Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Adsorption / desorption

Currently viewing:

Administrative data

Link to relevant study record(s)

Referenceopen allclose all

Endpoint:
adsorption / desorption
Remarks:
adsorption
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
Justification for type of information:
1. SOFTWARE
EPI Suite v4.11 Estimation Programs Interface Suite™ for Microsoft® Windows v 4.11. US EPA, United States Environmental Protection Agency, Washington, DC, USA.

2. MODEL (incl. version number)
KOCWIN v2.00, Log Kow based model

3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”

4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached information on the model provided by the developer. Further information on the OECD criteria as outlined by the applicant is provided below under "Any other information of materials and methods incl. tables"

5. APPLICABILITY DOMAIN
See attached information and information as provided in "Any other information on results incl. tables".

6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section.
Qualifier:
according to guideline
Guideline:
other: REACH Guidance on QSARs R.6
Principles of method if other than guideline:
- Software tool(s) used including version: EPI Suite v4.11
- Model(s) used: KOCWIN v2.00
Full reference and details of the used formulas can be found in:
1. Doucette, W.J. 2000. Soil and sediment sorption coefficients.  In: Handbook of Property Estimation Methods, Environmental and Health Sciences. R.S. Boethling & D. Mackay (Eds.): Lewis Publishers (ISBN 1-56670-456-1). 
2. US EPA. [2012]. Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.11 or insert version used]. United States Environmental Protection Agency, Washington, DC, USA.
- Model description: see field 'Justification for non-standard information', 'Attached justification' and 'any other information on Material and methods'
- Justification of QSAR prediction: see field 'Justification for type of information', 'Attached justification' and/or 'overall remarks'
GLP compliance:
no
Type of method:
other: calculation
Media:
soil
Details on test conditions:
Input data:
Melting point: -47 °C
Type:
log Koc
Value:
2.224 dimensionless
Temp.:
25 °C
Remarks on result:
other: based on Kow method
Type:
Koc
Value:
167.4 L/kg
Temp.:
25 °C
Remarks on result:
other: based on Kow method

For detailed information on the results please refer to the attached report.

Endpoint:
adsorption / desorption
Remarks:
adsorption
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
Justification for type of information:
1. SOFTWARE
EPI Suite v4.11 Estimation Programs Interface Suite™ for Microsoft® Windows v 4.11. US EPA, United States Environmental Protection Agency, Washington, DC, USA.

2. MODEL (incl. version number)
KOCWIN v2.00

3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”

4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached information on the model provided by the developer. Further information on the OECD criteria as outlined by the applicant is provided below under "Any other information of materials and methods incl. tables"

5. APPLICABILITY DOMAIN
See attached information and information as provided in "Any other information on results incl. tables".

6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section.
Qualifier:
according to guideline
Guideline:
other: REACH Guidance on QSARs R.6
Principles of method if other than guideline:
- Software tool(s) used including version: EPI Suite v4.11
- Model(s) used: KOCWIN v2.00, MCI based method
Full reference and details of the used formulas can be found in:
Meylan, W., P.H. Howard and R.S. Boethling, "Molecular Topology/Fragment Contribution Method for Predicting Soil Sorption Coefficients", Environ. Sci. Technol. 26: 1560-7 (1992)
- Model description: see field 'Justification for non-standard information', 'Attached justification' and 'any other information on Material and methods'
- Justification of QSAR prediction: see field 'Justification for type of information', 'Attached justification' and/or 'overall remarks'
GLP compliance:
no
Type of method:
other: calculation
Media:
soil
Details on test conditions:
Input data:
Melting point: -47 °C
Type:
log Koc
Value:
2.184 dimensionless
Temp.:
25 °C
Remarks on result:
other: based on MCI
Type:
Koc
Value:
152.6 L/kg
Temp.:
25 °C
Remarks on result:
other: based on MCI

For detailed information on the results please refer to the attached report.

Description of key information

log Koc 2.18 (KOCWIN v2.00, MCI)

log Koc 2.22 (KOCWIN v2.00, based on log Kow)

Key value for chemical safety assessment

Koc at 20 °C:
152.6

Additional information

No studies investigating the adsorption/desorption behaviour of Bis(2-(2-butoxyethoxy)ethyl) adipate (CAS 141-17-3) are available. Using KOCWIN v2.00, log Koc values of 2.18 and 2.22 were calculated based on the molecular connectivity index (MCI) and based on the Kow, respectively. The results of the QSAR calculation are considered appropriate as the substance is within the applicability domain of the used model. Based on this information, it can be assumed that the adsorption potential of Bis(2-(2-butoxyethoxy)ethyl) adipate is low.