CLH report

Proposal for Harmonised Classification and Labelling

Based on Regulation (EC) No 1272/2008 (CLP Regulation), Annex VI, Part 2

International Chemical Identification:

Benalaxyl (ISO);

methyl N-(2,6-dimethylphenyl)-N-(phenylacetyl)-DL-alaninate

EC Number: 275-728-7

CAS Number: 71626-11-4

Index Number: 616-104-00-X

Contact details for dossier submitter:

National Environmental Protection Agency Bucharest, 294, Splaiul Independentei, District 6th National Institute for Public Health Bucharest, 1-3, Dr. Leonte Anastasievici, District 5th National Fitosanitary Authority- Central Fitosanitary Laboratory Ilfov, 11, Voluntari

Version number: 3 Date: 03 November 2020

CONTENTS

1	IDENTITY OF THE SUBSTANCE	4
	1.1 NAME AND OTHER IDENTIFIERS OF THE SUBSTANCE	
2	PROPOSED HARMONISED CLASSIFICATION AND LABELLING	
_	2.1 PROPOSED HARMONISED CLASSIFICATION AND LABELLING ACCORDING TO THE CLP CRITERIA	
3	HISTORY OF THE PREVIOUS CLASSIFICATION AND LABELLING	
4		
5	IDENTIFIED USES	9
6	DATA SOURCES	9
7	PHYSICOCHEMICAL PROPERTIES	9
8	EVALUATION OF PHYSICAL HAZARDS	10
	8.1 Explosives	10
	8.1.1 Short summary and overall relevance of the information provided on exploziv properties	10
	8.1.2 Comparison with the CLP criteria	11
	8.1.3 Conclusion on classification and labelling for explosive properties	<i>11</i> 11
	8.6.1 Short summary and overall relevance of the provided information on flammable solids	11
	8.6.2 Comparison with the CLP criteria	
	8.6.3 Conclusion on classification and labelling for flammable solids	
	8.7.1 Short summary and overall relevance of the provided information on self-reactive substances	
	8.7.2 Comparison with the CLP criteria	
	8.7.3 Conclusion on classification and labelling for self-reactive substances	
	8.9 Pyrophoric solids	12
	8.9.1 Short summary and overall relevance of the provided information on pyrophoric solids	12
	8.9.2 Comparison with the CLP criteria	
	8. 10 Self-heating substances	
	8.10.1 Short summary and overall relevance of the provided information on self-heating substances	
	8.10.2 Comparison with the CLP criteria	
	8.11 SUBSTANCES WHICH IN CONTACT WITH WATER EMIT FLAMMABLE GASES	
	8.11.1 Short summary and overall relevance of the provided information on substances which in contact	
	water emit flammable gases	
	8.11.3 Conclusion on classification and labelling for substances which in contact with water emit flamn	
	gases	13
	8.13. OXIDISING SOLIDS	
	8.14.1 Short summary and overall relevance of the provided information on organic peroxides	
	8.14.2 Comparison with the CLP criteria	14
	8.14.3 Conclusion on classification and labelling for organic peroxides	
_		
9	TOXICOKINETICS (ABSORPTION, METABOLISM, DISTRIBUTION AND ELIMINATION)	14
	9.1 SHORT SUMMARY AND OVERALL RELEVANCE OF THE PROVIDED TOXICOKINETIC INFORMATION ON PROPOSED CLASSIFICATION(S)	
10	0 EVALUATION OF HEALTH HAZARDS	25
	10.1 Acute toxicity - oral route	
	10.1.1 Short summary and overall relevance of the provided information on acute oral toxicity	
	10.1.2 Comparison with the CLP criteria	

	10.1.		
	10.2	ACUTE TOXICITY - DERMAL ROUTE	
	10.3	ACUTE TOXICITY - INHALATION ROUTE	
	10.4	SKIN CORROSION/IRRITATION	
	10.5	SERIOUS EYE DAMAGE/EYE IRRITATION	
	10.6	RESPIRATORY SENSITISATION	
	10.7	SKIN SENSITISATION	
	10.8	GERM CELL MUTAGENICITY	
	10.8.	J	
	10.8.	T	
	10.9	CARCINOGENICITY	
	10.9.	J	
	10.9.	T	
	<i>10.9</i> . 10.10	3 Conclusion on classification and labelling for carcinogenicity	
	10.10	SPECIFIC TARGET ORGAN TOXICITY-SINGLE EXPOSURE	
	10.11		
	10.11	- single exposure	
	10.11		
	10.11	· · · · · · · · · · · · · · · · · · ·	
	10.12	SPECIFIC TARGET ORGAN TOXICITY-REPEATED EXPOSURE	_
	10.12	ASPIRATION HAZARD	
11	EVA	LUATION OF ENVIRONMENTAL HAZARDS	95
	11.1	RAPID DEGRADABILITY OF ORGANIC SUBSTANCES	96
	11.1.	1 Ready biodegradability	97
	11.1.	2 BOD ₅ /COD	97
	11.1.	<i>3 Hydrolysis</i>	97
	11.1.		
	11.2	ENVIRONMENTAL TRANSFORMATION OF METALS OR INORGANIC METALS COMPOUNDS	
	11.3	ENVIRONMENTAL FATE AND OTHER RELEVANT INFORMATION	
	11.4	BIOACCUMULATION	
	11.4.		
	11.4.	J	
	11.5	ACUTE AQUATIC HAZARD	
	11.5.	· · · · · · · · · · · · · · · · · · ·	
	11.5.	· · · · · · · · · · · · · · · · · · ·	
	11.5.	1 1 1	
	11.5. 11.6	4 Acute (short-term) toxicity to other aquatic organisms	
	11.0 11.6.		
	11.6. 11.6.		
	11.6. 11.6.		
	11.6. 11.6.	1 1	
	11.7	Comparison with the CLP criteria	
	11.7.		
	11.7.	•	
	11.8	CONCLUSION ON CLASSIFICATION AND LABELLING FOR ENVIRONMENTAL HAZARDS	
. ~		LUATION OF ADDITIONAL HAZARDS	
12	EVA		
	12.1	HAZARDOUS TO THE OZONE LAYER	117
13	ADD	ITIONAL LABELLING	117
14		ERENCES	
. 7			
	14.1	PHYSICO-CHEMICAL PROPERTIES	
	14.2	TOXICOLOGY AND METABOLISM	
	14.3	Environment	120
15	ANN	EXES.	121

1 IDENTITY OF THE SUBSTANCE

1.1 Name and other identifiers of the substance

Table 1: Substance identity and information related to molecular and structural formula of the substance

Differ names ISO common name EC number EC name EC number EC name Total continuate CAS number CIPAC number Index number Molecular formula Structural formula Structural formula SMILES notation (if available) Molecular weight or molecular weight range Information on optical activity and typical ratio of (stereo) isomers (if applicable and appropriate) Description of the manufacturing process and identity of the source (for UVCB substances only) benalaxyl conditional yel-(2,6-dimethylphenyl)-N-(phenylacetyl)-DL- alaninate 1616-104-00-X COH23NO3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 C	Name in the C&L Inventory	benalaxyl (ISO); methyl N-phenylacetyl-N-2,6-xylyl-DL-alaninate
BC common name Benalaxy	Name in the IUPAC nomenclature	methyl N-(phenylacetyl)-N-(2,6-xylyl)-DL-alaninate
EC name methyl N-(2,6-dimethylphenyl)-N-(phenylacetyl)-DL- alaninate CAS name methyl N-(2,6-dimethylphenyl)-N-(phenylacetyl)-DL- alaninate CIPAC number 416 Index number 616-104-00-X Molecular formula Structural formula CUP43NO3 Structural formula SMILES notation (if available) Molecular weight or molecular weight range Information on optical activity and typical ratio of (stereo) isomers (if applicable and appropriate) Description of the manufacturing process and identity of the source (for UVCB substances)		
EC name methyl N-(2,6-dimethylphenyl)-N-(phenylacetyl)-DL- alaninate CAS number 71626-11-4 CAS name methyl N-(2,6-dimethylphenyl)-N-(phenylacetyl)-DL- alaninate CIPAC number 416 Index number 616-104-00-X Molecular formula C20H23NO3 Structural formula CH ₃	ISO common name	benalaxyl
alaninate CAS number CAS name methyl N-(2,6-dimethylphenyl)-N-(phenylacetyl)-DL-alaninate CIPAC number 416 Index number 616-104-00-X Molecular formula C20H23N03 Structural formula CH ₃	EC number	275-728-7
CAS name methyl N-(2,6-dimethylphenyl)-N-(phenylacetyl)-DL- alaninate CIPAC number 416 Index number 616-104-00-X Molecular formula C20H23NO3 Structural formula CH ₃ CH ₃ CH ₃ CH ₃ SMILES notation (if available) Molecular weight or molecular weight range Information on optical activity and typical ratio of (stereo) isomers (if applicable and appropriate) Description of the manufacturing process and identity of the source (for UVCB substances only)	EC name	methyl N-(2,6-dimethylphenyl)-N-(phenylacetyl)-DL-alaninate
Alaninate CIPAC number 416 Index number 616-104-00-X Molecular formula C20H23NO3 Structural formula CH ₃	CAS number	71626-11-4
Index number 616-104-00-X Molecular formula C20H23NO3 Structural formula CH ₃ SMILES notation (if available) Molecular weight or molecular weight range Information on optical activity and typical ratio of (stereo) isomers (if applicable and appropriate) Description of the manufacturing process and identity of the source (for UVCB substances only)	CAS name	methyl N-(2,6-dimethylphenyl)-N-(phenylacetyl)-DL-alaninate
SMILES notation (if available) Molecular weight or molecular weight range Information on optical activity and typical ratio of (stereo) isomers (if applicable and appropriate) Description of the manufacturing process and identity of the source (for UVCB substances only) CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH	CIPAC number	416
SMILES notation (if available) Molecular weight or molecular weight range Information on optical activity and typical ratio of (stereo) isomers (if applicable and appropriate) Description of the manufacturing process and identity of the source (for UVCB substances only) A characteristic CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3	Index number	616-104-00-X
SMILES notation (if available) Molecular weight or molecular weight range Information on optical activity and typical ratio of (stereo) isomers (if applicable and appropriate) Description of the manufacturing process and identity of the source (for UVCB substances only) SMILES notation (if available) Racemic mixture of "D" - and "L" I - isomers. "D" - isomer is the most biologically active. Not relevant; benalaxyl is not a UVCB substance	Molecular formula	C20H23NO3
Molecular weight or molecular weight range Information on optical activity and typical ratio of (stereo) isomers (if applicable and appropriate) Racemic mixture of "D" - and "L" I - isomers. "D" - isomer is the most biologically active. Not relevant; benalaxyl is not a UVCB substance source (for UVCB substances only)		H ₃ C N CH ₃
Information on optical activity and typical ratio of (stereo) isomers (if applicable and appropriate) Racemic mixture of "D" - and "L" I - isomers. "D" - isomer is the most biologically active. Description of the manufacturing process and identity of the source (for UVCB substances only) Racemic mixture of "D" - and "L" I - isomers. "D" - isomer is the most biologically active. Not relevant; benalaxyl is not a UVCB substance	SMILES notation (if available)	
isomers (if applicable and appropriate) "D" - isomer is the most biologically active. Description of the manufacturing process and identity of the source (for UVCB substances only) Not relevant; benalaxyl is not a UVCB substance		
source (for UVCB substances only)	Information on optical activity and typical ratio of (stereo) isomers (if applicable and appropriate)	
Minimum purity of active substance (%) 96.0 (Benalaxyl)	Description of the manufacturing process and identity of the source (for UVCB substances only)	Not relevant; benalaxyl is not a UVCB substance
	Minimum purity of active substance (%)	96.0 (Benalaxyl)

1.2 Composition of the substance

Table 2: Constituents (non-confidential information)

Constituent	Concentration range (% w/w minimum and maximum in multiconstituent substances)	Current CLH in	Current self-
(Name and numerical		Annex VI Table 3.1	classification and
identifier)		(CLP)	labelling (CLP)
benalaxyl	Min 960g/kg	Aquatic Acute 1, H400 Aquatic Chronic 1, H410	

2 PROPOSED HARMONISED CLASSIFICATION AND LABELLING

2.1 Proposed harmonised classification and labelling according to the CLP criteria

Table 3:

					Classifi	cation		Labelling		Specific Conc.	
	Index No	Chemical name	EC No	CAS No	Hazard Class and Category Code(s)	Hazard statement Code(s)	Pictogram, Signal Word Code(s)	Hazard statement Code(s)	Suppl. Hazard statement Code(s)	Limits, M-factors and ATEs	Notes
Current Annex VI	616-104-	benalaxyl (ISO); methyl N-	275- 728-7	71626- 11-4	Aquatic Acute 1	H400	GHS09	H410			
entry	00-X	phenylacetyl-N-2,6- xylyl-DL-alaninate	7 20 7		Aquatic Chronic 1	H410	Wng				
Dossier	616-104-	benalaxyl (ISO);	275- 728-7	71626-	Retain	Retain	Retain	Retain		Add	
submitters proposal	00-X	methyl N-(2,6- dimethylphenyl)-N-	/28-/	11-4	Aquatic Acute 1	H400	GHS09	H410		oral; ATE=2000	
		(phenylacetyl)-DL- alaninate			Aquatic Chronic 1	H410	Wng			mg/kg bw M=1	
					Add	Add	Add	Add		M=1	
					Carc. 2	H351	GHS07	H351			
					Acute Tox. 4	H302	GHS08	H302			
					STOT SE 2	H371 (nervous system)					
Resulting	616-104- 00-X	benalaxyl (ISO);	275- 728-7	71626- 11-4	Acute Tox. 4	H302	GHS07	H302		oral; ATE=2000	
entry in Annex VI if	00-X	methyl N-(2,6- dimethylphenyl)-N-	/28-/	11-4	Carc. 2	H351	GHS08	H351		mg/kg bw	
adopted by RAC and agreed by		(phenylacetyl)-DL- alaninate			STOT SE 2	H371 (nervous system)					
Commission					Aquatic Acute 1	H400	GHS09	H410		M=1	
					Aquatic Chronic 1	H410	Wng			M=1	

Table 4: Reason for not proposing harmonised classification and status under public consultation

Hazard class	Reason for no classification	Within the scope of public consultation	
Explosives	Data conclusive but not sufficient for classification	yes	
Flammable gases (including chemically unstable gases)	Hazard class not applicable	No	
Oxidising gases	Hazard class not applicable	No	
Gases under pressure	Hazard class not applicable	No	
Flammable liquids	Hazard class not applicable	No	
Flammable solids	Data conclusive but not sufficient for classification	yes	
Self-reactive substances	Hazard class not applicable	No	
Pyrophoric liquids	Hazard class not applicable	No	
Pyrophoric solids	Data conclusive but not sufficient for classification	yes	
Self-heating substances	Data conclusive but not sufficient for classification	yes	
Substances which in contact with water emit flammable gases	Data lacking	No	
Oxidising liquids	Hazard class not applicable	No	
Oxidising solids	Data conclusive but not sufficient for classification	yes	
Organic peroxides	Data lacking	No	
Corrosive to metals	Data lacking	No	
Acute toxicity via oral route	Harmonised classification proposed	Yes	
Acute toxicity via dermal route	Hazard class not addressed in this proposal	No	
Acute toxicity via inhalation route	Hazard class not addressed in this proposal	No	
Skin corrosion/irritation	Hazard class not addressed in this proposal	No	
Serious eye damage/eye irritation	Hazard class not addressed in this proposal	No	
Respiratory sensitisation	Hazard class not addressed in this proposal	No	
Skin sensitisation	Hazard class not addressed in this proposal	No	
Germ cell mutagenicity	Hazard class not addressed in this proposal	no	
Carcinogenicity	Harmonised classification proposed	Yes	
Reproductive toxicity	Hazard class not addressed in this proposal	No	
Specific target organ toxicity- single exposure	Harmonised classification proposed	yes	
Specific target organ toxicity- repeated exposure	Hazard class not addressed in this proposal	No	
Aspiration hazard	Data lacking	No	
Hazardous to the aquatic environment	Harmonised classification proposed	Yes	
Hazardous to the ozone layer	Hazard class not addressed in this proposal	No	

3 HISTORY OF THE PREVIOUS CLASSIFICATION AND LABELLING

Benalaxyl is a fungicide used as an active substance in plant protection products (PPP). Benalaxyl was included in Annex I to Directive 91/414/EEC by Commission Directive 2008/58/EC and has been deemed to be approved under Commission Implementing Regulation (EU) No 540/2011 in accordance with Regulation (EC) No 1107/2009, which was amended in accordance with the Commission Implementing Regulation 1100/2011.

Commission Implementing Regulation (EU) 2020/869 (7) extended the approval period of benalaxyl to 31 July 2021 in order to allow the renewal process to be completed before the expiry of the approval period of that substance.

On 19 December 2019, the EFSA communicated to the Commission its conclusion on whether benalaxyl can be expected to meet the approval criteria provided for in Article 4 of Regulation (EC) No 1107/2009.

In its conclusion, the EFSA identified a number of concerns. In particular, the potential groundwater contamination by relevant metabolites could not be excluded. Furthermore, a long-term risk to to birds and earthworm-eating birds from secondary poisoning from benalaxyl was identified as a critical area of concern. Concerns were also identified in relation to the long-term risk to non-target arthropods for all representative uses. Finally, following the request by the Authority for additional information to assess the endocrine disrupting potential of benalaxyl, the applicant confirmed that no additional studies would be performed or submitted. Consequently, it cannot be concluded that the substance has no endocrine disrupting properties.

Following the EFSA request for additional information the applicant confirmed that no additional studies will be performed.

However, given that a decision on the non-renewal of the approval is being taken ahead of the expiry of that extended approval period, a new COMMISSION IMPLEMENTING REGULATION (EU) 2020/1280 of 14 September 2020 concerning the non-renewal of the approval of the active substance benalaxyl, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011, has been promoted.

Benalaxyl is currently listed in Annex VI of Regulation (EC) 1272/2008. The current harmonized classification (2005) is Aquatic Acute 1, H400 and Aquatic Chronic 1, H410.

4 JUSTIFICATION THAT ACTION IS NEEDED AT COMMUNITY LEVEL

Specific justification that action is needed at EU level is required, since benalaxyl, an active substance for plant protection products under Regulation (EC) 1107/2009 has been followed the procedure of the renewal of the approval, under Article 14 of Regulation (EC) No 1107/2009. Therefore, new values of endpoints have been identified for parent, benalaxyl and its metabolites

EFSA had concluded that exists dose-related evidence on carcinogenicity and neurotoxicity of benalaxyl is involved in classification of benalaxyl and Carc. Cat.2; H351 based on observed astrocytomas may be warranted according to CLP Regulation criteria. This proposal for classification was reported in the RAR and in the EFSA conclusion.

The Acute toxicity Cat.4; H302 based on the oral acute studies (Anonymous. (2013a; Anonymous (2014a,b,c)) identified, too and reported in the RAR and in the EFSA conclusion (EFSA Journal 2020;18(1):5985).

Given the current classification of benalaxyl and the outcomes of the European renewal peer review of this active substance, a proposal for a classification as Carc.2:H351, STOT SE 2; H371 and Acute tox.4; H302; ATE = 2000 mg/kg bw has been done.

5 IDENTIFIED USES

Benalaxyl is an active substance for pesticide belonging to the phenylamide group name and acylalanine chemical group of systemic fungicide with apoplastic translocation which inhibits mycelial growth of fungi and germination of zoospores (fungistatic action). The mode of action of Benalaxyl is described by nucleic acid synthesis on RNA polymerase. Benalaxyl has specific activity against Peronosporales (Oomycetes) both on; (a) species with saprophytic phase such as Pythium spp. and; (b) on obligate parasitic plant pathogens such as the downy mildews and late blight (Bremia, Peronospora, Phytophthora, Plasmopara, Pseudoperonospora). The mode of action of benalaxyl is twofold:

- Interference with rRNA synthesis by affecting the endogenous RNA polymerase activity;
- Interference with membrane function by inducing the leakage of amino acids from mycelium.

6 DATA SOURCES

Benalaxyl was evaluated for renewal of approval as a pesticide active substance according to Commission Regulation (EU) No 844/2012 under the 3rd active ingredient renewal process, AIR 3.

The primary sources of data are the following:

Dossier from Applicant (FMC,USA)

The Renewal Assessment Report (RAR) plus associated documentation published by EFSA and available at https://efsa.onlinelibrary.wiley.com

EFSA RAR Volumes 1-4 (2018)

EFSA LoEP (2018)

EFSA ED Assessment and Conclusion (2019)

EFSA Conclusion (2020) at https://www.efsa.europa.eu/en/efsajournal/pub/5985

7 PHYSICOCHEMICAL PROPERTIES

Table 5: Summary of physicochemical properties

Property	Value	Reference	Comment (e.g. measured or estimated)
Physical state at 20°C and 101,3 kPa	Purified active substance: White, microcrystalline solid. Technical active substance: Whitish, microcrystalline solid.	Anonymous (1995), N. 94/1087.B CA B 2.3	Visual assessment
Melting/freezing point	Melting point: 76.8°C.	Anonymous (1995), N. 94/1087.B CA B.2.1	Method EEC A.1
Boiling point	The test substance starts boiling at 302-307 °C, showing changes from 250 °C upwards	Anonymous (1995) N. 030/95 CA B.2.1	Method EEC A.2
Relative density	Data not available		
Vapour pressure	5.72 x 10 ⁻⁴ Pa at 20°C 6.64 x 10 ⁻⁴ Pa at 25°C Henry's law constant (calculated) = 6.50 x 10 ⁻³ Pa.m³.mol ⁻¹ at 20°C	Anonymous (1995), N. 94/1087.B CA B.2.2	Method EEC A.4

Property	Value	Reference	Comment (e.g. measured or estimated)
Surface tension	The surface tension of benalaxyl, at 22°C, was determined to be 47.0 mN/m.	Anonymous (1995), N. 94/1087.C CA B.2.12	Method EEC A.5
Water solubility	0.0286 g/l at 20°C	Anonymous (1995), N. 94/1087.B CA B.2.5	Method EEC A6
Partition coefficient noctanol/water	Log P _{ow} for Benalaxyl: 3.54 at 20°C and at pH=6.1	Anonymous (1995), N. 94/1087.B CA B.2.7	Method EEC A8
Flash point	Not applicable (melting point > 40°C).	-	-
Flammability	Not flammable	Anonymous (1993), 102 CA B.2.9	Method EEC A10
Explosive properties	Not explosive	Anonymous (1995), N. 94/1087.C CA B.2.11	Method EEC A14
Self-ignition temperature	Data not available	-	-
Maximum combustion velocity of benalaxyl (0.78 mm/s) is slightly higher then the maximum one shown by the reference mixture (0.60 mm/s).		Anonymous (1995), N. 94/1087.C CA B.2.13	Method EEC A17
Granulometry	Data not available	-	-
Solubility in the following organic solvents at 22 °C: n-heptane 19.4 g/kg Xylene > 250 g/kg Methanol > 250 g/kg Acetone > 250 g/kg 1,2-dichloroethane > 250 g/kg ethyl acetate > 250 g/kg		Anonymous AnonymusAnonymusAnonymus(1995), N. 94/1087.C CA B.2.6	In house method
Dissociation constant	Data not available	-	-
Viscosity	Data not available	-	-

8 EVALUATION OF PHYSICAL HAZARDS

8.1 Explosives

Table 6: Summary table of studies on explosive properties

Method	Results	Reference
EEC A.14	Not explosive	Anonymous (1995),
	•	N. 94/1087.C

8.1.1 Short summary and overall relevance of the information provided on exploziv properties

Benalaxyl was tested for explosive properties using the EC Method A.14 and was found not to be explosive.

8.1.2 Comparison with the CLP criteria

Benalaxyl does not carry functional groups listed in tables A6.1 in Annex 6 (Screening Procedures) of the Manual of Tests and Critereia associated with explosive properties. CLP criteria are not met.

8.1.3 Conclusion on classification and labelling for explosive properties

Not classified.

8.6. Flammable solids

Table 7: Summary table of studies on flammable solids

Method	Results	Reference
EEC A.10	Not flammable	Anonymous s(1993) 102

8.6.1 Short summary and overall relevance of the provided information on flammable solids

Benalaxyl was tested for flammable properties using the EC Method A.10. The method used for classification purposes according to CLP criteria is the UN Test N.1 described in the UN RTDG, Manual of Tests and Criteria (7th revision). However, as reflected in the CLP Guidance and ECHA Guidance on Information Requirements and Chemical Safety Asssessment (R.7.1.10.3), if the result of an A.10 method indicates that a classification as a flammable solid does not apply (result: not flammable), no more testing is necessary.

8.6.2 Comparison with the CLP criteria

Benalaxyl is not met the flammable solids CLP criteria.

8.6.3 Conclusion on classification and labelling for flammable solids

Not classified.

8.7 Self-reactive substances

-

8.7.1 Short summary and overall relevance of the provided information on self-reactive substances

8.7.2 Comparison with the CLP criteria

Benalaxyl does not carry chemical groups listed in tables A6.1 in Annex 6 (Screening Procedures) of the Manual of Tests and Criteria associated with explosive or self-reactive properties. CLP criteria are not met.

8.7.3 Conclusion on classification and labelling for self-reactive substances

Not classified.

8. 8. Pyrophoric liquids-

Not applicable

8.9 Pyrophoric solids

Benalaxyl does not ignite spontaneously in contact with air based on experience of handling and use.

8.9.1 Short summary and overall relevance of the provided information on pyrophoric solids

According to Section 2.10.4.1 of Annex 1 of CLP, the classification procedure for pyrophoric solids need not be applied when experience in manufacture and handling shows that the substance does not spontaneously ignite upon coming into contact with air at normal temperatures. There are no reports in the available studies of benalaxyl spontaneously igniting when in contact with air.

8.9.2 Comparison with the CLP criteria

Benalaxyl does not meet the criteria for classification as a pyrophoric solid.

8.9.3 Conclusion on classification and labelling for pyrophoric solids

Not classified.

8. 10 Self-heating substances

Table 8: Summary table of studies on self-heating substances

Method	Results	Remarks	Reference
EEC A16	No ignition or significant difference between sample and oven temperatures were observed by heating until melting occurs.	Not	Anonymous (1995), N. 94/1087.C

8.10.1 Short summary and overall relevance of the provided information on self-heating substances

Benalaxyl is not an auto-inflammable substance when tested for auto-flammability using the method EC A.16

8.10.2 Comparison with the CLP criteria

According to the ECHA Guidance on the Application of the CLP Criteria (version 5.0 July 2017), the test method A.16 is not deemed appropriate to evaluate the self-heating property of solids towards a CLP classification. However, substances with a low melting point (< 160°C) should not be considered for classification in this hazard class. Benalaxyl has a measured melting point of 76.8°C.

8.10.3 Conclusion on classification and labelling for self-heating substances

Not classified.

8.11 Substances which in contact with water emit flammable gases

The chemical structure of the substance does not contain metals or metalloids.

8.11.1 Short summary and overall relevance of the provided information on substances which in contact with water emit flammable gases

8.11.2 Comparison with the CLP criteria

According to the CLP Criteria laid down in Annex I, 2.12.1 is not deemed appropriate to evaluate the substances which in contact with water emit flammable gases towards a CLP classification. However, Benalaxyl is substance with a chemical structure without metals or metalloids.

8.11.3 Conclusion on classification and labelling for substances which in contact with water emit flammable gases

Not classified.

8.13. Oxidising solids

Table 9: Summary table of studies on oxidising solids

Method	Results	Reference
EEC A.17	Maximum combustion velocity of benalaxyl (0.78 mm/s) is slightly higher then the maximum one shown by the reference mixture (0.60 mm/s).	Anonymous (1995), N. 94/1087.C

8.13.1 Short summary and overall relevance of the provided information onoxidising solids

Benalaxyl was tested for its oxidizing properties according to the method EEC A.17 and the result shows to be a weak oxidizing substance.

8.13.2 Comparison with the CLP criteria

According to Section 2.14.4.1 point b) of Annex I of CLP, for organic substances the classification procedure for this hazard class shall not apply if the substance or mixture contains oxygen, fluorine or chlorine and these elements are chemically bonded only to carbon or hydrogen. Benalaxyl does not contain such chemical groups and it was not an oxidizing substance according to test method EC A.17. Therefore, classification for this class is not applicable to benalaxyl

8.13.3 Conclusion on classification and labelling for oxidising solids

Not classified.

8.14 Organic peroxides

Benalaxyl is not an organic peroxide. It does not contain the bivalent O-O-structure and it is not thermally unstable.

8.14.1 Short summary and overall relevance of the provided information on organic peroxides

-

8.14.2 Comparison with the CLP criteria

8.14.3 Conclusion on classification and labelling for organic peroxides

Not classified.

8.15 Corrosive to metals

No data derived in accordance with the recommended test method in CLP (test in Part III, sub-section 37.4 of the UNRTDG Manual of Tests and Criteria) have been provided. According to the ECHA Guidance on the Application of the CLP Criteria (version 5.0 July 2017), the UN Test C.1 excludes solids while it considers 'solids that may become liquid upon transportation'. Benalaxyl is supplied as a dry solid and its measured melting point is > 55°C, which is the test temperature required in the UN Test C.1 test.

8.15.1 Short summary and overall relevance of the provided information on the hazard class corrosive to metals

-

8.15.2 Comparison with the CLP criteria

According to the ECHA Guidance on the Application of the CLP Criteria (version 5.0 July 2017), the UN Test C.1 excludes solids while it considers 'solids that may become liquid upon transportation'. Benalaxyl is supplied as a dry solid and its measured melting point is > 55°C, which is the test temperature required in the UN Test C.1 test.

8.15.3 Conclusion on classification and labelling for corrosive to metals

Not classified.

9 TOXICOKINETICS (ABSORPTION, METABOLISM, DISTRIBUTION AND ELIMINATION)

A summary of the toxicokinetic (ADME) data pertaining to benalaxyl is provided to aid the evaluation of toxicity hazards for human health.

The study summaries are presented in Risk Assessment Report - RAR, Benalaxyl- Volume 3 Annex B.6: Toxicology and metabolism, November, 2018.

Table 10: Summary table of toxicokinetic studies

Method	Results	Remarks	Reference
¹⁴ C-Benalaxyl,	a preliminary investigation of pharmacokinetics of labeled	no relevant	RAR-08_Vol-3
Blood	benalaxyl at two different doses applied by gavage to the	guidelines in	CA_B.6.1.2.1
pharmacokinetic	rats.	conducting the	
s, excretion and	Similar pharmacokinetics profiles were obtained for both	pharmacokinetics	Reference
tissue	dose groups.	and metabolism	number:
distribution of		study	CA 5.1.1/01
radioactivity in	peak blood level = $0.25 - 1 \text{ h}$		
the rat after a			Anonymous
single oral	elimination half-live ÷ 50 hrs		(1996a)
administration			
	¹⁴ C-Benalaxyl – quantificable level at 72 hrs (in blood)		
¹⁴ C-Benalaxyl			
Oral (gavage)			
Sprague –			

Method	Results	Remarks	Reference
Dawley rats			
M			
2 groups G1, G2			
3 rats/group			
G1 - 10 mg kg			
bw			
G2 - 100 mg/kg			
bw			
Time: 0.25 (15			
min.), 1, 2, 4, 6,			
8, 24, 48 hrs and 72 hrs			
OECD TG 417			
GLP: None			
Acceptable			
¹⁴ C-Benalaxyl,	A tissue distribution, excretion and pharmacokinetics of ¹⁴ C-	a repeat low dose	RAR-08_Vol-3
Blood	Benalaxyl after a single oral administration to male rats at	(14 daily doses of	CA B.6.1.2.2
pharmacokinetic	two dose levels	unlabelled	211_2.3.1.2.2
s, excretion and		substance	Reference
tissue	¹⁴ C-Benalaxyl is rapidly absorbed from the gastrointestinal	followed by a	number:
distribution of	tract, small absorbtion related with dose, a low peak	single	CA 5.1.1/02
radioactivity in	concentrations and AUCs (blood concentration vs time)	administration of	
the rat after a		radiolabel	Anonymous
single oral	elimination half-life = 30 hrs	material)	(1996b)
administration			
(Final report)	faeces excretion > 90%	composition of	
14		excreted by	
¹⁴ C-Benalaxyl	urinary excretion <10%	biliary-faecal	
Oral (gavage)	241	route remains	
Sprague Dawley CrlCD (SD)Br	24 h – urinary route is majoritary than by biliary-faecal route	unknown; (some metabolites	
M	pick level in LIVER at 0.5 h after administration and high	unidentified)	
2 groups (15/G)	concentration in kidney	umacmmea)	
G1 - 10 mg/kg	concentration in kidney	No residue	
bw (41 µCi/kg)	at 72 h and 168 h after the administration it was present only	definition for	
G2 - 100 mg/kg	in liver	human	
bw (49 μCi/kg)		biomonitoring	
OECD TG 417		can be defined	
GLP/QA:		(unfinalised)	
Yes/Yes			
Acceptable			
¹⁴ C-Benalaxyl,	blood pharmacokinetics, the excretion and tissue distribution	B.6.1.2.2, a single	RAR-08_Vol-3
Blood	of radioactivity after repeated daily administration of	oral dose of ¹⁴ C-	CA_B.6.1.2.3
pharmacokinetic	benalaxyl in rats (15 consecutive doses, ¹⁴ C-Benalaxyl with	Benalaxyl	D 6
s, excretion and	the last dose).	B.6.1.2.3	Reference
tissue	a small post of I4C handourlie serials should for a dis-	administration of a	number:
distribution of radioactivity in	a small part of ¹⁴ C-benalaxyl is rapidly absorbed from the	single oral dose of radiolabelled	CA 5.1.1/03
the rat after	gastrointestinal tract	material was	Anonymous
repeated oral	low peak concentrations and AUCs	preceded by 14	Anonymous (1996c)
administrations	low peak concentrations and ACCs	daily doses of	(1),000)
administrations	elimination half-life = around 36 hrs	unlabeled material	
¹⁴ C-Benalaxyl	ommadon nun mo – urouna 30 ms	(a biliary	
Oral (gavage)	>90% excretion in faeces	excretion study (at	
14 consecutive		the both dose	
days	<10% excreted by urinary route	levels)	
10 mg/kg bw of		Results for blood	
benalaxyl	Elevated levels of radioactivity were found in the liver at 0.5	profiles, excretion	
unradiolabelled	h after administration, presuming an extensive metabolism of	pattern and tissue	

and the last one with "C-Benalaxy! OFCD TG 47 GLP/OA 17 GLP/OA 27 Acceptable Profiling of radiolabelled metabolites of "B-Benalaxy! and faceses; to determine the rate of formation of the benalaxy! in urine and faceses; to determine the rate of formation of the benalaxy! in urine and faceses; to determine the rate of formation of the benalaxy! in urine and faceses; to determine the rate of formation of the benalaxy! in urine and faceses; to determine the rate of formation of the benalaxy! in urine and faceses; to determine the rate of formation of the benalaxy! in urine and faceses; to determine the rate of formation of the benalaxy! in urine and faceses; to determine the rate of formation of the benalaxy! in urine and faceses; to determine the rate of formation of the benalaxy! in urine and faceses; to determine the both studies of benalaxy! in urine and faceses; to determine the rate of formation of the benalaxy! in urine and faceses; to determine the rate of formation of the benalaxy! in urine and faceses; to determine the rate of formation of the benalaxy! (B.6.1.2.2) were very similar to this expectively of the metabolites and to isolate and identify the main metabolite and the metabolite and to isolate and identify the main metabolice plants and increases of the metabolite and the metabolite and the metabolite and the plants an	Method	Results	Remarks	Reference
index rats after single and repeated oral administration repeated oral administration part of the metabolites are common for the urinary and the faecal metabolic pathway in the both studies Lyrine: - benalaxyl was absent in urine - metabolite 4 - (0.83%, 0.89% and 1.38% of single low dose, single high dose and multiple doses, respectively) - metabolite 4 - (0.09%, 0.78% and 0.76% of single low dose, single high dose and multiple doses, respectively) - metabolite 8 - (0.65%, 1.005% and 0.78% of single low dose, single high dose and multiple doses, respectively) - metabolite 8 - (0.65%, 1.005% and 0.78% of single low dose, a single high dose and multiple doses, respectively) - metabolite 12 - unchanged benalaxyl (2.73%, 1.05% and 1.42% of a single low dose, a single high dose and multiple doses, respectively) - metabolite 8 - (15.99%, 16.41% and 20.25% of a single low dose, a single high dose and multiple doses, respectively) - metabolite 5 - (6.08%, 6.56% and 6.25% of a single low dose, a single high dose and multiple doses, respectively) - metabolite 5 - (6.08%, 6.65% and 6.25% of a single low dose, a single high dose and multiple doses, respectively) - metabolite 5 - (6.08%, 6.55% and 6.25% of a single low dose, a single high dose and multiple doses, respectively) - metabolite 5 - (6.69%, 5.78% and 5.82% of a single low dose, a single high dose and multiple doses, respectively) - metabolite 2 - (6.69%, 5.78% and 5.82% of a single low dose, a single high dose and multiple doses, respectively) - metabolite 1 sun of 9 components: (every < 3.30%) Study results reveals that the metabolic porfile was the same following a single oral doministration to raultiple oral administration to raultiple oral administrat	and the last one with ¹⁴ C-Benalaxyl OECD TG 417 GLP/QA: Yes/Yes Acceptable Profiling of radiolabelled metabolites of ¹⁴ C-Benalaxyl in	benalaxyl. Apart from the liver, increased concentrations, in respect to the blood levels, were found also in the intestine wall and kidneys. at 72 h and 168 h after the administration it was present only in liver profile radiolabelled metabolites of benalaxyl in urine and faeces; to determine the rate of formation of the benalaxyl metabolites and to isolate and identify the main metabolites	distribution after a single administration of benalaxyl (B.6.1.2.2) were very similar to those obtained in this study (B.6.1.2.3) Study is relevant for pharmacokinetics profile of	RAR-08_Vol-3 CA_B.6.1.2.4 Reference
The only difference was the absence of benalaxyl in urine.	of male rats after single and repeated oral administration 14C-Benalaxyl Oral (gavage) Sprague-Dawley rats M dose levels: 10 mg/kg bw or 100 mg/kg bw Samples Urine: 0-8, 8-24, 24-48, 48-72, 72-96, 96-120, 120-144 and 144-168 hrs Faeces: 0-8 and 8-24 hrs OECD TG 417 GLP/QA: Yes/Yes	metabolic pathway in the both studies Urine: - benalaxyl was absent in urine - metabolite 4 - (0.83%, 0.89% and 1.38% of single low dose, single high dose and multiple doses, respectively) - metabolite 6 - (0.60%, 0.78% and 0.76% of single low dose, single high dose and multiple doses, respectively) - metabolite 7 - (1.02%, 0.995% and 0.82% of single low dose, single high dose and multiple doses, respectively) - metabolite 8 - (0.63%, 1.005% and 0.78% of single low dose, single high dose and multiple doses, respectively) metabolite 12 - unchanged benalaxyl (2.73%, 1.05% and 1.42% of a single low dose, a single high dose and multiple doses, respectively) Facces: - metabolite 8 - (15.99%, 16.41% and 20.25% of a single low dose, a single high dose and multiple doses, respectively) - metabolite 6 - (7.40%, 9.80% and 9.80% of a single low dose, a single high dose and multiple doses, respectively) - metabolite 7 - (6.56%, 5.80% and 4.73% of a single low dose, a single high dose and multiple doses, respectively) - metabolite 5 - (6.08%, 6.65% and 6.25% of a single low dose, a single high dose and multiple doses, respectively) metabolite 4 - (6.24%, 5.18% and 5.82% of a single low dose, a single high dose and multiple doses, respectively) metabolite 2 - (6.69%, 5.78% and 5.68% of a single low dose, a single high dose and multiple doses, respectively) metabolite 1 - (8.59%, 8.12% and 9.96% of a single low dose, a single high dose and multiple doses, respectively) - metabolite 3, 9, 10 and 11 were lower than 5% - metabolites 3, 9, 10 and 11 were lower than 5% - metabolites 3, 9, 10 and 11 were lower than 5% - metabolite 1 sum of 9 components: (every < 3.30%) Study results reveals that the metabolic profile was the same following a single oral (low and high) administration or multiple oral administration to rats. The urinary metabolic pathway was identical to the faecal metabolic pathway as the isolated faecal metabolites were the same as urinary metabolites.	the biological samples from study (B.6.1.2.2) – 5 m/ dose one single low dose: 10 mg/kg bw (41) or 100 mg/kg bw (8.5 µCi/kg) and 10 µCi of radiolabelled benalaxyl / rat a repeat low dose (14 daily doses of unlabelled substance followed by a single administration of radiolabel material) Test duration: 168 hrs after dose	CA 5.1.1/04 Anonymous

