Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Key value for chemical safety assessment

Genetic toxicity in vitro

Description of key information

7-ACT was not mutagenic in the Ames test with the strains of Salmonella typhimurium TA97a, TA98, TA100, TA102 and TA1535 up to the concentration of 900 µg per plate which causes clear toxicity. 7 -ACT was not a clastogen in an in vitro mammalian chromosome aberration test. The test item was not mutagenic in the in vitro mammalian cell gene mutation test.

Link to relevant study records

Referenceopen allclose all

Endpoint:
in vitro gene mutation study in bacteria
Remarks:
Type of genotoxicity: gene mutation
Type of information:
experimental study
Adequacy of study:
key study
Study period:
1995
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
other: Guideline study with GLP.
Qualifier:
according to guideline
Guideline:
OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Deviations:
no
Qualifier:
according to guideline
Guideline:
EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
Deviations:
no
Principles of method if other than guideline:
Direct plate incorporation method.
GLP compliance:
yes
Type of assay:
bacterial reverse mutation assay
Target gene:
Histidine
Species / strain / cell type:
S. typhimurium, other: TA97a, TA98, TA100, TA102, TA1535
Metabolic activation:
with and without
Metabolic activation system:
Microsomal fraction of rat liver, induced with Aroclor 1254.
Test concentrations with justification for top dose:
1.2 to 100 µg/plate.

Vehicle / solvent:
Water.
Negative solvent / vehicle controls:
yes
Positive controls:
yes
Positive control substance:
sodium azide
other: 2-aminoanthracene; 1,8-dihydroxy-anthraquinone; 4-nitro-o-phenylenediamine; t-butyl-hydroperoxide
Details on test system and experimental conditions:
In a preliminary experiment the strain TA100 was mixed with the test substance and top-agar and plated on standard agar. The growth of the bacterial lawn was recorded. 9 concentrations ranging from 0.8 µg to 5000 µg test substance per plate were used. 7-ACT was toxic at concentrations of 560 µg/plate and above (no growth of bacteria). At 190 µg/plate only single bacterial colonies and no homogeneous bacterial lawn were seen. At 62 µg/plate the growth was still reduced. No toxicity was seen at 21 µg/plate and lower.

The plates were incubated at 37 °C for 2 days and the growth of the bacterial background and the density of revertant colonies was determined.
The test substance was tested without as well as with an external metabolising system (S9-mix). The results were verified by a second, independent experiment.
The exposure was performed according to the 'Plate Incorporation Assay', in which bacteria, test substance (and microsomes) are in contact on the plate without preceding incubation in the liquid state.
Evaluation criteria:
The plates were counted visually by marking the colonies with a felt tipped pen. From plates with more than about 300 colonies a fraction of the total area was counted visually and the total amount of colonies was calculated. When more than one person was counting, each person counted the same parts of the control group and of each of the dosed groups.
The criteria for a positive result are:
A reproducible statistically significant increase of the number of revertants to more than twice the amount of the spontaneous revertants for at least one of the concentrations.

Statistics:
Means and standard deviation were calculated for the number of mutants in each concentration group.

For comparison of the control group and the test substance groups the analysis of variance was used followed by the test of Scheffé. For comparison of the control group and the positive control group, the t-test was used. p = 0.05 was used as the significance level.
Species / strain:
S. typhimurium, other: TA97a, TA98, TA100, TA102, TA1535
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
cytotoxicity
Vehicle controls validity:
valid
Positive controls validity:
valid
Additional information on results:
Reference substances:
The positive control substances increased the mutation frequency statistically significantly. As 2-aminoanthracene is non mutagenic without metabolic activation and the mutagenicity of 1,8-dihydroxy-anthraquinone is lower without metabolic activation, the results of these substances demonstrate also the efficiency of the metabolising system.
The mutation frequencies of the negative control groups were in the usual range for the different strains.

Toxicity of the test substance:
The test substance was slightly toxic at the concentration of 100 µg per plate, resulting in reduced numbers of spontaneous revertants. No toxicity could be detected at the lower concentrations. All concentrations could be evaluated.

Mutagenicity of the test substance:
There was no statistically significant increase in the number of mutants in any of the tested bacterial strains with any of the tested concentrations, in both experiments. The addition of an external metabolising system did not change this results.

