan-1-ol as weight of evidence

 

C12-15

90604-40-3

Alcohols, C12-15-branched and linear

 

 

Not expected to impair fertility, based on read across from structurally analogous substances as weight of evidence.

2

 

References:

PFA (2016). C6-24 Alcohols Category Report: Human Health. Version number:01. Peter Fisk Associates Ltd. February 2016.

Veenstra G, Webb C et al., (2009) Human health risk assessment of long chain alcohols. Ecotoxicology and environmental safety 71 1016-1030.

Effects on developmental toxicity

Description of key information

 No developmental toxicity studies were available on tetradecan-1-ol. In a guideline study with C7-11 branched and linear, the NOAEL for both maternal and developmental toxicity was >1440 mg/kg bw/day (Hellwig & Jackh 1997) and oral NOAELs of >2000 mg/kg bw/day were determined in developmental toxicity screening tests with dodecan-1-ol and octadecan-1-ol (Hansen 1992a, 1992b).

Link to relevant study records

Referenceopen allclose all

Endpoint:
developmental toxicity
Type of information:
experimental study
Adequacy of study:
key study
Study period:
not stated
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
comparable to guideline study with acceptable restrictions
Reason / purpose:
reference to same study
Qualifier:
according to
Guideline:
other: Draft OECD Guideline 422 (Combined Repeated Dose Toxicity Study with the Reproduction / Developmental Toxicity Screening Test)
Deviations:
no
Principles of method if other than guideline:
conducted according to Draft OECD 422 Combined repeat dose and reproductive/developmental toxicity screening test
GLP compliance:
yes (incl. certificate)
Limit test:
no
Species:
rat
Strain:
Wistar
Details on test animals and environmental conditions:
TEST ANIMALS
- Source: Moellegard Breeding Centre
- Age at study initiation: 8 (males) and 7 (females) weeks
- Weight at study initiation: not specified
- Fasting period before study: Not specified
- Housing: 2 rats/cage for acclimatization period then individually
- Diet: ad libitum
- Water: ad libitum
- Acclimation period: 8 days

ENVIRONMENTAL CONDITIONS
- Temperature (°C): 22±2
- Humidity (%): 55±10
- Air changes (per hr): not specified
- Photoperiod (hrs dark / hrs light): fluorescent light was on from 8 pm to 8 am

IN-LIFE DATES: no data
Route of administration:
oral: feed
Vehicle:
unchanged (no vehicle)
Details on exposure:
DIET PREPARATION
- Diet preparation involved first mixing the octadecanol with the barley component, the proportion of which varied for each dose level. The other components of the diet were then added.
- Rate of preparation of diet (frequency): not specified
- Mixing appropriate amounts with (Type of food): IT chow 101 diet
- Storage temperature of food: not specified
Analytical verification of doses or concentrations:
no
Details on mating procedure:
- Impregnation procedure: cohoused
- If cohoused:
- M/F ratio per cage: 1:1
- Length of cohabitation: up to 22 days
- After 14 days of unsuccessful pairing replacement of first male by another male with proven fertility.
- Further matings after two unsuccessful attempts: no
- Proof of pregnancy: vaginal plug referred to as day 0 or, if the plug was recorded during the morning, day 1 of pregnancy
- Any other deviations from standard protocol: none
Duration of treatment / exposure:
Females up to 54 days, premating, mating and gestation until post natal day 5.
Males also treated.
Frequency of treatment:
continuous in diet
Duration of test:
From 14 days prior to mating then throughout mating and gestation until post natal day 5
Dose / conc.:
1 500 ppm (nominal)
Remarks:
100 mg/kg bw/day
Dose / conc.:
7 500 ppm (nominal)
Remarks:
500 mg/kg bw/day
Dose / conc.:
30 000 ppm (nominal)
Remarks:
2000 mg/kg bw/day
No. of animals per sex per dose:
12
Control animals:
yes, plain diet
Details on study design:
- Dose selection rationale: Doses chosen from the results of a preliminary test.
- Rationale for animal assignment (if not random): Randomized into 4 groups with the same mean body weight
Maternal examinations:
CAGE SIDE OBSERVATIONS: No

DETAILED CLINICAL OBSERVATIONS: Yes
- Time schedule: not specified

BODY WEIGHT: Yes
- Time schedule for examinations: During the experiment the males were weighed once/week. The females were weighed during the premating period and during pregnancy once/week. Pup litter weight was determined on days 1 and 4 after birth.