Method	Results	Remarks	Reference
	Urine was the minor way of radioactivity elimination and		
	therefore the percentages of each metabolite in urine were		
	always very low.		
	Unchanged benalaxyl were found only in faeces.		
[14C]-Benalaxyl	the percents of benalaxyl radiolabelled excreted in the urine,	[14C]-Benalaxyl	RAR-08_Vol-3
Biliary excretion	faeces and bile.	excretion:	CA_B.6.1.2.5
study in the rat			7. 6
D . 1' . 1 . 1 . 11 . 1	total radioactivity in each sample:	<8 hours after	Reference
Radiolabelled	Low dose: — in bile: a mean of 88.93% and 82.13% (m+f), over 70hrs	dosing - (60 - 80%), in bile	number: CA 5.1.1/05
benalaxyl was bile duct-	and 85.58% and 80.30% (m+f) in < 8hrs	80%), III blie	CA 5.1.1/05
cannulated by	- in urine: a mean of 3.87% and 7.13% (m+f), after 70hrs	in 24h, after	Anonymous
oral gavage	- in the faeces: 4.89% and 5.33% (m+f), after 70hrs	dosing (both	(2001)
2G/4 rats	- in the cage wash: 0.57% and 0.29%, after 70hrs	doses) between	,
M+F	- in tissue of GI tract: 0.01% of dose recovered from the	89.45% - in bile	
a single	males and 0.02% from the females, after 70hrs		
administration of		96.80% - urine,	
¹⁴ C benalaxyl:	High dose:	faeces and bile	
10 mg/kg bw or	- in bile: a mean of 75.22% and 66.03% of over the 70hrs	(including cage	
100 mg/kg bw	(m+f) and 69.56% and 60.62% (m+f) < 8 hrs	wash)	
Test period: 8, 24, 48 and 70 hrs	- in urine: a mean of 4.79% and 13.95% (m+ f), after 70hrs - in faeces: 17.56% and 9.18% (m+f), after 70hrs	after 70hrs after dosing < 0.2% in	
Bile collected:	- in the cage wash: 0.18% and 1.41% (m+f)	carcass	
24, 48 and 70 hrs	- in tissue of GI tract: a mean of 0.12% of dose recovered	carcass	
after	from the males and 0.01% from the females		
administration			
Urine, faeces and	¹⁴ C-Benalaxyl is absorbed and excreted rapidly, mainly via		
cage wash	the enterohepatic circulation (up to 89%) although up to 14%		
collected: daily	may be excreted via renal circulation.		
up to 70 hrs			
OECD TG 417			
GLP/QA: Yes/Yes			
Acceptable			
Absorption,	absorption, distribution, rates and routes of excretion and	A major	RAR-08_Vol-3
metabolism and	biotransformation of [14C] - Galben	metabolites (>5%)	CA_B.6.1.2.6
excretion of ¹⁴ C-	oloutumstormation of [O] Galeon		C11_B.0.1.2.0
Galben in albino	¹⁴ C- Galben - rapidly absorbed and completely metabolized	Galben-acid and	Reference
rats (part 1)	1 ,	deacylated acid	number:
1	excretion after 1, 2, 4 days after administration	have been	CA 5.1.1/06
¹⁴ C- Galben =	Metabolites:	identified among	
¹⁴ C-Benalaxyl in	2 days after administration	the many	Anonymous
alpha position of	- rapidly excreted and almost completely in the faeces and	metabolites	(1981)
the ester moiety	urine	detected in urine	
Oral (stamesh	8 days after administration	and faeces	
Oral (stomach tube)	- negligible excretion in urine	G6 and G7 +	
8 Albino rats	the higher concentration was measured in the liver	deacylated acid	
M+F	- acid and deacylated acid in tissues and organs of rats of	higher excretion	
one dose = 100	both sexes, have been identified among many other	(without	
mg/kg bw of ¹⁴ C	metabolites detected in urine and faeces	supportive studies)	
-Galben	- unknown G6 and G7 and deacylated acid are excreted in		
rats in individual	higher amounts in urine and faeces		
cages - urine,	- no significant differences between male and female		
faeces and the	regarding excretion, retention, distribution, as well as the		
various organs	metabolism of ¹⁴ C – benalaxyl		
¹⁴ C-Galben - 1,	- percentage of radiolabeled was excreted in urine and faeces		
2, 4 and 8 days	within 0-48 hours; 97.40% and 97.23% of ¹⁴ C (m+f)		
after treatment in			

blood, organs and carcass 2 rats (m+f). Test method: In house method Guidelines: Guidelines were not available at the time the test was performed GLP: It was no compulsors at that time Acceptable **G-Galben of the Cadben of	Method	Results	Remarks	Reference
Content Cont		peak elimination of ¹⁴ C-Galben: 2 - 24 hrs (urine and faeces)		
Test method: In house method Guidelines were not uvailable at the time the test was performed GLP: It was not compulsory at that time Acceptable Acce				
Gouldclines were not available at the time the test was performed GID-? It was not compulsory at that time Acceptable - faces: 57.68 % m and 75.18% f - urine - 24.25% m and 22.90% f - urine - 24.25% m and 22.90% f - urine - 24.25% m and 22.90% f - urine - 24.25% m and 22.90% f - urine - 24.25% m and 25.90% f - urine - 24.25% m and 22.90% f - urine - 24.25% m and 25.90% f - urine - 24.25% m and 15.10% f		Excretion after 8 days after administration:		
Guidelines: Guidelines were not available at the time the test was performed GLP: It was not compulsory at that time Acceptable Acceptab		¹⁴ C-Galben		
the time the test was performed GLP: It was not compulsory at that time Acceptable Accept				
ince time the test was performed GLP: It was not compulsory at that time Acceptable **C-Galben				
"C-Galben compulsory at that time care	not available at			
GLP. No son to compulsory at that time Acceptable "C-Galben - urine and faeces, approx. 100% (m+f) Distribution and levels of radioactivity in organs and tissues: - 24 hours following test study the major part of the ¹⁴ C administered remains in the intestine among the organs and tissues: - 8 days after treatment, only 0.283% (m) and 0.391% (f) of the ¹⁴ C administered dose remains in the rats, distributed among the organs and tissues Quantitative, the radioactivity as mg/kg is mainly localized in the liver. No significant differences between male and female regarding excretion, retention, distribution, as well as the metabolism of ¹⁴ C − Benalaxyl have been revealed. 1 ¹⁴ C-Galben 1 ¹⁴ C-Benalaxyl in alpha position of the estert moiety 8 Albino rats Mr+F administration by stomach tube a single dose = 100 mg/kg bw 1 ¹⁴ C-Galben 1 ¹⁴ C-Ga		Excretion 0 - 8 days after administration:		
compulsory at that time Acceptable Acceptable Acceptable Distribution and levels of radioactivity in organs and tissues: -24 hours following test study the major part of the ¹⁴ C administered remains in the intestine and in its content, in the liver and in the carcass8 days after treatment, only 0.283% (m) and 0.391% (f) of the ¹⁴ C administered loose remains in the rats, distributed among the organs and tissues: -24 hours following test study the major part of the ¹⁴ C daministered loose remains in the rats, distributed among the organs and tissues: -24 hours following test study the major part of the ¹⁴ C daministered loose remains in the rats, distributed among the organs and tissues: -24 hours following test study the major part of the ¹⁴ C dalaben Gadministered loose remains in the rats, distributed among the organs and tissues: -24 hours following test study the major part of the ¹⁴ C dalaben Gadministered loose remains in the intestine and in the carcass2 at the liver and the regarding excretion, retention, distribution, as well as the metabolism of ¹⁴ C - Benalaxyl have been revealed. Gad GALBEN acid, which are the most significant metabolites in urine and faces study deals with integrating the results obtained after oral administration of ¹⁴ C - GALBEN and deacylated GALBEN acid are the most significant metabolites in urine and faces significant metabolite significant metabolites in	_	14C College		
Distribution and levels of radioactivity in organs and tissues: - 24 hours following test study the major part of the ¹⁴ C administered remains in the intestine and in its content, in the liver and in the carcass. - 8 days after treatment, only 0.283% (m) and 0.391% (f) of the ¹⁴ C administered dose remains in the rats, distributed among the organs and tissues: - 8 days after treatment, only 0.283% (m) and 0.391% (f) of the ¹⁴ C administered dose remains in the rats, distributed among the organs and tissues: - 8 days after treatment, only 0.283% (m) and 0.391% (f) of the ¹⁴ C administered dose remains in the rats, distributed among the organs and tissues: - 8 days after treatment, only 0.283% (m) and 0.391% (f) of the ¹⁴ C administered dose remains in the rats, distributed among the organs and tissues: - 8 days after treatment, only 0.283% (m) and 0.391% (f) of the ¹⁴ C administered dose remains in the rats, distributed among the organs and tissues: - 8 days after treatment, only 0.283% (m) and 0.391% (f) of the ¹⁴ C administered dose remains in the rats, distributed among the part of the stribute of the organs and tissues: - 8 days after treatment, only 0.283% (m) and 0.391% (f) of the ¹⁴ C administered dose remains in the rats, distributed among the part of the stribute of the organs and tissues. - 8 days after treatment in blood, organs and tissues. - 8 days after treatment in blood, organs and tissues. - 8 days after treatment in blood, organs and carcass 2 rats, and the major treatment of the stribute to the G8 and G14. - 10 mg/kg bw 12 mg/s				
Acceptable				
liver and in the carcass. - 8 days after treatment, only 0.283% (m) and 0.391% (f) of the "C administered dose remains in the rats, distributed among the organs and tissues Quantitative, the radioactivity as mg/kg is mainly localized in the liver. No significant differences between male and female regarding excretion, retention, distribution, as well as the metabolism of "AC — Benalaxyl have been revealed. 1 to characterize G. G. F and deacylated GALBEN acid, which are the most significant metabolites in urine and faeces Study deals with integrating the results obtained after oral administration of the ester moiety 8 Albino rats 8 Albino rats 8 Albino rats 8 Albino rats 1 G. G7 and deacylated GALBEN acid are the most significant metabolites in urine and faeces 1 MR spectra of G6, G7 and deacylated acid in Part 1), G7B (previously G7) compounds and the ones of the relevant methyl esters, show the presence in each molecule of the ollowing groups contained in GALBEN: CH3-CH4, Ar-CH2-CO-, -COOCH3, -CH-CH3, Arom (8H). They are quite similar to the synthesised M1 and M2 (G8 and G14) compounds. As suggested for G7A and G7B, additional studies would be required to attribute to the G8 and G14. G6 metabolite, which contains both acidic and alcoholic groups in its molecule according to the NMR characterization, can be formed: G1P. None A supplementary study for isolating metabolites: benalaxyl degradation of when oxidised only by rat liver microsomes and to isolate the study for isolating of AB.B.1.3.1	Acceptable			
- 8 days after treatment, only 0.283% (m) and 0.391% (f) of the \(^{1}\times \) daministered dose remains in the rats, distributed among the organs and tissues Quantitative, the radioactivity as mg/kg is mainly localized in the liver. No significant differences between male and female regarding excretion, retention, distribution, as well as the metabolism of \(^{1}\times - D\times -				
the ¹⁴ C-GALBEN orate metabolism of ¹⁴ C - Benalaxyl have been revealed. 14*C-GALBEN metabolism of ¹⁴ C - Benalaxyl have been revealed. 15*C-Galben = ¹⁴ C-Galben = ¹⁴ C-Benalaxyl in albino rats (part 2) 16*C-Benalaxyl in alpha position of the ester moiety 16*G-Benalaxyl in alpha position of the ester moiety 18*A Albino rats M-F administration of ¹⁵ C - GALBEN and focuses on finding the majority metabolizis in urine and faeces NMR spectra of G6, G7A (named deacylated aid in Part 1), G7B (previously G7) compounds and the ones of the relevant methyl esters, show the presence in each molecule of the following groups contained in GALBEN: CH3-CH4, Ar-CH2-CO-, -COOCH3, >CH-CH3, Arom as single dose = 100 mg/kg bw 16*C-Galben and G14) compounds. 16*C-GALBEN - 1, 2, 4 and 8 days and cross or somethod Guidelines: G14-P. None acceptable 10*D mg/kg bw 16*C-GALBEN - 1 orate in blood, organs and carcass 2 rats (m+t) blood, organs and carcass				
among the organs and tissues Quantitative, the radioactivity as mg/kg is mainly localized in the liver. No significant differences between male and female regarding excretion, retention, distribution, as well as the metabolism of ¹⁴ C – Benalaxyl have been revealed. to characterize G ₆ , G ₇ and deacylated GALBEN acid, which adbino rats (part 2) 1 ¹⁴ C-Galben = 1 ¹⁴ C-Galben 1 ¹⁴ C-Galben				
Quantitative, the radioactivity as mg/kg is mainly localized in the liver. No significant differences between male and female regarding excretion, retention, distribution, as well as the metabolism of ¹⁴ C - Benalaxyl have been revealed. to characterize G ₆ , G ₇ and deacylated GALBEN acid, which are the most significant metabolites in urine and faeces Study deals with integrating the results obtained after oral administration of the ester moiety 8 Albino rats M+F administration by stomach tube a single dose = 100 mg/kg bw ¹⁴ C-GALBEN - 1, 2, 4 and 8 days after retarment in blood, organs and carcass 2 rats (m+f) Test method: In house method Guidelines: Guidelines were not available at the time the test was performed GLIP. None Acceptable In vitro Quantitative, the radioactivity as mg/kg is mainly localized in the liver. No significant differences between male and female regarding excretion, distribution, as well as the metabolism of ¹⁴ C - Benalaxyl have been revealed. The metabolism of ¹⁴ C - Galabel and hydroxymethyl groups to obtain only one carboxylia group in the aromatic methyl ersults of Galaben and characterized during in vitro studies of GALBEN and GALBEN: Galben = ¹⁴ C-GALBEN - 1 (AF) A supplementary study for isolating metabolites: benalaxyl when oxidised only by rat liver microsomes and to isolate the study for isolating studies of the part of the metabolite in the time the test was performed GLIP. None Acceptable A supplementary study for isolating metabolites: benalaxyl when oxidised only by rat liver microsomes and to isolate the study for isolating studies of the part of the metabolite of the metabolite in trine and faeces The metabolitism in urine and faeces The metabolites in urine and faeces The metabolites in urine and faeces The main figure as the primary target organ. The right position of the both carboxy and hydroxymethyl groups and faeces The main figure and the most of the most of the most of the most of the aromatic and the most of the aromatic into documents				
in the liver. No significant differences between male and female regarding excretion, retention, distribution, as well as the metabolism of ¹⁴ C – Benalaxyl have been revealed. to characterize G ₆ , G ₇ and deacylated GALBEN acid, which administration of ¹⁴ C – GALBEN and focuses on finding the majority metabolizing liver as the primary target organ. Squdy deals with integrating the results obtained after oral administration of ¹⁴ C – GALBEN and focuses on finding the majority metabolizing liver as the primary target organ. GG, G7 and deacylated GALBEN acid are the most significant metabolites in urine and faeces significant metabolites in urine and faeces NMR spectra of GG, G7A (named deacylated acid in Part 1), G7B (previously G7) compounds and the ones of the relevant methyl esters, show the presence in each molecule of the oliveing groups contained in GALBEN: CH3-CH2-CO-, COOCH3, >CH-CH3, Arom (8H). CH3-CH3-CH4-, Ar-CH2-CO-, COOCH3, >CH-CH3, Arom (8H). CH3-CH4-, Ar-CH2-CO-, COOCH3, >CH-CH3, Arom (8H). CH3-CH3-CH4-, Ar-CH2-CO-, COOCH3, >CH-CH3, Arom (8H). G6 metabolite would be required to attribute to the G8 and G14. G6 metabolite with to the G8 and G14. G6 metabolite, which contains both acidic and alcoholic groups in its molecule according to the NMR characterization, can be formed: Test method: In house method Guidelines: Goidelines were active to the G8 and G14. G6 metabolite, which contains both acidic and alcoholic groups in its molecule according to the NMR characterization, can be formed: a) by oxidizing the aromatic methyl group (at 6 position) of G7A compound; b) by oxidizing a presumed metabolite with two aromatic hydroxymethyl groups to obtain only one carboxylic group. A supplementary study for isolating metabolites: benalaxyl dear the most administration of both carboxy and hydroxymethyl groups to obtain only one carboxylic group.				
regarding excretion, retention, distribution, as well as the metabolism of ¹⁴ C – Benalaxyl have been revealed. to characterize G_6 . G_7 and deacylated $GALBEN$ acid, which are the most significant metabolites in urine and faeces Study deals with integrating the results obtained after oral administration of ¹⁴ C – $GALBEN$ and focuses on finding the majority metabolizing liver as the primary target organ. GG, G_7 and deacylated $GALBEN$ and focuses on finding the majority metabolizing liver as the primary target organ. GG, G_7 and deacylated $GALBEN$ and focuses on finding the majority metabolizing liver as the primary target organ. GG, G_7 and deacylated $GALBEN$ and focuses on finding the majority metabolizing liver as the primary target organ. GG, G_7 and deacylated $GALBEN$ and G_7		in the liver.		
metabolism of ¹⁴ C – Benalaxyl have been revealed. to characterize Ge, Gp and deacylated GALBEN acid, which metabolism in albino rats (part 2) study deals with integrating the results obtained after oral administration of ¹⁴ C – GALBEN and focuses on finding the majority metabolizing liver as the primary target organ. **G-Galben = 14*C-Benalaxyl in alpha position of the ester moiety 8 **A Albino rats M-H-F administration by stomach tube a single dose = 100 mg/kg bw 14*C-Galben = 10*C-GALBEN - 1				
In the characterize G ₆ , G ₇ and deacylated GALBEN acid, which are the most significant metabolites in urine and faeces and administration of ¹⁴ C – GALBEN and focuses on finding the majority metabolizing liver as the primary target organ. GG, G7 and deacylated GALBEN acid are the most significant metabolites in urine and faeces GG, G7 and deacylated GALBEN acid are the most significant metabolites in urine and faeces GG, G7 and deacylated GALBEN acid are the most significant metabolites in urine and faeces GG, G7 and deacylated GALBEN acid are the most significant metabolites in urine and faeces GG, G7 and deacylated GALBEN acid are the most significant metabolites in urine and faeces MR spectra of G6, G7A (named deacylated acid in Part 1), G7B (previously G7) compounds and the ones of the relevant thely esters, show the presence in each molecule of the following groups contained in GALBEN: CH3-CH2-CO-, -COOCH3, >CH-CH3, Arom as ingle dose = 100 mg/kg bw l ¹ C-Galben M*C-GALBEN - 1, 2, 4 and 8 days after treatment in blood, organs and carcass 2 rats (m+f) Test method: In house method Guidelines: G6 metabolite, which contains both acidic and alcoholic groups in its molecule according to the NMR characterization, can be formed: G6 metabolite, which contains both acidic and alcoholic groups in its molecule according to the NMR characterization, can be formed: By oxidizing the aromatic methyl group (at 6 position) of G7A compound; b) by oxidizing a presumed metabolite with two aromatic hydroxymethyl groups to obtain only one carboxylic group. Anonymous determined. Galaber				
are the most significant metabolites in urine and faeces Study deals with integrating the results obtained after oral administration of '\(^12\)C - GALBEN and focuses on finding the majority metabolizing liver as the primary target organ. 8 Albino rats M+F administration of the ester moiety 8 Albino rats M+F administration by stomach tube a single dose = 100 mg/kg bw '\(^14\)C-GALBEN - 1 , 2, 4 and 8 days after treatment in blood, organs and carcass 2 rats (m+f) Test method: In house method Guidelines: Guidelines were not available at the time the test was performed GLP: None Acceptable In vitro degradation of are the most significant metabolites in urine and faeces Study deals with integrating the results obtained after oral administration by study deals with integrating the results obtained after oral administration of '\(^12\)C - GALBEN and the most significant metabolites in urine and faeces Study deals with integrating the results obtained after oral administration of '\(^12\)C - GALBEN and false at the time the test was performed GLP: None Acceptable are the most significant metabolites in urine and faeces Study deals with integrating the results obtained after oral administration of '\(^12\)C - GALBEN and false at the time the test was performed GLP: None Acceptable are the most significant metabolites in urine and faeces Study deals with integrating the results obtained after oral administration of '\(^12\)C - GALBEN and false and in Part 1), G6, G7 and deacylated GALBEN acid are the most significant metabolites in urine and faeces GALBEN and hydroxymethyl groups in the aromatic ring of G6 metabolite has not been determined. Such compound characterized during in vitro studies of GALBEN with rat liver microsomes. G6 metabolite, which contains both acidic and alcoholic groups in the aromatic ring of G6 metabolite has not been determined. Such compounds G1 metabolite has not been determined. Sudies of GALBEN with a liver microsomes. G6 metabolite, which contains both acidic and alcoholic groups i	14C GAI REN		The right position	DAD 08 Vol 2
albino rats (part 2) **AC-Galben = 1**AC-Benalaxyl in alpha position of the ester moiety 8 Albino rats MH+F administration by stomach tube a single dose = 1**OC-ALBEN - 1.2, 4 and 8 days after treatment in blood, organs and carcass 2 rats (m+f) Test method: In house method Gidelines: Guidelines: Guidelines were not available at the time the test was performed GLP: None Acceptable **AC-ORADED** **AC-				
administration of ¹⁴ C – GALBEN and focuses on finding the majority metabolizing liver as the primary target organ. 4.C- Galben = ¹⁴ C-Benalaxyl in alpha position of the ester moiety 8 Albino rats M+F administration by stomach tube a single dose = 100 mg/kg bw ¹⁴ C-Galben ¹⁴ C-GALBEN - 1, 2, 4 and 8 days after treatment in blood, organs and carcass 2 rats (m+f) Test method: In house method Guidelines: Guidelines were not available at the time the test was performed GLP: None Acceptable In vitro degradation of ¹⁴ C – GALBEN and focuses on finding the majority metabolizing liver as the primary target organ. hydroxymethyl groups in the aromatic range of G6 metabolite has not been determined. Such compound was isolated and characterized during in vitro studies of GALBEN in the following groups contained in GALBEN: CH3-CH<, Ar-CH2-CO-, -COOCH3, >CH-CH3, Arom (8H). They are quite similar to the synthesised M1 and M2 (G8 and G14) compounds. As suggested for G7A and G7B, additional studies would be required to attribute to the G8 and G14. G6 metabolite, which contains both acidic and alcoholic groups in its molecule according to the NMR characterization, can be formed: by oxidizing the aromatic methyl group (at 6 position) of G7A compound; by by oxidizing a presumed metabolite with two aromatic hydroxymethyl groups to obtain only one carboxylic group. A supplementary study for isolating metabolites: benalaxyl when oxidised only by rat liver microsomes and to isolate the study for isolating when oxidised only by rat liver microsomes and to isolate the study for isolating organ. Anonymous (CA 5.1.1/07 G6 metabolite has not been determined. Such compound was isolated and characterized during in vitro studies of GALBEN with rat liver microsomes. GABLEN with rat liver microsomes. Anonymous determined. Such compounds and the ones of the relevant methyleromic properties and characterized during in vitro studies of GALBEN with rat liver microsomes.			•	C/1_D.0.1.2.7
4°C-Benalaxyl in alpha position of the ester moiety S Albino rats M+F administration by stomach tube a single dose = 100 mg/kg bw 4°C-Galben	_			Reference
4*C-Benalaxyl in alpha position of the ester moiety NMR spectra of G6, G7A (named deacylated acid in Part 1), G7B (previously G7) compounds and the ones of the relevant methyl esters, show the presence in each molecule of the administration by stomach tube a single dose = 100 mg/kg bw 14*C-Galben 4*C-Galben		majority metabolizing liver as the primary target organ.		
alpha position of the ester moiety 8 Albino rats M+F administration by stomach tube a single dose = 100 mg/kg bw 14C-Galben		CC CT 11 1 1 CALPEN 11 1		CA 5.1.1/07
the ester moiety **NMR spectra of G6, G7A (named deacylated acid in Part 1), **RABbino rats** **M+F** **administration by stomach tube a single dose = 100 mg/kg bw 14°C-Galben 14°C-G				Anonymous
NMR spectra of G6, G7A (named deacylated acid in Part 1), G7B (previously G7) compounds and the ones of the relevant methyl esters, show the presence in each molecule of the following groups contained in GALBEN: CH3-CH-, Ar-CH2-CO-, -COOCH3, >CH-CH3, Arom a single dose = 100 mg/kg bw 14C-Galben 14C-Galben 14C-GALBEN - 1, 2, 4 and 8 days after treatment in blood, organs and carcass 2 rats (m+f) Test method: In house method Guidelines: Guidelines: Guidelines were not available at the time the test was performed GLP: None Acceptable In vitro degradation of A supplementary study for isolating metabolites: benalaxyl when oxidised only by rat liver microsomes and to isolate the cardinal properties of G7A (named deacylated acid in Part 1), G7B (previously G7) compounds and the ones of the relevant methyl as isolated and characterized during in vitro studies of GALBEN with rat liver microsomes. GALBEN with rat liver microsomes. GG metabolite, which contains both acidic and alcoholic groups in its molecule according to the NMR characterization, can be formed: GFB (previously G7) compounds and the ones of the relevant methyl esters, show the presence in each molecule of the characterized during in vitro studies of GALBEN with rat liver microsomes. GABLBEN with rat liver microsomes. GG metabolite, which contains both acidic and alcoholic group in its molecule according to the NMR characterized during in vitro studies of GALBEN. GG metabolite, which contains both acidic and alcoholic group (at 6 position) of G7A compound; Go metabolite, which contains both acidic and alcoholic group (at 6 position) of G7A compound; Go metabolite, which contains both acidic and alcoholic group (at 6 position) of G7A compound; Go metabolite, which contains both acidic and alcoholic group (at 6 position) of G7A compound; Go metabolite, which contains both acidic and alcoholic group (at 6 position) of G7A compound; Go metabolite, which contains both acidic and alcoholic group (at 6 position) of G7A compound. Go metabolite, which		significant inclabolites in urine and facces		
8 Albino rats M+F administration by stomach tube a single dose = 100 mg/kg bw ¹⁴ C-Galben ¹⁴ C-GALBEN - 1 , 2, 4 and 8 days after treatment in blood, organs and carcass 2 rats (m+f) Test method: In house method Guidelines: Guidelines: Guidelines: Guidelines: Guidelines: Guidelines: Guidelines: Guidelines: Guidelines: Guidelines were not available at the time the test was performed GLP: None Acceptable In vitro degradation of Variation by stomach tube a diministration by stomach tube a diministration by stomach tube and methyl esters, show the presence in each molecule of the following groups contained in GALBEN: GALBEN: CH3-CCO-, -COOCH3, >CH-CH3, Arom and G14 characterized during in vitro studies of GALBEN with rat liver microsomes.		NMR spectra of G6, G7A (named deacylated acid in Part 1),		(1900)
administration by stomach tube a single dose = 100 mg/kg bw 14C-Galben 14C-GALBEN - 1, 2, 4 and 8 days after treatment in blood, organs and carcass 2 rats (m+f) Test method: In house method Guidelines: Guidelines were not available at the time the test was performed GLP: None Acceptable In vitro degradation of Value of CH3-CH2-CO-, -COOCH3, > CH-CH3, Arom (8H). They are quite similar to the synthesised M1 and M2 (G8 and G14) compounds. They are quite similar to the synthesised M1 and M2 (G8 and G14) compounds. As suggested for G7A and G7B, additional studies would be required to attribute to the G8 and G14. G6 metabolite, which contains both acidic and alcoholic groups in its molecule according to the NMR characterization, can be formed: G76 metabolite, which contains both acidic and alcoholic groups in its molecule according to the NMR characterization, can be formed: G77 compound; G6 metabolite, which contains both acidic and alcoholic groups in its molecule according to the NMR characterization, can be formed: G77 compound; G78 compound; G79 compound; G79 compound; G79 compound; G70 compound; G70 compound; G70 compound; G71 compound; G71 compound; G72 compound; G73 compound; G74 compound; G75 compound; G76 metabolite, which contains both acidic and alcoholic group (at 6 position) of G74 compound; G77 compound; G77 compound; G78 compound; G79 compound; G79 compound; G70 compound; G70 compound; G70 compound; G71 compound; G71 compound; G72 compound; G73 compound; G74 compound; G75 compound; G76 metabolite, which contains both acidic and alcoholic group (at 6 position) of G74 compound; G70 compound; G71 compound; G71 compound; G72 compound; G73 compound; G74 compound; G75 compound; G76 metabolite, which contains both acidic and alcoholic group (at 6 position) of G74 compound; G77 compound; G78 compound; G79 compound; G79 compound; G79 compound; G70 compound; G70 compound; G71 compound; G71 compound; G71 compound; G71 compound; G72 compound; G73 compound;	8 Albino rats	G7B (previously G7) compounds and the ones of the relevant		
stomach tube a single dose = 100 mg/kg bw 14C-Galben 14C-GALBEN - 1 , 2, 4 and 8 days after treatment in blood, organs and carcass 2 rats (m+f) Test method: In house method Guidelines: Guidelines were not available at the time the test was performed GLP: None Acceptable In vitro degradation of CH3-CH2, Ar-CH2-CO-, -COOCH3, >CH-CH3, Arom (GALBEN with rat liver microsomes. Studies of GALBEN with rat liver microsomes.				
a single dose = 100 mg/kg bw 14C-Galben 14C-GALBEN - 1, 2, 4 and 8 days after treatment in blood, organs and carcass 2 rats (m+f) Test method: In house method Guidelines: Guidelines were not available at the time the test was performed GLP: None Acceptable In vitro degradation of A supplementary study for isolating metabolites: benalaxyl degradation of CALBEN with rat liver microsomes.				
100 mg/kg bw 14C-Galben 14C-GALBEN - 1 , 2, 4 and 8 days after treatment in blood, organs and carcass 2 rats (m+f) Test method: In house method Guidelines: Guidelines were not available at the time the test was performed GLP: None Acceptable In vitro degradation of As supplementary study for isolating metabolites: benalaxyl degradation of They are quite similar to the synthesised M1 and M2 (G8 and G14) compounds. In house method G14) compounds. As suggested for G7A and G7B, additional studies would be required to attribute to the G8 and G14. G6 metabolite, which contains both acidic and alcoholic groups in its molecule according to the NMR characterization, can be formed: a) by oxidizing the aromatic methyl group (at 6 position) of G7A compound; b) by oxidizing a presumed metabolite with two aromatic hydroxymethyl groups to obtain only one carboxylic group. Barbara G8 Bliver microsomes. Iliver microsomes. Iliver microsomes. Iliver microsomes. Supplementary sudy for isolating metabolite would be required to attribute to the G8 and G14. As suggested for G7A and G7B, additional studies would be required to attribute to the G8 and G14. G6 metabolite, which contains both acidic and alcoholic groups in its molecule according to the NMR characterization, can be formed: a) by oxidizing the aromatic methyl group (at 6 position) of G7A compound; b) by oxidizing a presumed metabolite with two aromatic hydroxymethyl groups to obtain only one carboxylic group. Barbara G8 Barbara G9 Bar				
14C-Galben 14C-GALBEN - 1 , 2, 4 and 8 days after treatment in blood, organs and carcass 2 rats (m+f) Test method: In house method Guidelines: Guidelines were not available at the time the test was performed GLP: None Acceptable In vitro degradation of As suggested for G7A and G7B, additional studies would be required to attribute to the G8 and G14. G6 metabolite, which contains both acidic and alcoholic groups in its molecule according to the NMR characterization, can be formed: a) by oxidizing the aromatic methyl group (at 6 position) of G7A compound; b) by oxidizing a presumed metabolite with two aromatic hydroxymethyl groups to obtain only one carboxylic group. RAR-08_Vol-3 CA_B.6.1.3.1				
required to attribute to the G8 and G14. G6 metabolite, which contains both acidic and alcoholic groups in its molecule according to the NMR characterization, can be formed: Test method: In house method Guidelines: Guidelines were not available at the time the test was performed GLP: None Acceptable In vitro degradation of viero when oxidised only by rat liver microsomes and to isolate the				
after treatment in blood, organs and carcass 2 rats (m+f) Test method: In house method Guidelines: Guidelines were not available at the time the test was performed GLP: None Acceptable In vitro degradation of Acceptable In vitro degradation of Acceptable Ge metabolite, which contains both acidic and alcoholic groups to the NMR characterization, can be formed: Gametabolite, which contains both acidic and alcoholic groups in its molecule according to the NMR characterization, can be formed: Gametabolite, which contains both acidic and alcoholic groups to MPMR characterization, can be formed: G7A compound; b) by oxidizing the aromatic methyl group (at 6 position) of G7A compound; b) by oxidizing a presumed metabolite with two aromatic hydroxymethyl groups to obtain only one carboxylic group. A supplementary study for isolating metabolites: benalaxyl study for isolating CA_B.6.1.3.1				
blood, organs and carcass 2 rats (m+f) Test method: In house method Guidelines: Guidelines were not available at the time the test was performed GLP: None Acceptable In vitro degradation of Management of the state of the stat	_	required to attribute to the G8 and G14.		
and carcass 2 rats (m+f) groups in its molecule according to the NMR characterization, can be formed: Test method: In house method Guidelines: Guidelines were not available at the time the test was performed GLP: None Acceptable In vitro degradation of A supplementary study for isolating metabolites: benalaxyl degradation of when oxidised only by rat liver microsomes and to isolate the		G6 metabolite, which contains both acidic and alcoholic		
(m+f)				
house method Guidelines: Guidelines were not available at the time the test was performed GLP: None Acceptable In vitro degradation of A supplementary study for isolating metabolites: benalaxyl degradation of when oxidised only by rat liver microsomes and to isolate the formula for the aromatic methyl group (at 6 position) of G7A compound; b) by oxidizing a presumed metabolite with two aromatic hydroxymethyl groups to obtain only one carboxylic group. Supplementary Supplementary study for isolating metabolites: benalaxyl study for isolating the aromatic methyl group (at 6 position) of G7A compound; Supplementary study for isolating the aromatic methyl group (at 6 position) of G7A compound; Supplementary study for isolating CA_B.6.1.3.1				
Guidelines: Guidelines were not available at the time the test was performed GLP: None Acceptable In vitro degradation of when oxidised only by rat liver microsomes and to isolate the solution of the time that the test hydroxymethyl groups to obtain only one carboxylic group. Supplementary Supplementary Supplementary study for isolating metabolites: benalaxyl study for isolating the st				
Guidelines were not available at the time the test was performed GLP: None Acceptable In vitro degradation of when oxidised only by rat liver microsomes and to isolate the solution of the time the test hydroxymethyl groups to obtain only one carboxylic group. Supplementary study for isolating metabolites: benalaxyl study for isolating the study for isolating the solution of the time the test hydroxymethyl groups to obtain only one carboxylic group. Supplementary study for isolating the study for isolat				
not available at the time the test was performed GLP: None Acceptable In vitro degradation of when oxidised only by rat liver microsomes and to isolate the two aromatic hydroxymethyl groups to obtain only one carboxylic group. Supplementary study for isolating metabolites: benalaxyl study for isolating the study for isolating the supplementary study for isolating the su		G/A compound;		
the time the test was performed GLP: None Acceptable In vitro degradation of when oxidised only by rat liver microsomes and to isolate the hydroxymethyl groups to obtain only one carboxylic group. Supplementary Supplementary Supplementary Supplementary Supplementary Supplementary Study for isolating CA_B.6.1.3.1		h) by oxidizing a presumed metabolite with two aromatic		
was performed GLP: None Acceptable In vitro A supplementary study for isolating metabolites: benalaxyl degradation of when oxidised only by rat liver microsomes and to isolate the study for isolating CA_B.6.1.3.1				
GLP: None Acceptable In vitro A supplementary study for isolating metabolites: benalaxyl degradation of when oxidised only by rat liver microsomes and to isolate the study for isolating CA_B.6.1.3.1		y and y are sure groups		
In vitro A supplementary study for isolating metabolites: benalaxyl Supplementary degradation of when oxidised only by rat liver microsomes and to isolate the study for isolating CA_B.6.1.3.1	GLP: None			
degradation of when oxidised only by rat liver microsomes and to isolate the study for isolating CA_B.6.1.3.1				
L A ENTALLABOR - LINGUIGHEN WINCH WELE POUND ONLY OF DRICES IN VIVIA AS JESON LINGUIGHUSS WINCH L	degradation of ¹⁴ C-GALBEN	metabolites which were found only in traces <i>in vivo</i> as result	metabolites which	CA_D.0.1.3.1