Remarks on result:
other: all strains/cell types tested
Remarks:
Migrated from field 'Test system'.
Conclusions:
Interpretation of results (migrated information):
negative

7-ACT is not mutagenic in the Ames test with the strains of Salmonella typhimurium TA97a, TA98, TA100, TA102 and TA1535 up to the concentration of 100 µg per plate which causes slight toxicity.
Executive summary:

7 -ACT was tested at concentrations ranging from 1.2 µg to 100 µg per plate according to the "direct plate incorporation method" without external metabolisation as well as with an external metabolising system (S9-mix). As test system the bacterial strains Salmonella typhimurium TA97a, TA98, TA100, TA102 and TA1535 were used. Negative and positive controls were included. An independent repetition of the experiment was performed. Results:

Positive controls:

All positive control groups showed significantly increased mutation frequencies which demonstrates the sensitivity of the test system.

Test substance:

The test substance was slightly toxic at the concentration of 100 µg per plate, resulting in reduced numbers of spontaneous revertants. No toxicity could be detected at the lower concentrations.

In none of the tested concentrations and with none of the used strains a statistically significant increase of the mutation frequency was obtained. Metabolic activation did not change these results.

 

Endpoint:
in vitro cytogenicity / chromosome aberration study in mammalian cells
Type of information:
experimental study
Adequacy of study:
key study
Study period:
2016
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
guideline study
Qualifier:
according to guideline
Guideline:
OECD Guideline 473 (In Vitro Mammalian Chromosome Aberration Test)
Version / remarks:
2016
Deviations:
yes
Remarks:
Ethyl methanesulfonate was used as the positive control.
GLP compliance:
yes (incl. QA statement)
Type of assay:
other: In vitro mammalian chromosome aberration test.
Target gene:
Not applicable.
Species / strain / cell type:
Chinese hamster lung fibroblasts (V79)
Details on mammalian cell type (if applicable):
Lot. No.: 10H016
Supplier: ECACC (European Collection of Cells Cultures)
The V79 cell line is well established in toxicology studies. Stability of karyotype and morphology makes it suitable for gene toxicity assays with low background aberrations. These cells were chosen because of their small number of chromosomes (diploid number, 2n=22) and because of the high proliferation rates (doubling time 12-14 h).
The cell stocks were kept in a freezer at -80 +/- 10 °C. Checking for mycoplasma infections was carried out. Trypsin-EDTA (0.25 % Trypsin, 1mM EDTA x 4 Na) solution was used for cell detachment to subculture. The laboratory cultures were maintained in 75 cm2 plastic flasks at 37 +/- 0.5 °C in an incubator with a humidified atmosphere, set at 5 % CO2. The V79 cells for this study was grown in DME (Dulbecco’s Modified Eagle’s) medium supplemented with L-glutamine (2mM) and 1 % of Antibiotic-antimycotic solution (containing 10000 units/mL penicillin, 10 mg/mL streptomycin and 25 μg/mL amphoptericin-B) and heat-inactivated bovine serum (final concentration 10 %). During the 3 and 20 hours treatments with test item, negative and positive controls, the serum content was reduced to 5%.
Additional strain / cell type characteristics:
not specified
Metabolic activation:
with and without
Metabolic activation system:
rodent S9 mix
Test concentrations with justification for top dose:
Experiment A:
Without S9 mix: 0 - 500 - 1000 - 2000 µg/mL (3 h exposure; sampling 20 h after start of exposure).
With S9 mix: 0 - 500 - 1000 - 2000 µg/mL (3 h exposure; sampling 20 h after start of exposure).

Experiment B:
Without S9 mix: 0 - 62.5 - 125 - 250 - 500 µg/mL (20 h exposure; sampling 20 h after start of exposure)
With S9 mix: 0 - 62.5 - 125 - 250 - 500 µg/mL (20 h exposure; sampling 28 h after start of exposure)
With S9 mix: 0 - 500 - 1000 - 2000 µg/mL (3 h exposure; sampling 28 h after start of exposure).

