Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Toxicological information

Genetic toxicity: in vitro

Currently viewing:

Administrative data

Endpoint:
in vitro gene mutation study in mammalian cells
Type of information:
experimental study
Adequacy of study:
key study
Study period:
April 12 2010 to June 28 2010
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
guideline study
Cross-reference
Reason / purpose for cross-reference:
read-across: supporting information
Reference
Endpoint:
genetic toxicity in vitro, other
Remarks:
Bacterial mutagenicity, mammalian mutagenicity and mammalian cytogenicity
Type of information:
read-across from supporting substance (structural analogue or surrogate)
Adequacy of study:
weight of evidence
Justification for type of information:
See read-across justification in IUCLID Section 13
Reason / purpose for cross-reference:
read-across source
Reason / purpose for cross-reference:
read-across source
Reason / purpose for cross-reference:
read-across source
Reason / purpose for cross-reference:
read-across source
Reason / purpose for cross-reference:
read-across source
Key result
Species / strain:
S. typhimurium TA 98
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Remarks:
No evidence of cytotoxicity
Vehicle controls validity:
not specified
Untreated negative controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 100
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Remarks:
No evidence of cytotoxicity
Vehicle controls validity:
not specified
Untreated negative controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 1535
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Remarks:
No evidence of cytotoxicity
Vehicle controls validity:
not specified
Untreated negative controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 1537
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Remarks:
No evidence of cytotoxicity
Vehicle controls validity:
not specified
Untreated negative controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 102
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 98
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 100
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 1535
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 1537
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 1538
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
mouse lymphoma L5178Y cells
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
cytotoxicity
Remarks:
at 3450 µg/ml (free acid), 24 h exposure
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
Positive controls validity:
valid
Key result
Species / strain:
lymphocytes: human
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
not applicable
Positive controls validity:
valid

Data source

Reference
Reference Type:
study report
Title:
Unnamed
Year:
2010
Report date:
2010

Materials and methods

Test guidelineopen allclose all
Qualifier:
according to guideline
Guideline:
OECD Guideline 476 (In Vitro Mammalian Cell Gene Mutation Test)
Qualifier:
according to guideline
Guideline:
EU Method B.17 (Mutagenicity - In Vitro Mammalian Cell Gene Mutation Test)
GLP compliance:
yes (incl. QA statement)
Type of assay:
mammalian cell gene mutation assay

Test material

Constituent 1
Chemical structure
Reference substance name:
Sodium Salts of (1-Hydroxyethylidene)bisphosphonic acid (2-3 Na:1)
EC Number:
701-238-4
Molecular formula:
HEDP-2Na C2H6Na2O7P2 HEDP-3Na C2H5Na3O7P2
IUPAC Name:
Sodium Salts of (1-Hydroxyethylidene)bisphosphonic acid (2-3 Na:1)
Test material form:
solid - liquid: aqueous solution

Method

Target gene:
Thymidine Kinase Locus
Species / strain
Species / strain / cell type:
mouse lymphoma L5178Y cells
Details on mammalian cell type (if applicable):
- Type and identity of media: RPMI
- Periodically checked for Mycoplasma contamination: yes
- Periodically checked for karyotype stability: yes
- Periodically "cleansed" against high spontaneous background: yes
Additional strain / cell type characteristics:
other: Clone 3.7.2C
Metabolic activation:
with and without
Metabolic activation system:
Phenobarbital/Beta-Naphthoflavone induced Rat liver S9
Test concentrations with justification for top dose:
Experiment I, with and without S9 mix: 575, 1150, 2300, 4600, 9200, 18400 µg/ml (equivalent to 556-1784.8 µg/ml active acid);
Experiment II, without S9 mix: 287.5, 575, 1150, 2300, 3450, 4600 µg/ml (equivalent to 27.9-446 µg/ml active acid)
with S9 mix: 656.3, 1312.5, 2625, 5250, 10500, 21000 µg/ml (equivalent to 64-2067 µg/ml active acid).
without S9 mix: 21000 µg/mL (equivalent to 2067 µg/ml active acid).