FOOD CONSUMPTION AND COMPOUND INTAKE (if feeding study): Yes
- Food consumption for each animal determined and mean daily diet consumption calculated as g food/kg body weight/day: Yes
- Compound intake calculated as time-weighted averages from the consumption and body weight gain data: Yes

POST-MORTEM EXAMINATIONS: Yes
- Sacrifice on postnatal day 5
- Organs examined: liver, kidney, adrenals, brain, heart, spleen, ovaries, thymus and other organs with observed pathological changes.

OTHER: Total gross pathological examinations were performed on each animal at necropsy and organ weights determined for the liver, kidneys and thymus.
Ovaries and uterine content:
The ovaries and uterine content was examined after termination: Yes
Examinations included:
- Gravid uterus weight: No
- Number of corpora lutea: Yes
- Number of implantations: Yes
- Number of early resorptions: No data
- Number of late resorptions: No data
- Other: number of resorptions was examined but it is not specified whether these were early or late.
Fetal examinations:
- External examinations: Yes: all per litter
- Soft tissue examinations: Yes: all per litter
- Skeletal examinations: No
- Head examinations: Yes: all per litter
Statistics:
Statistical analysis made on all data using the SAS-stat program. All statistically significant findings were further evaluated by means of Dunnett’s t-test to assess possible inter-group differences.
Indices:
Pregnancy rate
Historical control data:
none
Details on maternal toxic effects:
Maternal toxic effects:no effects

Details on maternal toxic effects:
- Body weight: No treatment related effects.
- Food/water consumption: No treatment related effects.
- Description, severity, time of onset and duration of clinical signs: None reported.
- Pregnancy rate: There was no statistically significant difference in pregnancy rates (confirmed using a Chi-squared test) although they were reduced in treated groups C 92%, 100 & 500 mg/kg 75%, 2000 mg/kg/day 67% these were within the normal historical control range according to the investigators (actual historical control data not presented).
- Fertility index: Not reported
- Precoital interval: Not reported
- Duration of gestation: Comparable in treated and control dams.
- Gestation index: Not reported
- Changes in lactation: Not reported
- Changes in estrus cycles: Not reported
- Mortality: None
- Number of implantations: No significant differences in the numbers of implantations between treated and control groups. (Mean 13 in controls and low dose, 15 in mid and high dose groups). Resorptions mean for controls and low dose 0, for mid and high dose 1).
- Number of corpora lutea: No significant differences between treated and control groups (mean controls 13, low and mid dose 14, high dose 15).
- Ovarian primordial follicle counts: Not reported
Key result
Dose descriptor:
NOAEL
Effect level:
2 000 mg/kg bw/day (nominal)
Based on:
test mat.
Basis for effect level:
other: No adverse effect observed
Details on embryotoxic / teratogenic effects:
Embryotoxic / teratogenic effects:no effects

Details on embryotoxic / teratogenic effects:
- Litter size and weights: No effect of treatment (mean litter size 11.73, 10.0, 13.6 and 13.38 for controls, low, mid and high dose respectively). Litter
weights day 1 mean 69, 61, 75 and 75 g; Day 4 mean 96, 84, 101 and 101 g for controls, low, mid and high dose respectively)
- Sex and sex ratios: No treatment related effects.
- Post natal survival until day 5: Similar in treated and control groups.
- Foetal anomalies: There were no treatment related changes in the incidence of external or visceral malformations visible on macroscopic examination.
Key result
Dose descriptor:
NOAEL
Effect level:
2 000 mg/kg bw/day (nominal)
Based on:
test mat.
Sex:
male/female
Basis for effect level:
other: No adverse effect observed
Abnormalities:
not specified
Developmental effects observed:
no
Conclusions:
In a reliable study, development was assessed as part of a combined repeat dose and reproductive/developmental toxicity study, conducted according to draft OECD guideline 422. The NOAEL for maternal and foetotoxicity in rats was 2000 mg/kg bw/day (highest dose level). There was no evidence of teratogenicity from the limited examination of the pups that was carried out. The result is read across from octadecan-1-ol (CAS 112-92-5).
Executive summary:

Based on the weight of evidence from other alcohols across the category and the combined repeat dose/reproductive/developmental study with octadecan-1-ol, it is concluded that octadecan-1-ol is unlikely to be a developmental toxicant in the absence of maternal toxicity.