Method	Results	Remarks	Reference
with rat liver	of subsequent reactions.	confirms the	Reference
microsomes,	_	validity of the	number:
supplementary	In vivo rat liver microsomes to isolate the traces of	technique adopted,	CA 5.1.1/08
study	metabolites M4 as a possible intermediate in the formation of	which permits to	
14 = - = -	G6.	isolate also	Anonymous
¹⁴ C- Galben =		intermediate	(1983)
¹⁴ C-Benalaxyl in	M1 and M2 correspond to G8 and G14 found in urine and/or	metabolites (such	
alpha position of	faeces of rats	as M1, M2 and	
the ester moiety	M1 1 M2	M4).	
14C CALDEN 4	M1 and M2 percentages decrease progressively being	They can be	
¹⁴ C-GALBEN to Albino rats by a	precursors for M4, G7A and G7B	assumed to exist (but cannot be	
metabolic metabolic	M3 is present at low levels	(but cannot be identified) in both	
scheme from that	Wis is present at low levels	urine and faeces	
in vitro test	G6, G7A and G7B correspond to the already known	urnic and racces	
(enzyme was	metabolites isolated and characterized from urine and faeces		
isolated from rat	of rats		
liver			
microsomes)			
Test method: In			
house method			
Guidelines were			
not available at			
the time the test			
was performed			
GLP: None			
Acceptable			
Metabolic	to identify and to determine the concentrations of benalaxyl		RAR-08_Vol-3
Evaluation of	acid, a metabolite of benalaxyl, in faecal and urine samples		CA_B.6.1.3.2
Excreta from Rats	collected from male and female rats after a single oral administration of benalaxyl.		Reference
Administered a	administration of behalaxyl.		number:
Single Oral Dose	no mortality		CA 5.1.1/09
of Benalaxyl	Quantitative identification: The study follows the comparable		C113.1.1/07
01 2 01141411111	levels of benalaxyl acid excreted in faeces and urines of the		Anonymous
Oral route	both sexes.		(2015)
1 G/ 4 rats			
M+F	100 mg/kg bw - up to 24h – urinary excretion in M+F		
Vehicle: 0.5%			
methylcellulose	Comparable levels are excreted in the faeces but female urine		
(MC) w/v in	contains roughly 2 to 3 times the amount of the metabolite		
distilled water	than male urine collected up to 24 h after administration		
Dose: 100 mg/kg			
bw			
urine and faeces - 24 hrs prior to			
dosing			
faeces - 24 hrs			
period			
and (0-24 hrs)			
urine - 0-8 hrs			
and 8-24 hrs			
OECD TG 417			
- OPPTS			
870.7485			
GLP/QA:			
Yes/Yes			
Acceptable			
An Oral	Presence/absence of benalaxyl acid (metabolite M9) in urine	A neurotoxic	RAR-08_Vol-3

Method	Results					Remarks	Reference
(Gavage) Acute		s of rat	s for up t	o 24 hours follow	ing administration	potential of	CA_B.6.1.3.3
Neurotoxicity	of the tes				U	benalaxyl was	_
Study of						evaluated using a	Reference
Benalaxyl in	M9 was f	ound ir	n both fae	ces and urine of	ats treated once	neurotoxicity	number:
Rats	by gavage	e with b	enalaxyl	at 1000 mg/kg b	w/d	screening battery	CA 5.1.1/10
			•	6 6		(functional	(see CA
Benalaxil	M9 is a ra	at meta	bolite and	d therefore tested	in toxicity studies	observational	5.7.1/02)
Oral (gavage)	performe	d with	the paren	t benalaxyl.		battery, locomotor	
2 G/5 randomnly						activity, and	Anonymous
selected rats				ations in Rat Urir		neuropathological	(2014a)
M+F	Rat	Grou	Gender	Faeces	Urine	assessments).	
Dose: 1000	Number	p		Concentration (ng/g)	Concentration (ng/mL)		
mg/kg bw/G	86875	4	M	8533	353		
Approx 3-4 hrs	86877	4	M	9415	511		
following dose	86882	4	M	8377	380		
administration -	86903 86906	4	M M	9234 11386	313 207		
F0B and motor		1ean valu		9389	352.8		
activity	86923	4	F	15388	870		
assessments, Day	86928	4	F	2073	1058		
0	86946	4	F	5081	1018		
5 randomly	86948 86956	4	F F	6905 13470	850 981		
selected rats/sex		lean valu		8583.4	955		
in cages for		rour rure		020211	700		
approximately 24							
hours –urine and							
feces were							
collected during							
the testing							
Every cage – no rince (sample							
collected)							
Guidelines:							
OECD TG 424							
and OPPTS							
870.6200							
GLP/QA:							
Yes/Yes							
Acceptable							
Stereoselective	Studies o	n ADM	IE conclu	ding that the pha	rmacokinetics of	More an analytical	RAR-08 Vol-3
Determination of				as stereoselective		validation study	CA_B.6.1.3.5
Benalaxyl in			0111015		111 1410 0 1151	rather than an in	011_27.011.010
Plasma by Chiral	The full r	elevano	e will be	come clear in the	context of the	vivo toxicological	Reference
High-	results of	a full i	n vitro co	omparative metab	olism study.	study.	number:
Performance					netics of benalaxyl		BIIA5.1
Liquid				lective in rabbits	·	Since only male	
Chromatography						animals were	Anonymous
with Diode	after i.v.	adminis	stration o	f racemic benalax	xy1 p < 0.05	tested, the	(2007)
Array Detector						information on sex	
and Application				axyl (40 mg/kg),		differences is	
to	concentrations (Cmax) of R (-)- and S (+)-benalaxyl were					missing.	
Pharmacokinetic	found at a	approx.	0.017 h	(Tmax)			
Study in Rabbit							
	mean t1/2, Cmax and MRT were not statistically different						
Benalaxyl used	between the two enantiomers, while the mean total plasma						
for i.v.	clearance (CL) and AUC0→∞ value of S (+)-enantiomer						
administration,	were significantly different from $(P < 0.05)$ those of R (-)-						
and dosing				(-)-enantiomer ra			
volume not	AUC0→	∞ after	the racen	nate administration	on was 1.31.		
stated							

Method	Results	Remarks	Reference
12 Japanese	CL of R (-)-enantiomer was more than 1.3-fold higher than		
White rabbits	that of the S (+)-enantiomer.		
M			
Only one dose =			
40 mg/kg bw / d			
by i.v., ear vein			
Test protocol			
GLP, GEP,			
Guidelines (US			
EPA, OECD)			
No information			
on GLP status of			
OECD GD			
R (-)- and S (+)-			
enantiomers			
were separated			
and collected by			
HPLC			
Acceptable			
Stereoselective	The metabolism of benalaxyl enantiomers was	This information	RAR-08_Vol-3
Metabolism of	stereoselective in rat and rabbit liver microsomes, and	might be valuable	CA_B.6.1.3.6
Benalaxyl in	different in the two species by analytical methods.	for further	
Liver		interpretations in	Reference
Microsomes	(-)-R-benalaxyl and (+)-S- benalaxyl in rat liver microsomes	case in vivo	number:
from Rat and	t1/2 = 22.35 min	studies in rats and	KCA 5.1
Rabbit	racemic benalaxyl	rabbits conducted	
	t1/2 = 10.66 min	with benalaxyl	Anonymous
Benalaxyl	individual benalaxyl enantiomers $t1/2 = 5.42$ and 4.03 min	will notice	(2011)
(racemic)		different results or	
indicated as rac-	(-)-R- benalaxyl and (+)-S- benalaxyl in rabbit liver	effects levels.	
BX	microsomes	Since only male	
Purity: >99%	t1/2 = 11.75 min	animals were	
Male Sprague-	racemic benalaxyl	tested, the	
Dawley rats and	t1/2 = 15.26 min	information on sex	
Japanese White	individual benalaxyl enantiomers	differences is	
rabbits	t1/2 = 5.66 and 9.63 min	missing. The full	
Liver: 6 rats +3	no chiral inversion from the (+)-R- benalaxyl to (-)-S-	relevance will	
rabbits	benalaxyl or inversion from (-)-S- benalaxyl to (+)-R-BX in	become clear in	
M	rabbit and rat microsomes.	the context of the	
liver microsomes		results of a full in	
: 80 μM of	These results suggest metabolism of benalaxyl enantiomers	vitro comparative	
benalxyl (rac-	is stereoselective in rat and rabbit liver microsomes and	metabolism study.	
BX) and 40 μM	different in the two species.		
of its			
enantiomers for	This information might be valuable for further interpretations		
rat hepatic	in case <i>in vivo</i> studies in rats and rabbits conducted with		
microsomes and	benalaxyl show different results or effects levels.		
60 μM of rac-BX			
and 30 µM of its			
enantiomers for			
rabbit hepatic			
microsomes			
Test protocol			
GLP, GEP,			
Guidelines (US			
EPA, OECD)			
No information on GLP status of			
OECD GD			

Method	Results	Remarks	Reference
Acceptable			
In Vitro	In cryopreserved rat hepatocytes:	Additional	RAR-08_Vol-3
Metabolism of		experiment study:	CA_B.6.1.3.4
[14C] Benalaxyl	- 82% to 25% of total [14C]Benalaxyl - during 1 – 4 hrs	- to identify the	
in Cryopreserved	- 45% of total [14C]Benalaxyl as 2-hydroxymethyl benalaxyl	phase-2	Reference
Hepatocytes	- after 4 hrs	metabolites,	number:
from Rats, Dogs, and Humans	-12% of total [¹⁴ C]Benalaxyl as 2-hydroxymethyl benalaxyl acid, proposed to be derived by ester – before 4 hrs	glucuronide conjugates	CA 5.1.1/11
and Humans	- less than 10% of [14C]Benalaxyl as dihydroxy benalaxyl	The study	Anonymous
[14C]Benalaxyl	acid, hydroxy benalaxyl, a carboxylic acid analogue of	confirmed that	(2015)
(20 μM)	benalaxyl (benalaxyl-2-benzoic acid), and glucuronide	benalaxyl	(====)
Positive control:	conjugates of hydroxy benalaxyl and of dihydroxy benalaxyl.	enantiomers were	
[4-		evenly	
¹⁴ C]testosterone	In cryopreserved dog hepatocytes:	metabolized at the	
Solvent: Ethanol	ON CIMOUR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	same rate and was	
Biological material:	- 8% of [14C]Benalaxyl was attributed to benalaxyl as self - before 4 hrs	not susceptible to stereo-selective	
Pooled (N>5	Benalaxyl was completely metabolized after 4 hours of	metabolism in rat	
- rat (Sprague-	incubation by glucuronidation of hydroxy/oxidized products	or human	
Dawley)	were the major compound-related components present in the	hepatocytes.	
hepatocytes	incubation extracts.		
- dog (Beagle)			
hepatocytes	- 65% of [14C]Benalaxyl as glucuronides of 2-hydroxymethyl		
and pooled	benalaxyl		
human	- 20% of [14C]Benalaxyl as glucuronide of dihydroxy		
hepatocytes	benalaxyl		
Incubation time:	- 8% of [14C]Benalaxyl as benalaxyl-2-benzoic acid		
1, 2 and 4 hrs Test method:	In cryopreserved human hepatocytes:		
N/A: No	in cryopieserved numan nepatocytes.		
standard	- [14C]Benalaxyl was found to be extensively metabolized		
guideline	after 4 hours of incubation, though not as extensively as in		
available	dogs.		
GLP/QA:	-14% of [14C]Benalaxyl – after 4hrs, decreasing in time		
Yes/Yes	- 25% of [14C]Benalaxyl as 2-Hydroxymethyl benalaxyl was		
Acceptable	the most significant metabolite present in the extract at all		
	time points – after 4 hrs - 16% of [14C]Benalaxyl as 2-Hydroxylmethyl benalaxyl acid		
	was another major metabolite present in the extracts - in the		
	4 hrs		
	- 10% of ¹⁴ C]Benalaxyl as mono- and dihydroxy benalaxyl,		
	benalaxyl-2-benzoic acid and glucuronide conjugates of 2-		
	hydroxymethyl benalaxyl.		
	The metabolism of benalaxyl in rat and human hepatocytes		
	was further investigated using chiral chromatography.		
	After 4 hours of incubation:		
	- the ratio of enantiomers of benalaxyl remained relatively		
	same and consistent with the initial composition of		
	enantiomers as at the beginning of the study in species.		
In Vitro"	For none of the Test Preparations was absorption considered	According to the	RAR-17_Vol-3
Percutaneous	to be "complete" (as defined in the Guidance Document on	EFSA guidance	CP_B.6.2.1
Absorption of	Dermal Absorption (EFSA Journal 2011, 9(7):2294),	where there is	
Radiolabelled	because less than 75% of the absorption occurred within the	variability	Reference
Benalaxyl in the Concentrate	first half of the study.	between replicates i.e. the standard	number: CP 7.3/01
Wettable Powder	Test Preparation 1	deviation is > 25%	CF 7.5/01
(WP)	[14C]-Benalaxyl Concentrate Formulation, 80 g/kg, mixed	of the mean value,	Anonymous
· · · = /	L - J =JJ	in the same of the	,

Method	Results	Remarks	Reference
Formulation and	with saline, ca. 1:1, w/w)	the value of the	(2014)
Two In-Use	The mean total unabsorbed dose, consisting of skin wash,	standard deviation	
Dilutions	tissue swab and pipette tip at termination of exposure at 8	should be added to	
through Human	hrs, donor wash and 24-hour tissue swab, plus the unexposed	the overall dermal	
Skin	skin and the radioactivity associated with the stratum	absorption value	
	corneum was 99.85% of the applied dose at 24 hrs.		
[14C]-Benalaxyl,		The explanation	
Lot/Batch:	Since variability between replicates was ≥25% of the mean	found in the test	
22284-42-15,	value:	study presentation	
radiochemical	Test Preparation 2	in the Dossier was	
purity: 99%	[14C]-Benalaxyl Most Concentrated In-Use Spray Dilution	that since there	
4 samples of full-	of 1 g/L	was no 12-hour	
thickness human	absorption was incomplete based on the 8-hour data (44.04%	time point in the	
skin (abdominal)	of the total absorption occurred within the first 8 hour of the	study design, the	
Test methods:	study). The potentially absorbable dose was 4.06% of the	8-hour data was	
OECD TG 428	applied dose.	used to assess	
GLP/QA:		whether	
Yes/Yes	A standard deviation was added to the overall dermal	absorption was	
Acceptable	absorption value to derive a final dermal absorption value of	complete or	
	6.1%, rounded to 6% for the most concentrated in-use spray	incomplete.	
	dilution of 1 g/L.		
	Test Description 2		
	Test Preparation 3		
	[14C]-Benalaxyl Least Concentrated In-Use Spray Dilution		
	of 0.2 g/L)		
	the absorption was incomplete based on the 8-hour data		
	(47.24% of the total absorption occurred within the first 8		
	hour of the study). The potentially absorbable dose was		
	12.37% of the applied dose.		

9.1 Short summary and overall relevance of the provided toxicokinetic information on the proposed classification(s)

Toxicokinetic profile of benalaxyl was studied following some old and new studies on rats, mice and dogs following low and/or high dose administration. The data from the acute- and repeated dose toxicity studies indicated that toxicity following exposure to benalaxyl via the dermal route was not of concern compared to oral administration, hence studies on absorption, distribution, metabolism and excretion following exposure via the skin is not required.

Toxicokinetics Section of the Dossier was improved during it renewal period. Pesticides Peer Review Experts' Meeting 182 in September 2018 raised the bridging of toxicokinetics properties between benalaxyl and benalaxyl-M. As an outcome, the pattern of effects and no-observed-adverse-effect-levels (NOAELs) in the available studies with both benalaxyl and benalaxyl-M was concluded. Therefore, the two compounds are of similar toxicity, respectively. Benalaxyl technical used in the toxicity studies is representative of the technical specification proposed for the renewal but not of the original technical specification. Considering both technical specifications, the toxicological relevance of the impurities has not been yet sufficiently assessed, to be concluded upon (data gap). No residue definition for human biomonitoring can be defined (unfinalised). (see B.6.1.2.2).

Oral absorbtion of benalaxyl and/or its hydrolysis products is rapid; its bioavailability is estimated to be 100% more than 90% being excreted within 24 hours, no-related with sex, dose level or regime of administration (single or multiple doses). (see B.6.1.2.3). Inhalatory absorbtion of benalaxyl is low and without a toxicological relevance. A dermal absorbtion study was missing during the first renewal of benalaxyl and the "In Vitro" Percutaneous Absorption of Radiolabelled Benalaxyl in the Concentrate Wettable Powder (WP) Formulation and Two In-Use Dilutions through Human Skin was added in 2014, during the renewal process

(see B.6.1.2.1). Based on results of the study and relevant variability among replicates for each dose level, the dermal absorption values for benalaxyl exposure in its formulated product were determined to be 0.72%, rounded to 0.7% for the formulation concentrate, 6.1%, rounded to 6% for the most concentrated in-use spray dilution of 1 g/L, and 17.84%, rounded to 18% for the least concentrated in-use spray dilution of 0.2 g/L.

Absorbed benalaxyl is widely distributed within the body, such as 30% of radioactivity can be found in the carcass at time of Tmax (0.5 h) following a single oral dose, but only traces (0.2-0.3%) were found 70 hours after administration, and radioactivity was not quantifiable at 168 hrs. The pattern does not change after repeat-dosing; 40% of radioactivity was found in the carcass at 0.5 h (mainly in stomach, liver and kidneys and, to a lesser extent, intestine wall), radioactivity was quantifiable in liver, intestine wall and kidney, but not in the remaining carcass, at 72 hrs; levels were still quantifiable in liver at 168 hrs. (see B.6.1.2.6 and B.6.1.2.7). Liver is the target organ of benalaxyl. But without an endocrine disruptor EAMS supportive studies reguested during the Experts' meeting Prev 05 at EFSA, this remains questionable.

According to the ADME studies performed by the Applicant in a previous period of renewal or during this period, two dose levels were admitted for toxicokinetics assessment of benalaxyl. ¹⁴C-Benalaxyl, Blood pharmacokinetics, excretion and tissue distribution of radioactivity in the rat after a single oral administration (see B. 6.1.2.1) admitted a peak blood level of radiolabelled benalaxyl at 0.25 - 1 h and after which the levels decreased according to an elimination a half-live about 50 hours, being quantificable at 72 hours after doses administration. About account for the study ¹⁴C-Benalaxyl, Blood pharmacokinetics, excretion and tissue distribution of radioactivity in the rat after a single oral administration (Final report) (see B.6.1.2.2) the results were different and the elimination half-life became to be 30 hours and faeces excretion > 90%, urinary excretion <10%, a pick level in liver at 0.5 h after administration and a high concentration in kidney. Benalaxyl is present only in liver at 72 h and 168 h after dose administration. At 24 hour, the majoritary route is urinary than bile and faeces. Benalaxyl was extended assessed in terms of setting a half-life in other study, as ¹⁴C-Benalaxyl, Blood pharmacokinetics, excretion and tissue distribution of radioactivity in the rat after repeated oral administrations (see B.6.1.2.3) concluding that a small part of ¹⁴C-benalaxyl is rapidly absorbed from the gastrointestinal tract, elimination half-life around 36 hrs and unmodified the rate of excretion >90% in faeces <10% by urinary route. The pick level was in liver at 0.5 h after administration high concentration of radiolabelled benalaxyl was found in kidney and intestines wall and radiolabelled benalaxyl was quantified at 72 h and 168 h after the administration only in liver. These three studies were performed in 1996, in three parts.

A single low (10 mg/kg bw) and one high (100 mg/kg bw) doses, repeated low dose (14 daily doses of unlabelled substance followed by a single administration of radiolabel material), a single oral dose with assessment of biliary excretion study (at both low and high dose levels), determination of toxicokinetic parameters (for both the low and high doses, and after repeated low doses – males only), and tissue distribution and identification of major metabolites (>5%) drew up the targeted assessment. Benalaxyl is not accumulative in body.

A comparative *in vitro* metabolism study on human, rat and dog hepatocytes (see B.6.1.3.4) was performed in order to investigate a possible enantioselective metabolism of benalaxyl as a racemic compound.

It was interesting that benalaxyl was extensively metabolized in rat and human hepatocytes and was completely metabolized in dog hepatocytes. The metabolite profiles were qualitatively similar in all species tested. An *in vitro* study using rat microsomes was also performed suggesting that metabolism of benalaxyl enantiomers was stereoselective in rat and rabbit liver microsomes, and different in the two species. This information might be valuable for further interpretations in case *in vivo* studies in rats and rabbits conducted with benalaxyl show different results or effects levels. Both BX enantiomers were degraded by rat and rabbit liver microsomes and the degradation was NADPH-dependent. Metabolic rate constants (apparent Km and Vmax) were determined after a 10 min incubation period in rat and rabbit microsomes and Michaelis–Menten plots (see B.6.1.3.6 and B.6.1.3.6).

Excretion is mainly via faeces, instead via urine which is limited (approx. 14%). A biliary excretion study (at low and high dose levels) showed that approximatively 80-90% of administrated radiolabelled benalaxyl is excreted via the bile within 70 hours (60-86% occurring within the first 8 hrs). Metabolites identified in faeces

are the same of those found in urine (except, the parent compound - benalaxyl, found in faeces only). The source of the material excreted via faeces is by biliary excretion, and for human risk assessment purposes, the absorption is considered to be complete. (see B.6.1.2.5).

The metabolites are common for the urinary and the faecal metabolic pathway in the both studies (see B.6.1.2.4)

It was considered that the soil metabolite M9 (N-(phenylacetyl)-N-(2,6-xylyl)-D-alanine) would also likely result from the mammalian metabolism of benalaxyl, and for this reason a new ADME study was performed, allowing to ascertain that benalaxyl acid (M9) is detectable in the excreta of male and female rats up to 24 hours after a singular oral administration of 100 mg/kg bw / d of benalaxyl. (see B.6.1.3.2)

The presence of M9 in excreta from rats was also confirmed in another study, following administration of a single dose of benalaxyl at 1000 mg/kg bw/d, although amounts were not proportional to the dose administered when compared against the results of the new ADME study.

Based on the results of these additional investigations, it was confirmed that M9 is a rat metabolite and therefore tested in toxicity studies performed with the parent benalaxyl.

[¹⁴C]benalaxyl was extensively metabolized in rat and human hepatocytes and was completely metabolized in dog hepatocytes following incubation for 4 hours. The metabolite profiles were qualitatively similar in all species tested. The major conjugates present in dog hepatocytes were conformational isomers of 2-hydroxymethyl benalaxyl glucuronide and/or 6-hydroxymethyl benalaxyl glucuronide.

In the first two hours of HPLC coupled to a mass spectrometer and a radioactivity detector; rat, dog, human cryopreserved hepatocytes study the metabolite 2-hydroxymethyl benalaxyl and another hydroxy metabolite were detected in hepatocyte extracts but they were absent in the 4 hour sample, most probably due to further metabolism. (see B.6.1.3.4)

About the metabolite profiles, there is noted the presence of a common major metabolic pathways, such as:

- o hydroxylation of the xylene (methyl) moiety to 2-hydroxlmethyl benalaxyl;
- o further oxidation to carboxylic acid analogue (benalaxyl-2-benzoic acid);

and

- o hydrolysis of the methyl ester function
- o minor metabolic pathways were the hydroxylation of phenyl ring and hydrolysis of carboxymethyl group.

Conjugation of 2-hydroxlmethyl benalaxyl was found to produce glucuronide conjugates, as major metabolites, especially in dogs. No major unique metabolite was observed in human hepatocytes.

No enantio-selective metabolism was observed following incubation with rat or human hepatocytes.

All the human metabolites formed were detected in rat. Therefore, it can be said that all potential human metabolites of benalaxyl have been tested in the pivotal toxicology species, thus demonstrating its relevance to derive human toxicological reference values.

10 EVALUATION OF HEALTH HAZARDS

Evaluation of health hazards in line with the CLP Regulation criteria has followed only specific studies for proposed classification existing in finalised RAR, Benalaxyl - Volume 3 Annex B.6: Toxicology and metabolism, November, 2018.

10.1 Acute toxicity - oral route

Table 11: Summary table of animal studies on acute oral toxicity

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance,	Dose levels, duration of exposure	Value LD ₅₀	Reference
Acute Oral	Sprague-Dawley	Benalaxyl tech	2000 mg/kg bw/d	LD50 > 2000	RAR-08_Vol-3
Toxicity Up and	rats derived	Lot/Batch:	initial dose = 2000 mg/kg	mg/kg bw/d	CA_B.6.2.1.1

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance,	Dose levels, duration of exposure	Value LD ₅₀	Reference
Down Procedure in Rats with Benalaxyl Oral (gavage) OECD TG 425 and US EPA OPPTS 870.1100 GLP/QA:Yes/Yes Deviations: None Acceptable	Albino rat F mulliparous and non-pregnant 1group/5 rats	PL13-0055 Purity: 98.4% Vehicle: 0.5% w/v solution of carboxymethyl cellulose	bw (1F) study dose: 2000 mg/kg bw/d (4F) - Due to the absence of mortality in first female Duration of exposure = 14 days Body weight: ↑ D7 - D14 (termination) following dosing. Clinical signs: Following administration, two females exhibited nasal discharge and/or reduced faecal volume. A third female was hypoactive and exhibited irregular respiration, oral and ocular discharge, hunched posture, and ano- genital and facial staining. all three females recovered by Day 6 Mortality: No Necropsy: No gross abnormalities were noted		Reference number: CA 5.2.1/01 Anonymous (2013a)
Acute Oral Toxicity Study of the M 9834 in the Albino Rat Oral (gavage) Test method: N/A: no standard guideline available. GLP/QA: None Acceptable	Albino rats 2G/5 rats M+F	M 9834	for any of the animals. 3500 - 5040 mg/kg bw/d Study duration: not mentioned 24 hrs after administration: Mortality: 4500 mg/kg bw/d: 2/5 (m) and 4/5 (f) 3750 mg/kg bw/d: 2/5 (m) and 2/5 (f)	LD50 = 4200 mg/kg bw (3500 - 5040 mg/kg bw, 95% confidence limits probability) Not conclusive for assessment	RAR-08_Vol-3 CA_B.6.2.1.2 Reference number: CA 5.2.1/02 Anonymous (1979)

Table 12: Summary table of human data on acute oral toxicity

There are no relevant human data available.

Table 13: Summary table of other studies relevant for acute oral toxicity

Type of study/data	Test substance	Relevant information about the study (as applicable)	Observations	Reference
An Oral	Benalaxyl tech.	Range-finding study previous a	The number of	RAR-08_Vol-3
(Gavage) Dose	Lot/batch: PL 13-	neurobehavioral further study.	animals	CA_B.6.7.1.1
Range-Finding	0055	Initial dose levels: 200, 600, and 2000 mg/kg	selected for	
Acute	0033	bw/d (Groups 2, 3, and 4, respectively).	this study was	Reference
Neurotoxicity	Purity: 98.4%.	bw/d (Groups 2, 3, and 4, respectively).	3/sex/group),	number:
Study of	Wahiala, 0.50/	Group 5 - 400 mg/kg bw/d(additional dose	reasonable to	CA 5.7.1/01
Benalaxyl in	Vehicle: 0.5%		avoid an	

Rats	(w/v)	level)	unexpected	Anonymous
Oral (gavage)	methylcellulose in deionized water	Group 1 – control group, received the vehicle in the same condition of study.	deaths or treatment-	(2014c)
Rats Crl:CD(SD)		Group 6 - additional animals at 2000 mg/kg	related morbidity	
A single dose to		bw/d: 2 M + 2 F (to confirm the previous	and/or	
4 G (G2-G5)		incidence of convulsions at 2000 mg/kg bw/d)	mortality.	
Remarks: All criteria for a valid study were met Guidelines: N/A: Dose		Mortality: In the main study, all animals treated at 2000 mg/kg (1 male and 2 female) were found dead. One male and one female rat were found dead approximately 2 hours following dose administration; the remaining female was found dead approximately 4.5 hours after dose administration.	Acute neurotoxicity is a supportive study for a classification as Acute Tox. Cat. 4; H302	
range-finding study GLP/QA: Yes/Yes Acceptable		The 2 female in the additional 2000 mg/kg bw/d dosage group (Group 6) were euthanized and discarded at approximately 2 hours following dose administration after observations of clonic convulsions at the 2-hours detailed clinical observation or during cage-side observations.		
		All remaining animals survived to scheduled sacrifice.		
		Body weight: no statistically significant differences were noted.		
		Macroscopic examination: A dark red discoloration of the lungs, partially collapsed lungs, dark red contents of the trachea, and red matting of the skin (nasal, buccal, and ocular areas and forelimbs) were noted for the 2000 mg/kg male in the main group.		
		In addition, red matting of the skin (nasal and buccal areas) was noted for one female in the main 2000 mg/kg bw/d group.		
		Clinical observations:		
		Group 3: one male (approx 2 and/or 4 hrs following dose administration): slightly soiled fur appearance, drooping eyelids, decreased respiratory rate, rales, slightly to moderately impaired mobility, dragging body and low arousal		
		Group 4 - 2000 mg/kg bw/d (1 male and 2 females) were found dead within 5 hours after dose administration: slightly soiled fur appearance, drooping eyelids, decreased respiratory rate, rates, slightly to moderately impaired mobility, dragging body, clonic convulsions, low arousal, and/or circling at 1 female at approx 2 and/or 4 hrs after dose administration) and male was found dead prior to the 2-hrs detailed clinical observations		
		Clonic convulsions and red material around the nose and mouth, immediately prior to death		

	T	T	1	T
		female found dead approximately 4.5 hrs: clonic convulsions (noted on 4 separate occasions), tremors, decreased respiration, chromodacryorrhea in both eyes, and red material around the mouth (noted as early as approximately 1.5 hrs following dose administration, between the scheduled detailed clinical observations). female found dead up to 2 hrs following dose administration clinical findings of prostrate and gasping were noted immediately prior to death (prior to the 2-hrs detailed clinical observations one male - 400 and 600 mg/kg bw/d (G3 and G4) and 1 to 2 females in the 200 and 400 (G2 and G3) at approx 2, 4, or 8 hrs following dose administration:red depo sits around the eyes, nose, and/or mouth Group 6: additional animals at 2000 mg/kg		
		bw/d: 2 m + 2 f Similar findings to those noted at 2000 mg/kg bw/d in the main phase were confirmed in an additional phase, where both females administered the test substance at 2000 mg/kg bw/d had clonic convulsions at approximately 2 hours following dose administration.		
		The time of peak effect was considered 2 hours following dose administration based on the severity and nature of the findings at this time (lightly soiled fur appearance, drooping eyelids, decreased respiratory rate, impaired mobility, dragging body, clonic convulsions, low arousal, and circling)		
		One male: red deposits on the nose and crusty deposits on the mouth and nose at the 2-hrs detailed clinical observation and slightly soiled fur appearance at the 8-hrs detailed clinical observation while findings for the other male were limited to brown material on the anogenital area at the cage-side observations on study day 1.		
An Oral	Benalaxyl tech.	For evaluating the acute neurotoxic potential	No gross	RAR-08_Vol-3
(Gavage) Acute Neurotoxicity	PL13-0055 Purity: 98.4%	of benalaxyl technical when administered as a single oral dose to rats	necropsy observations	CA_ B.6.7.1.2
Study of Benalaxyl in	Vehicle: 0.5%	Acute neurotoxicity screening battery (FOB):	were noted and microscopic	Reference number CA
Rats	(w/v)	functional observational battery, locomotor	examination of	5.7.1/01
Oral (gavage)	carboxymethyl cellulose aqueous	activity, and neuropathological assessments. Phase 1	tissues was not performed in	Anonymous
Rats Sprague-	solution	3G (G2 - G4) of 10 m/10f at 200, 400, and 1000 mg/kg bw/d	the unscheduled	(2014a)
Dawley			death animals.	
(Crl:CD (SD)) OECD TG 424		Mortality and clinical observations: At 200 mg/kg and above – a single dose -	The analysed	
and OPPTS		1000 mg/kg bw/d (m) and 200, 400, and 1000	dosing formulations	
870.6200		$mg/kg \ bw/d \ (f), \le 4.5 \ hrs following dose$	for FOB	

	1	
Criteria are met	administration;	remains
Statistics was	the majority of animals that were found dead	unclear.
performed	or euthanized in extremis were noted with	Christian
GLP/QA:	clonic convulsions the same with FOB	Study
Yes/Yes	findings at the time of peak effect on study	supportive for
Acceptable	day 0, only.	acute toxicity
r		classification
	1000 mg/kg one male was found dead approx	based on
	2 hrs following dose administration (clonic	mortality up to
	convulsions during the continuous 2-hour	2000 mg/kg
	post-dosing observations)	bw/d.
		ATE=2000
	An additional male in this group was found	
	dead approx 4.5 hrs following dose	mg/kg bw/d
	administration (no clinical observations);	
	One and 2 females in the 200 and 1000 mg/kg	
	bw/d groups, respectively, were found dead	
	approx 4 hrs following dose administration:	
	clonic convulsion	
	One female of the 200 mg/kg bw/d group was	
	noted with clonic convulsion and vocalization	
	One female in 400 mg/kg bw/d group was	
	euthanized in extremis approximately 3 hrs	
	following dose administration after being	
	noted with increased respiration; this female	
	was also noted with splayed hindlimbs and	
	immobility by the clinical veterinarian.	
	Two of the aforementioned females (that in	
	the 400 mg/kg bw/d group and one in the 1000	
	mg/kg bw group) were euthanized or found	
	dead prior to completion of the motor activity	
	testing.	
	In addition to the clonic convulsions noted	
	above, one female in the 1000 mg/kg bw/d	
	group was also noted with clonic convulsions	
	approx 3 hrs following dose administration	
	on day 0; however, this female survived to the	
	scheduled euthanasia.	
	Control group was survived	
	Phase 2	
	3G (G1-as a single dose to G3) of 10f at 0, 50,	
	and 100 mg/kg. bw/d	
	females in the 100 mg/kg G3: repetitive	
	movement of the mouth and jaws which	
	correlated with similar home cage FOB	
	findings at the time of peak effect on study	
	day 0	
	FOB findings were recorded for all animals	
	prior to the initiation of dose administration	
	(pretest), at the time of peak effect	
	(approximately 2 hours post-dosing) on day 0,	
	and on days 7 and 14.	
	and on days / and 14.	
	In the 100 mg/kg hw/d group 2 famalag ware	
	In the 100 mg/kg bw/d group, 3 females were	
	noted with repetitive movement of the mouth	
	and jaws and 2 females were noted with	
	salivation on the day of dose administration	
	during the 2-hour continuous post-dosing	
	observations; these findings were considered	
	test substance-related.	

Control group was survived

FOB and motor activity assessment Significantly lower mean rearing counts were noted for females in the 200, 400, and 1000 mg/kg bw/d groups compared to the control group at the time of peak effect on the day of dosing.

During Phase 2, at the time of peak effect on the day of dosing one female in the 100 mg/kg bw/d group was noted with repetitive movement of mouth and jaws; this finding was considered test substance-related and corresponded with the clinical findings noted in this group following dose administration.

Motor activity assessments revealed higher mean total motor activity values for males at 400 and 1000 mg/kg bw/d and for females at 200, 400, and 1000 mg/kg bw/d at the time of peak effect on the day of dosing, indicating a change in the pattern of habituation in these groups.

No gross necropsy observations were noted and microscopic examination of tissues was not performed in the unscheduled death animals. Given the clinical signs and the relationship between dosing and death, the cause of death of these animals was considered to be administration of the test substance.

There were no remarkable macroscopic alterations observed for males and females sacrificed at termination of the study at any dose level.

Brain weights and measurements were unaffected by administration of benalaxyl at any dose level. No test substance-related microscopic lesions were observed in any of the central or peripheral nervous system tissues examined from 5 animals/sex in the control and 1000 mg/kg bw/d groups.

Minimal axonal degeneration was observed sporadically in both control and 1000 mg/kg bw/dgroup animals in the sciatic nerve, peroneal nerve, tibial nerve, lumbar dorsal root fibres, lumbar ventral root fibres, and lumbar spinal nerve.