Following the expression phase of 48 hours, the cultures at the lowest concentrations of 575 µg/ml in experiment I with and without metabolic activation were not continued since a minimum of only four analysable concentrations is required by the guidelines. In experiment II the concentrations at 287.5 µg/mL without metabolic activation and 656.3 µg/mL with metabolic activation were not continued for the same reason.
Vehicle / solvent:
- Vehicle(s)/solvent(s) used: deionised water
- Justification for choice of solvent/vehicle: solubility properties
Controlsopen allclose all
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
Remarks:
deionised water
True negative controls:
no
Positive controls:
yes
Positive control substance:
methylmethanesulfonate
Remarks:
without metabolic activation
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
Remarks:
deionised water
True negative controls:
no
Positive controls:
yes
Positive control substance:
cyclophosphamide
Remarks:
with metabolic activation
Details on test system and experimental conditions:
ACTIVATION: Phenobarbital/beta-naphthoflavone induced rat liver S9, NADP and glucose-6-phosphate as cofactors, final concentration in medium:5 % (v/v)

METHOD OF APPLICATION: in medium

DURATION
- Preincubation period: none
- Exposure duration: 4 hours with and without metabolic activation in experiment 1, 4 hours and 24 hours without metabolic activation in experiment and 4 hours with metabolic activation in experiment 2
- Expression time (cells in growth medium): 48 hours
- Selection time (if incubation with a selection agent): 10 to 15 days

SELECTION AGENT (mutation assays): RPMI 1640 medium by addition of 5 µg/ml TFT

NUMBER OF REPLICATIONS: 2

NUMBER OF CELLS EVALUATED: >1,5 x 10 exp. 6 cells

DETERMINATION OF CYTOTOXICITY
- Method: relative total growth


METHOD OF APPLICATION: in medium; in agar (plate incorporation); preincubation; in suspension; as impregnation on paper disk

DURATION
- Preincubation period:
- Exposure duration: first experiment: 4 hours treatment with and without metabolic activation; second experiment: 24 hours treatment without metabolic activation, 4 hours treatment with metabolic activation
- Expression time (cells in growth medium): 48 h
- Selection time (if incubation with a selection agent): 10-15 days

SELECTION AGENT (mutation assays): TFT

NUMBER OF REPLICATIONS: duplicate cultures; negative result in first experiment confirmed in second experiment

DETERMINATION OF CYTOTOXICITY
- Method: relative suspension growth

OTHER EXAMINATIONS:
- Other: size distribution of colonies
Evaluation criteria:
A test item is classified as mutagenic if the induced mutation frequency reproducibly exceeds a threshold of 126 colonies per 10 exp. 6 cells above the corresponding solvent control or negative control, respectively.
A relevant increase of the mutation frequency should be dose-dependent.
A mutagenic response is considered to be reproducible if it occurs in both parallel cultures.
However, in the evaluation of the test results the historical variability of the mutation rates in negative and/or vehicle controls and the mutation rates of all negative and/or vehicle controls of this study are taken into consideration.
Results of test groups are generally rejected if the relative total growth and the cloning efficiency are less than 10 % of the vehicle control unless the exception criteria specified by the IWGT recommendations are fulfilled.
Whenever a test item is considered mutagenic according to the above mentioned criteria, the ratio of small versus large colonies is used to differentiate point mutations from clastogenic effects. If the increase of the mutation frequency is accompanied by a reproducible and dose dependent shift in the ratio of small versus large colonies clastogenic effects are indicated.
Statistics:
Linear regression analysis (least squares) using SYSTAT 11 (SYSTAT Software, Inc., 501, Canal Boulevard, Suite C, Richmond, CA 94804, USA)

Results and discussion

Test results
Key result
Species / strain:
mouse lymphoma L5178Y cells
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
cytotoxicity
Remarks:
at 3450.0 µg/ml (free acid), 24 h exposure
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
Positive controls validity:
valid
Additional information on results:
TEST-SPECIFIC CONFOUNDING FACTORS
- Effects of pH: Not affected
- Effects of osmolality: Not increased
- Evaporation from medium: Not examined
- Water solubility: 12 %
- Precipitation: No precipitation was observed by the unaided eye up to the maximum concentration.
- Other confounding effects: None

RANGE-FINDING/SCREENING STUDIES:
The highest concentration level of a pure substance should be 10 mM (corresponding to 2.28 mg/ml of the active ingredient) unless limited by the toxicity of the test item (reduced cell culture growth and/or cloning efficiency). Thus the maximum concentration in the pre-experiment was 2.28 mg/ml of the active ingredient or 18.4 mg/mL of the test item as supplied based on a purity of 12.4%. Test item concentrations between 143.8 and 18400 µg/ml were used to evaluate toxicity in the presence (4 h treatment) and absence (4 h and 24 h treatment) of metabolic activation.
No relevant toxic effect occurred up to the maximum concentration tested with and without metabolic activation following 4 hours of treatment with and without metabolic activation. After 24 hours treatment strong toxic effects occurred at 4600 µg/mL and above.