Endpoint:
developmental toxicity
Type of information:
experimental study
Adequacy of study:
key study
Study period:
not stated
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
comparable to guideline study
Reason / purpose:
reference to same study
Qualifier:
no guideline available
Principles of method if other than guideline:
Draft OECD 422 Combined Repeat dose and Reproductive/Developmental Toxicity Screening Test.
GLP compliance:
yes
Limit test:
no
Species:
rat
Strain:
Wistar
Details on test animals and environmental conditions:
TEST ANIMALS
- Source: Moellegard breeding centre
- Age at study initiation: F 8 weeks, M 7 weeks
- Weight at study initiation: no data
- Fasting period before study: no data
- Housing: 2/cage, steel wire cages type 3 (for males and for females up to day 20 of gestation); macrolon cages type 3 (for females from day 20 of gestation)
- Diet (e.g. ad libitum): IT chow 101, presumably ad libitum
- Water (e.g. ad libitum): acidified tapwater, ad libitum
- Acclimation period: 8 days

ENVIRONMENTAL CONDITIONS
- Temperature (°C): 22 +- 2
- Humidity (%): 55 +- 10
- Air changes (per hr): no data
- Photoperiod (hrs dark / hrs light): 12 / 12

IN-LIFE DATES: no data
Route of administration:
oral: feed
Vehicle:
unchanged (no vehicle)
Details on exposure:
DIET PREPARATION
- Rate of preparation of diet (frequency): no data
- Mixing appropriate amounts with (Type of food): IT chow 101
- Storage temperature of food: no data
- Preparation procedure: Diet preparation involved first mixing an aqueous dodecanol solution with the barley component, which varied for each dose level. The other components of the diet were then added.
Analytical verification of doses or concentrations:
no
Details on mating procedure:
- Impregnation procedure: cohoused with treated males
- If cohoused:
- M/F ratio per cage: 1:1
- Length of cohabitation: 14 days
- After 14 days of unsuccessful pairing replacement of first treated male by another treated male for up to 8 days
- Further matings after two unsuccessful attempts: no
- Verification of same strain and source of both sexes: yes
- Proof of pregnancy: vaginal plug recorded during the morning referred to as day 1 of pregnancy; vaginal plug recorded at lunch time or during the afternoon referred to as day 0 of pregnancy
- Any other deviations from standard protocol: none
Duration of treatment / exposure:
Females: up to 54 days (premating, mating and gestation until post natal day 5)
Males: 41-44 days (including 14 premating)
Frequency of treatment:
continuous in diet
Duration of test:
pups examined on postnatal day 5, following continuous treatment of male and female parents from 14 days prior to mating
Dose / conc.:
1 500 ppm (nominal)
Remarks:
approx 100 mg/kg bw/day
Dose / conc.:
7 500 ppm (nominal)
Remarks:
approx 500 mg/kg bw/day
Dose / conc.:
30 000 ppm (nominal)
Remarks:
approx 2000 mg/kg bw/day
No. of animals per sex per dose:
12 male and 12 female parental animals per dose
Control animals:
yes, plain diet
Details on study design:
- Dose selection rationale: preliminary test apparently via a dermal route
- Rationale for animal assignment (if not random): 2 days prior to the start of dosing, animals randomised into four groups with same mean body weight
Maternal examinations:
CAGE SIDE OBSERVATIONS: Yes
- Time schedule: daily
- Cage side observations included: mortality

DETAILED CLINICAL OBSERVATIONS: No data

BODY WEIGHT: Yes
- Time schedule for examinations: females - premating once per week

FOOD CONSUMPTION AND COMPOUND INTAKE (if feeding study):
- Food consumption in g body weight gain/kg food per week calculated from the consumption and body weight gain data: Yes

WATER CONSUMPTION AND COMPOUND INTAKE (if drinking water study): No

POST-MORTEM EXAMINATIONS: Yes
- Sacrifice on postnatal day (parental females): 5
- Organs examined (parental females): organ weights of liver, kidneys, thymus; organs fixed in formalin - liver, kidneys, adrenals, brain, heart, spleen, ovaries, thymus, other organs with observed pathological changes; histopathology - control and top dose group, all fixed organs except thymus
Ovaries and uterine content:
The ovaries and uterine content was examined after termination: Yes
Examinations included:
- Gravid uterus weight: No
- Number of corpora lutea: Yes
- Number of implantations: Yes
- Number of early resorptions: No
- Number of late resorptions: No
- Other:
- Total number of resorptions: Yes
Fetal examinations:
- On postnatal day 5, the pups were weighed and examined macroscopically for external malformations then sexed and examined for internal malformations, including:
- External examinations: Yes: all per litter
- Head examinations: Yes: all per litter
- Soft tissue examinations: No
- Skeletal examinations: No
Statistics:
Using the SAS-stat program; analysis of variance; all statistically significant findings further evaluated by Dunnett's t-test; chi-squared test for pregancy rate
Indices:
numbers of corpora lutea, implantations, resorptions and pups at birth and on days 4 and 5
Historical control data:
no data
Details on maternal toxic effects:
Maternal toxic effects:no effects