Summary of histopathology (only findings reported)

	Ma	ıles	Females		
Finding	0	1000	0	1000	
	mg/kg	mg/kg	mg/kg	mg/kg	
	bw/d	bw/d	bw/d	bw/d	
Lumbar	5	5	5	5	
dorsal					
fibre -					
examined					

		_					-	1	T
		Degenerat	1	1	0	1			
		ion, axonal							
		Lumbar	5	5	5	5	1		
		ventral							
		fibre-							
		examined							
		Degenerat	0	0	1	1			
		ion,							
		axonal Peroneal	5	5	5	5	4		
		nerve –	3	3	3	3			
		examined							
		Degenerat	1	1	0	0	1		
		ion,							
		axonal					1		
		Sciatic	5	5	5	5			
		nerve – examined							
		Degenerat	2	3	0	0			
		ion,	_	3	Ů				
		axonal							
		Spinal	5	5	5	5	1		
		node,							
		lumbar	-				_		
		Degenerat ion,	1	0	0	0			
		axonal							
In Vivo	Acetyl F4	dose range	finding	accay (I	DRE) th	ne mavin	num	Acetyl F4 at	RAR-08_Vol-3
Mammalian	Batch/Lot: 55062-	dose tested						$doses \le 2000$	CA_ B.6.8.1.18
	8-22								CA_ D.0.6.1.16
Erythrocyte		at 500, 100	0 OF 200	JO IIIg/K	g bw/da	y of Ace	tyı	mg/kg bw/day	D. C
Micronucleus	Purity:99.5%	F4						over 2	Reference
Assay in Rats		Piloerection	n and le	thargy v	vere obs	erved in		consecutive	number CA
with Acetyl F4	Vehicle: 0.5% w/v	male and fe						days was	5.8.1/17
	solution of	mare and re	illaic 10	113 at 20	oo mg/k	g owida,	y	negative in the	
	carboxymethyl	Dose Rang	e Findir	ig Assay	/ :			micronucleus	Anonymous
Sprague-	cellulose in	NT 12.		14	. 1	11.1		assay.	(2015)
Dawley	deionised water	No mortali							
(Hsd:SD) rats		the course		_				The maximum	
(1154.152) 1415	Positive control:	Piloerection						dose evaluated	
Test methods:	Cyclophosphamide	male and fe			_	_	All	for non-toxic	
OECD TG 474	, (once in Study	other rats a	ppeared	l normal	through	nout the		materials -	
(2014) and	Day 2 at 10 mL/kg)	observation	n period					2000 mg/kg	
OPPTS	Day 2 at 10 IIIL/kg)	D. C	- \ 1.	.1				bw/d (the limit	
870.5395	2 1 11	Definitive 1	Micronu	icieus A	ssay:			dose for this	
(1998),	2 daily treatments	No mortali	tv occur	red at a	nv dose	level du	ring	assay)	
GLP/QA:	at 24 hours	the course	•		•	10 (01 44	5	,	
Yes/Yes	intervals	the course v	or the di		assay				
Statistics: Yes		Following	the last	observa	tion, ani	mals we	ere		
		euthanized	and dis	carded v	vithout 1	further			
Acceptable		examinatio							
							_		
		Further pha							
		clastogenic							
		mitotic app							
		polychroma	atic eryt	hrocyte	(PCE)	cells in ra	at		
		bone marro	w of ra	ts, only	male at	500, 100	00		
		and 2000 n							
		consecutive			•				

10.1.1 Short summary and overall relevance of the provided information on acute oral toxicity

One acute oral toxicity study is available for oral acute classification according with CLP Regulation criteria. This is a study carried out in line with OECD TG 425 without deviations and acceptable for this assessment. Study is GLP compliant and is reliable for this scope (see B.6.2.1.1) Acute Oral Toxicity Up and Down Procedure in Rats with Benalaxyl Technical. The conclusion of the study set a half percent of mortality of animals as LD_{50} greater greater than 2000 mg/kg bw in female rats, which excludes the possibility for a classification as toxic by oral route in acute exposure of benalaxyl according to the Regulation (EC) nr. 1272/2008 (CLP Regulation).

An initial dose of 2000 mg/kg bw/d was administered to one healthy female rat by oral gavage which survived to the experiment and four additional females were exposed to fulfill the criteria of the 14 days of study. Females were selected for the test because they are frequently more sensitive to the toxicity of test compounds than males. The most significant findings were the rate of surviving in all animals and gain of body weight during the study. Following administration, two females exhibited nasal discharge and/or reduced faecal volume. A third female was hypoactive and exhibited irregular respiration, oral and ocular discharge, hunched posture, and ano-genital and facial staining.

However, the three females recovered by Day 6, and along with other animals, appeared active and healthy for the remainder of the study. No gross abnormalities in pathological examination of animals.

However, to fulfill the evaluation of any possible acute toxic effect by oral route, an acute neurotoxicity study (see B.6.7.1.2 An Oral (Gavage) Acute Neurotoxicity Study of Benalaxyl in Rats), preceded by the relevant RF study (see B.6.7.1.1 An Oral (Gavage) Dose Range-Finding Acute Neurotoxicity Study of Benalaxyl in Rats) has been performed during the renewal of approval of benalaxyl in AIR3.

Some clinical and histological findings were in contradiction with the results of main acute oral study performed by the Applicant, respectively those clonic convulsions and death which were not noted for any animals receiving benalaxyl at dosage levels up to 2000 mg/kg bw/d, which is in contrast to what was observed in these required acute neurotoxicity study.

The dose levels were larger than in the main study and the relevance of exposure effects on benalaxyl was improved.

In a DRF (dose-range finding) study there were administred the following dose level: 200, 600, and 2000 mg/kg bw/d (Groups 2, 3, and 4, respectively) for phase 1. However, due to excessive toxicity and lethality at 2000 mg/kg bw/d, dosing at this level was discontinued after 1 male and 2 females were dosed. An additional dosage level, 400 mg/kg bw/d (Group 5) respectively, was added to the study.

All animals treated at 2000 mg/kg bw/d during the main study phase (1 male and 2 females) were found dead within 5 hours of dosing.

Clinical findings, including clonic convulsions, tremors, decreased respiration, chromodacryorrhea, gasping, and/or red material around the nose and/or mouth, were noted for these animals between the scheduled detailed clinical observations, generally immediately prior to death.

During the main phase, detailed clinical observations included slightly soiled fur appearance, drooping eyelids, decreased respiratory rate, rates, slightly to moderately impaired mobility, dragging body, clonic convulsions, low arousal, and/or circling, noted for 1 male in the 600 mg/kg bw/d group and 1 female in the 2000 mg/kg bw/d group at approximately 2 and/or 4 hours following dose administration.

In addition, red deposits around the eyes, nose, and/or mouth were noted for a single male in the 400 and 600 mg/kg groups and 1 to 2 females in the 200, 400, and 2000 mg/kg bw/d groups at approximately 2, 4, or 8 hours following dose administration.

The time of peak effect was considered 2 hours following dose administration based on the severity and nature of the findings noted at this time.

The results of the additional phase dosed at 2000 mg/kg bw/d corroborated the findings in the main phase.

Both females receiving 2000 mg/kg bw/d had clonic convulsions at approximately 2 hours following dose administration, in addition to wiping of the mouth on the cage floor and/or walls, repetitive movement of the mouth and jaws, tremors, vocalisation, and/or salivation. These females were subsequently euthanised due to the findings of clonic convulsions.

Findings for the 2 males receiving 2000 mg/kg bw/d included red deposits on the nose, crusty deposits on the mouth and nose, slightly soiled fur appearance, and/or brown material on the anogenital area. These males survived to the scheduled euthanasia.

In the main study, all animals treated at 2000 mg/kg bw/d (1 male and 2 female) were found dead. One male and one female rat were found dead approximately 2 hours following dose administration; the remaining female was found dead approximately 4.5 hours after dose administration.

The 2 female in the additional 2000 mg/kg bw/d dosage group (Group 6) were euthanized and discarded at approximately 2 hours following dose administration after observations of clonic convulsions at the 2-hours detailed clinical observation or during cage-side observations.

Macroscopic findings of dark red discoloration of the lungs, partially collapsed lungs, dark red contents of the trachea, and red matting of the skin (nasal, buccal, and ocular areas and forelimbs) were noted for the 2000 mg/kg bw/d male in the main group. In addition, red matting of the skin (nasal and buccal areas) was noted for one female in the main 2000 mg/kg bw/d group.

In the second acute neurotoxicity study, based on dose-respone in the first DRF study it was selected a maximum dose level of 1000 mg/kg in in view of avoiding the rate of mortality of rats and allowing a properly FOB and motor activity assessments.

Unfortunately, from Phase 1 of the acute neurotoxicity study, on a single dose of benalaxyl resulted in mortality and/or moribundity for males at 1000 mg/kg and for females at 200, 400, and 1000 mg/kg within approximately 4.5 hours following dose administration; the majority of animals that were found dead or euthanized in extremis were noted with clonic convulsions.

In addition, test substance-related FOB findings (lower mean rearing counts) for females at 200, 400, and 1000 mg/kg and/or higher mean total motor activity values for males at 400 and 1000 mg/kg at the time of peak effect on day 0.

Based on these results, 200 mg/kg was considered to be the no-observed-adverse-effect level (NOAEL) for acute neurotoxicity in male rats.

For Phase 2, females in the 100 mg/kg group were noted with clinical findings of repetitive movement of the mouth and jaws which correlated with similar home cage FOB findings at the time of peak effect on study day 0 only. No test substance-related effects were noted for females in the 50 mg/kg group. Therefore, the NOAEL for acute neurotoxicity in female rats was considered to be 50 mg/kg.

There were no test substance-related macroscopic or microscopic findings, or effects on brain weights or brain dimensions for any treated group.

Phase 1					
Dose level (mg/kg bw)	Males	Time of death	Clinical sign(s)	Observation time point(s)	
200	0 / 10	N/A	-	-	
400	0 / 10	N/A	-	-	
1000	2 / 10	Found dead at 2 h post dosing	Clonic convusions	Continuous 2 h post dose observation	
		Found dead at 4.5 h post dosing	No clinical signs	N/A	
Dose level (mg/kg bw)	Females	Time of death	Clinical sign(s)	Observation time point(s)	
50	0 / 10	N/A	=	-	
100	0 / 10	N/A	3 animals:	Continuous 2 h post dose	
			repetitive	observation	
			movement of		
			mouth and jaws		
			2 animals:	Continuous 2 h post dose	
			salivation	observation	
200	1 / 10	Found dead at 4 h post	Clonic	Continuous 2 h post dose	
		dosing	convusions,	observation	
			Vocalisation,		
			Vocalisation		
			upon handling		

400	1 / 10	Euhanised in extremis	Increased		Continuous	2	h	post	dose
		at 3 h post dosing	respiration,	(+	observation				
			splayed						
			hindlimbs	and					
			immobility)						
1000	2 / 10	Both found dead at 4	Clonic		Continuous	2	h	post	dose
		h post dosing	convusions		observation				
		N/A (animal survived)	Clonic		3 h post dose	;			·
			convusions						

Motor activity assessments revealed higher mean total motor activity values for males at 400 and 1000 mg/kg and for females at 200, 400, and 1000 mg/kg at the time of peak effect on the day of dosing, indicating a change in the pattern of habituation in these groups.

Results of necropsy were essential to consider mortality as a reason foe an acute toxicity classification.

Summary of histopathology (only findings reported)

Finding	Ma	ales	Females		
rmanig	0 mg/kg	1000 mg/kg	0 mg/kg	1000 mg/kg	
Lumbar dorsal fibre - examined	5	5	5	5	
Degeneration, axonal	1	1	0	1	
Lumbar ventral fibre- examined	5	5	5	5	
Degeneration, axonal	0	0	1	1	
Peroneal nerve – examined	5	5	5	5	
Degeneration, axonal	1	1	0	0	
Sciatic nerve – examined	5	5	5	5	
Degeneration, axonal	2	3	0	0	
Spinal node, lumbar	5	5	5	5	
Degeneration, axonal	1	0	0	0	

Brain weights and measurements were unaffected by administration of benalaxyl at any dose level. No test substance-related microscopic lesions were observed in any of the central or peripheral nervous system tissues examined from 5 animals/sex in the control and 1000 mg/kg groups.

Minimal axonal degeneration was observed sporadically in both control and 1000 mg/kg group animals in the sciatic nerve, peroneal nerve, tibial nerve, lumbar dorsal root fibres, lumbar ventral root fibres, and lumbar spinal nerve.

An aditional study could be considered a DRF (dose-range finding study), having as test substance one of main metabolites of benalaxyl as Acetyl F4. (see B.6.8.1.18 *In Vivo* Mammalian Erythrocyte Micronucleus Assay in Rats with Acetyl F4).

A DRF was performed to assess test substance toxicity and determine the maximum tolerated dose (MTD) or maximum feasible dose (MFD) for the micronucleus assay.

The MTD is defined as the dose that induces some signs of toxicity but is not expected to produce mortality within two days after administration, or severe and prolonged clinical signs of toxicity. The MFD is defined by 1) physical properties that limit the dose formulation concentration, 2) limitations on volume that can be administered, 3) bioavailability of compound or 4) bone marrow toxicity such that PCE proportions <20% of vehicle.

The maximum dose evaluated for non-toxic materials - 2000 mg/kg bw/d (the limit dose for this assay).

In the DRF assay, 3 animals/sex were exposed to 500, 1000 or 2000 mg/kg bw of Acetyl F4. Piloerection was observed at 2000 mg/kg/day in male and female rats. Following the last observation, animals were euthanized by exposure to CO2 and discarded without further examination. No mortality or differences in clinical observations were seen between the sexes, therefore only male rats were used in the definitive assay.

No mortality occurred at any dose level during the course of the dose range finding assay. Piloerection and lethargy were observed in male and female rats at 2000 mg/kg bw/d. All other rats appeared normal throughout the observation period.

An increasing of the liver weight was mentioned at 1000 mg/kg bw/d in both animals.

Human data:

As for most pesticides, no information is available on effects in humans due to exposure to the active ingredient, benalaxyl, itself. According to the Applicant, the Company FMC, USA, the Occupational medical surveillance of employees in manufacturing did not reveal indications of adverse effects but there are no more recent data.

10.1.2 Comparison with the CLP criteria

According to the Regulation (EC) No 1272/2008 (CLP), a classification as Acute Tox. 4 (the lowest classification) is required for substances with oral LD50 of 300-2000 mg/kg bw. The LD $_{50}$ for oral toxicity doe not excede 2000 mg/kg bw and thus benalaxyl fulfils the classification criteria for acute oral toxicity cat.4.

However, it should be noted that Regulation EC No 1272/2008 (CLP), section 3.8.1 states that:

"Acute toxicity refers to lethality and STOT-SE to non-lethal effects. However, care should be taken not to assign both classes for the same toxic effect, essentially giving a "double classification", even where the criteria for both classes are fulfilled. In such case the most appropriate class should be assigned."

There is, already, a proposed classification for acute toxicity Cat. 4 on the basis of the LD₅₀ studies with cutoff values of 300-2000 mg/kg bw. The observed mortality is presumably caused by the neurotoxic effects. According to the CLP criteria Guidance on the Application of the CLP,Version 5.0, July 2017, rate of mortalities in rats observed within 72 hours after the first treatment can be considered an acute effect. Mortality seems to be attributed to multiple exposures in the An Oral (Gavage) Dose Range-Finding Acute Neurotoxicity Study of Benalaxyl in Rats RAR-08_Vol-3 CA_B.6.7.1.1.

Based on the available data summarised above, it was demonstrated that the acute neurotoxic effects can lead to mortality at dose levels that are below the classification criteria for acute toxicity Cat. 4. (300-2000 mg/kg bw).

It was reported that acute neurotoxic effects occurred immediately after dosing. Hence, these effects are considered relevant for classification. Some of these effects are indicative of neurotoxicity. At necropsy no test substance-related changes were noted in surviving animals which died at the end of the observation period. In the acute neurotoxicity study, high mortality was observed up to 2000 mg/kg bw per day.

In conclusion, the most sensitive species for assessing acute oral toxicity are rats. The lowest LD50 value in the rat acute tox studies (2000 mg/kg bw for both males and females) shall be used as the basis for classification.

The acute oral LD₅₀ in the rat of 2000 mg/kg bw meets the criteria for Category 4 (300 < ATE (LD₅₀) \leq 2000 mg/kg bw).

The available animal studies clearly indicate that benalaxyl is acutely toxic via the oral route in rat and would support a classification in Category 4. A derived LD50 from acute neurotoxicity studies would deliver a value of ATE of 2000 mg/kg bw, which is also in line with the ATE for oral Acute Tox 4 according to table 3.1.2, Annex I of the CLP regulation.

10.1.3 Conclusion on classification and labelling for acute oral toxicity

Acute Tox. 4; H302

ATE = 2000 mg/kg bw

10.2 Acute toxicity - dermal route

Not evaluated in this report.

10.3 Acute toxicity - inhalation route

Not evaluated in this report.

10.4 Skin corrosion/irritation

Not evaluated in this report.

10.5 Serious eye damage/eye irritation

Not evaluated in this report.

10.6 Respiratory sensitisation

Not evaluated in this report.

10.7 Skin sensitisation

Not evaluated in this report.

10.8 Germ cell mutagenicity

Not evaluated in this dossier in term of a proposal for classification. The genotoxic potential of benalaxyl has been investigated in a battery of *in vitro* and *in vivo* studies. However, a short summary of the RAR regarding mutagenicity is presented, since it may be of importance for the classification of carcinogenicity

Table 14: Summary table of mutagenicity/genotoxicity tests in vitro

Method, guideline, deviations, if any	Test substance	Relevant information about the study including rationale for dose selection (as applicable)	Observations	Reference
Bacterial Reverse Mutation Assay with Benalaxyl Technical OECD TG 471 and US EPA OPPTS 870.5100 GLP/QA: Yes/Yes. No statistics Deviations:No Acceptable	Ben Tech: PL13- 0055 Purity: 98.4% Vehicle: DMSO S9 Mix: 10% v/v S9 fraction, 4 mM β- nicotinamide- adenine dinucleotide phosphate, 5 mM glucose-6- phosphate, 33 mM KCl, 8 mM MgCl2, and 100 mM sodium	S. typhimurium tester strains: TA98, TA100, TA1535 and TA1537 in ± S9 activation E. coli tester strain: WP2 uvrA in ±S9 activation. Preliminary cytotoxicity(range- finding) assay:1.5, 5.0, 15, 50, 150, 500, 1500 and 5000 µg/plate (± S9 Mix) Mutation assays: 50, 150, 500, 1500 and 5000 µg/plate (± S9 Mix)	Initial Toxicity-Mutation Assay - no positive mutagenic responses with any of the tester strains in either ± S9 activation.	RAR-08_Vol-3 CA_B.6.4.1.1 Reference number: CA 5.4.1/01 Anonymous (2014a)
	phosphate buffer (pH 7.4).			

M.41. 3 11 11		Relevant information about the		
Method, guideline, deviations, if any	Test substance	study including rationale for dose	Observations	Reference
deviations, if any		selection (as applicable)	0 22 01 V 4010 1 2	11010101100
Reverse mutation assay "Ames test" using Salmonella typhimurium and Escherichia coli OECD TG 471, EC Method B13/14 and US EPA OPPTS	S9 was prepared from male Sprague-Dawley rats that were i.p. with Aroclor TM 1254 Ben tech: BENAL 102/09 Purity: 98.65% Vehicle: DMSO S9 Mix contained: 5 mL of S9 fraction, 1	S. typhimurium tester strains: TA98, TA100, TA1535 and TA1537 in ±S9 activation E. coli tester strain: WP2uvrA in ±S9 activation 1st experiment (plate incorporation): 50, 150, 500, 1500 and 5000 µg/plate in ± S9 activation	1st experiment - Small but statistically significant increases in the frequency of the revertant colonies were observed in WP2uvrA- at 5000 µg/plate and in TA98 at 1500 µg/plate in the presence of metabolic activation in the 1st experiment only.	RAR-08_Vol-3 CA_B.6.4.1.2 Reference number: CA 5.4.1/02 Anonymous: (2010)
870.5100 GLP/QA: Yes/Yes Acceptable	mL of 1.65 M KCl/0.4 M MgCl2, 2.5 mL of 0.1 M glucose-6-phosphate, 2 mL of 0.1 M NADP, 25 mL of 0.2 M sodium phosphate buffer (pH 7.4) and 14.5 mL sterile distilled water. S9 was prepared in-house from the liver of male rats weighing approx. 250 g. Each rat orally received three consecutive daily doses of phenobarbitone/β-naphthoflavone (80/100 mg/kg bw/day) prior to S9 preparation on day 4.	and 5000 μg/plate in ± S9 activation 2nd experiment (pre-incubation): 5, 15, 50, 150, 500, 1500 and 5000 μg/plate (- S9 Mix); 50, 150, 500, 1500 and 5000 μg/plate (+ S9 Mix)	2 nd experiment – Increasing 2 times the concurrent solvent control, had counts that were within the historical control range for each strain and were not reproducible over 2 separate experiments. Low biological relevance.	
Microbiological mutagenesis study on CRA 109 (M 9834); Genetic mutation test in Salmonella typhimurium (AMES) Test method: No guideline was available. The test complies with EC	Benalaxyl:M 9834; CRA 109 Purity: 98% Lot/Batch: 5532/86 Vehicle: DMSO S9 Mix contained (per mL): S9 equivalent to 50	S. typhimurium tester strains: TA1535, TA1537, TA1538, TA98 and TA100 in ± S9 activation 1st experiment: 2, 20, 200, 500 and 2000 µg/plate (± S9 Mix); 2nd experiment: 200, 400, 800 and 1600 µg/plate (± S9 Mix)	Citotoxicity (Preliminary Toxicity Test): Benalaxyl has presented a strong toxic effect at 2000 µg/plate in the 1st experiment, and at 1600 µg/plate in the 2nd experiment. At these both concentrations, precipitation of the test substance was also observed. The effect was less evident in the presence of	RAR-08_Vol-3 CA_B.6.4.1.3 Reference number: CA 5.4.1/03 Anonymous (1979a)

method B14.	Test substance	study including rationale for dose	Observations	D C
		selection (as applicable)	Observations	Reference
Guidelines and GLP/QA: GLP was not implemented at the time the study was performed. Statistics: No Evaluation criteria: Not indicated. Acceptable Salmonella	mg of fresh rat liver, MgCl ₂ 8 µmol, KCl 33 µmol, Glucose-6-phosphate 5 µmol, NADP 4 µmol, and phosphate buffer (pH 7.4) 100 µmol. S9 was prepared in-house from the liver of male rats weighing approx. 200 g. Rats received a single i.p. injection of Aroclor 1254 in peanut oil at 500 mg/kg bw/d BenalaxylFCF/T	S. typhimurium tester strains:	metabolic activation. Benalaxyl was non- mutagenic ±S9 metabolic activation, while the positive controls were highly mutagenic. Cytotoxicity (Preliminary	RAR-08_Vol-3
typhimurium reverse mutation assay with BENALAXYL Test method: OECD TG 471, and Commission Directive 2000/32/EC, B 13/14, May 2000 GLP/QA: Yes/Yes Acceptable	Purity: 96.49% Vehicle: DMSO S9 Mix contained KCl 33 µM, MgCl2 8 µM, glucose-6- phosphate 5 µM, NADP 5 µM, in sodium ortho phosphate buffer (pH 7.4) 100 µM. The S9 was prepared in- house from the liver of male rats weighing approx. 220-320 g. Rats received a single i.p. injection of Aroclor 1254 in peanut oil at 500 mg/kg bw/d. S9 was 15% v/v in the cultures.	TA1535, TA1537, TA98, TA100 and ± S9 activation 1 st experiment (plate incorporation): 33, 100, 333, 1000, 2500 and 5000 µg/plate (± S9 Mix) 2 nd experiment (pre-incubation): 33, 100, 333, 1000, 2500 and 5000 µg/plate (± S9 Mix)	Toxicity Test): benalaxyl was non-toxic to the strains of bacteria use (TA98 and TA100). In presence of metabolic activation the range of negative or solvent controls was not quite reached in TA1537 and TA100 (2 nd experiment). Benalaxyl did not induce gene mutations by base pair changes or frameshifts in the genome of the strains used.	CA_B.6.4.1.4 Reference number: CA 5.4.1/04 Anonymous (2002a)
_	Benalaxyl:M 9834; CRA 109	Saccharomyces cerevisiae strain D4 1.2 x 108 cells/ml.	Benalaxyl: M 9834; CRA 109 and its possible metabolites, obtained with	RAR-08_Vol-3 CA_B.6.4.1.5

Method, guideline,		Relevant information about the		
deviations, if any	Test substance	study including rationale for dose	Observations	Reference
	I (/D : 1	selection (as applicable)	1' ' '	D. C
9834): DNA damage and repair test (Mitotic gene conversion in Saccharomyces cerevisiae D4) Test method: Main deviations from OECD TG 480 were the use of 4 different concentrations of CRA 109, instead of 5; growing stage (stationary or growing) of cells used was not reported; and the test was not repeated using stationary phase cells to confirm negative results. Guidelines and GLP/QA: N/A: No Guidelines or GLP were compulsory at the time the study was performed. Statistics: No Evaluation criteria: Not indicated	Lot/Batch: 5532/86 Purity: 98% Vehicle: DMSO S9 Mix contained (per mL): S9 equivalent to 75 mg of fresh rat liver, MgCl2 8 µmol, KCl 33 µmol, Glucose-6-phosphate 5 µmol, NADP 4 µmol, and phosphate buffer (pH 7.4) 100 µmol. S9 was prepared in-house from the liver of male rats weighing 200-250 g. Rats received a single i.p. injection of Aroclor 1254 in peanut oil at 500 mg/kg bw/d	Dose level: 8, 40, 200 and 1000 μg/mL (± S9 Mix)	liver microsomes of rats induced with Aroclor, did not increase the frequency of gene conversion for the marker adenine and tryptophan after 16 hours contact with the microorganism. Both positive controls - MMS - Methyl methanesulfonate (200 µg/mL) without S9 mix and CPA - Cyclophosphamide (1500 µg/mL) with S9 mix induced significant increases in gene conversion frequency.	Reference number: CA 5.4.1/05 Anonymous (1979b)
Acceptable Acceptable				
Microbiological Study of Mutagenesis on CRA 109 (M 9834): In vitro Gene Mutation test in Schizosaccharomyce s pombe P1 Test method: In- house method was used that complied with principles of OECD Guidelines 480 (OECD guideline 480 was deleted with effective date 2 April 2014 Test performance: Not reported	Benalaxyl:M 9834; CRA 109 Purity: 98% Vehicle: DMSO S9 Mix prepared from male Icem:CER (SPF Caw) rats, treated with a single i.p. injection of Aroclor 1254	Schizosaccharomyces pombe P1 (SP 198, ade6-60/rad10-198, h-), 1.2 x 108 cells/ml. 0.32, 0.16, 8, 40, 200 and 1000 µg/mL repeated with concentrations of 160, 80, 40 and 20 µg/ml without metabolic activation (1 replication), and concentrations of 800, 400, 200 and 100 µg/ml with metabolic activation (2 replications).	Benalaxyl was toxic at 80 μg/ml and above – S9 activation and at concentration of 1000 μg/ml +S9 activation. It did causes increasing in the frequency of mutation, ± S9 activation, compared to the negative controls. 1st experiment of mutagenic activity of CRA 109 on Schizosaccharomyces pombe P1 after 16 hours contact at 35° C 2nd experiment of mutagenic activity of CRA 109 on Schizosaccharomyces pombe P1 after 16 hours contact at 35° C without metabolic activation	RAR-08_Vol-3 CA_B.6.4.1.6 Reference number: CA 5.4.1/06 Anonymous (1980)

Method, guideline, deviations, if any	Test substance	Relevant information about the study including rationale for dose selection (as applicable)	Observations	Reference
Guidelines and GLP/QA: No GLP or Guidelines were compulsory at the time the test was performed.			2 nd and 3nd experiments of mutagenic activity of CRA 109 on Schizosaccharomyces pombe P1 after 16 hours contact at 35° C with metabolic activation	
Acceptable			CRA 109 was therefore found to be non-mutagenic in this test while the positive standards were highly mutagenic.	
In vitro chromosome aberration test in	Benalaxyl: FCF/T/162-99	Chinese Hamster Ovary (CHO) cells 5 x 10 ⁴ – 9 x 10 ⁴	1 st experiment - Preliminary toxicity test	RAR-08_Vol-3 CA_B.6.4.1.7
Chinese Hamster Ovary (CHO) cells with benalaxyl Test method: OECD TG 473 and EC Method B 10 Guidelines: OECD TG 473 (1997) and EC Method B.10. Compared to current OECD 473 (29 July 2016), exposures without metabolic activation were longer than required (i.e. 24 and 48 h) and only 200 metaphases (100 x culture) were scored per concentration Statistic: Fisher's exact test was used for determining statistical significance. Analytical determinations: Not performed. GLP/QA: Yes/Yes Acceptable	(ex lotto 4) Purity: 96.49% Vehicle: Acetone Non-activation (-S9): Ethyl methanesulfonat e (EMS, purity > 98%; 75 – 250 μg/mL) Activation (+S9): Cyclophosphami de (CPA, purity 98%; 1 μg/mL) S9 Mix contained KCl 33 μM, MgCl ₂ 8 μM, glucose-6- phosphate 5 μM, NADP 4 μM, in sodium ortho phosphate buffer (pH 7.4) 100 μM. S9 was prepared in-house from the liver of male rats weighing approx. 220-320 g, orally received 3 consecutive daily doses of phenobarbitone/	Preliminary 22.3, 44.5, 89.1, 178.1, 356.3, 712.5, 1425 and 2850 μg/mL (-S9) cytotoxicity (range - finding) assay (mM) (±S9 Mix): 22.3, 44.5, 89.1, 178.1, 356.3, 712.5, 1425 and 2850 μg/mL (≅9 mM) (± S9 Mix)	CLEAR TOXIC EFFECT: After 4 hours of treatment with 98.1 μg/mL and above in the absence of S9 mix were observed after and with 178.1 μg/mL and above in the presence of S9 mix. STRONG TOXIC EFFECT: 24 hrs continuous treatment with 44.5 μg/mL and above in the absence of S9 mix. 2nd experiment - Cytogenetic assays: STRONG TOXIC EFFECT: indicated by reduced cell numbers and/or mitotic indices below 50% of control were observed in all parts. Higher concentrations were not evaluable for cytogenetic damage due to strong test item induced toxicity with strongly reduced mitotic indices. In detail, in the absence of S9 mix reduced cell numbers were observed after 4 hrs treatments with 75 μg/mL (54% of control) and after 46 hrs continuous treatments with 37.5 μg/mL (59% of control). Additionally, reduced cell numbers were obtained in the presence of S9 mix at 24 hrs preparation intervals with 100 μg/mL (16% of control).	Reference number: CA 5.4.1/07 Anonymous (2002a)

Mothod guideline		Relevant information about the		
Method, guideline,	Test substance		Observations	Reference
deviations, if any		selection (as applicable)		
In vitro study of the Induction of Chromosome Aberrations by Compound M 9834 in Human Lymphocyte Cultures Test method: Inhouse method was used which complied	β- naphthoflavone (80/100 mg/kg bw/day) prior to S9 preparation on day 4. Benalaxyl: M 9834 (No information: Batch number and purity) Vehicle: DMSO Non-activation (- S9): Mitomycin	Human Lymphocyte Cultures – HLC (from man) - fresh 3.3, 10, 33 and 100 µg/mL	The mitotic indices were clearly reduced in the absence of S9 mix after 24 hrs continuous treatment with 25 µg/mL (47% of control). Benalaxyl was found to be toxic to lymphocyte cultures, especially in the absence of metabolic activation. - number of metaphases equal to the control (every dose) Benalaxyl (M 9834) did not induce any statistically	RAR-08_Vol-3 CA_B.6.4.1.8 Reference number: CA 5.4.1/08 Anonymous (1980)
to a great extent with EC method B10. Guidelines: In-house method was used which complied to a great extent with EC method B10. GLP/QA: N/A: GLP was not implemented at the time the study was performed and no guideline was available Deviations: Main deviations were that specifications of active substance (purity) were not reported. Evaluation criteria: Only metaphases with a number of chromosomes "specific" for the species used, were considered. Possible aberrations were classified as follows: fragments; gaps;	C (1.3 µg/mL) Activation (+S9): Phenacetin (1.28 µg/mL) S9 Mix consisted of S9, plus KCl 33, MgCl ₂ , glucose-6-phosphate, and NADP. No further details are provided. S9 was prepared in-house from the liver of male rats weighing approx. 150-200 g, received a single i.p. injection of Aroclor 1254		significant increases of chromosome aberrations in human lymphocyte cultures, up to 100 µg/mL, both in the ±S9 metabolic activation. The study is negative but should be considered as supplemental on the basis of missing information on batch number and purity.	
breaks; and exchanges. Test performance: Not indicated. Acceptable Evaluation of Galben	Galben Th (=	Hepatocytes – liver (adult male	Benalaxyl (Galben) was	RAR-08_Vol-3
in the Primary Rat			found to be insoluble at a	

Method, guideline, deviations, if any	Test substance	Relevant information about the study including rationale for dose selection (as applicable)	Observations	Reference
Hepatocyte; Unscheduled DNA Synthesis Assay Test method: Test method was based on the procedure described by Williams (1977, 1980) and complied to a great extent with OECD Guideline 482. OECD 482 was deleted in April, 2014. Deviations: Any kind of procedure to block entry of cells into S- phase, the results were evaluated in function of "evaluation criteria" and not by means of a statistical analysis, and no independent experiment was performed to confirm the results. Remarks: The positive control nuclear labelling is not used as a reference point to estimate mutagenic risk associated with the UDS activity of the test material; it is used only to demonstrate that methodology was adequate. Statistics: No GLP/QA: Yes/Yes Acceptable	benalaxyl) Lot/Batch: FCF/T/1354 Purity: 94% Vehicle: DMSO 2-Positive: acetylaminofluor ene (2-AAF; 0.05 µg/mL)	Fisher 344 rat) Dose level: 0.5, 1, 2.5, 5, 10, 25, 50 and 100 μg/mL	concentration of 10 mg/mL in culture medium; cloudy suspensions of material were observed for concentrations down to 100 μg/mL and complete solubility appeared to be maintained at 50 μg/mL and lower. Treatments with 1000 and 250 μg/mL were completely lethal to the cells, and 100 μg/mL caused excessive toxicity. At 50 μg/mL, the survival increased sharply to the level observed for the solvent control cultures and no morphological evidence of toxicity was observed. Galben Th (= benalaxyl), Lot/Batch: FCF/T/1354 with a purity of 94% was inefficient in this test. Only a statement of Quality Assurance Unit (reference 21 CFR 58.35 (b)(7)) was included in the report, which claimed that the test was carried out according to GLP	CA_B.6.4.1.9 Reference number: CA 5.4.1/09 Anonymous (1983)
In vitro Mammalian Cell Gene Mutation Test (L5178Y/TK+/- Mouse Lymphoma Assay) with Benalaxyl Technical Test method: OECD TG 476 and OPPTS 870.5300	Ben Tech PL13- 0055 Purity: 98.4% Vehicle: DMSO Positive controls: Non-activation (- S9):	L5178Y/TK+/ cultured MLC – mouse lymphoma cells (TK+/- assay), cultured mouse lymphoma L5178Y cells were treated with benalaxyl technical in DMSO: 0.781, 1.56, 3.13, 6.25, 12.5, 25, 50, 75, 100 and 150 µg/mL (4-hours treatment with S9 mix prepared from Aroclor treated rats), 3.13, 6.25, 12.5, 25, 50, 75,	Visible precipitate was observed at the concentration of 150 μ g/mL at the beginning and end of the 4-hours treatment \pm S9. Relative suspension growth (RSG) of 26 to 93%, 41 to 101% and 32 to 112%, respectively, and subsequently cells cloned	RAR-08_Vol-3 CA_B.6.4.1.10 Reference number: CA 5.4.1/10 Anonymous (2014a)

Table 15: Summary table of mutagenicity/genotoxicity tests in mammalian somatic or germ cells *in vivo*

		Relevant information		
Method, guideline, deviations if any	Test substance,	about the study (as applicable)	Observations	Reference
In vivo Gene Mutation in Chinese Hamster V79 Cells; Test Substance: Galben TH Test method: In-house method was used that complied to a great extent with OECD TG 476. GLP/QA: N/A: GLP was not implemented at the time the study was performed and no guideline was available. Acceptable	Galben Th (= benalaxyl) FCF/T/1354 Purity: 94% Vehicle: Ethanol Non-activation (-S9): Ethyl methanesulfonate (EMS) Activation (+S9): Dimethylnitrosamine (DMNA) S9 Mix contained (for 10 mL): S9 homogenate 3 mL, MgCl ₂ 50 mM, 0.5 mL, KCl 330 mM, 0.5 mL, glucose-6-phosphate 15 mg/mL minimal medium, 1 mL, NADP 15 mg/mL minimal medium, 0.5 mL, NADPH 15 mg/mL minimal medium, 0.5 mL, DMEM (minimal medoum), 2 mL, Hepes 20 mM, 2 mL.	cultures of Chinese hamster V79 Locus examined: HGPRT Preliminary Assay: 0, 10 ⁻³ M, 10 ⁻⁴ M, 10 ⁻⁵ M, 10 ⁻⁶ M, 10 ⁻⁷ M and 10 ⁻⁸ M Cytotoxicity(rangefinding) assay: 3 x 10 ⁻⁵ M, 1 x 10 ⁻⁵ M, 3 x 10 ⁻⁶ M, 1 x 10 ⁻⁶ M Mutation assay: 3 x 10 ⁻⁷ M transferase transgene (xprt).	Preliminary cytotoxicity assay Benalaxyl was not soluble in the medium at the top dose level of 10 ⁻³ M, while at the dose of 10 ⁻⁴ M (in the absence of S9 mix), it was toxic to the cells (no survival). The same concentration of 10 ⁻⁴ M with metabolic activation resulted in 56% survival of cells. Mutation assays – mutation frecquency not significant increase in the ±S9 activation. Positive control – significant increases. Benalaxyl not induce gene mutation in cultured Chinese hamster V79 cells. Fibroblast colonies of Chinese hamster V79 cells have ability to metabolise a toxic purine analogue (6-thioguanine – 6-TG) by the enzyme hypoxanthine-guanine-phosphoribosyl-transferase (HGPRT) into nucleotides (selecting the HGPRT-deficient cells through recessive mutation). Since the gene which codes for the enzyme HGPRT is located on the X chromosome, of which only one copy is present in male cells, a single mutation is sufficient to evidence this resistance.	RAR-08_Vol-3 CA_B.6.4.1.11 Reference number: CA 5.4.1/11 Anonymous (1983)
Benalaxyl Technical is not genotoxic Test method: N/A: evaluation of available data Guidelines and GLP/QA: No/N/A Acceptable. International Workshop	Benalaxyl tech.	Ten in vitro genotoxicity and three in vivo genotoxicity assays have been conducted over 35 years.	All tests were negative for genotoxicity except gene mutation assay on L5178 TK+/* mouse lymphoma Additional TK data were provided and reveal a significant bone marrow exposure at Tmax.	RAR-08_Vol-3 CA_B.6.4.1.12 Reference number: CA 5.4.1/12 Anonymous (2014)