Selection of doses according to the results of the preliminary test.
Vehicle / solvent:
In the main experiments the test item solutions were prepared in the testing laboratory using DMSO as solvent. This vehicle is compatible with the survival of the V79 cells and the S9 activity and was chosen based on the results of the preliminary Solubility Test, and its suitability is confirmed with the available laboratory’s historical database. Test item was prepared in a concentration of 100 mg/mL with solvent (stock solution) at the first step.
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
Remarks:
DMSO
True negative controls:
no
Positive controls:
yes
Positive control substance:
cyclophosphamide
ethylmethanesulphonate
Details on test system and experimental conditions:
Components of Media:
Name: DME (Dulbecco’s Modified Eagle’s) medium
Supplier: Sigma-Aldrich, Germany
Name: Fetal Bovine Serum
Supplier: Biowest
Name: Antibiotic-antimycotic
Supplier: Sigma-Aldrich, Germany

Rat Liver S9 Fraction
The S9 fraction of phenobarbital (PB) and β-naphthoflavone (BNF) induced rat liver was provided by Trinova Biochem GmbH, Germany; manufacturer: MOLTOX INC., USA. Certificate of Analysis was obtained from the supplier.

The study includes a Pre-test on toxicity (concentration selection for the main study). Cytotoxicity increased dose dependently.

The chromosome aberration assays were conducted in two independent experiments in the presence and in the absence of S9 mix.
Experiment A: The test item was suspended in DMSO for the treatment (stock solution: 100 mg/mL). The appropriate amount of this stock solution was completed with DME (Dulbecco’s Modified Eagle’s) medium to reach the constant volume. The constant volume was diluted with medium to obtain the examination concentrations. Duplicate cultures were used at each concentration and the negative control cultures as well as the positive controls for treatment without and withS9 mix. 5 x 10E5 cells were set up at each group. The culture medium of exponentially growing cell cultures was replaced with medium containing the test item. The exposure period was 3 hours. The exposure period was followed by washing the cells with DME (Dulbecco’s Modified Eagle’s) medium and then growth medium was added. Sampling was made at 20 hours after treatment start (approximately 1.5 normal cell cycles from the beginning of treatment). For concurrent measures of cytotoxicity for all treated and negative control cultures, 5 x 10E5 cells were set up.

Experiment B: The exposure period without metabolic activation was 20 hours. The exposure period with metabolic activation was 3 hours.

Experiment B, as Experiment A, included a concurrent S9 non-activated and S9 activated positive and negative control. For each group 5 x 10E5 cells/dish cells were seeded. Sampling was made at 1.5 cell cycles (20 hours, without S9 mix only) and at approximately 2 normal cell cycles (28 hours, without and with S9 mix) from the beginning of treatment to cover a potential mitotic delay.

pH and osmolality: The pH value and osmolality of negative (solvent) control and test item treatment solutions (for every treatment concentrations) were measured in the Pre-test for Cytotoxicity (Concentration selection) and in the Chromosome Aberration Assay.

Preparation of chromosomes: Cell cultures were treated with Colchicine (0.2 μg/mL) 2.5 hours prior to harvesting. Following the selection time, cells were swollen with 0.075 M KCl hypotonic solution, then washed in fixative (approx. 10 min. in 3:1 mixture of methanol: acetic-acid until the preparation becomes plasma free) and dropped onto slides and air-dried. The preparation was stained with 5 % Giemsa for subsequent scoring of chromosome aberration frequencies.

Analysis of metaphase cells: All slides were independently coded before microscopic analysis and scored blind. 300 well-spread metaphase cells containing 22 ± 2 chromosomes were scored per test item concentration as well as the negative and positive controls and were equally divided among the duplicates (150 metaphases/slide). Chromatid and chromosome type aberrations (gaps, deletions and exchanges) were recorded separately. Additionally, the number of polyploid and endoreduplicated cells were scored. The nomenclature and classification of chromosome aberrations were given based upon ISCN, 1985, and Savage, 1976, 1983.
Rationale for test conditions:
See above.
Evaluation criteria:
– Different types of structural chromosome aberrations are listed, with their numbers and frequencies for experimental and control cultures.
– Gaps were recorded separately and reported, but generally not included in the total aberration frequency.
– Concurrent measures of cytotoxicity for all treated and negative control cultures in the main aberration experiment (s) were recorded.
– Individual culture data were summarised in tabular form.
– There were no equivocal results in this study.
– pH and Osmolality data were summarised in tabular form.