Details on maternal toxic effects:
- no mortality
- no statistically significant effects on body weight
- no statistically significant effects on organ weights or pathology
Dose descriptor:
NOAEL
Effect level:
2 000 mg/kg bw/day (nominal)
Based on:
test mat.
Basis for effect level:
other: No adverse effects observed
Details on embryotoxic / teratogenic effects:
Embryotoxic / teratogenic effects:no effects

Details on embryotoxic / teratogenic effects:
- no statistically significant effects on numbers of corpora lutea, implantations, resorptions or pups at birth; no statistically significant abnormalities in pups (see table 1)

Dose descriptor:
NOAEL
Effect level:
2 000 mg/kg bw/day (nominal)
Based on:
test mat.
Basis for effect level:
other: No adverse effects observed
Abnormalities:
not specified
Developmental effects observed:
no

Table 1: Developmental toxicity data

Observation

Dose (mg/kg bw/day) (nominal via diet)

0

100

500

2000

Pregnancy rate (%)

92

83

83

75

Number of litters

12

11

10

9

Mean (±SD) number of corpora lutea

14±1.7

14±0.9

14±1.5

14±1.6

Mean (±SD) number of implantations

13±2.4

14±1.4

14±1.9

14±1.1

Total number of resorptions

0

0

0

0

Total number of pups (day 1)

159

146

132

120

Mean number of pups per litter (day 1)b

13.25

13.27

13.20

13.33

Mean (±SD) litter weight (day 1) (g)

75±12.9

75±7.3

71±8.9

77±5.5

Total number of pups (day 4)

156

143a

125

118

Total number of pup deaths (days 1-4)

3

3

7

2

Mean (±SD) litter weight (day 4) (g)

106±14.9

107±9.9

101±12.9

104±9.8

Mean (±SD) litter weight gain (day 4) (g)

31±8.5

32±4.5

30±6.3

27±7.8

Total number of pups (day 5)

number of males

number of females

156

70

86

144a

55

89

125

61

63

118

62

56

Sex Ratio (% Male)b

45

38

49

53

Mean (±SD) male pup body weight (day 5) (g)

9±0.7

9±0.5

9±1.2

9±1.1

Mean (±SD) female pup body weight (day 5) (g)

10±0.9

10±0.7

10±1.2

9±1.1

Postmortem findings - pups (day 5)

hydronephrosis (1 female), unilateral dil. renal pelvis (1 male), yellow spots on liver (1 male)

bilateral dil. renal pelvis (2 females), unilateral dil. renal pelvis (1 female)

 

aplasia testisuni. (1 male)


aAs reported in study report

bCalculated for this table

Conclusions:
In a reliable study conducted to the draft OECD guideline 422, the NOAEL for maternal and developmental toxicity was 2000 mg/kg bw/day, the highest dose tested. The study was performed in compliance with GLP.
Endpoint:
developmental toxicity
Type of information:
experimental study
Adequacy of study:
weight of evidence
Study period:
no data
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
comparable to guideline study with acceptable restrictions
Remarks:
group sizes are smaller than recommended 8-10 pregnant females rather than 20
Reason / purpose:
reference to same study
Qualifier:
equivalent or similar to
Guideline:
OECD Guideline 414 (Prenatal Developmental Toxicity Study)
Deviations:
yes
Remarks:
group sizes are smaller than recommended; 8-10 pregnant females rather than 20
GLP compliance:
yes
Limit test:
no
Species:
rat
Strain:
other: Wistar outbred-strain Chbb/THOM
Details on test animals and environmental conditions:
TEST ANIMALS
- Source: Supplied by Dr K. Thomae, GmbH, Biberach, Germany.
- Age at study initiation: 68-85 days
- Weight at study initiation: 214-233 g
- Fasting period before study: no data
- Housing: DK III stainless steel wire-mesh cages
- Diet (e.g. ad libitum): ad libitum
- Water (e.g. ad libitum): ad libitum
- Acclimation period: at least 5 days


ENVIRONMENTAL CONDITIONS
- Temperature (°C): 20-24
- Humidity (%): 30-70
- Air changes (per hr): "fully air conditioned rooms"
- Photoperiod (hrs dark / hrs light): 12/12