Method, guideline, deviations if any	Test substance,	Relevant information about the study (as applicable)	Observations	Reference
on Genotoxicity Testing (IWGT; Thybaud et al., 2007) and European Food Safety Authority (EFSA, 2011).				
In Vivo Micronucleus Assay in Rats using Benalaxyl Technical All dose formulation - 10 mL/kg by i.p. (CP by oral gavage) Test method: OECD TG 474 and OPPTS 870.5395 Remarks: All criteria for a valid study were met. Guidelines and GLP/QA: Yes/Yes Statistics: Statistical significance was determined using the binomial distribution (Kastenbaum-Bowman tables). Acceptable	Benalaxyl tech. Lot/Batch: PL13-0055 Purity: 98.4% Vehicle control: 0.5% methylcellulose (400 cPs) aqueous solution in deionized water Control: 0.5% methylcellulose aqueus solution (negative) and positive (cyclophosphamide – CP) Dose Range - finding toxicity tests: 500, 600 and 700 mg/kg (1st study) Toxicity test: 100, 200, 300 and 400 mg/kg (2nd study) Micronucleus assay: 68.75, 137.5 and 275 mg/kg 68.75, 137.5 and 27	Bone marrow cells [polychromatic erythrocytes (2000 PCEs/animal)] The test animal: Rats, strain Sprague-Dawley (Hsd:SD 3/sex/dose - DRF study 5 males (Groups 2,3 and 5, i.e. low, mid dose and positive control, respectively) 10 males (Group 1 and 4, control and high dose).	Range finding (toxicity tests) 1st DRF study: - mortality 2/3 m and 1/3 f at 500 mg/kg bw/d 1/3 m and 3/3 f at 600 mg/kg bw/d 2/3 m and 2/3 f at 700 mg/kg bw/d (2/3 m and 2/3 f at 700 mg/kg bw/d (m) and at 500 mg/kg bw/d (m) and at 500 mg/kg bw/d (f) and 700 mg/kg bw/d (f) Lethargy and piloerection in at 500 mg/kg bw/d (m) Piloerection and prostration at 600 mg/kg bw/d (f) 2nd DRF study - mortality 1/3 m and 1/3 f at 300 mg/kg bw/d 2/3 m and 1/3 f at 400 mg/kg bw/d -clinical signs: Lethargy and piloerection at 400 mg/kg (m + f) at 300 mg/kg bw/d (f) MTD = 275 mg/kg bw/d Micronucleus assay - No mortality occurred at any dose level during the course of the definitive assay. -Clinical signs: Lethargy, piloerection and prostration at 275 mg/kg. bw/d -Citotoxicity: No appreciable	RAR-08_Vol-3 CA_B.6.4.2.1 Reference number: CA 5.4.2/01 Anonymous (2014)

Method, guideline, deviations if any	Test substance,	Relevant information about the study (as applicable)	Observations	Reference
			reductions in the PCEs/EC ratio in the test substance groups compared to the vehicle control group. No statistically significant increase in the incidence of MnPCEs in the test-substance treated groups was observed relative to the negative control group (p > 0.05, Kastenbaum-Bowman tables). The positive control induced a statistically significant increase in the incidence of mnPCEs (p < 0.05, Kastenbaum-Bowman tables). The number of MnPCEs in the vehicle control groups did not exceed the historical control range. Benalaxyl tech no induce a significant increase in the incidence of micronucleated polychromatic erythrocytes. It was negative or nonclastogenic in the in vivo Micronucleus assay in male rats. Administration of Benalaxyl tech at doses up to and including a dose of 275 mg/kg bw/dwas concluded to be negative in the micronucleus	
Plasma and Bone Marrow Concentrations of [14C]-Benalaxyl in Male Sprague Dawley Rats Following a Single Intraperitoneal Administration of [14C]-Benalaxyl Test method: OECD TG 474 Guidelines GLP/QA: Yes/Yes Statistics: Statistical significance was performed. Acceptable	Radiolabelled: [14C]-UL-Dimethylphenyl-Benalaxyl Lot/Batch: 80534-04-28 Radiochemical Purity: 99% Specific Activity: 0.19 µCi/mg (61 mCi/mmol) Chemical purity: 99% The test material – Non-Radiolabelled: Benalaxyl Lot/Batch: G333:87 Purity: 99% 4 male Sprague Dawley rats 275 mg/kg bw/d (200 µCi/kg; 10 mL/kg) Vehicle: 0.5% (w/v) methylcellulose (400 cps) in deionized water	Species: Rat Strain: Sprague-Dawley Age: 6-7 weeks Weight at dosing: M	Results: [14C]-Benalaxyl was present in both the plasma (32505 ng equiv/g) and bone marrow) at 275 mg/kg bw/d and at 0.5 h post-dose.	RAR-08_Vol-3 CA_B.6.4.2.1- 01bis Reference number: CA 5.4.2/01bis Anonymous (2018a)

Method, guideline, deviations if any	Test substance,	Relevant information about the study (as applicable)	Observations	Reference
	Blood and bone marrow were collected at 0.5 h post-dose (tmax, as determined in ADME studies) and processed.			
Micronucleus induction in bone marrow cells of rats treated by intraperitoneal route with the test article Benalaxyl Tech Test method: OECD TG 474 and EC method B.12 Guidelines and GLP/QA: Yes/Yes Acceptable	Benalaxyl technical Lot/Batch: FCF/T/95-91/1997 Purity: 96.68 ± 0.95% Vehicle: 0.5% (w/v) methylcellulose aqueous solution Control materials: Negative: 0.5% methylcellulose aqueous solution Positive: Cyclophosphamide (CP Dose Level: (a) Dose Range-finding: 600 and 700 mg/kg toxicity tests: (b) Micronucleus assay: 125, 250 and 500 mg/kg bw/d	Rat Strain: Sprague- Dawley (Crl:SD) 9 weeks (main study) Males and females: 218-356 g (main study) Number of animals: 3/sex/dose in the DRF studies 5/sex/dose in the main study	injection at doses up to and including a dose of 500 mg/kg bw/d was concluded to be Results: 125, 250 and 500 mg/kg bw/d: - not induce statistically significant increase in the frequency of micronucleated cells in the bone marrow 24 and 48 hours from the administration 500 mg/kg bw/d: no significant change in the PCE/NCE ratio was observed, systemic exposure was demonstrated by the death of one male and 4 females treated	RAR-08_Vol-3 CA_B.6.4.2.2 Reference number: CA 5.4.2/02 Anonymous (2000)
In vivo Study of the Induction of Chromosome Aberrations in the Chinese Hamster by Compound M9834 Administred Orally Test method: Study did not complied with EC method B11 for the following reasons: only 2 animals/sex/group were used (instead of 5/sex/group); Remarks: The study was conducted and in 2000 on micronucleus (B.6.4.2.2) and in 2014 (B.6.4.2.1) Guidelines and GLP/QA: GLP were not compulsory at the time the test was performed. Statistics: Yes Deviations: Deviations from EC method B11. Acceptable as additional information taking into consideration deviations from currently accepted Guidelines.	Benalaxyl technical (M 9834) Oral (gavage) twice in 24 hours Chinese hamsters groups: 2 m and 2 f Dose levels were set on the basis of available data, with the highest dose level close to the LD ₅₀ . Six hours after the second treatment, all animals received an i.p. injection of colchicine at the dose of 6 mg/kg bw/d (10 ml/kg). Vehicle: 0.5% methyl cellulose aqueous solution Negative (vehicle, 10 mL/kg) Positive (mitomycin C (MMC) 10 ml/kg solution in sterile physiological saline (i.p. injection) Dose level: 1000, 2000 and 4000 mg/kg bw/d M 9834 suspended in methocel	3 animals died after repetition of dosage; only one sampling time was performed (7 hours after last treatment) instead of two sampling time at 6 and 24 hours; and specifications of active substance (purity) were not reported	At 2000 mg/kg bw/d -2 animals and one treated with MMC died after the second treatment. It was observed that MMC induced statistically significant increases of chromosome aberrations both including and excluding gaps. 4000 mg/kg bw/d -no clastogenic activity This study is not reliable on to fulfil requirements regarding in vivo genotoxicity testing.	RAR-08_Vol-3 CA_B.6.4.2.3 Reference number: CA 5.4.2/03 Anonymous (1980)

Table 16: Summary table of human data relevant for germ cell mutagenicity

No study available.

10.8.1 Short summary and overall relevance of the provided information on germ cell mutagenicity

The genotoxicity of benalaxyl has been adequately investigated in standard tests. In all of these assays, benalaxyl was examined at dose levels up to those causing clear toxicity in the test system or insolubility

The potential of benalaxyl to induce mutagenic effects was investigated in 10 in vitro and 3 in vivo tests developed over 35 years. Nine of ten in vitro and all three in vivo studies were negative for genotoxicity. They adequately cover all genotoxicity endpoints such as structural and numerical chromosomal alterations and induction of gene mutations.

All tests were negative or within some uncertains for genotoxicity except the forward gene mutation assay (Anonimous, 2014) on the L5178 TK+/' mouse lymphoma assay test system. In this study, the primary focus were dose-related positive results obtained following four hours exposure in the presence of metabolic activation. The increased mutant frequency was related mainly to small colonies, thus suggesting a clastogenic rather than a mutagenic event. Therefore, the result of Gene mutation in L5178Y cells (TK+/- Mouse Lymphoma Assay) \pm S9 mix is a precipitate observed at 150 μ g/mL at the beginning and end of the 4-h treatment launching the ipothesis that \pm S9 mix the induction of small colony mutants is usually associated with chemicals that induce gross chromosome aberrations and not gene mutation).

Therefore, the result of Gene mutation in L5178Y cells (TK+/- Mouse Lymphoma Assay) \pm S9 mix is a precipitate observed at 150 μ g/mL at the beginning and end of the 4-h treatment launching the ipothesis that \pm S9 mix the induction of small colony mutants is usually associated with chemicals that induce gross chromosome aberrations and not gene mutation)

It has been conducted and a supportive study on toxicokinetic (TK) to quantify the Plasma and Bone Marrow Concentrations of [14C]-Benalaxyl in Male Sprague Dawley Rats Following a Single Intraperitoneal Administration of [14C]-Benalaxyl (Anonymous, 2018a). Additional TK data were provided and showed significant bone marrow exposure at Tmax. For a single intraperitoneal administration to rats at 275 mg/kg bw per day, a presence of the radiolabelled and non-radiolabelled benalaxy 114C]-benalaxyl was determined in plasma and bone marrow – after 0.5 h post-dose administration, as plasma (32505 ng equiv/g) and bone marrow (34664 ng equiv/g), respectively.

That both micronucleus studies were confirmed to be negative on the basis of these TK data provided.

The results are unconclusive for a suitable classification.

10.8.2 Comparison with the CLP criteria

Not relevant.

Conclusion on classification and labelling for germ cell mutagenicity

Not relevant.

10.9 Carcinogenicity

Long-term study for carcinogenicity has been investigated in rats, mice and dogs and a detailed results are comprehensive listed in the tables below.

Table 17: Summary table of animal studies on carcinogenicity

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results	Reference
Short-term range finding study of Evaluation of Chronic Toxicity and Oncogenic Potential of Galben (CAS No. 71626-11-4) in Swiss Mice (Oral Dosing Study) The 13-week mouse study was considered as a Dose range-finding study, not suitable for the derivation of a NOAEL Oral (dietary) Method: In house method Swiss mice 20/sex/group (6) Weekly: - Measurements of individual body weight, food and water consumption - Observations for group behaviour, mortality, and toxic signs, and lesions at clinical examination Remarks: This is a range-finding for setting dose levels to be used in the main carcinogenicity study. No ophthalmological, haematological or biochemical examinations were performed. GLP/QA:N/A: RF study	Benalaxyl: any information Dose levels: 0, 500, 1000, 2000, 3000 and 5000 ppm (0, 80.25, 160.5, 321, 481.5, 802.5 mg/kg bw/day for males and 0, 90.75, 181.5, 363, 544.5, 907.5 mg/kg bw/day for females) After 40 days of treatment, 10 surviving animals/sex/group were sacrificed; terminal sacrifice was conducted at the end of 90 days of treatment.	The 90-day study in mice was conducted manly as tolerability test, in order to set dose levels for the main carcinogenicity study. Given that no hematology or clinical chemistry was performed, changes in liver weight that was used for setting the high dose level in the carcinogenicity study. Dose levels tested: 5000 ppm - marked toxic effect in liver weight. 3000 ppm was selected as the highest dose level for the long-term study. The NOEL was 500 ppm due to equivocal increased liver weight at 1000 ppm in females. Proposed NOAEL = 2000 ppm equivalent to 320.6 mg/kg bw/day (m) and 363.0 mg/kg bw/day (f) based increased liver weight at 1000 ppm, but not set based on equivocal and not associated effects on liver with histopathological changes. Results: No mortality at all dose levels. Body weight, water and food consumption were not affected by treatment Clinical observation did not reveal any abnormality that could be related to treatment, apart from an excessive waste of food caused by mice treated with 5000 ppm. Clinical chemistry: 10000 and 12000 ppm at week 5: ↑ cholesterol (m + f) This observation was confirmed for animal treated at 10000 ppm at week 13 while the parameter had returned to normal values after the recovery period in those treated at 12000 ppm. 1000 and 10000 ppm: ↓ ucose (f) urea in females at 100 and 10000 ppm: ↓ urea (f) 100 and 10000 ppm: ↓ SGPT (m) 100, 10000 and 12000 ppm: ↑ total proteins (f) 10000 ppm: ↑ alpha ₂ -globulins (m + f) 100, 10000 and 12000 ppm: ↑ total proteins (f) 10000 ppm: ↑ alpha ₂ -globulins (m + f)	RAR-08_Vol-3 CA_B.6.3.2.1 Reference number: CA 5.3.2/01 Anonymous (1985)
Acceptable		There were alterations in urinalysis parameters. Histopathological examination: brain, thymus with mediastinal lymph nodes, lungs, liver, spleen, pancreas,	

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results	Reference
no/group	exposure	kidneys, adrenals, stomach, duodenum, colon, rectum, urinary bladder, uterus, ovaries, testes with epididymis. 1000 and 10000 ppm: ↑ absolute and relative liver weights (m) 10000 and 12000 ppm: ↑ realative weight (f) 10000 ppm: ↑ relative kidney weight (m + f) 100 ppm: ↑ the relative pituitary weight (m) 10000 ppm: ↓ of absolute spleen weight (f) 100 ppm: ↓ relative spleen weight (f) 10000 ppm: ↓ diffuse steatosis in the liver (m + f) more	
		severe in males The same lesion was observed sporadically in animals from the other groups in which, however, consisted of mild perilobular steatosis. 10000 ppm: Sporadic cases of necrosis, limited to a few myocardial fibres, were also observed in the heart (m) 1000, 3000 and 5000 ppm (at 2000 ppm the increase was only significant at the 40-day sacrifice) - Liver weight was significantly and dose-related increased in females treated, and in males treated with 5000 ppm Necropsy: lobulation of liver was evident in several males at 1000 and 10000 ppm, associated in some cases, with rounded edges (This finding was also present sporadically in animals of the other groups). In females at 10000 ppm the liver appeared darker than	
Lifetime oral dosing studies in rats: combined oncogenicity and chronic toxicity of GALBEN technical (M 9834) Oral (dietary) Test method: Test method complied with EPA proposed guidelines for registering pesticides in the US (Fed. Reg. 43, No. 163, 1978). 65 Sprague-Dawley rats/sex	Galben technical M9834 (= benalaxyl) Lot/Batch: FCF/T/1213 Detailed impurities profile included in the report Purity: 96.8% Vehicle and/or positive control: Certified NIH No positive control – not required Dose levels: 0, 4, 10 and 1000 ppm, equivalent to 0, 4.42 mg/kg	normal; females appeared more affected than males. No significant differences in bwt/bw gain between the treated and control groups; No consistent differences in food and water consumption were observed. Survival - 47 - 61% of animals of each group died during the study. All animals which died, killed when moribund or killed at termination were necropsied. Only few statistically significant differences were found between the control and test animals (increase in percentage of eosinophils in females at 1000 ppm at week 52; increase in erythrocyte counts in females at 4 and 100 ppm at 18 months; and increased reticulocyte count in females at 4 ppm at 24 months). Since all values were within the normal range for this age and strain of rats, and no dose-response relationship was noted, these differences were not considered treatment-related. After 12 months: Histopathology was performed on all rats. The brain,	RAR-08_Vol-3 CA_B.6.5.1.1 Reference number: CA 5.5 /01 Anonymous (1985)Anonym usAnonymusAn onymus

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results					Reference
Strain: Crl:CD(SD) Guidelines and GLP/QA: Yes/Yes: The study was carried out according to GLP (21 CFR, Part 58)	5.64 mg/kg bw/day in females 5.64 mg/kg bw/day in females 104 consecutive weeks - 24 months The dose levels were selected on	heart, kidneys, liver, weighed after 12 mor After 24 months: Histopathology was p Corneal opacities we					
Acceptable		and were attributed to (SDA) virus infection integrity of this study Haematological para differences: (within t strain of rats, and no 1000 ppm at week 52	n, which had meters — a fe the normal rat dose-respons	no effect of w statistica nge for this	on the		
	Anonymous: (1985)	4 and 100 ppm at 18 4 ppm at 24 months: Clinical chemistry:	† reticulocy	te count (f)	s (f)	
			Sex and dose Male	e level (ppm)	male		
		Parameter	10 10		10	10	
		0 2	0 00	0 4	0	00	
		6 months	5 26 45	27 33	21	24	
		LDH (IU/L) $\begin{vmatrix} 36 \\ 7 \end{vmatrix} \begin{vmatrix} 35 \\ 6 \end{vmatrix}$		27 33 7	31 2	24	
		Potassium (meq/L) 4.5 4.	.7 4.8 4.7	4.3 4.2	4.2	4.1	
		LDH (IU/L) 10 11 52 32		58 73 9 1	69 6	74 6	
		Potassium (meq/L) 5.1 5.1 5.1	3 5.0 4.8	4.1 4.2	4.1	4.1	
		LDH (IU/L) 27 30 Potassium 4.4 4.4	4 5*	30 33 3 4	26 1	32 9	
		(meq/L) 4.1 4. 24 months		3.8 3.5	4.0	4.3	
		LDH (IU/L) 10 10 50		11 10 71 74	95 0	10 97	
		Potassium (meq/L) 4.8 4.		4.0 4.2	4.0	4.1	
		*: p≤0.05 18 months:					
		dose-related					
		1000 ppm statistical comparison to contro		LDH (m)	only	at in	
		1000 ppm †serum po controls	otassium level	ls in comp	arison	to	
		No biologically signi were noted at urinaly		nces amor	ıg gro	ups	
		Ocular abnormalities in the opinion of the related to administrate and unilateral nature.	veterinary op tion of benela	hthalmolo	gist, r	not	

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results									Reference
		1000 ppm at 2 weight (10%)		nths:	incre	ases in	relat	ive h	neart		
		2 and 100 ppn weights of fer								ary	
		Macroscopic (galactoceles) in females of	in ma	amma	ry gla	ands, v	which	wer	e obs		
		100 ppm: ↑ hy	00 ppm: ↑ hyperkeratosis of oesophagus (m)								
			000 ppm: \(\gamma\) chronic (lymphocytic) inflammation and/or brosis, involving \(\gamma\) the Harderian (m)								
			00 ppm: ↑ submucosal lymphoid hyperplasia in the rge intestine (m)								
		100 ppm: ↑ di	lated,								
		4 and 100 ppr (m)	and 100 ppm: ↑ macrophages in cervical lymph nodes								
		4 ppm: ↑ meso	ppm: ↑ mesenteric lymph nodes congestion (f)								
			and 100 ppm: ↓ glandular/lobular hyperplasia in nammary glands (m)								
		100 ppm: ↓ ch	ronic	prost	atitis	(m)					
		100 ppm: ↓ ha	nemos	sidero	sis in	the sp	leen	(m)			
		4 ppm: ↓ haen	nosid	erosis	in th	e sple	en (f)				
		4 ppm: ↑ retic (m)	uloen	dotel	ial cel	l hype	erplas	ia in	the s	pleen	
		4 ppm: ↓ erytl	nroid	hypop	olasia	(f).					
		1000 ppm: ↑ r	elativ	e hea	rt wei	ight (n	n)				
		4 and 100 ppn	n: ↓ab	solut	e ova	ry wei	ghts ((f)			
		Neoplasms: at	fter 12	2 mon	ths.						
		19 in total in a observed mici				ding t	he co	ntrol	s) we	ere	
		Organ &			se level	(ppm)	r-	-1			
		tumour (or lesion)	Male 0	4	10	100	Fema 0	ale 4	10	10	
		Adrenals – No.	54	51	55	53	54	5 5	54	55	
		examined Medulla, carcinoma	9	6	7	8	4	4	1	1	
		(Medullary hyperplasia) 1 6 4 0 1 1 0 2									
		Brain – No. examined	54	52	55	54	54	5	54	55	
		Astrocytoma	0	1 0	1 0	2	0	0	0	0	
		Ependymoma Liver – No.	54	52	55	54	54	55	54	55	
		Adenoma,	examined Adenoma,								
		neoplastic nodule	0	0	0	0	0	0	1	3	

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results									Reference
		Heaptocellular carcinoma	1	2	1	0	1	3	1	1	
		Reticulum cell sarcoma (multiple organ)	0	2	0	1	3	3	1	0	
		Pancreas – No. examined	54	52	55	54	53	55	54	54	
		Islet cell adenoma	5	6	6	4	1	3	0	1	
		Islet cell adenocarcino ma	0	1	1	1	0	0	0	0	
		Parathyroids – No. examined	50	45	38	53	47	46	49	52	
		Adenoma	1	2	4	0	0	1	1	0	
		Pituitary – No. examined	53	50	54	53	54	51	51	53	
		Adenoma Adenocarcin	22	18	25	20	42	40	41	47	
		oma	0	0	1	0	0	0	1	0	
		Thyroid – No. examined	53	51	55	54	53	51	54	55	
		Parafollicular cell tumour (C- cell)	5	5	12	3	5	8	2	8	
		Follicular adenoma	2	0	0	1	0	0	1	0	
		Follicular adenocarcino ma	0	1	2	0	0	0	0	1	
		- Adrenal's mo 100 ppm, which and/or liver									
		- Brain: Intrac	erebr	al ast	rocyto	omas a	and ep	endy	mon	na	
		- Liver: A tota were observed 3%, which is a spontaneous h incidence of h greater in fem statistically sig	l, representation library legandre lega	resent atible ocellui ocellui at 100	ing a with lar ne lar ne	popul the fro oplasi oplasi	ation equen ns. Al n was	frequey of the cy of the c	iency f gh th nd to	of e be	
		- Mammary gl frequent amor adenocarcinor	ıg all	fema	le gro	ups (r	ange:	38-5	52 %		
		- Reticulum cell sarcoma was the most frequent malignant neoplasm showing multiple organ involvement in ten rats (2.3%)									
		- Pancreas: Isl males and not groups (range	ed wi	th sin	nilar f						
		- Parathyroid: parathyroids v distinction wa and adenoma;	vere a	ıll cla sible	ssifie betwe	d as a en "n	denon odula	nas, a r" hy	as no perpl	asia	

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results									Reference
		incidence, th	ne effe	ect wa	s not a	ttribute	ed to	admi	nistr	ation.	
		- Adenomas all female gr among male	roups	(range	e 78 to	89%)					
		- Thyroid: p males and fe			r cell h	yperpla	asia :	and ti	ımoı	ırs in	
			Sex a		e level (ppm)	Fen	nale			
		Parameter	0	4	100	1000	0	4	100	10 00	
		Total No. of animals with primary tumours / Total primary tumours	40 / 62	36 / 60	46 / 73	39 /56	5 2 / 1 0 6	51 / 99	47 / 84	52 / 94	
		No. of tumours / animal bearing tumours	1.5 5	1.6 7	1.59	1.44	2. 0 4	1. 94	1. 7 9	1.8	
		Total No. of animals with metastatic tumours / Total metastatic tumours	2/2	3/3	0/0	5/5	6 / 6	9/9	2 / 3	3/3	
		No. of metastatic tumours / animal bearing tumours	0.0	0.0	0.00	0.13	0. 1 2	0. 18	0. 0 6	0.0	
		The systemi significant in (at 18 month increased at significance concurrent h	ncreas ns but 24 mo), and nistopa	not at not at onths by an atholo	OH and the en but wit increa gical fi	IK at the door of the thout standings	he to e stu tatist art w	p dos dy, K ical reight	se in K was	s also nout	
		The heart we cannot be di	eight t smiss	ed and	d all ag	reed at	100	ppm			
		mg/kg bw per day for m and f, respectively). Astrocytoma was considered the most critical effect.								4	
		No HCD we Incidences of information	ere ava	ailable ocytoi	e for the	e perfo e avail	rmin able	ıg lab			
		Carcinogen per day for r increased in absence of d	potent nale a cidenc	tial at and feace at 1	100 pr male, r 000 pr	om (4.4 especti om in n	2/5.0 vely) with	n the	bw	

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results	Reference
		Based on the occurrence of astrocytomas in the rat study, a classification as Carc. Cat 2 is appropriate.	
Evaluation of chronic toxicity and oncogenic potential of GALBEN (CAS No. 71626-11-4) in Swiss mice (Oral Dosing Study) Oral (dietary) Test method: In-house test method and EPA (44 FR 27334, 1979) 60 Swiss mice 78 consecutive weeks Measurements of individual body weight, food and water consumption were performed weekly for the first 13 weeks, and then bi-weekly. Observations for group behaviour and mortality were done 3 times a day (twice daily on holidays and weekends); individual behaviour, pharmacologic and toxic signs, and lesions detectable at clinical examination, were recorded once weekly. Haematological examination, were recorded once weekly. Haematological examinations were performed before the beginning of treatment, and at 52 and 78 weeks (terminal sacrifice) on 10 animals/sex/group. Clinical chemistry was conducted at week 78 in 10 animals/sex/group. A complete necropsy was performed for each animal that spontaneously died or	Galben (= Benalaxyl) Lot/Batch: Not indicated Purity: 94% Vehicle as a powdered diet / No positive control – not required Dose level: 0, 250, 1000 and 3000 ppm (44.93, 180.87 and 558.87 mg/kg bw/day for males and to 42.93, 174.26 and521.73 mg/kg bw/day for females) for 78 consecutive weeks. The highest concentration was chosen on the basis of the preliminary 90-day rangefinding study, in which this concentration produced detectable toxic changes (see CA 5.3.2/01).	Body weight gains appeared to be affected in treated males from the week 33 to the end of the study. Differences from control ranged from 5 to 10% but the effect was more evident at 250 ppm and there was no dose-relationship. No consistent differences in food and water consumption were observed. 1000 and 3000 ppm: ↓ Survival (m) related to amyloidosis At all doses: ↓ bw gain (m) 3000 ppm: ↑absolute and relative liver weight (f) Clinical chemistry: 52 weeks ↓ red blood cell count at in female mice of all treated groups 76 weeks no significant difference was observed. Analysis of organ weight data showed statistically significant increases in absolute and relative liver weight (p < 0.01) in females treated at 3000 ppm. Pathological observations: Liver weights: Sex and dose level (ppm)	RAR-08_Vol-3 CA_B.6.5.2.1 Reference number: CA 5.5 /02 Anonymous (1985)

Method, guideline,	Test substance,		
deviations if any,	dose levels	Results	Reference
species, strain, sex,	duration of	Results	Reference
no/group	exposure		
was sacrificed.		60 animals).	
Weights of brain,		This dose exceed the MTD.	
pituitary, thyroid,		Neoplastic:	
thymus with		•	
mediastinal lymph nodes, lungs, heart,		3/60 mice - type of bladder transitional cell tumour was observed in males treated at 3000 ppm (3 tumours/60	
liver, spleen, kidneys,		animals). Such tumours were not observed in females or	
adrenals, ovaries and		with the lower dose levels.	
testes were recorded. Histopathological		Two of these tumours were detected only at microscopic	
examination was		examination and were at a very early stage, and one was	
carried out on all		observed at gross examination at necropsy.	
tissues and organs		Respective latency time were 45, 54, and for the tumour	
taken at necropsy in		observed at necropsy, 68 weeks from the start of the	
the highest dose and control group.		treatment.	
All gross lesions, brain, Zymbal glands,			
thymus and			
mediastinal lymph			
nodes, lungs, liver,			
spleen, kidneys, adrenals, stomach			
(fore and glandular),			
urinary bladder,			
prostate, uterus,			
ovaries, testes and epididymis were also			
roiutinely examined in			
the other groups.			
Guidelines and			
GLP/QA: N/A:			
Yes/Yes.			
Statistics: Statistical			
analysis was			
performed by means of analysis of variance			
(ANOVA), Tukey test,			
Yates' correct test			
(Snedecor and			
Cochran, 1967), Mantel test or Fisher's			
exact test, the effect of			
different doses was			
estimated according to			
Cochran-Armitage tests for linear trends			
in proportions and			
frequencies (1955).			
Acceptable			
	GALBEN® (CAS	It was concluded that two positive results obtained in	RAR-08_Vol-3
Carcinogenicity study in the mouse: Data on	No. 71626-11-4)	controls of 1981 were still lower than results obtained in	CA_B.6.5.2.2
m uic mouse. Data oll			

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results	Reference
historical controls – Swiss mice Attachment to the Final Report Evaluation of chronic toxicity and oncogenic potential of GALBEN® (CAS No. 71626-11-4) in Swiss mice (Oral Dosing Study) Guidelines and GLP/QA: N/A Acceptability: The older historical controls (from 1977 to 1979) were not reliable on, due to the lack of information about the protocol/techniques of preservation/microsco pic examination as well as time of sacrifice of surviving animals.	GALBEN (=Benalaxyl)	the high dose group of BT 5004 study, and were of little weight of evidence about the frequency of that kind of tumours in untreated animals. There were marked differences among the general tumour incidence in the various experiments. Study No. (Year) BT BT BT BT 305 BT 5004(2) 5006(3) (1977) (1977) (1977) (1979) (1979) (1979) (1981)	Reference number: CA 5.5 /03 Anonymous (2000)
Historical control carcinogenicity data were available. The data set consisted of 6 studies (in addition to the study with benalaxyl) performed at the testing facility between 1977 and 1981.			
BT 5004: Evaluation of chronic toxicity and oncogenic potential of Galben (CAS No. 71626-11-4) in Swiss mice (oral dosing study). Pathology Peer Review of Urinary Bladder Tumours Guidelines: N/A GLP/QA: Yes/Yes Acceptable	Galben (CAS No. 71626-11-4) Galben (=Benalaxyl)	A pathology peer review (PPR) was conducted in 2001 on sections of urinary bladder tumours from 3 male Swiss mice used in the oncogenicity study CA 5.5 /03 It was considered the study pathologists diagnosis of "transitional cell carcinoma" for the 3 lesions in question to be incorrect and made a diagnosis for the 3 lesions of "submucosal mesenchymal tumour" of the mouse urinary bladder. The results of the study revealed that the tumors observed are therefore not relevant to the human risk assessment.	RAR-08_Vol-3 CA_B.6.5.2.3 Reference number: CA 5.5 /04 Anonymous (2001a)
BT 5004: Evaluation of chronic toxicity and	Galben	The 3 sections of urinary bladder from animals Number 82, 98 and 100, by the study pathologists (SP) and the	RAR-08_Vol-3 CA_B.6.5.2.4

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results					Reference		
oncogenic potential of Galben® (CAS No. 71626-11-4) in Swiss mice (oral dosing study)	Galben (=Benalaxyl) CAS No. 71626- 11-4)	PPR Reference number examined by the PW chairman, none of the knowledge of the studiagnoses.	G panel. W members o	ith the ex of the PW	ception of G had pr		Reference number: CA 5.5 /05		
Report of the Pathology Working Group on Urinary Bladder Tumours		The slides label conta dosage levels or the t animals had been ass examined, the panel of the biological signific	reatment gr gned. Afte nembers w	roup to wir the slide ere asked	hich the es had bee	en	Anonymous (2001b)		
Guidelines and GLP/QA: N/A Acceptable		The results of the PW PPR. None of the 3 u considered to be transunanimous agreemen mesenchymal tumour described by Halliwe considered "transition diagnosis.	e was er as oants						
		This lesion has been a years under a variety diagnostic terms inclusubmucosal atypical atumours, leiomyosard decidual-like reaction	stic le						
		Controversy as to aet classification of the le or not the lesion show	sion still e	xists incl	uding wh				
		Assuming that the less nature is important si spontaneous and cher urinary bladder tumo	nce the vas	t majority uced mou	y of ise and hu				
Study of the toxicity	Galben	Dose level:					RAR-08_Vol-3		
of repeated oral administration of	(=Benalaxyl)	Dose level 0	10	200	800		CA_B.6.3.2.5		
product M 9834	FCF/T/1198	(ppm) Males 0	0.32	6.5	25.2		Reference		
(GALBEN) to Beagle dogs at the dosage	Purity: 92.5% - (Detailed	Females 0	0.33	7.0	27.8		number: CA 5.3.2 /05		
levels of 10, 200 and 800 ppm for 52 weeks	impurities profile included in the report)	(mg/kg/day) Histological findings tubules of the testes i	rous	Anonymous (1982)					
Guidelines Test		Bw and food consum							
method was not specified in the report (in house method), but detailed test procedure was included in report (along with RBM		Benalaxyl dispersed i at 0 (basic diet), 10, 2 daily, 7 days a week, Beagle dog/group for							
Standard Operating		All animals survived	to the sche	duled nec	cropsy.				
Procedures) and complied to a great extent with OECD		No clinical observation ophthalmic examination weights or food constitutions.	on finding	s, change	s in body				

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results					Reference					
Guideline 409		parameters.										
GLP/QA: Yes/Yes The study was claimed		No test substandand clinical che			s in haema	tological						
to be carried out according to GLP		Macroscopic ex determinations										
(Fed. Reg., Vol. 43, n.° 247, 1978 – Part 58) by RBM Management. The report also includes a QA statement.		There was no ac with benalaxyl haematology, b weight or macro	in sympto lood chem oscopic ex	matology, nistry, urin xamination	body weig alysis, fae as.	ght,						
Statistics: Yes			Idematology and coagulation parameters Iterations of MCHC, †n all treated groups at week 6 and									
Standard laboratory dog diet (detailed		↓ at 10 and 800 ppm at week 10 and ↓ prothrom	ppm at w); †of leuk	eek 26; \ laceta	ESR at 10 10 ppm at	and 800 week 15,						
composition included		↑ total and direc	et bilirubii	n at 800 pp	om							
in the report) / No positive control – not		↑pseudocholine	sterase at	200 ppm a	at week 10)						
required		↓ alpha₂-globul	ins at 200	ppm								
		↑ gamma globu	lins at 200	and 800 j	ppm at we	ek						
		↑ glucose in all	treated gr	oups								
		↑alkaline phosp	hatase at	800 ppm a	t week 21							
		↑ glucose at 200	0 ppm									
		↓ potassium at 1	10 ppm at	week 26								
		↓ albumin and A	A/G ratio	at 200 and	800 ppm							
		↑ globulins and	sodium a	t 800 ppm								
		↑ beta- and gam ↓LDH and glob			ppm at w	reek 38						
		↑ proteins at 20	0 ppm									
		↑ albumin, A/G	ratio and	sodium at	800 ppm							
		↓ alpha ₂ -globul	ins in all t	reated gro	ups at wee	ek 52						
		Urinalysis and	occult blo	od in faece	es							
				Dose	level							
	Organ 0 ppm 10 ppm 200 ppm 800 ppm											
		fasted (kg) Liver (g)	10.98 299.09	10.20 283.29	10.46 281.98	10.42 282.04						
		Relative to bw	2.78	2.81	2.75	2.74						
		% Right testis (g)	4.53	5.68	4.53	5.72						
		Relative to bw %	0.04	0.05*	0.04	0.05*						
		Left testis (g) Relative to bw	4.82	5.56	4.63	5.99						
		% Prostate (g)	0.04 8.06	0.05 9.45	0.04 8.38	7.16						
		Relative to bw	0.07	0.08	0.07	0.07						
		%	0.07	0.00	0.07	5.07						

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results					Reference
		Right ovary (mg)	500.67	583.50	712.00	630.00	
		Relative to bw	5.28	6.06	7.35	6.89	
		Left ovary (mg)	644.33	607.67	695.17	466.67	
		Relative to bw per 1000	6.65	6.39	7.31	5.11	
		*: p<0.05	l .				
				D	level		
		Parameter	0 ppm	10 ppm	200 ppm	800 ppm	
		Spleen Haemorrhagic	3 / 25 /	2 / 16.67		2 / 16.67	
		infarcts	2.00	/ 2.00	4 / 22 22	/ 2.00	
		Haematic stasis	3 / 25 / 2.00	3 / 25 / 2.00	4 / 33.33 / 1.75	- 1 /0.22 /	
		Hyperplasia	-	-		1 / 8.33 / 1.00	
		Lungs Chronic	11/	_ 			
		interstitial pneumonia	91.67 / 1.00	7 / 58.33 / 1.00	8 / 66.67 / 1.00	8 / 66.67 / 1.00	
		Peribronchial lymphoid hyperplasia	-	1 / 8.33 / 1.00	-	-	
		Thymus					
		Cysts	-	-	-	2 / 16.67 / 2.00	
		Heart Suppurative		1 / 8.33 /			
		phlogosis	-	1.00	-	-	
		Liver Foci of parvicellular phlogosis	1 / 8.33 / 2.00		1 / 8.33 / 2.00	-	
		Kidneys	<u> </u>	I	<u> </u>		
		ORO: fatty degeneration	10 / 83.33 / 1.90	10 / 83.33 / 2.00	8 / 66.67 / 1.63	10 / 83.33 / 1.60	
		Foci of parvicellular phlogosis	1 / 8.33 / 2.00	1 / 8.33 / 2.00	3 / 25 / 2.00	4 / 33.33 / 1.75	
		Deposits of calcium salts	5 / 41.67 / 2.00	1 / 8.33 / 2.00	5 / 41.67 / 2.00	4 / 33.33 / 2.00	
		Hyperaemia	-	1 / 8.33 /	2 / 16.67	1 / 8.33 /	
		Ileum	1	1.00	/ 1.50	1.00	
		Abscess focus	-	1 / 8.33 / 2.00	-	-	
		Endometrium Hyporplasia dua	2/25/		6/50/	2 / 25 /	
		Hyperplasia due to oestrus cycle	2 / 25 / 2.00	2 / 16.67 / 2.00	6 / 50 / 2.00	2 / 25 / 2.00	
		Ovaries Presence of	3 / 25 /	4 / 33.33	4 / 33.33	4 / 33.33	
		corpora lutea Presence of	2.00	/ 2.00	/ 2.00	/ 2.00	
		Presence of mature follicles Prostate	-	1 / 8.33 / 2.00	1 / 8.33 / 2.00	-	
		Foci of parvicellular	-	1 / 8.33 / 2.00	-	1 / 8.33 / 2.00	
		phlogosis Testes	<u> </u>	<u> </u>	<u> </u>		
		Atrophy	-	-	-	2 / 16.67 / 1.50	
		Epididymis Foci of		_ 		1 / 8.33 /	
		inflammatory	-	-	-	2.00	

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results	Reference				
		infiltration					
		Pituitary					
		Congenital cyst	2 / 16.67 / 2.00	4 / 33.33 / 2.00	4 / 33.33 / 2.00	1 / 8.33 / 2.00	
		Thyroid					
		Foci of parvicellular phlogosis	-	-	-	1 / 8.33 / 2.00	
		Dilatation	-	-	-	1 / 8.33 / 1.00	
		Mammary gland					
		Hyperplasia due to oestrus phase	-	4 / 33.33 / 1.25	3 / 25 / 2.00	2 / 25 / 2.00	
		Results reveal a even without a s				ogs tissues,	

Table 18: Summary table of human data on carcinogenicity

There are no relevant data in humans. Epidemiological data are very weak and without following some specific parameters of benalaxyl relevant for carcinogenicity, neurotoxicity and so on.