COMPARISON WITH HISTORICAL CONTROL DATA: Performed


ADDITIONAL INFORMATION ON CYTOTOXICITY:
No relevant toxic effects indicated by a relative total growth of less than 50 % of survival in both parallel cultures were observed up to the maximum concentration with and without metabolic activation, following 4 hours of treatment. In experiment II following 24 hours treatment without metabolic activation, cytotoxic effects as described above occurred at 3450 and 4600 µg/mL. Based on the steep cytotoxic gradient of the test item the relative total growth (RTG) of both parallel cultures fell short of the lower limit of approximately 10%. However, according to the current IWGT recommendations data at RTG levels between 1 and 10% can be used to support a non mutagenic result provided that the dose spacing was 2.0 or lower and no relevant increase of the mutation frequency is observed at RTG levels below 10%.

Any other information on results incl. tables

Summary Table
  conditions conc. µg/ml (aqueous salt solution conc. µg/ml (free acid) S9 mix  relative total growth mutant colonies/ 106cells threshold  relative total growth mutant colonies/ 106cells threshold 
Experiment I / 4 h treatment     culture I culture II
Solv. control with water     - 100.0 113 239 100.0  95 221
Pos. control with MMS  19.5   -  30.6 309 239  33.0 299 221
Test item  575.0 72.1 - culture was not continued# culture was not continued#
Test item 1150.0 144.1 -  71.7 254 239 156.4 115 221
Test item 2300.0 288.3 -  70.2 168 239 110.0 177 221
Test item 4600.0 576.6 -  61.0 226 239 136.8 149 221
Test item 9200.0 1153.2 -  86.3 165 239  98.2 131 221
Test item 18400.0 2306.3 -  74.3 184 239  85.6 170 221
Experiment I / 4 h treatment     culture I culture II
Solv. control with water     + 100.0 165 291 100.0 139 265
Pos. control with CPA   3.0   +  79.1 340 291  49.5 144 265
Pos. control with CPA   4.5    +   30.7 311 291  23.4 344 265
Test item  575.0 72.1  +  culture was not continued# culture was not continued#
Test item 1150.0 144.1  +  143.5 174 291  83.9 183 265
Test item 2300.0 288.3  +  102.5 179 291  88.1  92 265
Test item 4600.0 576.6  +  120.4 131 291  80.7 107 265
Test item 9200.0 1153.2  +   91.5 129 291  83.7 162 265
Test item 18400.0 2306.3  +   76.7 149 291  61.7 128 265
Experiment II / 24 h treatment     culture I culture II
Solv. control with water     - 100.0 189 315 100.0 124 250
Pos. control with MMS  13.0   -  17.9 630 315  12.4 489 250
Test item  287.5  36.0 - culture was not continued# culture was not continued#
Test item  575.0  72.1 -  60.7 178 315  86.8 165 250
Test item 1150.0  144.1 -  66.5 149 315  94.9 170 250
Test item 2300.0  288.3 -  70.8 144 315  82.9 155 250
Test item  432.4 -  37.0 134 315  32.1 119 250
Test item 4600.0  576.6 -  5.6 102 315  2.8 211 250
Experiment II / 4 h treatment     culture I culture II
Solv. control with water     + 100.0 173 299 100.0 141 267
Pos. control with CPA   3.0   +  45.7 332 299  35.8 497 267
Pos. control with CPA   4.5   +  51.7 357 299  50.1 427 267
Test item  656.3 82.3 + culture was not continued# culture was not continued#
Test item 1312.5 164.5 +  91.4 178 299  98.8 154 267
Test item 2625.0 329.0 +  82.9 194 299  74.4 163 267
Test item 5250.0 658.1 +  89.4 191 299  73.1 178 267
Test item 10500.0 1316.1 +  93.9 169 299  79.0 183 267
Test item 21000.0 2632.0 +  96.3 183 299  71.9 204 267
Experiment II / 4 h treatment     culture I culture II
Solv. control with water     - 100.0 159 285 100.0 169 295
Pos. control with MMS  19.5   -  16.1 601 285  17.8 639 295
Test item 21000.0 2632.0 -  74.0 203 285  51.6 298 295

threshold = number of mutant colonies per 106cells of each solvent control plus 126

#  culture was not continued since a minimum of four concentrations is required by the guidelines

 

Applicant's summary and conclusion

Conclusions:
In a mammalian cell mutagenicity assay (reliability score 1), conducted according to OECD Test Guideline 476 and in compliance with GLP, HEDP (2-3Na) (neutral pH) was assessed for its induction of mutations in the mouse lymphoma thymidine kinase locus assay using the cell line L5178Y in the presence and absence of metabolic activation. No reproducible, dose-dependent increase in the number of mutations was observed in either the initial or repeat experiment. It is concluded that the test substance is negative for mutagenicity to mammalian cells under the conditions of the study.