Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 254-052-6 | CAS number: 38640-62-9
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Additional information
Biodegradation in water: screening tests
Results on biodegradation of DIPN are ambiguous. In the study rated as key study, no ultimate biodegradation was demonstrated in a test for ready biodegradability (OECD TG 310) (LAUS 2011a). Approximately 20 - 25% primary biodegradation was observed in this test by analysing DIPN concentrations in test medium (LAUS 2011b). An inherent test (OECD 302D with adaptation) resulted in biodegradation of 37 % within 56 d.
In a MITI II test using a concentration of 30 mg/L (far above water solubility of DIPN), no biodegradation was observed (CERI 1977/CITI1992). In contrast, in an OECD 301 B ready biodegradability test, using concentrations between 0.4 mg/L and 10 mg/L, biodegradation decreased from ca. 84% for a concentration of 0.4 mg/L (result readily biodegradable) to ca. 20% for the 10 mg/L concentration (Yoshida and Kojima 1978). As this study cannot be reliably assessed and methodological deficiencies cannot be excluded, the study is not considered being reliable (RL3). DIPN is considered as not biodegradable.
Biodegradation in surface water, sediment and soil: simulation tests
Tests on aerobic mineralisation in surface water according to OECD 309 were performed for the isomers 1,3-DIPN and 1,4-DIPN (Eurofins, 2020), which were shown on screening test level to be less degradable. Since only a negligible amount of CO2 (0 – 0.1% AR) was formed and no metabolites occurred both isomers can be considered as stable under the OECD 309 test condition. However, based on volatility the dissipation time from water phase was very short. The determined DisT50 values were below 2 days indicating a rapid evaporation from the water phase, which means that the results of the OECD 309 studies are not sufficient for a final persistence assessment. Therefore, QSAR estimates for the degradation in the compartments sediment and soil considered additionally in a weight of evidence approach. For degradation in sediment the QSAR prediction is persistent (P) and/or very persistent (vP). For the soil compartment the QSAR prediction leads to a “borderline result” with a DT50 close to the P threshold of 120 days. Both QSARs can be considered as reliable. Based on study results and QSAR estimates, it can be assumed that bis(isopropyl)naphthalene (CAS 38640-62-9) contains persistent and/or very persistent isomers. Therefore, the isomer mixture bis(isopropyl)naphthalene (CAS 38640-62-9) needs to be assessed as potentially persistent (P) and/or very persistent (vP). No substantial new findings can be expected from further simulation tests with DIPN isomers. Therefore, further testing is not intended.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.