Route of administration:
oral: gavage
Vehicle:
other: Doubly-distilled water containing about 0.005% Cremophor EL (as emulsifier)
Details on exposure:
PREPARATION OF DOSING SOLUTIONS:
Prepared daily in aqueousemulsions under rapid stirring


VEHICLE
- Justification for use and choice of vehicle (if other than water): no data
- Concentration in vehicle: Adjusted to give constant volume
- Amount of vehicle (if gavage): 5 ml/kg
- Lot/batch no. (if required): no data
- Purity: no data
Analytical verification of doses or concentrations:
yes
Details on analytical verification of doses or concentrations:
Gas chromatography
Details on mating procedure:
- Impregnation procedure: cohoused
- If cohoused:
- M/F ratio per cage: One to four untreated females were mated with one untreated fertile male
- Length of cohabitation: "overnight"
- Verification of same strain and source of both sexes: yes
- Proof of pregnancy: sperm in vaginal smear referred to as day 0 of pregnancy
Duration of treatment / exposure:
gestation days 6-15
Frequency of treatment:
daily
Duration of test:
20 days
Dose / conc.:
130 mg/kg bw/day (actual dose received)
Dose / conc.:
650 mg/kg bw/day (actual dose received)
Dose / conc.:
975 mg/kg bw/day (actual dose received)
Dose / conc.:
1 300 mg/kg bw/day (actual dose received)
No. of animals per sex per dose:
8-10 females
Control animals:
yes, concurrent vehicle
Details on study design:
no data
Maternal examinations:
CAGE SIDE OBSERVATIONS: Yes
- Time schedule: Daily


DETAILED CLINICAL OBSERVATIONS: No data


BODY WEIGHT: Yes
- Time schedule for examinations: Daily


POST-MORTEM EXAMINATIONS: Yes
- Sacrifice on gestation day 20
- Organs examined: Ovaries and uterus

Ovaries and uterine content:
The ovaries and uterine content was examined after termination: Yes
Examinations included:
- Gravid uterus weight: Yes
- Number of corpora lutea: Yes
- Number of implantations: Yes
- Number of early resorptions: Yes
- Number of late resorptions: Yes
Fetal examinations:
- External examinations: Yes: half per litter
- Soft tissue examinations: Yes: half per litter
- Skeletal examinations: Yes: half per litter
- Head examinations: No
Statistics:
Dunnetts test for most reproductive parameters and Fischers exact test for evaluaton of conception rate and all foetal findings.
Indices:
Conception rates and pre & post implantation losses were calculated.
Historical control data:
Not presented
Details on maternal toxic effects:
Maternal toxic effects:yes

Details on maternal toxic effects:
A dose-related increase in maternal toxicity with increasing severity of clinical signs (including lateral and abdominal position, unsteady gait, salivation, piloerection, nasal discharge and pneumonia) was observed in all treatment groups, compared to the controls. Two dams died in each of the groups (of ten rats) receiving the test material at 650, 975 and 1300 mg/kg bw/day, compared to no deaths in the dams receiving 130 mg n-octanol/kg bw/day or in the controls. A slight decrease in food consumption and body weight gain was observed in those female rats administered n-octanol at 650 mg/kg bw/day and above.

The number of pregnant dams per dose level was 10/10, 9/10, 8/10 and 8/10 in the dams administered the test material at 130, 650, 975, and 1300 mg/kg bw/day, respectively, compared to 9/10 in the water controls and 10/10 in the aqueous emulsifier. The number of resorptions, implantations, corpora lutea were comparable to controls (Number of resorptions (all)/dam (mean) 1.0, 1.4 (controls), and 1.2, 0.7, 0.8 and 1.3 in treated groups from low - high. Number of implantation sites/dam (mean) 14.7, 16.0 (controls), and 14.7, 15.4, 13.8 and 14.5 from treated groups low - high. Number of corpora lutea/dam (mean) 14.8, 16.3 (controls), and 15.0, 16.0, 14.9 and 14.5 in treated groups low - high.) Duration of pregnancy, and uterine and placental weights, were also comparable between treatment groups, and controls.
Dose descriptor:
LOAEL
Effect level:
130 mg/kg bw/day
Basis for effect level:
other: maternal toxicity
Details on embryotoxic / teratogenic effects:
Embryotoxic / teratogenic effects:no effects