Table 19: Summary table of other studies relevant for carcinogenicity

Type of study/data	Test substance	Relevant information about the study (as applicable)	Observations	Reference
A 90-Day Dietary Combined Toxicity and Neurotoxicity Study of Benalaxyl in Rats 90 consecutive days Test animals: Rats, Crl:CD(SD 10 rats/sex/G Guidelines: OPPTS 8700.3100 and 870.6200, OECD 408 and OECD 424 GLP/QA: Yes/Yes Acceptable	Benalaxyl Lot/Batch: PL13-0055 Purity: 98.4% Vehicle: acetone/ Positive control – not required. Dose level: 100, 1000, and 10000 ppm: 6, 62, and 677 mg/kg/day (m) 7, 74, and 745 mg/kg/day (f)	The immunotoxic potential was evaluated by measuring organ weights and histopathology endpoints of critical immune organ systems including the spleen, thymus, and l ymph nodes. Hepatocellular hypertrophy was characterized by expansion of the hepatocellular cytoplasm. The distribution of the change was predominantly centrilobular and extended to a more generalised pattern with increased severity	1000 ppm group, a significantly higher mean body weight gain was noted for males during study days 63-70 and a significantly lower mean body weight gain was noted for females during study days 70-77 compared to the control group. body weights and body weight gains for males and females in the 10000 ppm group were considered test substance-related. Differences were significant during study days 0-7 and 21-28 for males and during study days 35-42 and 0-90 for females. Organ weight data showed test substance-related and dose-related higher mean liver weights (absolute, relative to final body weight, and relative to brain weight) in the 1000 and 10000 ppm group males and females. The liver weight differences (mean absolute, relative to final body weight, and relative to brain weight) were significantly higher in the 10000 ppm group males (absolute: 33.2%; relative to final body weight: 40.9%; relative to brain weight: 37.7%) and females (absolute: 40.3%; relative to final body weight: 54.6%; relative to brain weight: 40.8%). 1000 ppm group:	RAR- 08_Vol-3 CA_B.62.3 Reference number: CA 5.3.2 /03 Anonymous (2014b)

of the change.

Follicular cell hypertrophy in the thyroid glands was characterized by expansion of the cytoplasm of the thyroid follicular cells and a decrease in the amount of follicular colloid. significantly higher for liver weight relative to final body weight in the 1000 ppm group females (relative to final body weight: 11.2%).

100 ppm group:

1 male was found dead - day 14; no remarkable clinical or macroscopic findings were noted without a microscopic examination, for this male and a cause of death could not be determined.

1 female from the same group was euthanized in extremis on study day 80; at necropsy, the cause of death for this female was determined to be malignant lymphoma. - gross observations included a firm lobulated mass on thymus, enlarged spleen and mediastinal and renal lymph nodes, and depressed areas in the kidneys were performed.

In the 10000 ppm group:

1 female - Swollen liver was noted at necropsy. This observation corresponded with the microscopic finding of moderate hepatocellular hypertrophy.

Although the liver weight differences in the 1000 ppm group were considered to be test substance-related due to the presence of a clear exposure-dependent response, the changes were considered to be adaptive rather than a toxic response because of minimal magnitude, and likely the result of CYP2B induction.

1000 ppm is the targeted dose level based on decreased BW(G), clinical chemistry and increased liver weight with hepatocellular hypertrophy

Observation	0	100	1000	10000
Observation	0 ppm	ppm	ppm	ppm
Males				
Liver	10	10	10	10
Hepatocellular	0	0	0	9
hypertrophy	U	U	U	
Minimal	-	-	-	2
Mild	-	-	-	3
Moderate	-	-	-	4
Thyroid gland	10	10	10	10
Follicular cell	2	1	2	9
hypertrophy		1		_
Mild	2	1	2	7
Moderate	0	0	0	2
Females				
Liver	10	10	10	10
Hepatocellular	0	0	3	10
hypertrophy	U	U	_	10
Minimal	-	-	3	1
Mild	-	-	0	7
Moderate		-	0	2
Thyroid gland	10	10	10	10
Follicular cell	1	2	2	7
hypertrophy	1	_		
Mild	1	2	2	7
Moderate	0	0	0	0

Benalaxyl

technical,

13-0055,

(w/v)

cellulose

aqueous

solution.

Lot/Batch: PL

Purity: 98.4%.

Vehicle: 0.5%

carboxymethyl

An Oral (Gavage) Prenatal Developmental **Toxicity Study** of Benalaxyl in Rats gavage Test animals: rats Sprague-Dawley Crl:CD (SD) Test method: **OECD** Guideline 414 and OPPTS 870.3700 Statistics: WTDMSTM Guidelines and GLP/OA: Yes/Yes Acceptable

Benalaxyl was administered orally by gavage to 3 (Phase 1) and 1 (Phase 2) groups of 25 bred female Crl:CD(SD) rats once daily from gestation days 6 through 19.

control group: 25 bred females received the vehicle Phase 1: 15, 50, and 150 mg/kg/day

Due to the lack of toxicity during the first phase, a second phase (Phase 2) was added to see maternal toxicity and/or developmental toxicity.

Phase 2: the vehicle or test substance was administered orally by gavage to 2 groups (Groups 1-2) of 25 bred female Crl:CD(SD) rats once daily from gestation days 6 through 19 at dosage levels of 0 and 450 mg/kg/day, respectively.

Phase 2: 3 of 10 females dosed at 450 mg/kg/day on the first gestation day 6 were found dead between approximately 4 hours 24 minutes and 5 hours 56 minutes following administration of the first dose corresponding to the $T_{\rm max}$ of approximately 30 minutes with a half-life of 36 hours using $^{14}\text{C-benalaxyl}$ (CA 5.1.1/02).

Clinical findings noted for these females prior to death included hypoactivity, laboured respiration, soft faeces, clear material around the mouth, and/or clear discharge from the eyes.

No remarkable macroscopic findings were noted for any of these females at necropsy; therefore, the cause of the deaths could not be determined.

The dosage level for this group was reduced to 300 mg/kg/day beginning on gestation day 6 or 7 and continuing throughout the duration of the study. And +3 f were added

10/25 females received a single dose of 450 mg/kg/day, surviving females received 300 mg/kg/day for the remainder of the dosing period and 18 females received 300 mg/kg/day over the entire regimen.

Test substance-related effects in the 450/300 mg/kg/day group:

a mean maternal body weight loss

lower mean food consumption

lower mean serum alkaline phosphatase

higher mean serum cholesterol (9.3%) and alanine aminotransferase (9.8%)

higher mean liver weights

enlarged liver, and centrilobular to midzonal hepatocellular hypertrophy

Parameter	0 mg/kg/day	450/300 mg/kg/day
Alkaline phosphatase (U/L)	173	134* / -22.5
Alanine aminotransferase (U/L)	61	67** / 9.8
Glucose (mg/dL)	94	97* / 3.2
Cholesterol (mg/dL)	75	85*/9.3
Chloride (mEq/L)	101	100** / -1.0
Sodium (mFa/L)	140	138** / -1 4

Necropsy on gestation day 20 for 450/300 mg/kg/day (f):

1 female: enlarged liver, which correlated with hepatocellular hypertrophy

All females: higher liver weights (17.8% and 17.2%, absolute and relative body weight)- significant compared with control.

12/25 f: centrilobular to midzonal hepatocellular hypertrophy

Foetus - 450/300 mg/kg/day

RAR-08_Vol-3 CA_ B.6.6.2.2

Reference number: CA 5.6.2/02

Anonymous (2015)

	I		T	
			no external malformations or developmental variations visceral developmental variations were limited to renal	
			papilla(e) - Woo and Hoar grade 1) was noted for 3 and 14 foetuses in the control and 450/300 mg/kg/day groups	
			no distended ureter(s) and accessory lobules in the liver	
			Overall total proportion of variations per litter in the 450/300 mg/kg/day group was significant	
Benalaxyl:	Benalaxyl	A sum of	Thyroid findings	RAR-
Assessment of Endocrine Disrupting Potential Guidelines:		assessments related to supposition about lack of ED effects	Thyroid histopathology seen in the 5-week rat study was limited to the highest dose level (initially 800 mg/kg bw/d and escalated gradually to 4500 mg/kg bw/d). Findings occurred in the absence of any effects on thyroid weight, but were associated with marked (up to 80%) increases in liver weight.	08_Vol-3 CA_ B.6.8.3.1 Reference number: CA 5.8.3
N/A: review of existing data GLP/QA: N/A Acceptable			Similar effects on the thyroid were not observed in the 90-day rat study at the highest dietary concentration of 10000 ppm (equivalent to mean intakes of 637 and 784 mg/kg bw/d in males and females respectively) and there is no evidence for an effect on the thyroid in the rat combined chronic toxicity/carcinogenicity study.	Anonymous (2014)
			Effects are therefore seen in one study, and at a gavage dose level clearly exceeding the limit dose.	
			A mechanistic study (CA 5.3.1/02) demonstrated that the administration of benalaxyl to the rat for 28 days at dietary concentrations of 1000, 5000 and 10000 ppm caused an increase in liver weight, microsomal protein and cytochrome P450 content; and a marked induction of hepatic CYP2B and UDP-glucuronyltransferase (UDP-GT) activities which is the rate-limiting step in biliary excretion of thyroxine (T4). Thyroid follicular cell hypertrophy and hepatocellular hypertrophy.	
			The increased excretion of T4 and resulting lower plasma T4 levels feedback to the pituitary gland and cause increased plasma thyroid stimulating hormone (TSH) levels (Capen, 2008). The sustained increase in plasma TSH level may result in thyroid follicular cell hypertrophy, followed by thyroid hyperplasia and/or neoplasia with longer term exposure.	
			The lack of T4-binding globulin (TBG) and shorter half- life of T4 in rats compared to humans is responsible for the species differences in thyroid hypertrophy, hyperplasia, and/or neoplasia with microsomal enzyme induction in rats versus humans.	
			Testicular findings	
			Atrophy of the seminiferous tubules was observed in the 12-month dog study at the highest dietary concentration of 800 ppm (equivalent to 25 mg/kg bw/d).	
			12-month dog study, an association (in one dog) with body weight effects and the absence of similar findings in the 90-day dog study, findings are not considered to be clearly related to treatment with benalaxyl.	
			Prostate findings	

			Significantly lov treated groups in				n in some	
5 weeks cumulative toxicity study joined by a two-week recovery	lative ty study d by a veek very d with LBEN Not indicated Rat Wistar (BOR:WISW (SPF/TNO))	No histopathology was conducted at the end of the recovery period.	A slightly but si was noted in fer of the 5-week tr increase of chole reduction of SG SGOT and alkal	RAR- 08_Vol-3 CA_ B.6.8.3.1 Reference number:				
"GALBEN TH" by oral application on rats	Vehicle: 0.5% Traganth	revealed changes in the thyroid, which was not re- examined at the end of the	Liver weights w controls in anim (males: +51% ar both sexes treate females: +13%)	als of both nd female ed at 100 i	h sexes at s: +80%),	800/4000 and in ani	mg/kg/day mals of	CA 5.3.1/01 Anonymous (1982)
Test method:	10/sex after 1 week = 1000		Tested doses had feed intake, urin				al signs,	
In-house method Guidelines and GLP/QA: N/A: No GLP	mg/kg bw/day 10/sex after 2 week =1500 mg/kg bw/day 10/sex after 3 week =2500 mg/kg bw/day 10/sex after 4 week =3500 mg/kg bw/day 15/sex after 4 ½ week = 4000 mg/kg bw/day This dose level is presented as 800/4000 mg/kg/day		Histopathology fatty infiltration diffuse small drohigh dose anima degeneration of the thyroid, i.e. mg/kg/day were Liver weights of 800/4000 mg/kg increased compart 800/4000 mg/females). slight lymphocy lung, heart, kidnepididymis, and hyperplasia in mOther findings of included infiltration and congestion of the authors of stanimals.	of single oplet fatty als compare the liver of thyroid actuals observed to confus the fared to fared the fared to confus the fared to fared the fared the fared to fared the fared	hepatocytic infiltration and to contive the contive tells was obtained at the contive tells was obtained. The contive tells was obtained at the contive tells with the continuous tells with the contive tells with the continuous tells with the continuo	es and/or son in the livitrols hower observed. Out 800/4000 at 800	clight ver of the ver, no Changes in) /day and at cantly significant - 80% in the liver, lymphoid est group osinophils, dered by	
				Se	x and dose le	evel (mg/kg/c	lay)	
			Organ & Lesion		ale 800 /		nale 800 /	
				0	4000	0	4000	
			Liver - Fatty infi	ltration 6/10	6/10	8/10	5/10	
			hepatocytes					
			Diffuse small droplet - slight	0/10	3/10	2/10	4/10	
			Thyroid - Hyper					
			Slight Moderate	1/10 0/10	3/10 3/10	0/10 0/10	2/10 0/10	
			Thyroid	0/10	3/10	0/10	0/10	
			tendency to formation of microfollicular	0/10	2/10	0/10	0/10	
			structure^					

10.9.1 Short summary and overall relevance of the provided information on carcinogenicity Table 20: Compilation of factors to be taken into consideration in the hazard assessment

Species	Tumour	Multi-	Progression	Reduced	Responses in	Confounding	Route of	MoA and
and strain	type and background	site responses	of lesions to malignancy	tumour latency	single or both sexes	effect by excessive	exposure	relevance to humans
Sti aiii	incidence	responses	mangnancy		SCACS	toxicity?		numans
Rat	19 tumours Not relevant HCD	Liver, brain, mammary glands, pancreas, and pituitary gland.	some significant macroscopic observations and atrophy or hypertrophy were present in organs and tissues	Follicular cell hyperplasia and hypertrophy/ Follicular cell adenocarcinomas	both sexes and presence of non-neoplastic tumours have had an occurrence significant for carcinogenicity.	MTD can cause effects such as cell death (necrosis) with associated regenerative hyperplasia, which can lead to tumour development as a secondary consequence unrelated to the intrinsic potential of the substance itself to cause tumours at lower less toxic doses	Oral	Hypertrophy of the thyroid and the TSH response is counteracted by T4 supplementation supporting effects being due to a negative feedback mechanism. induction of cytochrome P450 and related drug metabolising enzymes including an increase of UDP-GT
Mice	3 lesions in male mice treated at the highest dose level of 3000 ppm		cell tumours of the urinary bladder	No increased the latency time in treated group	Amyloidosis was frequent, and widely distributed among all groups, mainly in male	Deposition of amyloid was found in the adrenals, kidney, liver, spleen, salivary glands, stomach and intestine, and Zymbal glands. In male mice who died spontaneously a clear correlation was found between the occurrence of amyloidosis and treatment; although at a lesser extent, the association of amyloidosis	Oral	hepatocellular adenomas result from induction of the cytochrome P450 drug metabolising system phenobarbitallike mode of action lacking human relevance

Species and strain	Tumour type and background incidence	Multi- site responses	Progression of lesions to malignancy	Reduced tumour latency	Responses in single or both sexes	Confounding effect by excessive toxicity?	Route of exposure	MoA and relevance to humans
						and treatment was still evident in males sacrificed at termination.		
Dog	incidence of seminiferous tubules atrophy	no	No data		No data	No data	Oral	No data

Summary table of studies relevant for carcinogenicity were fulfilled with the most significant data. All the detailed studies are presented in Annex 1 of this CLH Report.

A 90-day study in mice (see B.6.3.2.1 Short-term range finding study of Evaluation of Chronic Toxicity and Oncogenic Potential of Galben (CAS No. 71626-11-4) in Swiss Mice (Oral Dosing Study)) was conducted manly as tolerability test and as a DRF study for a further carcinogenicity study. Given that no hematology or clinical chemistry was performed, the summary already contains key information i.e. changes in liver weight that was used for setting the high dose level in the carcinogenicity study. The top dose level of 5000 ppm (corresponding to 802.5 mg/kg bw/day for males and 907.5 mg/kg bw/day for females) was inadequate to be used as the highest dose level for oncogenicity and chronic toxicity study in mice due to the marked toxic effect shown in liver weight, females appeared more affected than males, dose-related effect. Differences observed in adrenal and kidney weight were transient, inconsistent, and limited to one sex; because of their random distribution, they were considered of no toxicological significance. 3000 ppm was selected as the highest dose level for the long-term study og carcinogenicity.

Pathological examinations revealed 3 lesions in male mice treated at the highest dose level of 3000 ppm were originally diagnosed as "transitional cell tumour of the urinary bladder", a type of tumours considered by the study pathologist rather uncommon. However, pathology peer reviews of the original slides determined these to be "submucosal mesenchymal tumour" of the mouse urinary bladder, a lesion non-epithelial in origin, unique to the mouse urinary bladder, and with no counterpart in any other species including humans and therefore of no relevance for risk assessment in humans.

Distribution of regressive changes (amyloidosis) after 78 weeks of treatment with benalaxyl

			Li	ver							
Dose level (ppm)	No. of animals / sex	Amyloidosis		degene	Other degenerative changes		Spleen		neys		enal inds
		No.	%	No.	%	No.	%	No.	%	No.	%
0	60 / M	8	13.3	4	6.7	9	15.0	10	16.7	3	5.0
	60 / F	1	1.7	7	11.7	1	1.7	0	-	1	1.7
Total (120 N	1 & F)	9	7.5	11	9.2	10	8.3	10	8.3	4	3.3
250	60 / M	12	20.0	3	5.0	22**	36.7	12	20.0	3	5.0
	60 / F	1	1.7	7	11.7	0	-	1	1.7	0	-
Total (120 N	1 & F)	13	10.8	10	8.3	22	18.3	13	10.8	3	2.5
1000	60 / M	19*	31.7	4	6.7	29**	48.3	28**	46.7	4	6.7
	60 / F	6	10.0	13	21.7	6	10.0	8*	13.3	3	5.0
Total (120 N	1 & F)	25	20.8	17	14.2	35	29.2	36	30.0	7	5.8

		Liver									
Dose level (ppm)	No. of animals / sex	Amyl	oidosis	Other degenerative changes Spleen Kidneys				Adrenal glands			
		No.	%	No.	%	No.	%	No.	%	No.	%
3000	60 / M	12	20.0	1	1.7	26**	43.3	21**	35.0	8	13.3
	60 / F	1	1.7	6	10.0	0	-	2	3.3	0	-
Total (120 N	1 & F)	13	10.8	7	5.8	26	21.7	23	19.2	8	6.7

^{*:} p≤0.05; **: p≤0.01

Categorical Analysis of Amyloidosis and Survival in Male Mice

Dose level (ppm)	Category	Animals found dead	Surviving Animals (terminal sacrifice)	Σx^2	P**	
0	Affected*	9	5		n.s.	
	Non-affected	17	29			
	Total	26	34	1		
250	Affected*	16	8	5.38	< 0.05	
	Non-affected	13	23	1		
	Total	29	31	1		
1000	Affected*	32	5	10.44	< 0.01	
	Non-affected	11	12	1		
	Total	43	17	1		
3000	Affected*	30	7	1.05	n.s.	
	Non-affected	16	7	1		
	Total	46	14	1		

^{*:} Number of affected animals per group; amyloidosis, any organ; **: Tail probability range of adjacent value of chi-square; n.s.: not significant

The dose level of 250 ppm (corresponding to 44.4 and 42.6 mg/kg bw/day in males and females respectively) is associated with the highest incidence of primary amyloidosis in a biologically relevant way of benalaxyl. Amyloidosis was observed in liver and in multiple tissues (in males). A NOAEL for carcinogenicity could not be set because of the low survival rate at the two high doses tested.

About account for the carcinogenicity it could be noted the results from study range-findind study CA_B.6.3.2.1. (A 90-day study in mice) reveales the dose level as tolerability test and also set dose levels for the main carcinogenicity study. Missings in testing procedure of no hematology or clinical chemistry data, changes in liver weight that were used only for setting the high dose level in the carcinogenicity study (5000 ppm - marked toxic effect in liver weight and 3000 ppm was selected as the highest dose level for the long-term study; an equivocal increased liver weight was observed at 1000 ppm, only in females.

A mechanistic study (see B.6.3.1.2 IR6141 and Benalaxyl: Study by dietary administration to male CD rats for 28 days to compare hepatic parameters) showed that the administration of benalaxyl to the rat for 28 days at dietary concentrations of 1000, 5000 and 10000 ppm (corresponding to 120, 600 and 1200 mg/kg bw/day) caused an increase in liver weight, microsomal protein and cytochrome P450 content; and a marked induction of hepatic CYP2B and UDP-glucuronyltransferase (UDP-GT) activities.

Thyroid follicular cell hypertrophy in this study was considered to be secondary to hepatic microsomal enzyme induction, as evidenced by hepatocellular hypertrophy which is the liver's typical response to hepatic enzyme induction (Anonymous, 2010). A high level of T4 excretion and as a feedback a lower plasma T4 levels in the pituitary gland increased plasma thyroid stimulating hormone (TSH) levels conducting to the thyroid follicular cell hypertrophy, followed by thyroid hyperplasia and/or neoplasia with longer term exposure (Anonymous, 2008).

The lack of T4-binding globulin (TBG) and shorter half-life of T4 in rats compared to humans is responsible for the species differences in thyroid hypertrophy, hyperplasia, and/or neoplasia with microsomal enzyme

induction in rats versus humans. Thyroid follicular hyperplasia in the rat is a homeostatic response to the enhanced hepatic metabolism and excretion of thyroid hormone (T4) following the induction of CYP2B and uridine diphosphate glucuronyltransferase UPD-GT activity, and a consequent increase in TSH secretion (Anonymus, 2002).

This mechanism is not generally thought to be of relevance to humans due to physiological and biochemical differences between the rat and humans (IPCS, 2007).

About possibility of a second target organ, some studies developed are not conclusive to support this hypothesis and liver is the main target organ in three species (mice, rats, dogs):

In the study B.6.3.1.1 5 weeks cumulative toxicity study joined by a two-week recovery period with "GALBEN TH" by oral application on rats reveals the liver weights significantly increased compared to controls in animals of both sexes at 800/4000 mg/kg bw/day (males: +51% and females: +80%), and in animals of both sexes treated at 100 mg/kg bw/day (males: +17% and females: +13%).

Histopathology noted a slightly increased incidences of fatty infiltration of single hepatocytes and/or slight diffuse small droplet fatty infiltration in the liver of the high dose animals compared to controls however, no degeneration of the liver cells was observed. Changes in the thyroid, i.e. thyroid activation, at 800/4000 mg/kg bw/day were also observed. Histopathological examination revealed changes in the thyroid, which was not reexamined at the end of the recovery period.

Similar effects on the thyroid were not observed in the 90-day rat study at the highest dietary concentration of 10000 ppm (equivalent to mean intakes of 637 and 784 mg/kg bw/d in males and females respectively) and there is no evidence for an effect on the thyroid in the rat combined chronic toxicity/carcinogenicity study. Effects are therefore seen in one study, and at a gavage dose level clearly exceeding the limit dose (see B.6.3.2.3 A 90-Day Dietary Combined Toxicity and Neurotoxicity Study of Benalaxyl in Rats)

In the 1000 ppm group, the differences were only significantly higher for liver weight relative to final body weight in the 1000 ppm group females (relative to final body weight: 11.2%).

Although the liver weight differences in the 1000 ppm group were considered to be test substance-related due to the presence of a clear exposure-dependent response, the changes were considered to be adaptive rather than a toxic response because of minimal magnitude, and likely the result of CYP2B induction.

Test substance-related findings in the general toxicity phase animals primarily involved the liver and thyroid glands and included higher mean gamma glutamyltransferase values, gross observation of a swollen liver (1 female), and histologic evidence of hepatocellular hypertrophy and thyroid follicular cell hypertrophy at 10000 ppm; hepatocellular hypertrophy in females and higher mean liver weights were also recorded at ≥1000 ppm. (see B.6.3.2.3 A 90-Day Dietary Combined Toxicity and Neurotoxicity Study of Benalaxyl in Rats). Hepatocellular hypertrophy by expansion of the hepatocellular cytoplasm, centrilobular and extended to a more generalised pattern with increased severity of the change. Follicular cell hypertrophy in the thyroid glands by expansion of the cytoplasm of the thyroid follicular cells and a decrease in the amount of follicular colloid. Significantly lower mean brain weight at 1000 and 10000 ppm group males however, but not noted in the neurotoxicity phase females or general toxicity phase males or females.

The dose level of 1000 ppm was significant than control in albumin and total protein levels, in males only. Relative liver weights were increased by less than 15% in both males and females, and liver histopathology revealed a minimal hepatocellular hypertrophy in 3 females only. Thyroid follicular hypertrophy incidence and the same degree as controls in males and females with one exception (10-fold lower dose level than control).

Test substance-related increasing of the liver weights (25.7% in absolute and 26.1% relative to body and brain weights, respectively) were noted in males from 75/200 mg/kg bw/day group. A few statistically significant differences were observed between control and the treated groups. Also, a lowered prostate weights (absolute and relative to body and brain weights, ranging from 60.3% to 62.0%) in the 7.5 mg/kg bw/day group males, lowered prostate weight relative to final body weight (39.3%) in the 75/200 mg/kgbw/day group males, and lowered spleen weight relative to final body weight (36.4%) in the 25 mg/kgbw/day group females. (see B.6.3.2.4 A 90-Day Oral (Capsule) Toxicity Study of Benalaxyl in Beagle Dogs).

Target organ is liver based on highest degree of liver weight gain and lobulation observed at necropsy. (see B.6.3.2.2 13-week oral subacute toxicity study of the product M 9834 (GALBEN) administered to Charles

River CD (SD) BR rats in the diet, at the doses of 10, 100, 1000, 10000 and 12000 ppm) and a NOAEL by oral (dietary) study for benalaxyl was set at 1000 ppm (58.9 mg/kgbw/day in males and 71.5 mg/kgbw/day in females).

Hematological observation Some statistically significant differences were observed when the control and the treated groups were compared, a lower mean HGB (-6.2%), MCH (-4.0%), and MCHC (-2.1%) values in the 10000 ppm group males, and lower mean MCV (-5.7%) and MCH (-6.0%) values in the 10000 ppm group females, respectively. However, the changes in males did not show a clear dose-response (MCH and MCHC), were not associated with other alterations in red blood cell parameters, were of minimal magnitude, and the group mean values and all individual animal values (with the exception of 1 individual animal value each for haemoglobin and MCHC) were within the HC database range of study means and reference range, respectively. Similarly, the changes in females were not associated with other alterations in red blood cell parameters, were of minimal magnitude, and the group mean values and all individual animal values (with the exception of 1 individual animal MCH value) were within the HC database range of study means and reference range, respectively. Significantly lower mean prothrombin time (-9.0%) was also noted in the 10000 ppm group females; however, this change was in a direction of no known toxicological importance. Also, a higher mean activated thromboplastin time (+13.0%) was noted in the 100 and 10000 ppm group females. The liver weight differences (mean absolute, relative to final body weight, and relative to brain weight) were significantly higher in the 10000 ppm group males (absolute: 33.2%; relative to final body weight: 40.9%; relative to brain weight: 37.7%) and females (absolute: 40.3%; relative to final body weight: 54.6%; relative to brain weight: 40.8%), (see B.6.3.2.3 A 90-Day Dietary Combined Toxicity and Neurotoxicity Study of Benalaxyl in Rats).

Selected haematological parameters (mean \pm SD (% difference to control))

	Sex and dose lev	el (ppm)		
D 4	Male			
Parameter	0	100	1000	10000
	n=10	n=10	n=10	n=10
Week 13		<u>.</u>		·
HGB (g/dL)	16.2 ± 0.81	16.2 ± 0.90	16.5 ± 0.98	$15.2 \pm 0.57*$
-		(0.0)	(1.9)	(-6.2)
MCV (fL)	52.7 ± 1.39	51.9 ± 1.51	52.7 ± 1.41	51.6 ± 1.22
		(-1.5)	(0.0)	(-2.1)
MCH (pg)	17.6 ± 0.40	17.1 ± 0.60	17.5 ± 0.58	$16.9 \pm 0.50*$
		(-2.8)	(-0.6)	(-4.0)
MCHC (g/dL)	33.4 ± 0.39	32.9 ± 0.53	33.2 ± 0.53	$32.7 \pm 0.70*$
		(-1.5)	(-0.6)	(-2.1)
PT (seconds)	15.9 ± 0.76	16.6 ± 1.07	16.9 ± 1.98	17.7 ± 2.61
		(4.4)	(6.3)	(11.3)
APTT (seconds)	14.6 ± 1.25	14.8 ± 1.56	14.0 ± 1.99	14.9 ± 1.12
		(1.4)	(-4.1)	(2.1)
Parameter	Female			
Week 13				
HGB (g/dL)	15.7 ± 0.83	15.8 ± 1.02	16.1 ± 0.80	15.2 ± 0.85
		(0.6)	(2.5)	(-3.2)
MCV (fL)	54.3 ± 1.28	54.4 ± 1.33	54.2 ± 1.72	51.2 ± 1.34**
		(0.2)	(-0.2)	(-5.7)
MCH (pg)	18.3 ± 0.55	18.3 ± 0.43	18.2 ± 0.53	$17.2 \pm 0.44**$
		(0.0)	(-0.5)	(-6.0)
MCHC (g/dL)	33.6 ± 0.55	33.6 ± 0.55	33.5 ± 0.48	33.6 ± 0.36
		(0.0)	(-0.3)	(0.0)
PT (seconds)	15.5 ± 0.73	15.4 ± 0.78	15.4 ± 0.68	14.1 ± 0.56**
		(-0.6)	(-0.6)	(-9.0)
APTT (seconds)	11.5 ± 0.72	12.6 ± 0.74*	12.1 ± 1.25	13.0 ± 0.61**
		(9.6)	(5.2)	(13.0)

^{*:} p<0.05; **: p<0.01

Only few statistically significant differences were found between the control and test animals (increase in percentage of eosinophils in females at 1000 ppm at week 52; increase in erythrocyte counts in females at 4 and 100 ppm at 18 months; and increased reticulocyte count in females at 4 ppm at 24 months). Since all values were within the normal range for this age and strain of rats, and no dose-response relationship was noted, these differences were not considered treatment-related. (see B.6.5.1.1 Lifetime oral dosing studies in rats: combined oncogenicity and chronic toxicity of GALBEN technical (M 9834))

Selected haematology parameters (mean values)

	Sex and	dose level	(ppm)					
Parameter	Male				Female	!		
	0	4	100	1000	0	4	100	1000
3 months								
RBC $(10^6/\mu L)$	8.87	8.66	8.49	8.68	7.96	8.04	7.75	7.96
WBC $(10^{3}/\mu L)$	11.0	11.9	12.4	11.2	10.0	8.7	8.1	8.3
Eosinophils (%)	1	1	1	1	1	2	1	1
6 months								
RBC $(10^6/\mu L)$	8.51	8.60	8.47	8.44	7.62	7.69	7.54	7.58
WBC $(10^{3}/\mu L)$	12.9	11.6	12.9	13.1	7.4	6.9	7.6	7.0
Eosinophils (%)	<1	1	1	<1	1	1	<1	<1
12 months								
RBC $(10^6/\mu L)$	8.93	8.45	8.30	8.57	7.61	7.87	7.69	7.74
WBC $(10^{3}/\mu L)$	10.7	11.8	10.8	9.4	9.7	5.8	6.7	6.3
Eosinophils (%)	1	3	1	1	1	1	2	3*
18 months								
RBC $(10^6/\mu L)$	7.62	8.18	8.05	8.08	6.91	7.64*	7.41*	7.32
WBC $(10^{3}/\mu L)$	11.9	14.1	14.2	13.4	8.6	9.7	7.3	7.2
Eosinophils (%)	2	1	2	1	1	2	1	1
24 months								
RBC $(10^6/\mu L)$	7.07	7.56	7.60	6.78	7.28	6.57	7.24	6.94
Reticulocyte (%)	0.5	1.2	0.4	3.5	0.5	1.5*	0.6	0.5
WBC $(10^3/\mu L)$	12.9	15.5	12.4	14.5	8.2	7.0	8.3	8.6
Eosinophils (%)	1	1	1	1	1	1	1	1

^{*:} p≤0.05

B.6.3.1.1 5 weeks cumulative toxicity study joined by a two-week recovery period with "GALBEN TH" by oral application on rats – Treatment with benalaxyl and 800/4000 mg/kgbw/day caused reversible changes in haematological and clinical chemistry parameters, and a significant increase in liver weight (+51% in males, and +80% in females, also reversible).

At the end of the treatment period, prothrombin time was increased in females at 800/4000 mg/kg/day. This change recovered after 2 weeks without treatment.

Clinical observations Significant elevated levels of ALP (i.e. 1.9- and 2.4-fold) were noted in females from 75/200 mg/kgbw/day group during the weeks 8 and 13, respectively (200 mg/kgbw/day was administered during these period), and in males (i.e.1.8-fold) during the week 13 compared to controls. In males, the differences were within the HC data reference range of the testing facility. Only two females exhibited increasing ALP values (1.6- and 2.4-fold, respectively) falling outside of the testing facility HC data reference range in weeks 8 and 13 (see B.6.3.2.4 A 90-Day Oral (Capsule) Toxicity Study of Benalaxyl in Beagle Dogs).

Lower mean serum alkaline phosphatase (ALP) values and higher mean serum cholesterol values were noted in all test substance-treated groups when compared to the control group. ALP values were significantly lower in the 15 and 150 mg/kgbw/day group females (by 22.4% and 21.4%, respectively). There was no apparent

dose-response relationship and the direction of change was considered to be toxicologically irrelevant, and therefore non-adverse.

B.6.6.2.2 An Oral (Gavage) Prenatal Developmental Toxicity Study of Benalaxyl in Rats – Phase 1 – Serum cholesterol values were higher in the 15, 50, and 150 mg/kgbw/day group females by 10.8%, 10.8%, and 14.9%, respectively, attaining statistical significance at 150 mg/kgbw/day.

Phase 2 Coagulation was not affected by treatment. Lower serum alkaline phosphatase (ALP) and higher serum cholesterol and serum alanine aminotransferase (ALT) values were noted in the 450/300 mg/kg/day group females. Serum ALP values were significantly lower (22.5%) in the 450/300 mg/kgbw/day group females. The direction of change was considered to be toxicologically irrelevant, and therefore non-adverse.

A significantly higher (9.3%) serum cholesterol value was noted in the 450/300 mg/kgbw/day group females compared to the control group; the change was however of minimal magnitude, correlated with higher liver weights, and was considered an adaptive change. A higher (9.8%) ALT value was noted in the 450/300 mg/kgbw/day group females. The change was of minimal magnitude, correlated with higher liver weights, and hepatocellular hypertrophy, and all individual values were within the HC range; on this basis it was considered to be adaptive and not adverse. Other differences attaining statistical significance (higher (3.2%) serum glucose value, lower serum chloride (1.0%) and sodium (1.4%) values) were of minimal magnitude, or within HC range, and were considered toxicologically irrelevant.

B.6.3.1.1 5 weeks cumulative toxicity study joined by a two-week recovery period with "GALBEN TH" by oral application on rats – At the end of the test period, cholesterol values were increased in females at 800/4000 mg/kgbw/day; albumin and total protein values were also significantly increased, but considered within normal range; SGOT and alkaline phosphatase values were significantly reduced in males and females at 800/4000 mg/kgbw/day. Most changes recovered at the end of the recovery period.