Interpretation of Results
Providing that all acceptability criteria are fulfilled, a test item is considered to be clearly positive if:
– at least one of the test concentrations exhibits a statistically significant increase compared with the concurrent negative control,
– the increase is dose-related when evaluated with an appropriate trend test,
– any of the results are outside the distribution of the laboratory historical negative control data.
Providing that all acceptability criteria are fulfilled, a test chemical is considered clearly negative because:
– none of the test concentrations exhibits a statistically significant increase compared with the concurrent negative control,
– there is no concentration-related increase when evaluated with an appropriate trend test
Statistics:
For statistical analysis CHI2 test was utilized. The parameters evaluated for statistical analysis were the number of aberrations (with and without gaps) and number of cells with aberrations (with and without gaps). The number of aberrations in the treatment and positive control groups were compared to the concurrent negative control. The concurrent negative and positive controls and the treatment groups were compared to the laboratory historical controls, too.
Key result
Species / strain:
Chinese hamster lung fibroblasts (V79)
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Additional information on results:
In Experiment A, there were no biologically significant increases in the number of cells showing structural chromosome aberrations, neither in the absence nor in the presence of metabolic activation, up to the maximum recommended concentration. There were no statistical differences between treatment and concurrent solvent and historical control groups and no dose-response relationships were noted.

In Experiment B, the frequency of the cells with structural chromosome aberrations did not show significant alterations compared to concurrent controls, up to the cytotoxic concentration without S9 mix over a prolonged treatment period of 20 hours with harvest at 20 or 28 hours following treatment start. Further, a 3-hour treatment up to the maximum recommended concentration in the presence of S9 mix with 28-hour harvest from the beginning of treatment did not cause an increase in the number of cells with structural chromosome aberrations.

In both experiments, no statistically significant differences between treatment and concurrent solvent control groups and no dose-response relationships were noted. The observed chromosome aberration were inside the distribution of the laboratory historical negative control data.
There were no biologically relevant increases in the rate of polyploid or endoreduplicated metaphases in either experiment in the presence or absence of metabolic activation.
There was no precipitation of the test item at any dose level tested. No biologically relevant changes in pH or osmolality of the test system were noted at the different dose levels tested.

The number of aberrations found in the solvent controls was compatible with the laboratory historical laboratory control data. The concurrent positive controls ethyl methanesulphonate (0.4 and 1.0 μL/mL) and Cyclophosphamide (5 μg/mL) caused the expected biologically relevant increases of cells with structural chromosome aberrations as compared to solvent controls and were compatible with the historical positive control data. Thus, the study is considered valid.
Conclusions:
The test item, with and without mammalian metabolic activation system, did not induce structural chromosome aberrations in Chinese Hamster lung cells. The test item is not clastogenic in this system.
Executive summary:

A Chromosome Aberration Assay in V79 cells was performed. In two independent experiments (both run in duplicate with concurrent negative and positive controls) at least 300 (150-150) well-spread metaphase cells were analysed at concentrations and treatment (exposure)/sampling (expression) intervals given below:

Experiment A:

Without S9 mix: 0 - 500 - 1000 - 2000 µg/mL  (3 h exposure; sampling 20 h after start of exposure).

With S9 mix:  0 - 500 - 1000 - 2000 µg/mL (3 h exposure; sampling 20 h after start of exposure).

Experiment B:

Without S9 mix: 0 - 62.5 - 125 - 250 - 500 µg/mL (20 h exposure; sampling 20 h after start of exposure)

With S9 mix:  0 - 62.5 - 125 - 250 - 500 µg/mL (20 h exposure; sampling 28 h after start of exposure)

With S9 mix: 0 - 500 - 1000 - 2000 µg/mL (3 h exposure; sampling 28 h after start of exposure).

Results:

In both experiments, no statistically significant differences between treatment and concurrent solvent control groups and no dose-response relationships were noted. The observed chromosome aberration were inside the distribution of the laboratory historical negative control data.

There were no biologically relevant increases in the rate of polyploid or endoreduplicated metaphases in either experiment in the presence or absence of metabolic activation.

There was no precipitation of the test item at any dose level tested. No biologically relevant changes in pH or osmolality of the test system were noted at the different dose levels tested.

The number of aberrations found in the solvent controls was compatible with the laboratory historical laboratory control data. The concurrent positive controls ethyl methanesulphonate (0.4 and 1.0 μL/mL) and Cyclophosphamide (5 μg/mL) caused the expected biologically relevant increases of cells with structural chromosome aberrations as compared to solvent controls and were compatible with the historical positive control data.