Details on embryotoxic / teratogenic effects:
No dead fetuses were observed and mean number of live foetuses/dam were unaffected by treatment ( 13.5, 14.7, 13.0 and 13.2 in treated groups receiving 130, 650, 975 or 1300 mg/kg bw/day, respectively, compared to 13.7 and 14.6 in controls). Litter size and weights were comparable in treated and control groups. Sex ratio was not reported. No treatment-related statistically significant and/or dose-related increases in the incidence of fetuses (or litters) with malformations, variations and retardations were observed, compared to controls. (Litters with malformations number 2 (22%), 3 (30%) (controls); 3 (30%), 3 (43%), 2 (25%) and 1 (17%) in treated groups low to high. Litters with variations number 8 (89%), 10 (100%) (controls); 10 (100%), 7 (100%); 7 (88%) and 5 (83%) in treated groups low to high. Litters with retardations number 8 (89%), 9 (90%) (controls);  9 (90%), 7 (100%), 8 (100%) and 5 (83%) in treated groups low to high. The authors note that "all foetal values were within the range of biological variation". A single cheiloschisis (cleft lip) and  one anophthalmy (eye loss) in the top-dose group was considered coincidental and not biologically relevant. 
Dose descriptor:
NOAEL
Effect level:
1 300 mg/kg bw/day
Based on:
test mat.
Basis for effect level:
other: teratogenicity
Abnormalities:
no effects observed
Developmental effects observed:
no
Conclusions:
In a reliable study, performed to OECD guideline 414, an LOAEL of 130 mg/kg bw/day (the lowest dose tested) was determined for maternal toxicity and an NOAEL of 1300 mg/kg bw/day for teratogenicity and foetotoxicity (the highest dose tested). The study was performed in compliance with GLP.
Executive summary:

[In view of the structural and chemical similarities, it is considered that the results of this study can be used for read-across to Alcohols C7 -9 linear and branched.]

Effect on developmental toxicity: via oral route
Endpoint conclusion:
no adverse effect observed
Dose descriptor:
NOAEL
2 000 mg/kg bw/day
Study duration:
subacute
Species:
rat
Effect on developmental toxicity: via inhalation route
Endpoint conclusion:
no study available
Effect on developmental toxicity: via dermal route
Endpoint conclusion:
no study available
Additional information

The Category hypothesis is that the long chain linear aliphatic alcohol family has at its centre an homologous series of increasing carbon chain length, which is associated with a consistency and predictability in the property data across the group, for the physicochemical, environmental and toxicological property data sets. In view of the structural and chemical similarities, it is considered that the results from a number of reliable developmental toxicity / teratogenicity studies on single- or multiple-constituent alcohols with appropriate chain lengths can be read across to tetradecan-1-ol. A full discussion of the Category can be found in the Human Health Alcohols C6-24 Category report (PFA, 2016).

A prenatal developmental toxicity study, performedto OECD guideline 414 and to GLP, was performed in rats dosed orally by gavage on days 6 to 15 of gestation with Alcohols C7-11 branched and linear at up to 1440 mg/kg bw/day. No maternal or developmental toxicity was seen and the top dose was therefore the NOAEL (Hellwig & Jäckh, 1997).

In combined repeat dose and reproductive/developmental toxicity screening tests, performed to draft OECD guideline 422 and to GLP, NOAELs of 2000 mg/kg bw/day (the highest dose tested) were determined for dodecan-1-ol and for octadecan-1-ol for both maternal and developmental toxicity (Hansen, 1992a, Hansen,1992b).

Developmental toxicity studies are available for several alcohols on both rats and rabbits, and no developmental effects have been observed in either species.

Whole body inhalation studies conducted in rats with octan-1 -ol, decan-1 -ol, nonan-1 -ol (Nelson, 1990) and hexan-1 -ol (Nelson, 1989) were also available, which confirmed that the alcohols of this category do not cause any developmental effects up to the maximum achievable concentrations.

Therefore, based on the weight of evidence from other alcohols across the category, it is concluded that tetradecan-1-ol is unlikely to cause developmental effects.

Discussion of trends in the Category of C6-24 linear and essentially-linear aliphatic alcohols:

There has been no indication of treatment-related effects in any of the developmental toxicity studies conducted in rats or rabbits available for any members of the chemical category. Data are available for linear and methyl-branched essentially linear alcohols with carbon chain lengths from C5 to C34.