Summary of significant changes at clinical chemistry (mean values)

Parameter	Sex and dose level (mg/kgbw/day)								
	Male				Female				
	0	10	100	800 / 4000	0	10	100	800 / 4000	
	After 5 weeks of treatment								
Cholesterol	2.00	1.93	2.12	2.32	2.00	2.32	2.50	3.10*	
(mmol/L)	After 2 weeks of recovery								
	2.66			1.74	1.82			1.98	
Ref val	1.5-2.6								
Albumin (µmol/L)	After 5 weeks of treatment								
	518.8	542.1	527.6	544.8	536.2	542.1	527.6	585.6*	
	After 2 weeks of recovery								
	510.2			501.7	481.2			195.4	
Ref val	420-650								
Total protein (g/L)	After 5 weeks of treatment								
	60.2	61.4	61.8	63.4	60.8	61.4	62.1	67.4*	
	After 2 weeks of recovery								
	57.2			57.1	53.4			56.8	
Ref val	55-75								
SGOT (U/L)	After 5 weeks of treatment								
	149.4	124.0	126.2	81.4*	131.4	117.4	134.6	80.2**	
	After 2 weeks of recovery								
	159.6			165.4	157.0				
Ref val	Up to 200								
Alkaline	After 5 weeks of treatment								
phosphatase	353.1	351.2	341.1	262.4*	284.8	294.7	237.6	152.2**	
	After 2 weeks of recovery								
	158.8			156.2	125.0			106.8	
Ref val	Young an	Young animals up to 500; adult animals up to 250							

Ref val: Normal reference value (as included in the report); *: p<0.05; **: p<0.01

Histological observations Test substance-related increases of liver weights (25.7% in absolute and 26.1% relative to body and brain weights, respectively) were noted in males from 75/200 mg/kgbw/day group. Few statistically significant differences were observed between control and the treated groups. These have included lowered prostate weights (absolute and relative to body and brain weights, ranging from 60.3% to 62.0%) in the 7.5 mg/kgbw/day group males, lowered prostate weight relative to final body weight (39.3%) in the 75/200 mg/kgbw/day group males, and lowered spleen weight relative to final body weight (36.4%) in the 25 mg/kgbw/day group females. (see B.6.3.2.4 A 90-Day Oral (Capsule) Toxicity Study of Benalaxyl in Beagle Dogs).

Histophatology observations included hyperkeratosis of oesophagus (increased in males at 100 ppm), chronic (lymphocytic) inflammation and/or fibrosis involving the Harderian glands increased in males at 1000 ppm), submucosal lymphoid hyperplasia in the large intestine (increased in males at 100 ppm), dilated, fluid-filledsinusoids (increased in males at 100 ppm), increased macrophages in cervical lymph nodes (reduced in males at 4 and 100 ppm), mesenteric lymph nodes congestion (increased in females at 4 ppm), glandular/lobular hyperplasia in mammary glands (decreased in males at 4 and 100 ppm), chronic prostatitis (decreased in males at 100 ppm), haemosiderosis in the spleen (decreased in males at 100 ppm and in females at 4 ppm), reticuloendotelial cell hyperplasia in the spleen (increased in males at 4 ppm), and erythroid hypoplasia (decreased in females at 4 ppm). A weak chain of the study was a lack of in-depth investigations about account for the increased relative heart weight in males at 1000 ppm, or the decreased absolute ovary weights in females at 4 and 100 ppm.(see B.6.5.1.1 Lifetime oral dosing studies in rats: combined oncogenicity and chronic toxicity of GALBEN technical (M 9834))

Selected organ weight data (mean values)

	Sex and	Sex and dose level (ppm)								
Organ	Male				Female	!				
	0	4	100	1000	0	4	100	1000		
12 months										
Terminal body	651	669	659	633	339	365	340	375		
weight (g)	031	009	039	033	339	303	340	373		
Liver										
Absolute (g)	18.3	20.0	17.3	18.1	10.2	10.3	9.2	10.5		
Relative (%)	2.8	3.0	2.7	2.9	3.0	2.8	2.7	2.8		
Heart										
Absolute (g)	1.9	1.8	1.7	1.8	1.1	1.1	1.0	1.1		
Relative (%)	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3		
Testes										
Absolute (g)	3.3	3.6	3.5	3.6						
Relative (%)	0.5	0.5	0.5	0.6						
Ovaries										
Absolute (mg)					94	112	91	99		
Relative (%)					2.8	3.1	2.8	2.7		
24 months										
Terminal body	734	683	745	689	517	501	527	530		
weight (g)	734	003	743	009	317	301	321	330		
Liver										
Absolute (g)	22	21	21	20	15.9	14.7	15.2	17.1		
Relative (%)	3.1	3.2	2.8	2.9	3.2	3.0	2.9	3.3		
Heart										
Absolute (g)	2.2	2.1	2.1	2.4	1.5	1.5	1.5	1.5		
Relative (%)	0.3	0.3	0.3	0.4*	0.3	0.3	0.3	0.3		
Testes										
Absolute (g)	3.5	3.2	3.7	3.3						
Relative (%)	0.5	0.5	0.5	0.5						
Ovaries										
Absolute (mg)					160	122*	120*	132		
Relative (%)					3.3	2.5	2.4	2.6		

^{*:} p≤0.05

In study B.6.3.1.1 5 weeks cumulative toxicity study joined by a two-week recovery period with "GALBEN TH" by oral application on rats – Liver weights of animals treated at 100 mg/kg bw/day and at 800/4000 mg/kg bw/day were dose-related significantly increased compared to controls, being highly significant at 800/4000 mg/kg bw/day (+ 51% in males and + 80% in females).

At the end of the recovery period, liver weight of animals previously treated at 800/4000 mg/kg bw/day were comparable to controls.

Summary of liver weight (mean values)

	Sex and	Sex and dose level (mg/kg bw/day)										
Liver weights	Male				Female							
	0	10	100	800 / 4000	0	10	100	800 / 4000				
	After 5	After 5 weeks of treatment										
Absolute (g)	9.777	11.787	11.398*	14.885	6.521	4.042	7.638*	12.273				
Adjusted (g)	10.092	10.763	11.756*	15.237	6.803	6.758	7.680*	12.232				
	After 2	After 2 weeks of recovery										
Absolute (g)	9.765			9.800	6.613			7.603				
Adjusted (g)	9.773			9.792	6.684			7.532				

^{*:} p<0.05; **: p<0.01

After 12 months of exposure, some neoplasms (19 in total in all groups, including the controls) were observed microscopically

Selected neoplastic findings at terminal sacrifice (affected animals)

	Sex and dose level (ppm)									
Organ & tumour (or lesion)	Mal		•	•	Fema	le				
	0	4	100	1000	0	4	100	1000		
Adrenals – No. examined	54	51	55	53	54	55	54	55		
Medulla, carcinoma	9	6	7	8	4	4	1	1		
(Medullary hyperplasia)	1	6	4	0	1	1	0	2		
Brain – No. examined	54	52	55	54	54	55	54	55		
Astrocytoma	0	1	1	2	0	0	0	0		
Ependymoma	0	0	0	0	0	0	0	1		
Liver – No. examined	54	52	55	54	54	55	54	55		
Adenoma, neoplastic nodule	0	0	0	0	0	0	1	3		
Heaptocellular carcinoma	1	2	1	0	1	3	1	1		
Reticulum cell sarcoma (multiple	0	2	0	1	3	3	1	0		
organ)	U	2	U	1	3	3	1	U		
Pancreas – No. examined	54	52	55	54	53	55	54	54		
Islet cell adenoma	5	6	6	4	1	3	0	1		
Islet cell adenocarcinoma	0	1	1	1	0	0	0	0		
Parathyroids – No. examined	50	45	38	53	47	46	49	52		
Adenoma	1	2	4	0	0	1	1	0		
Pituitary – No. examined	53	50	54	53	54	51	51	53		
Adenoma	22	18	25	20	42	40	41	47		
Adenocarcinoma	0	0	1	0	0	0	1	0		
Thyroid – No. examined	53	51	55	54	53	51	54	55		
Parafollicular cell tumour (C-cell)	5	5	12	3	5	8	2	8		
Follicular adenoma	2	0	0	1	0	0	1	0		
Follicular adenocarcinoma	0	1	2	0	0	0	0	1		

T 1 4*	O 1.	•		• 6•
Neoplastic	findings	OVERVIEW	at terminal	sacrifice
Ticopiastic	manis	O T CI TIC II	at termina	Bucillice

	Sex and dose level (ppm)									
Parameter	Male	Male				Female				
	0	4	100	1000	0	4	100	1000		
Total No. of animals with										
primary tumours / Total	40 / 62	36 / 60	46 / 73	39 /56	52 / 106	51 / 99	47 / 84	52 / 94		
primary tumours										
No. of tumours / animal	1.55	1.67	1.59	1.44	2.04	1.94	1.79	1.81		
bearing tumours	1.55	1.07	1.59	1.44	2.04	1.74	1.79	1.01		
Total No. of animals with										
metastatic tumours / Total	2/2	3/3	0/0	5 / 5	6/6	9/9	2/3	3/3		
metastatic tumours										
No. of metastatic tumours /	0.05	0.08	0.00	0.13	0.12	0.18	0.06	0.06		
animal bearing tumours	0.03	0.00	0.00	0.13	0.12	0.10	0.00	0.00		

In study B.6.3.2.3 A 90-Day Dietary Combined Toxicity and Neurotoxicity Study of Benalaxyl in Rats - Hepatocellular hypertrophy was characterized by expansion of the hepatocellular cytoplasm.

The distribution of the change was predominantly centrilobular and extended to a more generalised pattern with increased severity of the change.

Follicular cell hypertrophy in the thyroid glands was characterized by expansion of the cytoplasm of the thyroid follicular cells and a decrease in the amount of follicular colloid.

There were no remarkable differences in ovarian primordial follicle counts between the 0 (control; mean \pm SD = 85.4 ± 26.01 , n=9) and 10000 ppm group females (mean \pm SD = 75.0 ± 34.25 , n=10).

Summary of treatment-related microscopic findings

Observation	0 ppm	100 ppm	1000 ppm	10000 ppm
Males				
Liver	10	10	10	10
Hepatocellular hypertrophy	0	0	0	9
Minimal	-	-	-	2
Mild	-	-	-	3
Moderate	-	-	-	4
Thyroid gland	10	10	10	10
Follicular cell hypertrophy	2	1	2	9
Mild	2	1	2	7
Moderate	0	0	0	2
Females				
Liver	10	10	10	10
Hepatocellular hypertrophy	0	0	3	10
Minimal	-	-	3	1
Mild	-	-	0	7
Moderate	-	-	0	2
Thyroid gland	10	10	10	10
Follicular cell hypertrophy	1	2	2	7
Mild	1	2	2	7
Moderate	0	0	0	0

In study B.6.3.1.1 5 weeks cumulative toxicity study joined by a two-week recovery period with "GALBEN TH" by oral application on rats – A histopathological examination revealed changes in the thyroid, which was not re-examined at the end of the recovery period.

Effects observed at the dose level of 100 mg/kg/day were limited to a slightly significantly increased liver weight in both sexes (+17% in males, and +13% in females). There were no other changes observed at this dose level, which was therefore considered the NOAEL of the study.

In the 5-week rat study, the NOAEL is 100 mg/kg bw per day on the basis of the significant increase in liver weight. Histopathology revealed treatment-related changes in the liver and thyroid.

Other findings in few control and test animals, consisting of slight lymphocytic-histiocytic infiltrations in the liver, lung, heart, kidney, urinary bladder, intestine, epididymis, and prostate which, together with lymphoid hyperplasia in mesenteric lymph nodes, were considered most likely due to latent infections.

Other findings occurring in both control and test group included infiltration of the uterine stroma by eosinophils, and congestion of the spleen, which was considered by the authors to be related to the sacrifice of the animals.

No histopathology was conducted at the end of the recovery period.

Summary of histopathology (No. of affected animal/No. of animals examined)

	Sex and dose level (mg/kg/day)									
Organ & Lesion	Male		Female							
	0	800 / 4000	0	800 / 4000						
Liver - Fatty infiltration	Liver - Fatty infiltration									
Single hepatocytes	6/10	6/10	8/10	5/10						
Diffuse small droplet -	0/10	3/10	2/10	4/10						
slight										
Thyroid - Hyperplasic elev	ation of the follicula	r epithelium								
Slight	1/10	3/10	0/10	2/10						
Moderate	0/10	3/10	0/10	0/10						
Thyroid										
tendency to formation of	0/10	2/10	0/10	0/10						
microfollicular structure^										

^{^:} lesion only mentioned in the pathology report text, and not included in the Individual findings table

Carcinogenic NOAEL

A systemic NOAEL for benalaxyl at dose level of 100 ppm (corresponding to 4.42/5.64 mg/kg bw per day for males and females, respectively), based on heart weight changes together with changes in LDH and K; the carcinogenic NOAEL is 100 ppm (corresponding to 4.42/5.64mg/kg bw per day for males and females respectively), based on the occurrence of astrocytomas in brain (a rare tumour) was set. Clinical chemistry showed dose-related increases in lactic dehydrogenase (LDH) in male rats at 18 months, attaining statistical significance only at 1000 ppm in comparison to controls. Males at 1000 ppm also showed increased serum potassium levels in comparison to controls at 18 months only.

Liver: A total of 16 primary hepatocellular tumours were observed, representing a population frequency of 3%, which is compatible with the frequency of spontaneous hepatocellular neoplasms. Although the incidence of hepatocellular neoplasm was found to be greater in females at 1000 ppm, the difference was not

statistically significant; there was no dose-response observed in the treatment groups and no primary hepatocellular tumours were found in males at 1000 ppm.

Thyroid: The morphological distinction between benign and malignant parafollicular cell neoplasms was considered inadequate and therefore, these neoplasms were simply described as parafollicular cell tumours. (see B.6.5.1.1 Lifetime oral dosing studies in rats: combined oncogenicity and chronic toxicity of GALBEN technical (M 9834))

The administration of Benalaxyl Technical at doses up to and including a dose of 275 mg/kg bw per day was concluded to be negative in the Micronucleus assay. Based upon the results, the high dose for the definitive assay was set at 275 mg/kg bw per day, which was estimated to be the maximum tolerated dose (MTD) in

each animal sex. (see B.6.4.2.1 In Vivo Micronucleus Assay in Rats using Benalaxyl Technical). All criteria for a valid study were met.

Also, the fact that the increase was observed in one sex does not reduce the concern because it is considered likely that there a difference in susceptibility between the sexes for these types of tumors due to differences in function of this tissue between males and females.

Additional factors which may increase the carcinogenic potential of benalaxyl are the following, also mentioned in the short summary of studies including other species, targeted toxicity and systemic toxicity:

There are several reasons why a tumour observed in animals may be judged to be not relevant for humans or may be judged to be of lower concern. In most of these cases the tumour arises via a mode of action which does not occur in humans (see this Section Part K of CLP Criteria Guidance).

In some cases the tumour may arise in a tissue known to be overly susceptible in the species tested to development of certain tumours and consequently may be judged to be less relevant for humans. In a few cases a tumour may occur in a tissue with no equivalent in humans.

Tumours occurring in tissues with no human equivalent

Some of the commonly used animal species have some tissues with no equivalent in humans. Tumours occurring in these tissues include the following types:

Selected, statistically significantly different, non-neoplastic findings at terminal sacrifice (No. affected animals)

	Sex and dose level (ppm)									
Organ & lesion	Male				Fema	le				
	0	4	100	1000	0	4	100	1000		
Oesophagus – No. examined	54	52	55	54	54	54	54	55		
Hyperkeratosis	1	5	8*	2	6	6	6	6		
Harderian glands – No. examined	53	52	55	54	54	55	54	54		
Chronic/lymphocytic inflammation/fibrosis	8	10	8	19*	12	14	11	11		
Large intestine – No. examined	52	50	54	54	54	55	52	55		
Submucosal, lymphoid hyperplasia	2	3	9*	3	3	5	4	4		
Liver – No. examined	54	52	55	54	54	55	54	55		
Dilated, fluid-filled sinusoids	4	5	13*	9	3	1	1	2		
Cervical lymph nodes – No. examined	46	51	50	52	44	53	52	47		
Increased macrophages (sometimes containing haemosiderin)	7	1*	0*	2	1	0	1	1		
Mesenteric lymph nodes – No. examined	51	49	47	51	52	52	53	53		
Congestion	6	2	3	1	0	7*	1	2		
Mammary glands – No. examined	46	47	31	51	54	54	54	55		
Glandular/lobular hyperplasia	12	4*	1*	6	4	2	3	4		
Prostate – No. examined	54	51	54	53						
Chronic prostatitis	11	11	2*	12						
Spleen – No. examined	54	52	55	54	54	54	54	54		
Haemosiderosis	18	9	4*	9	33	21*	33	35		
Reticuloendotelial cell hyperplasia	2	9*	7	7	3	7	1	3		
Erythroid hypoplasia	1	2	1	1	6	0*	2	4		

^{*:} p≤0.05

Non – neoplastic: Amyloidosis was observed in the liver's mice at ≥ 250 ppm in males. This dose exceed the MTD. HCD for amyloidosis in the liver were provided and all the data were within those HCD. Amyloidosis was also reported in the kidneys, spleen and adrenal glands, salivary glands, stomach and intestine, and

Zymbal glands (Anonymous, 1985 and 1988b). (see B.6.5.1.1 Lifetime oral dosing studies in rats: combined oncogenicity and chronic toxicity of GALBEN technical (M 9834)).

The macroscopic observations, specific for set the classification criteria based on CLP regulation were observed also in rats. The most frequent finding at interim kill was milk cysts (galactoceles) in mammary glands, which were observed in females of all groups, including the control. An increase in relative heart weight (10%) was noted in male rats at 1000 ppm at 24 months and the absolute ovary weights of female rats at 4 and 100 ppm were significantly decreased at 24 months.

In a few cases a tumour may occur in a tissue with no equivalent in humans:

Neoplastic: Urinary bladder tumours (transitional bladder tumour) were observed in males at 3000 ppm (3 tumours out of 60 animals). Mammary glands: Fibroadenomas were extremely frequent among all female groups (range: 38–52 %); adenocarcinomas ranged 4 to 9% in all groups. Reticulum cell sarcoma was the most frequent malignant neoplasm showing multiple organ involvement in ten rats (2.3%). Adrenal's medullary tumours -3 tumours in males at 100 ppm, which showed distant metastases to lungs and/or liver. Brain: Intracerebral astrocytomas and ependymoma. Liver: A total of 16 primary hepatocellular tumours were observed, representing a population frequency of 3%, which is compatible with the frequency of spontaneous hepatocellular neoplasms. Although the incidence of hepatocellular neoplasm was found to be greater in females at 1000 ppm, the difference was not statistically significant. Pancreas: Islet cell adenomas were more common in males and noted with similar frequency among all male groups (range 7 to 11%). Parathyroid: Solitary distinct nodules within the parathyroids were all classified as adenomas, as no distinction was possible between "nodular" hyperplasia and adenoma; however taking in consideration the incidence, the effect was not attributed to administration. Adenomas of the pituitary were extremely frequent in all female groups (range 78 to 89%) and not uncommon among males (range 36 – 46%). Thyroid: parafollicular cell hyperplasia and tumours in males and females (see CA_B.6.5.1.1).

About the mechanistic activity of benalaxyl could be mentioned the study CA 5.3.1/02, the dietary study of 28 days, in rat, at concentrations of 1000, 5000 and 10000 ppm which it caused an increase in liver weight and microsomal protein and cytochrome P450 content associated with a marked induction of hepatic CYP2B and UDP-glucuronyltransferase (UDP-GT). As results was the increases of excretion of T4 and a lower plasma T4 levels feedback to the pituitary gland and cause increased plasma thyroid stimulating hormone (TSH) levels (Anonimous, 2008). The sustained increase in plasma TSH level may result in thyroid follicular cell hypertrophy, followed by thyroid hyperplasia and/or neoplasia with longer term exposure.

Comparing with human thyroid reactivity, it need to be made a correction, considering as essential to be mentioned the lack of T4-binding globulin (TBG) and shorter half-life of T4 in rats compared to humans. These are some of the reason for that it is not allow to extrapolate the thyroid hypertrophy, hyperplasia, and/or neoplasia with microsomal enzyme induction in rats versus humans. Follicular cell hypertrophy on the thyroid was observed in the 5-week and 13-week studies in the rat, mainly at high dose. In the dogs, effects on prostate weight, atrophy of seminiferous tubules and increase in relative testes weights were observed. The experts' meeting at EFSA agreed that the evidence available is weak (EAMS modality without an in-depth testing procesure according with ED GD EFSA/ECHA and, taking into consideration lack of data on mode of action, an endocrine disrupting potential of the test substance cannot be excluded and conclusions cannot be reached (data gap) in the view of avoid its contribution on benalaxyl carcinogen potential.

An in-depth assessment of genotoxicity, without in vitro positive results in the study In Vivo Micronucleus Assay in Rats using Benalaxyl Technical (see CA 5.4.2/01), some findings from 2nd RF study, could be relevant in proposed classification, as mortality (1/3 m and 1/3 f at 300 mg/kg bw/d 2/3 m and 1/3 f at 400 mg/kg bw/d) and clinical sign (lethargy and piloerection at 400 mg/kg (m + f) at 300 mg/kg bw/d (m);lethargy, piloerection and prostration at 300 mg/kg bw/d (f)). This study stated the MTD = 275 mg/kg bw/d (lethargy, piloerection and prostration). The MTD is the highest dose of the test agent during the bioassay that can be predicted not to alter the animal's normal longevity from effects other than carcinogenicity. Data obtained from a sub-chronic or other repeated dose toxicity study are used as the basis for determining the MTD. Excessive toxicity, for instance toxicity at doses exceeding the MTD, can affect the carcinogenic responses in bioassays. Such toxicity can cause effects such as cell death (necrosis) with associated regenerative hyperplasia, which can lead to tumour development as a secondary consequence unrelated to the intrinsic potential of the substance itself to cause tumours at lower less toxic doses.

The scientific knowledge leading to a comprehensive MoA may influence a carcinogenic classification under CLP. MoA constitutes key data according to the CLP Regulation (CLP; Annex I, 1.1.1.5 and 3.7.2.1.1, 3.7.2.3.2.) and it is crucial for an efficient and transparent decision-making process under, for example CLH. About the mechanistic activity of benalaxyl could be mentioned the study CA 5.3.1/02, the dietary study of 28 days, in rat, at concentrations of 1000, 5000 and 10000 ppm which it caused an increase in liver weight and microsomal protein and cytochrome P450 content associated with a marked induction of hepatic CYP2B and UDP-glucuronyltransferase (UDP-GT). As results was the increases of excretion of T4 and a lower plasma T4 levels feedback to the pituitary gland and cause increased plasma thyroid stimulating hormone (TSH) levels (Anoninous, 2008). The sustained increase in plasma TSH level may result in thyroid follicular cell hypertrophy, followed by thyroid hyperplasia and/or neoplasia with longer term exposure.

Comparing with human thyroid reactivity, it need to be made a correction, considering as essential to be mentioned the lack of T4-binding globulin (TBG) and shorter half-life of T4 in rats compared to humans. These are some of the reason for that it is not allow to extrapolate the thyroid hypertrophy, hyperplasia, and/or neoplasia with microsomal enzyme induction in rats versus humans. Follicular cell hypertrophy on the thyroid was observed in the 5-week and 13-week studies in the rat, mainly at high dose. In the dogs, effects on prostate weight, atrophy of seminiferous tubules and increase in relative testes weights were observed. The experts' meeting at EFSA agreed that the evidence available is weak (EAMS modality without an in-depth testing procesure according with ED GD EFSA/ECHA and, taking into consideration lack of data on mode of action, an endocrine disrupting potential of the test substance cannot be excluded and conclusions cannot be reached (data gap) in the view of avoid its contribution on benalaxyl carcinogen potential.

Also the incidence of malignance was considered the most critical effect. No HCD were available for the performing laboratory. Incidences of astrocytoma were available, but information on severity was missing.. In such cases the CLP guidance suggests a comparison with the historical control data As discussed above the observed incidence in malignancy is just a fact without a presence of performing laboratory historical data. Also, it is unclear whether the stated HC data for the Dossier studies include the results of the different periods of time. Therefore, comparison with the historical control is not considered conclusive. The data set from the Applicant Dossier, of those older historical controls (from 1977 to 1979) which were not reliable on, due to the lack of information about the protocol/techniques of preservation/microscopic examination as well as time of sacrifice of surviving animals. The large frequence and distribution in all mice groups from the studies, higher incidence in males than in female and the high mortality concluded a treatment related.(see B.6.5.1.1).

Endocrine disrupting potential: At 200 ppm (corresponding to 6.5 mg/kg bw per day) significant testicular findings (atrophy of seminiferous tubules were noted in the histopathological summary of organs and tissues microscopic examination) (see B.6.3.2.5 Study of the toxicity of repeated oral administration of product M 9834 (GALBEN) to Beagle dogs at the dosage levels of 10, 200 and 800 ppm for 52 weeks).

A summarised results of endocrine disruptor potential of benalaxyl are presented in the table below:

Study, Species, Doses (ppm), mg/kg bw/d	NOAEL (ppm) mg/kg bw/d	LOAEL (ppm) mg/kg bw/d	Effect classification	Critical effects	Reference
5w, oral,	100	800/4000	Target organ	Organ target weight:	RAR-08_Vol-3CA_B.6.3.1.1
gavage/intubation	M+F	M+F	toxicity	relative increasing	
Rat (Wistar), M+F				Liver weight ↑51% (M)	CA 5.3.1/01
0, 10, 100, 800/4000				and↑80 % (F)	Anonymous (1982)
			Systemic	Reversible after the 2-week	
			toxicity	recovery period	A Range finding study;
			-	In life observation:	NOAEL verified in
				- Clinical chemistry and	subchronic study;
				haematology:	,
			EATS-	Change: Liver toxicity;	Subacute oral in rodents
			mediated	Reversible after the 2-week	
				recovery period	In – house method

Study, Species, Doses (ppm), mg/kg bw/d	NOAEL (ppm) mg/kg bw/d	LOAEL (ppm) mg/kg bw/d	Effect classification	Critical effects	Reference
				Organ histopathology: Effect indicative of thyroid 2/10 vs 0/10 in controls; Not indicated as a base for NOAEL setting; not reexamined at the end of the recovery period Changes: Hyperplasic elevation of the follicular epithelium No histopathology at the end of the recovery period; 800/4000 mg/kg bw/day indicates that dosage of the high dose level (800 mg/kg bw/day) was continuously increased up to 4000mg/kg bw/day	No GLP
4w, oral, feed Rat (CD) only M 0, 120, 600, 1200	<120 m	120 M	In vivo mechanistic	Clinical chemistry: Phase I enzyme induction (in vivo) †Cytochrome P450 and 7- Pentoxyresorufin O- depentylase Phase II enzyme induction (in vivo) †p-Nitrophenol UDP-glucuronosyl transferase Effect indicative of EATS	RAR-08_Vol-3 CA_B.6.3.1.2 CA 5.3.1/01 Anonymous (2001) A Mechanistic study to investigate liver enzyme induction relevant to demonstrate increased clearance of thyroid hormones in rat In – house method No GLP
13w, oral, feed Rat, Sprague-Dawley (Crl:CD (BR)) 0, 0.56, 5.80, 58.87, 637.73, 1051.84 M 0, 0.66, 6.69, 71.51, 783.56, 1277.24 F	58.9 M 71.5 F	637.7 M 783.6 F	Target organ toxicity Systemic toxicity EATS - mediated	Organ target weight: relative increasing Liver weight: ↑48 % M and ↑61% F Lobulation; Darker liver M + F In life observation: - Clinical chemistry and haematology Change: Liver toxicity M+F Organ histopathology: Thyroid histopathology - no effect M+F Testis histopathology - no effects were observed up to 1051.84 mg/kg bw. Effect indicative of EAS Thyroid weight - no effect Effect indicative of thyroid	RAR-08_Vol-3 CA_B.6.3.2.2 CA 5.3.2/02 Anonymous (1982) Repeated dose 90-day oral toxicity study Assimilated OECD 408 GLP
90d, oral, feed Rat Sprague-Dawley (Crl:CD) 0, 0.6, 62, 677 M 0, 0.7, 74, 745 F	62 M 74 F	677 M 745 F	Target organ toxicity Systemic toxicity	Organ target weight: relative increasing Liver weight: \^41\% M and \^55\% F Hepatocellular hypertrophy M + F	RAR-08_Vol-3 CA_B.6.3.2.3 CA 5.3.2/03 Anonymous (2014b)

Study, Species, Doses (ppm), mg/kg bw/d	NOAEL (ppm) mg/kg bw/d	LOAEL (ppm) mg/kg bw/d	Effect classification	Critical effects	Reference
			EATS - mediated	In life observation: — Clinical chemistry and haematology: ↓ Body weight M + F Change: Liver toxicity M + F Organ histopathology: Testis histopathology - no effects up to 677 mg/kg bw Effect indicative of EAS Thyroid histopathology: M - Follicular cell hypertrophy (mild: 7/10 vs 2/10 in control group, moderate: 2/10 vs 0/10 in control group) Not reported as basis for NOAEL F - no effect Effect indicative of thyroid Reproductive effect: Estrus cyclicity - no effect Effect indicative of EAS Sperm morphology + motility - no effect on spermatogenesis endpoints (mean testicular and cauda epididymal sperm numbers and sperm production rate, motility, progressive motility and morphology) Effect indicative of EAS No relevant effect observed	CombinedToxicity/Neurotoxi city study; reproductive endpoints (sperm parameters and estrous cyclicity) were evaluated according to OECD 416 to address a data gap in the two-generation study Repeated dose 90-day oral toxicity study in rodents OECD 408 GLP
90d, oral, capsule, Dog, Beagle 0, 7.5, 25, 75/200 M + F	25 M + F	75/200 M + F	Target organ toxicity Systemic toxicity EATS - mediated	Organ target weight: relative increasing Liver weight:↑26% M + F In life observation: - Clinical chemistry and haematology: ↑ALP (M + F) Organ histopathology: Testis histopathology - no effect up to the highest dose of 75/200 mg/kg bw Thyroid histopathology - no effect Effect indicative of thyroid Effect indicative of EAS Thyroid weight - no effect Effect indicative of thyroid	RAR-08_Vol-3 CA_B.6.3.2.4 CA 5.3.2/04 Anonymous (2014b) Dosage level was increased from 75 to 200 mg/kg bw/day during week 4 because there were no clinical signs of toxicity Repeated dose 90-day oral toxicity study in non-rodents OECD 408 and OECD 424 GLP
52wd weeks by oral, feed, Dog, Beagle, 0, 0.32,6.5,25.2 M	6.5 M	25.2 M	Target organ toxicity Systemic	Macroscopic examination and organ weight determinations did not reveal any abnormalities.	RAR-08_Vol-3 CA_B.6.3.2.5 CA 5.3.2/05

Study, Species, Doses (ppm), mg/kg bw/d	NOAEL (ppm) mg/kg bw/d	LOAEL (ppm) mg/kg bw/d	Effect classification	Critical effects	Reference
			EATS - mediated	In life observation: - Clinical chemistry and haematology – no effect up to the highest dose of 25.2 mkd; - Clinical signs - no effect up to the highest dose of 25.2 mkd; - Food consumption - no effect up to the highest dose of 25.2 mkd; - Mortality - no effect up to the highest dose of 25.2 mkd; - Mortality - no effect up to the highest dose of 25.2 mkd; Organ histopathology: - Testis histopathology – Changes in Atrophy of the seminiferous tubules Effect indicative of EAS - Thyroid histopathology – no effect up to the highest dose of 25.2 mkd; Effect indicative of T	Anonymous (1982) A chronic study Guidelines: Test method was not specified in the report (In house method), but detailed test procedure was included in report (along with RBM Standard Operating Procedures) and complied to a great extent with OECD Guideline 409 GLP
2y oral, feed, Rat, Crl:CD(SD), 0,0.18,4.42,44.3 M 0,0.23,5.64,56.3 F	0.18 M 0.23 F	44.3 M 56.3 F	Target organ toxicity Systemic toxicity EATS - mediated	Organ weight: ↑Heart weight (not accompanied NOAEL systemic) In life observation: -Clinical chemistry and haematology - ↑K and LDH No relevant effect observed, no carcinogenic effects Organ histopathology: -Thyroid histopathology - no effect; NOAEL carcinogenicity; based on males; thyroid weight was not measured Effect indicative of T	RAR-08_Vol-3 CA_B.6.5.1.1 CA 5.5/01 Anonymous (1983) A combined chronic toxicity/carcinogenicity GLP
78w, feed, Mouse, Swiss, 0,44.93,180.87,558.87 M 0.42.93,174.26,521.73 F	44.93 M 42.93 F	558.87 M 521.73 F	Target organ toxicity Systemic toxicity	Organ weight: Thyroid weight – no effect M + F Effect indicative of T Liver histopathology: Amyloidosis in liver and multiple tissues (kidneys, spleen, adrenal glands at higher dose levels); effect indicative for MTD<44.93 Liver histopathology: Amyloidosis in liver and multiple tissues (kidneys, spleen, adrenal glands at higher dose levels); effect indicative for MTD<42.9 Mortality: in M at 180.87 was 68.3 % and 75 % in the	RAR-08_Vol-3 CA_B.6.5.2.1 CA 5.5/02 Anonymous (1985) A combined chronic toxicity /carcinogenicity GLP

Study, Species, Doses (ppm), mg/kg bw/d	NOAEL (ppm) mg/kg bw/d	LOAEL (ppm) mg/kg bw/d	Effect classification	Critical effects	Reference
29w, oral, feed, Rat, Sprague-Dawley	6.97 M	333.29 M	EATS - mediated Target organ toxicity	high dose level No effect indicative for EATS but offer the values for NOAEL systemic toxicity Urinary bladder histopathology – Tumours Effect dose above MTD Organ weight: Liver weight: Relative \\$50 \% M	RAR-08_Vol-3 CA_ B.6.6.1.1
Sprague-Dawley 0,6.97,66.57,333.29 M Adult (F0) 0,7.90,79.64,397.73 F Adult (F0)	7.90 F	M 397.73 F	EATS - mediated	NOAEL parental based on females = 79.64 Relative and absolute ↑ 17.7 % NOAEL parental based on females Reproductive: Sensitive to, but not diagnostic of, EATS, no effect, generate NOAEL reproductive = 333.29 M and 397.73 F Developmental: Litter/pup weight: ↓ pup weight during lactation, generate NOAEL offspring = 79.64 F Sensitive to, but not diagnostic of, EATS Pup development: ↓Organ weight changed (organs not specified) generate NOAEL offspring = 79.64 F Sensitive to, but not diagnostic of, EATS Adult (F0) = Organ histopathology: Female Cervix histopathology = No effect up to the highest dose of 397.73 mkd but not relevant for EAS – modality because of important deviations (age of balanoprenputial separation and vaginal opening,	B.6.6.1.1 CA 5.6.1/01 Anonymous (1983) Two-generation reproduction study CA 5.6.1/01 GLP
				anogenital distance, coagulating gland weight and histopathology, epidymis weight and histopathology, seminal vesicles weight not measured Adult (F0) = Organ histopathology:	

Study, Species, Doses (ppm), mg/kg bw/d	NOAEL (ppm) mg/kg bw/d	LOAEL (ppm) mg/kg bw/d	Effect classification	Critical effects	Reference
				Male Epididymis histopathology = No effect up to the highest dose of 333.29 mkd Organ weight: Epididymis weight = No effect up to the highest dose of 333.29 mkd M + F Abnormalities: Genital abnormalities: Genital abnormalities = No effect up to the highest dose of 397.73 mkd Ovary weight + Vagina histopathology + Ovary histopathology = No effect up to the highest dose of 397.73 mkd Prostate weight + Prostate histopathology (with seminal vesicles and coagulating glands) + Testis histopathology = No effect up to the highest dose of 333.29 mkd Uterus weight (with EATS- mediated) + Uterus histopathology = No effect up to the highest dose of 397.73 mkd	
10d, oral, Gavage/Intubation, Rat CD(SD)BR 0,12.5,50,200 F	12.5 F	200 F	EATS-mediated	NOAEL maternal = 200 No relevant effect observed Adult (F0) Fetus M + F at 200 mkd but Abnormalities and presence of anomalies – incomplete ossification of the cranial bones (parietal, intraperitoneal, supraoccipital) generate NOAEL developmental Sensitive to, but not diagnostic of, EATS	RAR-08_Vol-3 CA_ B.6.6.2.1 CA 5.6.2/01 Anonymous (1982) Prenatal developmental toxicity study In house method in compliance with OECD 414 GLP
14d, oral, Gavage/Intubation, Rat Crl: CD(SD) 0,15,50,150,300 F Adults (F0) 0, 15, 50, 150 Fetus M + F	15 F 15 F	300 F 150 F	Systemic toxicity	Maternal toxicity: In life observation: ↓Body weight and generate the maternal NOAEL Due to lack of toxicity at all doses an additional cohorts Developmental toxicity: No relevant effect observed at 150mkd Sensitive to, but not diagnostic of, EATS	RAR-08_Vol-3 CA_ B.6.6.2.2 CA 5.6.2/02 Anonymous (2015) Prenatal developmental toxicity study OECD 414 GLP
22d, oral,			Systemic	In life observation:	RAR-08_Vol-3 CA_

Study, Species, Doses (ppm), mg/kg bw/d	NOAEL (ppm) mg/kg bw/d	LOAEL (ppm) mg/kg bw/d	Effect classification	Critical effects	Reference
Gavage/Intubation,			toxicity	↓Body weight - % adjusted	B.6.6.2.3
Purity: NOT				b.w.change (day 0 to 28)	CA 5.6.2/03
INDICATED				Fetal development:	Anonymous (1983)
Rabbit, New Zealand				Retarded skeletal	
White				development; Decreased	OECD 414
0,5,50, 250 F				crown, rump length	
					GLP
Adult (FO) F 50					
Fetus $M + F = 50$					

10.9.2 Comparison with the CLP criteria

As it is stated in CLP Regulation a Classification of a substance as a carcinogen is based on consideration of the strength of the evidence of available data for classification with considerations of all other relevant information (weight of evidence) being taken into account as appropriate.

Carcinogen Category 2 based on tumour data from a structural analogue together with substantial support from consideration of other important factors such as formation of common significant metabolites.

The evidence of mutagenic activity in vivo may indicate that a substance has a potential for carcinogenic effects.

Benalaxyl was evaluated for its carcinogenicity in long-term studies, conducted in rats, mice and dogs. This effect was supported by results from other mechanistic or mutagenicity studies.

Benalaxyl is a chemical substance which induce tumours, increase tumour incidence and/or malignancy or shorten the time to tumour occurrence. Prevalence of benign tumours are considered to have the potential to progress to malignant tumours and are generally included in a malignance risk. It is necessary a delimitation between the structure of benalaxy which could induce cancer by any route of exposure, from the carcinogenic potential and its potency which are related of route, level, pattern and duration of exposure.

The induction of only benign tumours usually provides a lower strength of evidence for carcinogenicity than the induction of malignant tumours and will usually support Category 2 (CLP Annex I, 3.6.2.2.3).