Endpoint:
in vitro gene mutation study in mammalian cells
Type of information:
experimental study
Adequacy of study:
key study
Study period:
2017
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
guideline study
Qualifier:
according to guideline
Guideline:
OECD Guideline 476 (In Vitro Mammalian Cell Gene Mutation Test)
Version / remarks:
2016
Deviations:
no
Principles of method if other than guideline:
Mutant cells deficient in Hprt enzyme activity in the HPRT test are resistant to the cytostatic effects of the purine analogue 6-thioguanine (TG). The Hprt proficient cells are sensitive to TG, which causes the inhibition of cellular metabolism and halts further cell division. Thus, mutant cells are able to proliferate in the presence of TG, whereas normal cells, which contain the Hprt enzyme, are not.
GLP compliance:
yes (incl. QA statement)
Type of assay:
other: HPRT test
Target gene:
Hypoxanthine-guanine phosphoribosyl transferase enzyme locus.
Species / strain / cell type:
Chinese hamster Ovary (CHO)
Details on mammalian cell type (if applicable):
CHO K1: Sub-line (K1) of Chinese hamster ovary cell line CHO
Lot. No.: 12G006
Supplier: ECACC (European Collection of Cell Cultures)

Each batch of frozen cells was purged of HPRT mutants and was free for mycoplasma infections. For each experiment the cells were thawed rapidly, the cells diluted in Ham's F12 medium containing 10 % foetal bovine serum and incubated at 37 °C in a humidified atmosphere of 5 % CO2 in air. Growing cells were subcultured in an appropriate number of flasks. The CHO K1 cells for this study were grown in Ham's F12 medium (F12-10) supplemented with 1 % Antibiotic-antimycotic solution (containing 10000 U/mL penicillin, 10 mg/mL streptomycin and 25 μg/mL amphotericin-B) and heat-inactivated bovine serum (final concentration 10 %). During the 5 treatments with the test item, solvent (negative control) and positive controls, the serum content was reduced to 5 % (F12-5). The selection medium for TG resistant mutants contained 3.4 μg/mL 6-thioguanine (6-TG) (EX-CELL® CD CHO Serum-Free Medium for CHO Cells-SEL).
Metabolic activation:
with and without
Metabolic activation system:
S9 mix of phenobarbital and β-naphthoflavone induced rat liver.
Test concentrations with justification for top dose:
5-hour treatment period without S9-mix: 125, 250, 500, 1000 and 2000 μg/mL
5-hour treatment period with S9-mix: 31.5, 62.5, 125, 250 and 500 μg/mL
The concentrations were chosen based on the cytotoxicity and the maximum recommended concentration.
Vehicle / solvent:
The test item was prepared in DMSO.
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
7,12-dimethylbenzanthracene
ethylmethanesulphonate
Details on test system and experimental conditions:
A pre-test on toxicity was performed to select treatment concentrations for the mutation assay.

A 5-hour treatment in the presence and absence of S9-mix was performed. For the 5-hour treatment, 5 x10E6 cells were placed in sterile dishes and incubated for approximately 24 hours before treatment at 37 °C in a humidified atmosphere of 5 % CO2. Duplicate cultures were used at each test item concentration, for negative (solvent) controls and the positive controls for treatment without and with S9-mix. On the day of treatment, the culture medium of exponentially growing cell cultures were replaced with medium (F12-5) containing the test item. The exposure period was 5 hours. Following the exposure period the cells were washed with F12-5 medium and incubated in fresh F12-10 medium for 19 hours. After the 19-hour incubation period, cells were washed twice with F12-10 medium and dissolved by treatment with trypsin-EDTA solution and counted using a Bürker chamber. Solubility of the test item in the cultures was assessed by the naked eye, at the beginning and end of treatment. In samples where sufficient cells survived, cell number was adjusted to 10E5 cells/mL. Throughout the expression period, cells were transferred to dishes for growth or diluted to be plated for survival.