The relatively small amounts of absorption that may occur across all common physiological routes (dermal, oral, inhalation) will be rapidly and efficiently metabolised in vivo to the corresponding fatty acid; a substance family which is exempt under REACH and which is an integral component of the conserved metabolic pathways in cells of all living organisms. These metabolic products are subsequently rapidly eliminated or may be utilised by biochemical systems in vivo, meaning that bioaccumulation does not need to be considered.

The mammalian alcohol dehydrogenase system is a group of pathways which catalyse the conversion of alcohols and aldehydes, which includes different forms of the enzymes which vary in substrate specificity. The alcohol dehydrogenases (ADHs) are divided into six classes, denoted by ADH1-ADH6. Five of the six classes of alcohol dehydrogenase have been identified in humans. One of the classes, ADH3, is the ancestral form of all mammalian ADHs, and has been traced in all living species investigated. The alcohol dehydrogenase system is considered to be able to detoxify a wide range of alcohols and aldehydes without the generation of toxic radicals. Therefore the metabolism of all category members would be expected to follow the same pathway in rats and rabbits meaning a developmental toxicity study conducted in rabbits could be expected to have the same result as a rat study.

Three category members have been tested for developmental toxicity data in rabbits. Rabbits administered docosan-1-ol by the oral route and iso-amyl alcohol by the inhalation route showed no evidence of developmental effects. Docosan-1-ol (also known as behenyl alcohol) is a linear primary alcohol with a carbon chain length of twenty-two. Iso-amyl alcohol (also known as 3-methyl-1-butanol) is a single-branched five carbon alcohol. Iso-amyl alcohol has been tested in both rats and rabbits, and no developmental effects were observed in either species. A substance known as D-002 has also been tested in both rats and rabbits, by oral route, at doses of 100, 320 and 1000 mg/kg bw/day. The test substance is a multi-constituent substance comprising linear primary alcohols with carbon chain lengths of C24, C26, C28, C30, C32 and C34. No developmental effects were observed in eitherspecies.

It is therefore considered that there are no grounds for further developmental toxicity testing in either rodent or non-rodent species.

Where data gaps exist, the gap is filled by read-across from reliable evidence within the C6-24 Alcohols Category, where possible using interpolation between at least two reliable studies using higher and lower carbon number test substances.

Developmental data for the Category

 

CAS

CHEMICAL NAME

Study type / Species / Route / Effects

NOAEL

(Ref)

Rel.*

C5

123-51-3

Isoamyl alcohol

Supporting Substance

Dev.Tox Rat Inhalation: None

 

 

Mat. 2.5 mg/L
Dev. 10 mg/L

(Klimischet al., 1995)

 

2

 

 

 

C5

123-51-3

Isoamyl alcohol

Supporting Substance

Dev. Tox Rabbit Inhalation: None

 

Mat. 2.5 mg/L

Dev. 10 mg/L

(Klimischet al., 1995))

2

C6

111-27-3

 

Hexan-1-ol

 

Dev. Tox Rat Inhalation: None

Mat/Dev. 3.5 mg/L

(Nelson, 1989)  

2

C6

111-27-3

 

Hexan-1-ol

 

Dev. Tox Rat

Oral; None

Dev 1000 mg/kg
Mat 200 mg/kg

(Rodwell, 1988)

4

 

C8

111-87-5

Octan-1-ol

Dev Tox Rat  Inhalat’n: None

Mat/Dev.>0.4 mg/L

(Nelson, 1990, 1996)

2

C8

111-87-5

Octan-1-ol

Dev. Tox Rat

Oral: None

Mat 130 mg/kg       Dev 1300 mg/kg

(Hellwig et al, 1997)

2

C9

143-08-8

Nonan-1-ol

 

Dev.Tox Rat Inhalation: None

Mat/Dev>0.15 mg/L

(Nelson, 1990, 1996)

2

C10

112-30-1

Decan-1-ol

Dev.Tox Rat Inhalation: None

Mat/Dev >0.1mg/L

(Nelson, 1990, 1996)

2

C11

112-42-5

Undecan-1-ol

 

Not expected to be a developmental toxicant in the absence of maternal toxicity, based on read across from dodecan-1-ol.

 

C12

112-53-8

Dodecan-1-ol

Supporting Substance

Screen Rat Diet: None

Dev/Mat >2000 mg/kg

(Hansen, 1992a)

2

C13

112-70-9

Tridecan-1-ol Supporting Substance

 

Not expected to be a developmental toxicant in the absence of maternal toxicity

 

C14

112-72-1

Tetradecan-1-ol

 

Not expected to be a developmental toxicant in the absence of maternal toxicity, based on read across from structurally analogous substances.

 

C15

629-76-5

Pentadecan-1-ol

 

Not expected to be a developmental toxicant in the absence of maternal toxicity

 

C16

36653-82-4

Hexadecan-1-ol

 

Not expected to be a developmental toxicant in the absence of maternal toxicity

 

C18

112-92-5

Octadecan-1-ol

 

Screen Rat Diet: None

Dev/Mat >2000 mg/kg

(Hansen, 1992b)

2

C18

143-28-2

9-Octadecen-1-ol, (9Z)-

 

Not expected to be a developmental toxicant in the absence of maternal toxicity, based on category approach and read across from structurally related substances.

 

C20

629-96-9

Icosanan-1-ol

 

Not expected to be a developmental toxicant in the absence of maternal toxicity, based on read across from structurally analogous substances.

 

C22

661-19-8

Docosan-1-ol

Dev.Tox Rat gavage: None

Mat/Dev >1000

(Iglesias, 2002b)

2

C22

661-19-8

Docosan-1-ol

Dev. Tox Rabbit Gavage; None

 

 

Mat/Dev >2000

mg/kg

(Iglesias, 2002b)

2

C24

506-51-4

Tetracosan-1-ol

 

Not expected to be a developmental toxicant in the absence of maternal toxicity, based on read across from structurally analogous substances.

 

C8

60435-70-3

2-methylheptan-1-ol

 

 

 

C9

68515-81-1

Nonan-1-ol, branched and linear

 

Not expected to be a developmental toxicant in the absence of maternal toxicity, based on read across from octan-1-ol.

 

C10

90342-32-8

Decan-1-ol, branched and linear

 

Not expected to be a developmental toxicant in the absence of maternal toxicity, based on read across from structurally analogous substances as weight of evidence.

 

C11

128973-77-3

Undecan-1-ol, branched and linear

 

 

Not expected to be a developmental toxicant in the absence of maternal toxicity, based on read across from structurally analogous substances as weight of evidence.

 

C14

90583-91-8

Tridecan-1-ol, branched and linear Supporting Substance

 

Not expected to be a developmental toxicant in the absence of maternal toxicity

 

C9-11

 

Alcohols, C7-9, branched and linear

 

 

Not expected to be a developmental toxicant in the absence of maternal toxicity, based on read across from structurally analogous substances used as weight of evidence.

 

C9-11

 

Alcohols, C9-11-branched and linear

 

Not expected to be a developmental toxicant in the absence of maternal toxicity, based on read across from structurally analogous substances as weight of evidence.

 

C11

 

Reaction mass of 2-methyldecan-1-ol and 2-propyloctan-1-ol and 2-ethylnonan-1-ol and 2-butylheptan-1-ol

 

Not expected to be a developmental toxicant in the absence of maternal toxicity, based on read across from structurally analogous substances as weight of evidence.

 

C12-13

75782-86-4

 

Alcohols, C12-13

 

 

 Not expected to be a developmental toxicant in the absence of maternal toxicity based on read across from structurally analogous substances.

 

C12-13

 

740817-83-8

 

Alcohols, C12-13-branched and linear

 

 Not expected to be a developmental toxicant in the absence of maternal toxicity based on read across from structurally analogous substances.

 

C12-15

90604-40-3

Alcohols, C12-15-branched and linear

 

Not expected to be a developmental toxicant in the absence of maternal toxicity based on read across from structurally analogous substances as weight of evidence.

 

C14-15

75782-87-5

 

Alcohols, C14-15

 

 

Not expected to be a developmental toxicant in the absence of maternal toxicity, based on read across from structurally analogous substances as weight of evidence.

 

C14-15

 

Alcohols, C14-15-branched and linear

 

Not expected to be a developmental toxicant in the absence of maternal toxicity, based on read across from structurally analogous substances as weight of evidence.

 

C16-17

 

Alcohols, C16-17

 

 

Not expected to be a developmental toxicant in the absence of maternal toxicity

 

 

C16-17

 

Alcohols, C16-17 -branched and linear

 

Not expected to be a developmental toxicant in the absence of maternal toxicity

 

C16-17

 

Alcohols, C16-17-monobranched

 

Not expected to be a developmental toxicant in the absence of maternal toxicity

References:

PFA (2016). C6-24 Alcohols Category Report: Human Health. Version number: 01. Peter Fisk Associates Ltd. February 2016.

 


Justification for classification or non-classification

Based upon the above information, tetradecan-1-ol is not required to be classified in accordance with Regulation (EC) No 1272/2008.