The pH and osmolality of the negative (solvent) control and test item solutions were determined in Experiment 1 and Experiment 2.
Plating for survival: Following adjustment of the cultures to 10E5 cells/mL, samples from these cultures were diluted to 40 cells/mL. A total of 5 mL (200 cells/dish) of the final concentration of each culture was plated into 3 parallel dishes (diameter is approx. 60 mm). The dishes were incubated at 37 °C in a humidified atmosphere of 5 % CO2 in air for 6 days for growing colonies. Then, colonies were fixed with methanol, stained with Giemsa and counted. Survivals were assessed by comparing the cloning efficiency of the test item treated groups to the negative (solvent) control.
Expression of the mutant phenotype: During the phenotypic expression period the cultures were subcultured. Aliquots of approximately 2x10E6 cells were taken on days 1, 3, 6, and evaluated on day 8.
Selection of the mutant phenotype: At the end of the expression period, cultures from each dose level were adjusted to 2 x 10E5 cells / dish ( 4 x five dishes) in selection medium (hypoxanthine Ham's F12-SEL medium) containing 3.4 μg/mL of thioguanine (6-TG).
Plating for viability: At the end of the expression period cell number in the samples were adjusted to 2 × 10E5 cells/mL. Cells were plated in 3 parallel dishes (diameter is approx. 60 mm) for a viability test as described in “Plating for Survival“ section for the survival test.
Fixation and staining of colonies: After the selection period, the colonies were fixed with methanol for five minutes, stained with Giemsa and counted for either mutant selection or cloning efficiency determination.
Rationale for test conditions:
See above.
Evaluation criteria:
Calculation of mutation frequency: The mutation frequency was calculated by dividing the total number of mutant colonies by the number of cells selected (10E6 cells: 5 plates at 2 x 10E5 cells/plate), corrected for the cloning efficiency of cells prior to mutant selection (viability), and was expressed as 6-TG resistant mutants per 10E6 clonable cells.
Key result
Species / strain:
Chinese hamster Ovary (CHO)
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Additional information on results:
Clear treatment solutions were obtained and no precipitation in the medium was noted at the test item concentrations used. No relevant changes in pH or osmolality were found after treatment with the test item.

On Day 1, there was very clear evidence of toxicity with the test item in presence of metabolic activation (S9 mix) when compared to the negative (solvent) controls, confirming the response seen in the dose selection cytotoxicity assays. The Day 8 cloning efficiency data indicate that in general the cells had recovered during the expression period.
Low toxicity was observed in treatment groups when compared to the negative (solvent) controls, in the absence of the metabolic activation, confirming the response seen in the dose selection cytotoxicity assays. The Day 8 cloning efficiency data indicate that in general the cells had recovered during the expression period. The test item 7-ACT was low-cytotoxic in the examined concentrations without metabolic activation.
The mutation data show no biologically or statistically significant increases in mutation frequency at any concentration tested, either in the absence or in the presence of metabolic activation. There were no significant differences between treatment and control groups and no dose-response relationships were noted. All values were within the range of the laboratory historical solvent control data and no dose-related increase was observed in any of the cultures.

The sensitivity of the tests and the efficacy of the S9 mix were demonstrated by large and statistically significant (p < 0.01) increases in mutation frequency in the positive control cultures with Ethyl methanesulfonate (1.0 μL/mL) and 7,12-Dimethyl benz[a]anthracene (20 μg/mL). The mutation frequencies of the positive and negative control cultures were consistent with the historical control data from the previous studies performed at this laboratory. Thus, the study is considered valid.
The osmolality values of test item solutions did not show any significant alterations compared to the concurrent control groups in the Pre-test on Toxicity and Main Mutation Assay. The pH values of test item solutions were slightly less than concurrent negative controls in the Pre-test on Toxicity and Main Mutation Assay. These values were in the acceptable range.
Conclusions:
The test item was not mutagenic in this in vitro mammalian cell gene mutation test.
Executive summary:

An in vitro genotoxicity test, the HPRT-test, was performed according to the OECD guuideline 476. The test item, applied up to the maximum recommended concentration (2000 μg/mL) concentration without metabolic activation system and up to the cytotoxic concentration with metabolic activation system over a 5 hour treatment period did not induce statistically and biologically significant increases in mutant frequency over the background (negative solvent control).

It is concluded that the test item was not mutagenic in this in vitro mammalian cell gene mutation test performed with in Chinese hamster ovary cells.

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (negative)

Additional information

Justification for classification or non-classification

No justification for a classification was gained.