There are marked differences among the general tumour incidence in the various experiments. These differences must be partly due to natural fluctuations and partly to the fact that the number of apparently normal tissues and organs (where, however, microscopic tumours are often found) submitted to systematic histopathological investigation, varied to some extent from experiment to experiment, in agreement with specific protocol.

Relating to bladder tumours, it was noted that transitional cell carcinomas (1 in males and 2 in females) were observed only in controls of the more recent experiments, started in 1981. These tumours were observed only at microscopic examination.

Some benign tumours, for example brain tumours, may be of concern in themselves. However, unusual tumour types or tumours occurring with reduced latency may add to the weight of evidence for the carcinogenic potential of a substance, even if the tumours are not statistically significant

Carc. 2 (H351 – Suspecting of causing cancer) may be warranted according to CLP Regulation criteria. This proposal for classification was reported in the RAR and in the EFSA conclusion (EFSA Journal 2020;18(1):5985).

As it is stated in CLP Regulation a Classification of a substance as a carcinogen is based on consideration of the strength of the evidence of available data for classification with considerations of all other relevant information (weight of evidence) being taken into account as appropriate.

Benalaxyl was evaluated for its carcinogenicity in long-term studies, conducted in rats, mice and dogs. This effect was supported by results from other mechanistic or mutagenicity studies.

According to Regulation EC No 1272/2008 (CLP), Table 3.6.1, classification for carcinogens is based on: CATEGORY 1: Known or presumed human carcinogens A substance is classified in Category 1 for carcinogenicity on the basis of epidemiological and/or animal data. A substance may be further distinguished as:

- Category 1A, known to have carcinogenic potential for humans, classification is largely based on human evidence, or
- Category 1B, presumed to have carcinogenic potential for humans, classification is largely based on animal evidence.

The classification in Category 1A and 1B is based on strength of evidence together with additional considerations (see section 3.6.2.2). Such evidence may be derived from:

- human studies that establish a causal relationship between human exposure to a substance and the development of cancer (known human carcinogen); or
- animal experiments for which there is sufficient (1) evidence to demonstrate animal carcinogenicity (presumed human carcinogen).

In addition, on a case-by-case basis, scientific judgement may warrant a decision of presumed human carcinogenicity derived from studies showing limited evidence of carcinogenicity in humans together with limited evidence of carcinogenicity in experimental animals.

CATEGORY 2: Suspected human carcinogens The placing of a substance in Category 2 is done on the basis of evidence obtained from human and/or animal studies, but which is not sufficiently convincing to place the substance in Category 1A or 1B, based on strength of evidence together with additional considerations (see section 3.6.2.2). Such evidence may be derived either from limited(1) evidence of carcinogenicity in human studies or from limited evidence of carcinogenicity in animal studies.

As there is no human data available for benalaxyl that may be relevant for carcinogenicity, criteria for category 1A are not fulfilled.

For classification in category 1B evidence may be derived from "[..] animal experiments for which there is sufficient (1) evidence to demonstrate animal carcinogenicity (presumed human carcinogen) [..] In addition, on a case-by-case basis, scientific judgement may warrant a decision of presumed human carcinogenicity derived from studies showing limited evidence of carcinogenicity in humans together with limited evidence of carcinogenicity in experimental animals."

Sufficient evidence from animal studies is explained as "a causal relationship has been established between the agent and an increased incidence of malignant neoplasms or of an appropriate combination of benign and malignant neoplasms in (a) two or more species of animals or (b) two or more independent studies in one species carried out at different times or in different laboratories or under different protocols. [..]"

A classification of substance in **Category 2** (suspected human carcinogens) "is done on the basis of evidence obtained from human and/or animal studies, but which is not sufficiently convincing to place the substance in Category 1A or 1B, based on strength of evidence together with additional considerations (see section 3.6.2.2). Such evidence may be derived either from limited(1) evidence of carcinogenicity in human studies or from limited evidence of carcinogenicity in animal studies."

Limited evidence from animal studies is explained as "data suggest a carcinogenic effect but are limited for making a definitive evaluation because, e.g. (a) the evidence of carcinogenicity is restricted to a single experiment; (b) there are unresolved questions regarding the adequacy of the design, conduct or interpretation of the studies; (c) the agent increases the incidence only of benign neoplasms or lesions of

uncertain neoplastic potential; or (d) the evidence of carcinogenicity is restricted to studies that demonstrate only promoting activity in a narrow range of tissues or organs."

The significance of tumours observed in the chronic and carcinogenicity studies, *i.e are* discussed below based on considerations included in the CLP guidance:

(a)tumour type and background incidence;

Rats:

Events: 19 neoplasms from 65 rats in a lifetime oral dosing studies in rats: combined oncogenicity and chronic toxicity

Mortality during the study period: 47 - 61% rats which died, killed when moribund or killed at termination were necropsied.

Dose level of 100 ppm (4.42/5.64 mg/kg bw per day for male and female, respectively) is general available for the tumours occurrence in both sexes, with an increased incidence at 1000 ppm in males more than in females and the absence of dose response at lower doses in both sexes.

Adrenal's medullary tumours -3 tumours in males at 100 ppm, which showed distant metastases to lungs and/or liver

Brain: Intracerebral astrocytomas and ependymoma

Liver: A total of 16 primary hepatocellular tumours were observed, representing a population frequency of 3%, which is compatible with the frequency of spontaneous hepatocellular neoplasms. Although the incidence of hepatocellular neoplasm was found to be greater in females at 1000 ppm, the difference was not statistically significant

Mammary glands: Fibroadenomas were extremely frequent among all female groups (range: 38–52 %); adenocarcinomas ranged 4 to 9% in all groups

Reticulum cell sarcoma was the most frequent malignant neoplasm showing multiple organ involvement in ten rats (2.3%)

Pancreas: Islet cell adenomas were more common in males and noted with similar frequency among all male groups (range 7 to 11%).

Parathyroid: Solitary distinct nodules within the parathyroids were all classified as adenomas, as no distinction was possible between "nodular" hyperplasia and adenoma; however taking in consideration the incidence, the effect was not attributed to administration.

Adenomas of the pituitary were extremely frequent in all female groups (range 78 to 89%) and not uncommon among males (range 36 - 46%).

Thyroid: parafollicular cell hyperplasia and tumours in males and females

No HCD were available for the performing laboratory. Incidences of astrocytoma were available, but information on severity was missing.

The incidence range observed among the studies varied from 0/100 to 3/60 in male (5%) and 0/100 to 2/50 in female rats, and the incidences observed were within the ranges. The incidences for males were 1.9% (low dose), 1.8% (mid dose), 3.7% (high dose), and zero for females of all groups. For ependymoma, the article did not show a range, but we only have one case in the high dose females, 1.8%, so it is less concerned. A female euthanized in extremis (D80), gross observations included a firm lobulated mass on thymus, enlarged spleen and mediastinal and renal lymph nodes, and depressed areas in the kidneys; the cause of death of this animal was malignant lymphoma.

Astrocytoma was considered the most critical effect. No HCD were available for the performing laboratory. Incidences of astrocytoma were available, but information on severity was missing. According to the literature, astrocytoma is a rare tumour in Sprague Dawley rats. All the experts of PRAS 182 meetings, September 2018, agreed to lower the carcinogenic NOAEL at 100 ppm (4.42/5.64 mg/kg bw per day for male and female, respectively) considering the increased incidence at 1000 ppm in males and the absence of dose response at lower doses.

The mechanistic evidence on the human relevance of the bladder tumours in rats is inconclusive.

Mice:

Urinary bladder tumours (transitional bladder tumour) were observed in males at 3000 ppm (3 tumours out of 60 animals); this dose exceed the MTD. Such tumours were not observed in females or with the lower dose levels. Two of these tumours were detected only at microscopic examination and were at a very early stage, and one was observed at gross examination at necropsy.

Respective latency time were 45, 54, and for the tumour observed at necropsy, 68 weeks from the start of the treatment.

(b) potential progression of lesions to malignancy; multi-site response

Benalaxyl presented a large occurrence of tumours and a multi-site response as it is seen in Table Selected neoplastic findings at terminal sacrifice (No. affected animals) in section 10.9.1 of this report.

Rats:

- Lifetime oral dosing studies in rats: combined oncogenicity and chronic toxicity of GALBEN technical (M 9834)(1983)

This is the study with specific results for carcinogenicity. Multiple tumours (or lesion) on organs were observed, such us: liver, brain, mammary glands, pancreas, and pituitary gland.

- An Oral (Gavage) Prenatal Developmental Toxicity Study of Benalaxyl in Rats (2015)

Enlarged liver, correlated with hepatocellular hypertrophy, in a single female at 450/300 mg/kg/day also a higher liver weights (17.8% and 17.2%, absolute and relative to net body weight, respectively) compared to the control group; Centrilobular to midzonal hepatocellular hypertrophy, minimal in degree, was noted in 12 of 25 females compared to none in the control, but no degenerative changes were noted.

Follicular cell hypertrophy on the thyroid was observed in the 5-week and 13-week studies in the rat, mainly at high dose.

Dog:

Study of the toxicity of repeated oral administration of product M 9834 (GALBEN) to Beagle dogs at the dosage levels of 10, 200 and 800 ppm for 52 weeks. (1982)

A rather spontaneous incidence of seminiferous tubules atrophy in Beagle dogs is reported in the literature, and the findings of the one-year study are considered likely secondary to general toxicity, more evident in 2/6 dogs.

Mice:

3 lesions in male mice treated at the highest dose level of 3000 ppm were originally diagnosed as "transitional cell tumours of the urinary bladder", a type of tumours considered by the study pathologist rather uncommon. However, pathology peer reviews of the original slides determined these to be "submucosal mesenchymal tumour" of the mouse urinary bladder, a lesion non-epithelial in origin, unique to the mouse urinary bladder, and with no counterpart in any other species including humans and therefore of no relevance for risk assessment in humans.

Rats:

At the scheduled necropsy on GD20, enlarged liver, correlated with hepatocellular hypertrophy, was observed in a single female at 450/300 mg/kg/day also a higher liver weights (17.8% and 17.2%, absolute and relative to net body weight, respectively) were recorded in the 450/300 mg/kg/day group females compared to the control group; (the differences were significant by correlation with microscopically observations). Centrilobular to midzonal hepatocellular hypertrophy, minimal in degree, was noted in 12 of 25 females compared to none in the control, but no degenerative changes were noted.

Follicular cell hypertrophy on the thyroid was observed in the 5-week and 13-week studies in the rat, mainly at high dose.

In the 5-week rat study, the NOAEL is 100 mg/kg bw per day on the basis of the significant increase in liver weight; at 800/4000 mg/kg/day were seen reversible changes in haematological and clinical chemistry parameters, and a significant increase in liver weight (+51% in males, and +80% in females, also reversible).

A general toxicity phase animals primarily involved the liver and thyroid glands and included higher mean gamma glutamyltransferase values, gross observation of a swollen liver (1 female), and histologic evidence of hepatocellular hypertrophy and thyroid follicular cell hypertrophy at 10000 ppm; hepatocellular hypertrophy in females and higher mean liver weights were also recorded at \geq 1000 ppm. Additional test substance-related findings included serum chemistry alterations of higher mean cholesterol in the females at 10000 ppm; and higher mean total protein, albumin, and cholesterol values in the males at \geq 1000 ppm.

Summary of treatment-related microscopic findings at 0, 100, 1000 and 10000 ppm in rats revealed presence of hepatocellular hypertrophy which was characterized by expansion of the hepatocellular cytoplasm associated with a distribution of the changes, predominantly centrilobular and extended to a more generalised pattern with increased severity of the change. Follicular cell hypertrophy in the thyroid glands was characterized by expansion of the cytoplasm of the thyroid follicular cells and a decrease in the amount of follicular colloid.

The same dose level 1000 ppm is considered the dose-response for the adverse-effects of benalaxyl precluding carcinogenicity.

Dog:

In the dogs, effects on prostate weight, atrophy of seminiferous tubules and increase in relative testes weights. Atrophy of the seminiferous tubules was observed in the 12-month dog study at the highest dietary concentration of 800 ppm (equivalent to 25 mg/kg bw/d). Findings were seen with a low incidence (in two of six dogs), are known to occur spontaneously in untreated animals, and are shown to be associated with body weight effects in the more severely affected of the two dogs.

At 1000 ppm, a relative liver weights were increased by less than 15% in both males and females, and liver histopathology at this dose level only showed minimal hepatocellular hypertrophy in 3 females only. Thyroid follicular hypertrophy was also observed at the same incidence and with the same degree as controls in males, and at the same degree than controls but in only one more female at 1000 ppm, as was observed at the 10-fold lower dose level. Albumin and total protein levels, were significant statistic higher than control, in males only. However, in the 90-d toxicity study, there was no dose-relationship on prostate weights, and no histologic correlate and therefore the findings were considered non-treatment-related. A rather spontaneous incidence of seminiferous tubules atrophy in Beagle dogs is reported in the literature, and the findings of the one-year study are considered likely secondary to general toxicity, more evident in 2/6 dogs.

Mice:

The 13-week mouse study was considered as a range-finding study, considering that an increase liver weight at 1000 ppm was equivocal and not associated with histopathological changes.

In the mouse study, 3 lesions in male mice treated at the highest dose level of 3000 ppm were originally diagnosed as "transitional cell tumour of the urinary bladder", a type of tumours considered by the study pathologist rather uncommon. However, pathology peer reviews of the original slides determined these to be "submucosal mesenchymal tumour" of the mouse urinary bladder, a lesion non-epithelial in origin, unique to the mouse urinary bladder, and with no counterpart in any other species including humans and therefore of no relevance for risk assessment in humans.

Support from Conclusion of ED assessment

Thyroid-modality.

The adversity is related only with the target organ, liver, respectively.

Without adversity it is not fulfilled criteria of ED Guidance.

The pituitary effect appears as a great intracranial pressing and haemoragies produced by astrocytomas; unconclusive data.

There are missing a properly study *in vitro* performed on three species (for a clear adsorption, distribution, metabolism, excretion properties - ADME of benalaxyl).

EATS-modalities

There are no available studies investigating EATS-mediated endocrine activity (*in vivo* and *in vitro* mechanistic data and ToxCAST data were considered inconclusive).

A definition of MoA as a most biological plausible link between adverse effects and/or endocrine effects could not be identified for ED properties of benalaxyl.

HCD (historical control data)

The incidence of malignance was considered the most critical effect. No HCD were available for the performing laboratory. Incidences of astrocytoma were available, but information on severity was missing. In such cases the CLP guidance suggests a comparison with the historical control data As discussed above the observed incidence in malignancy is just a fact without a presence of performing laboratory historical data. Also, it is unclear whether the stated HC data for the Dossier studies include the results of the different periods of time. Therefore, comparison with the historical control is not considered conclusive.

The data set provided from the Applicant Dossier, are some older historical controls (from 1977 to 1979) which are not reliable on, due to the lack of information about the protocol/techniques of preservation/microscopic examination as well as time of sacrifice of surviving animals. The large frequence and distribution in all mice groups from the studies, higher incidence in males than in female and the high mortality concluded a treatment related.

HCD were collected from 1977 - 1981 with not relevant information (from 1977 to 1979), due to the lack of information about the protocol/techniques of preservation/microscopic examination as well as time of sacrifice of surviving animals.

Therefore, classification in Carc. Cat. 2 is proposed based on a treatment related increase in mammary a heart weight changes together with changes in LDH and K; () is 100 ppm (), based on the occurrence of astrocytomas (a rare tumour) and the dissemination of amyloidosis in various organs and tissues, noted three lesions as a submucosal mesenchymal tumours of the mouse urinary bladder. Tumours occurring only at excessive doses associated with severe toxicity generally have a more doubtful potential for carcinogenicity in humans. If a test compound is only found to be carcinogenic at the highest dose(s) used in a lifetime bioassay, and the characteristics associated with doses exceeding the MTD as outlined above are present, this could be an indication of a confounding effect of excessive toxicity. This may support a classification of the test compound in Category 2.

Life-time exposure to benalaxyl resulted in an increased frequency of thyroid adenomas in rats and hepatocellular adenomas in mice. Human relevance cannot be excluded; however, the tumour types are mainly benign. MTD seems to have been met in the rat study but not in the mouse study. Overall, data is considered as "limited" evidence of carcinogenicity and classification in Carc. 2 H351 is proposed for benalaxyl.

This proposed classification for benalaxyl is reported in an updated RAR and in the EFSA Conclusion (EFSA Journal 2020;18(1):5985), including the results of the experts' meeting on ED potential of benalaxyl.

10.9.3 Conclusion on classification and labelling for carcinogenicity

Based on the available data (long term studies) discussed above, increased incidence of enlarged of rare tumors (maligns and benigns) was observed in rats, mice, dogs and rabitts. Life-time exposure to benalaxyl resulted in an increased frequency of thyroid adenomas in rats and hepatocellular adenomas in mice also human relevance cannot be excluded. However, the multi - targeted organs and various tumour types are considered sufficient evidence to classify benalaxyl as Category 2

Benalaxyl should be classified Carc. 2; H351 - "Suspected of causing cancer".

10.10 Reproductive toxicity

Not evaluated in this report.

10.11 Specific target organ toxicity-single exposure

The most relevant information for a proposed classification of benalaxyl as STOT SE is covered by acute toxicity studies in form terms of a clinical observations, also macro- and microscopic pathological examinations that can reveal the hazards that may not be life-threatening but could indicate a functional impairement.

Acute toxicity studies are included in Section 10.1.In this section, they are mentioned those specific results for nervous system from two acute neurotoxicity studies which were carried out during the period of renewal of benalaxyl as active substance.

10.11.1 Short summary and overall relevance of the provided information on specific target organ toxicity – single exposure

The intention for a proposal of classification of benalaxyl as specific target organ toxicity –single exposure was concluded in the Report of Risk Assessmen sent to EFSA based on the evidences derived from additional studies on acute neurotoxicity performed. The study which promoted this proposal was an old acute oral toxicity study on mice (1980), having as results a possible neurological signs that states the following observation: "death occurred in the first 24 hours following treatment by gavage and was preceded by loss of the sense of equilibrium, uncoordinated movements, and asthenia".

The proposal considered available based on the weight of evidence revealed in acute oral toxicity studies and acute neurotoxicity studies.

Based on the weight of evidence, benalaxyl has not a significant neurotoxic potential and all observed acute effects (i.e. tremor, clonic convulsions) were considered as a results of the high single dose from acute oral toxic study. This highest dose was used as lethal doses also in the acute neurotoxicity study. Therefore, no classification for specific target organ toxicity, by a single exposure for benalaxyl was proposed. In this report, the proposal of classification as STOT SE; H371 is justified by the results from those two acute neurotoxicity studies and taking into account specific reaction for a nervous system effects available.

Table 21: Summary table of animal studies on STOT SE

Test substance,	Relevant information about the study (as	Results	Reference
	аррисане)		
of exposure			
•			
Benalaxyl tech.	Body weight: no statistically significant	Group 3: 400 mg/kg	RAR-08_Vol-3
Lot/batch: PL 13-	differences were noted.	bw/day is the dose	CA_B.6.7.1.1
0055	Clinical signs:	level without death	
Purity: 98.4%.		and specific sign for	Reference
Vehicle: 0.5%		nervous system as a	number:
(w/v)		target.	CA 5.7.1/01
•			
deionized water			Anonymous
			(2014c)
•			
G (G2-G5)			
	- low arousal were noted		
0			
7 1			
•			
	*		
	mouth		
	Group 6: additional animals at 2000 mg/kg		
4, respectively).			
Group 5 400	UW. 2 III + 2 I		
-	Similar findings to those noted at 2000 mg/kg		
`			
10 (01)			
	Benalaxyl tech. Lot/batch: PL 13- 0055 Purity: 98.4%. Vehicle: 0.5%	Benalaxyl tech. Lot/batch: PL 13- 0055 Purity: 98.4%. Vehicle: 0.5% (w/v) methylcellulose in deionized water A single dose to 4 G (G2-G5) Range-finding study previous a neurobehavioral further study. Initial dose levels: 200, 600, and 2000 mg/kg bw (Groups 2, 3, and 4, respectively). Group 5 - 400 mg/kg bw (additional dose Body weight: no statistically significant differences were noted. Clinical signs: 1 male at 600 mg/kg bw per day/ Group 3 - 2 and/or 4 hours following dose administration: - Slightly soiled fur appearance - drooping eyelids - ↓respiratory rate - rales - slightly to moderately impaired mobility - dragging body - low arousal were noted 1 male - 400 and 600 mg/kg bw (G3 and G4) and 1 to 2 females in the 200 and 400 (G2 and G3) at approx 2, 4, or 8 hrs following dose administration: - red deposits around the eyes, nose, and/or mouth Group 5 - 400 mg/kg bw (additional dose	Benalaxyl tech. Lot/batch: PL 13- 0055 Purity: 98.4%. Vehicle: 0.5% (w/v) methylcellulose in deionized water A single dose to 4 G (G2-G5) Range-finding study previous a neurobehavioral further study. Initial dose levels: 200, 600, and 2000 mg/kg bw (G3 and G4) and 1 to 2 females in the 200 and 400 (G2 and G3) at approx 2, 4, or 8 hrs following dose administration: - red deposits around the eyes, nose, and/or mouth Group 5 - 400 mg/kg bw (additional dose level) Similar findings to those noted at 2000 mg/kg bw in the main phase were confirmed in an additional phase, where both females

Group 1 – co group, receiv the vehicle in same conditi study.	hours following dose administration.		
Group 6 - additional an at 2000 mg/k	time (lightly soiled fur appearance, drooping eyelids, decreased respiratory rate, impaired		
2 M + 2 F (to confirm the previous incidence of convulsions	Benalaxyl could be classified with H371 STOT SE Category 2, according with criteria of the CLP Regulation based on the effects at 400 mg/kg bw/day.		
2000 mg/kg			
An Oral Benalaxyl te (Gavage) Acute PL13-0055 Neurotoxicity Purity: 98.49	functional observational battery, locomotor	400 and 1000 mg/kg bw/day (m): Motor activity	RAR-08_Vol-3 CA_ B.6.7.1.2
Study of Benalaxyl in Vehicle: 0.50	Mortality and clinical signs: Phase 1	assessments: ↑ mean total motor	Reference number:
Rats (w/v) carboxymeth	At 200 mg/kg bw and above – a single dose yl -1000 mg/kg bw (m) and 200, 400, and 1000	activity values	CA 5.7.1/01
Oral (gavage) cellulose aqu solution		200, 400, and 1000 mg/kg bw/day (f) at	Anonymous (2014a)
Rats Sprague- Dawley Phase 1	The majority of animals that were found dead or euthanized in extremis were noted with	the time of peak effect:	
(Crl:CD (SD)) 3G (G2 - G4		Changes in the	
OECD TG 424 10 m/10f at 2 and OPPTS 400, and 100	•	pattern of habituation in these	
870.6200 mg/kg bw	found dead approx. 2 hrs following dose	groups.	
Criteria are met	administration (clonic convulsions during the		
Statistics was performed Phase 2 3G (G1-as a	continuous 2-hour post-dosing observations) and one male more – dead after approx. 4.5	group (D0)	
GLP/QA: single dose t	o G3) hrs following dose administration (no clinical		
Yes/Yes of 10f at 0, 5 Acceptable and 100 mg/s		activity counts †in non-ambulatory	
bw.	euthanized in extremis approximately 3 hrs	movements,	
	following dose administration after being noted with increased respiration;	possibly due to additional episodes	
	this female was also noted with:	of clonic activity	
	- Splayed hind limbs and immobility by the	during the motor	
	clinical veterinarian. Two of the aforementioned females (that in	activity session.	
	the 400 mg/kg bw group and one in the 1000	No effects were	
	mg/kg bw group) were euthanized or found dead prior to completion of the motor activity	noted during Phase 2.	
	testing.		
	In addition to the clonic convulsions noted	400 mg/kg bw/day is the dose level which	
	above, one female in the 1000 mg/kg bw	reveals the signs	
	group was also noted with clonic convulsions approx 3 hrs following dose administration	specific for a classification as	
	on day 0; however, this female survived to	STOT SE 2	
	the scheduled euthanasia. Control group was survived		
	Phase 2		
	females in the 100 mg/kg bw G3: repetitive movement of the mouth and jaws which		

correlated with similar home cage FOB findings at the time of peak effect on study day 0 FOB findings were recorded for all animals prior to the initiation of dose administration (pre-test), at the time of peak effect (approximately 2 hours post-dosing) on day 0, and on days 7 and 14. In the 100 mg/kg bw group, 3 females were noted with repetitive movement of the mouth and jaws and 2 females were noted with salivation on the day of dose administration during the 2-hour continuous post-dosing observations; these findings were considered test substance-related. Control group was survived FOB and motor activity assessment: females in the 200, 400, and 1000 mg/kg bw ↓ rearing counts groups at peak time, compared to the control group. Phase 2, 100 mg/kg bw (f): repetitive movement of mouth and jaws Motor activity assessments \tagmount motor activity values 400 and 1000 mg/kg bw/day (m) 200, 400, and 1000 mg/kg bw/day (f) at peak time: Changes in the pattern of habituation in these

10.11.1 Short summary and overall relevance of the provided information on specific target organ toxicity – single exposure

groups.

In the second acute neurotoxicity study, *An Oral (Gavage) Acute Neurotoxicity Study of Benalaxyl in Rats* (Anonimous, 2016a based on dose-respons observed at the dose levels administrated on rats in the first doserange finding - DRF study a maximum dose level of 1000 mg/kg bw/d was selected in view of avoiding the rate of mortality of rats and allowing a properly FOB and motor activity assessments.

Benalaxyl as active substance was administered as a single dose to 3 groups (Groups 2 - 4) of 10 male and 10 female rats at dose levels of 200, 400, and 1000 mg/kg bw (Phase 1).

Due to mortality noted at the lowest dose level of 200 mg/kg and above in the females during the initial dosing phase, an additional phase (Phase 2) was added to determine a no-observed-adverse-effect level (NOAEL) for female neurotoxicity.

In Phase 2, benalaxyl or the vehicle was administered orally by gavage as a single dose to 3 groups (Groups 1-3) of 10 female rats at dose levels of 0, 50, and 100 mg/kg.

Unfortunately, from Phase 1 of the acute neurotoxicity study, on a single dose of benalaxyl resulted in mortality and/or moribundity for males at 1000 mg/kg bw/d and for females at 200, 400, and 1000 mg/kg bw/d within approximately 4.5 hours following dose administration; the majority of animals that were found dead or euthanized in extremis were noted with clonic convulsions.

In addition, test substance-related FOB findings (lower mean rearing counts) for females at 200, 400, and 1000 mg/kg bw/d and/or higher mean total motor activity values for males at 400 and 1000 mg/kg bw /d at the time of peak effect on day 0 and dose level of 200 mg/kg bw was considered to be the no-observed-adverse-effect level (NOAEL) for acute neurotoxicity in male rats.

For Phase 2, females in the 100 mg/kg bw /group were noted with clinical findings of repetitive movement of the mouth and jaws which correlated with similar home cage FOB findings at the time of peak effect on study day 0 only. No test substance-related effects were noted for females in the 50 mg/kg bw/ group. Therefore, the NOAEL for acute neurotoxicity in female rats was considered to be 50 mg/kg bw/group.

Concentration of 400 mg/kg bw is relevant for nervous system effects because of females which were alive before 4 hours as at 200 mg/kg bw giving the possibility to mention an increased respiration, (+ splayed hindlimbs and immobility) which were noted after 2 h post dose observation. Time of death and observation time(s) has contradictory, as seen in the table below:

Motor activity assessments revealed higher mean total motor activity values for males at 400 and 1000 mg/kg bw and for females at 200, 400, and 1000 mg/kg bw at the time of peak effect on the day of dosing, indicating a change in the pattern of habituation in these groups.

Significantly lower mean rearing counts were noted for females in the 200, 400, and 1000 mg/kg bw/ groups compared to the control group at the time of peak effect on the day of dosing. At 400 mg/kg bw in mail rats was observed a higher mobility during testing period of 14 days than at 200 mg/kg bw.

Results of necropsy were essential to consider mortality as a reason for an acute toxicity proposed classification but for stated a STOT SE as a classification the key is proving the reasonable effects of benalaxyl without mortality at the dose levels of interest and histopathological observations

Brain weights and measurements were unaffected by administration of benalaxyl at any dose level. No test substance-related microscopic lesions were observed in any of the central or peripheral nervous system tissues examined from 5 animals/sex in the control and 1000 mg/kg bw groups.

Minimal axonal degeneration was observed sporadically in both control and 1000 mg/kg group animals in the sciatic nerve, peroneal nerve, tibial nerve, lumbar dorsal root fibres, lumbar ventral root fibres, and lumbar spinal nerve.

10.11.2 Comparison with the CLP criteria

Specific target organ toxicity (single exposure) is defined as specific, non-lethal target organ toxicity arising from a single exposure to a substance or mixture. Relevant information for STOT SE is covered by acute toxicity studies in form of clinical observations, and macroscopic and microscopic pathological examination that can reveal hazards that may not be life-threatening but could indicate functional impairment. Acute toxicity studies are included in section 10.1.

STOT-SE should be considered where there is clear evidence of toxicity to a specific organ, when it is observed in the absence of a classification for lethality (see Section 3.8 of the CLP Guidance).

STOT SE 1 and 2

STOT-SE Category 1 and 2 are assigned on the basis of findings of 'significant' or 'severe' toxicity. In this context, 'significant' means changes which clearly indicate functional disturbance or morphological changes which are toxicologically relevant. 'Severe' effects are generally more profound or seriouis than 'significant' effects and are of considerably adverse nature with significantimpact on health.

Exposure levels relevant to classification in Category 1 are defined (Section 3.8.2.1.9.3 of Annex I of the CLP Regulation) as \leq 300 mg/kg bw (oral route, rat); \leq 1000 mg/kg bw (dermal route, rat).

According to the guidance value ranges for single-dose exposures laid down in the CLP criteria (Annex I 3.8.2.1.9.3), benalaxyl could be classified as category 1, if::

a. reliable and good quality evidence from human cases or epidemiological studies; or

b. observations from appropriate studies in experimental animals in which significant and/or severe toxic effects of relevance to human health were produced at generally low exposure concentrations. Guidance dose/concentration values are provided below (see 3.8.2.1.9) to be used as part of weight-of-evidence evaluation.'

Benalaxyl is letal for rats at $DL_{50} = 2000$ mg/kg bw/day in acute oral study, a single dose. There are not enough dose levels and a sufficient number of species of animals to conduct acute studies on benalaxyl to those sever relevant effects on animals, which could be appropriate for be extrapolated to human.

Criteria for Cat 1 are not fulfilled for classification of benalaxyl as STOT SE 1.

Classification in STOT SE Category 2 is required for substances showing significant toxic effects of relevance to humans, in studies in experimental animals and at generally moderate exposure levels.

Exposure levels relevant to classification in Category 2 are defined (Section 3.8.2.1.9.3 of Annex I of the CLP Regulation) as $2000 \ge C > 300$ mg/kg bw (oral route, rat); $2000 \ge C > 1000$ mg/kg bw (dermal route, rat) and $5.0 \ge C > 1.0$ mg/L (inhalation route, rat, dust/mist/fume).

Regulation EC No 1272/2008 (CLP), section 3.8.1 states that:

"Acute toxicity refers to lethality and STOT-SE to non-lethal effects. However, care should be taken not to assign both classes for the same toxic effect, essentially giving a "double classification", even where the criteria for both classes are fulfilled. In such case the most appropriate class should be assigned."

It should be noted that it is already proposed to classify benalaxyl for acute toxicity Cat. 4 on the basis of the LD50 studies with cut-off values of 300-2000 mg/kg bw.

STOT SE 2 would thus be a more sensitive endpoint since neurotoxicity findings was observed at dose levels below 1000 mg/kg bw/day, with a NOAEL of 200 mg/kg bw/d (m) and 50 (f) mg/kg bw/d. Although clinical effects observed after short term exposure were without histopathological correlations and a high mortality in the acute toxicity study, presumably caused by the neurotoxic effects. According to the CLP criteria mortalities observed within 72 hours after the first treatment can be considered an acute effect.

Based on the available data it was demonstrated that the neurotoxic effects can lead to mortality at dose levels that are below the classification criteria for acute toxicity Cat. 4. (300-2000 mg/kg bw). Thus, these effects are considered relevant for classification.

As neurotoxic effects consistently occur directly after dosing at dose levels below the limit values and also below the cut-off value for acute tox 4, it is proposed to classify benalaxyl for STOT SE (nervous system) Cat 2, H371.

STOT SE 3

STOT SE3 includes narcotic effects and respiratory tract irritation. These are target organ effects for which a substance does not meet the criteria to be classified in Categories 1 or 2.

Narcotic effects were not observed in acute toxicity studies related benalaxyl. An inhalatory study was performed.

10.11.3 Conclusion on classification and labelling for STOT SE

Benalaxyl should be classified. STOT SE 2; H371 - "nervous system"

10.12 Specific target organ toxicity-repeated exposure

Not evaluated in this report.

10.13 Aspiration hazard

Not evaluated in this report.

11 EVALUATION OF ENVIRONMENTAL HAZARDS

Benalaxyl is a fungicide active substance considered under Directive 91/414/EEC (subsequently Regulation 1107/2009) for representative use as a foliar spray. Available environmental fate and ecotoxicology studies

have been considered and summarised in the Renewal Assessment Report, 2018 (RAR, Volume 3, Annex B8 and Annex B9) and the renewal of approval dossier.

11.1 Rapid degradability of organic substances

Benalaxyl is considered not readily biodegradable. Hydrolytic degradation of the active substance and metabolites > 10 %. Benalaxyl is stable to hydrolysis at pH 4 and 9; pH 9 (50°C): DT₅₀ = 55 days; pH 9 (70°C): DT₅₀ = 19 h.

Table 22: Summary of relevant information on rapid degradability

Method	Results	Remarks	Reference
Hydrolysis	Benalaxyl is stable to hydrolysis at	The study is	RAR
	pH 4 and 7.	considered acceptable	B.8.2.1.1
OECD guideline 111	pH 9 (50°C): DT50 = 55 days		
	pH 9 (70°C): DT50 = 19 h		CA 7.2.1.1/01
	A DT ₅₀ of 157 days at 20°C was		
	extrapolated from the results at the		Anonymous (1982)
	higher temperatures		
Water-sediment degradation	$0.3\% \div 0.4\% \text{ AR}$	GLP, Study acceptable	RAR
			B.8.2.2.2
OECD guideline 309	Benalaxyl does not undergo any		
	significant biodegradation/		CA 7.2.2.2/01
¹⁴ C-benalaxyl	mineralisation in natural waters		Anonymous (2015b)
	within the study period of 62 days.		
Ready biodegradability	The degradation rate of benalaxyl	GLP, Study acceptable	RAR
	based on the ThOD _{NH4} , was –2.1		B.8.2.2.1
OECD guideline 301 F	and based on ThOD _{NO3} the		
	percentage of biodegradation of		CA 7.2.2.1/01
	benalaxyl reached –2.0%.		Anonymous (1999)
	Results indicate		
	Benalaxyl is		
	"not readily biodegradable"		
Aerobic Transformation/	¹⁴ C-benalaxyl degraded to 1.1% AR	GLP, Study acceptable	RAR
Degradation in Soil	to 45.4% under aerobic conditions		B.8.1.1.1.1
	for 117 days		
OECD guideline 307	NER: 22% - 50% after 117 d.		CA 7.1.1.1/03
			Anonymous (2015a)

Aerobic mineralisation in surface water

Benalaxyl is stable to hydrolysis at pH 4 and 7. At pH 9 and 50°C a DT50 of 55 days was calculated. Using the Arrhenius equation DT₅₀ values at 20 and 25°C at pH 9 were calculated as 157 days and 86 days, respectively. The main hydrolysis product was identified as benalaxyl acid (M9, DL-alanine, N-2,6-xylyl-N-phenylacetyl).

Benalaxyl is not easily photolysed under natural sunlight conditions during June – August at 45° 28' N, 3° 10' W coordinates since 60% AR is still present as benalaxyl after 64 days of exposure. At least 15 unidentified compounds were detected but none of them individually represented more than 5% of the initially applied radioactivity.

Anonymous, (2015b), Aerobic Mineralisation of ¹⁴C-benalaxyl in Surface Water - Simulation Biodegradation Test, FMC Corporation Agricultural Solution, Harlan, GLP, OECD guideline 309, Commission Regulation (EU) No 283/2013

The degradation, transformation and mineralisation of 14 C-benalaxyl at two concentrations was studied in natural pond water according to OECD 309. Natural water (300ml), pH 8.18, was treated with 14 C-benalaxyl at 10.5 µg/l (nominal 10 µg/L) and 106.7µg/l (nominal 100 µg/L) and incubated in the dark at 23.4 \pm 0.9°C for 62 days. Sterile controls (100µg/L nominal) and bio-controls (with benzoic acid at 10µg/L nominal) were also set up. Test vessels were connected to a flow-through system and continuously agitated and aerated with

humidified air in the dark. Volatile compounds were trapped in ethylene glycol (only for ¹⁴C-benalaxyl test vessels) and sodium hydroxide. Duplicate test samples were taken at day 0, 7, 14, 21, 28, 42 and 62. Radioactivity in water samples was determined by LSC. Samples were then partitioned in hexane and the organic phase analysed by HPLC and TLC. Mineralisation of benalaxyl was negligible accounting for only 0.3% to 0.4% AR at the low and high test concentration, respectively. Insignificant transformation/degradation of benalaxyl was observed throughout the study period and therefore no DT₅₀S/DT₉₀S could be derived. It can be concluded that benalaxyl does not undergo any significant biodegradation/mineralisation in natural waters within the study period of 62 days.

11.1.1 Ready biodegradability

Adequate data to assess the ready biodegradability of Benalaxyl were evaluated during the first approval of the active substance. A summary of the data evaluated is presented below.

Anonymous (1999), Ready Biodegradability of Benalaxyl techic in a manometric respiratory test. GLP, OECD guideline 301 F

The ready biodegradability of benalaxyl (96.68% radiochemical purity) was investigated in a Manometric Respiratory Test (Anonymous, 1999) over a period of 28 days at 22°C in the dark with the a.s applied to activated sludge at a concentration of 30 mg suspended solids per litre. The biodegradation was followed by the oxygen uptake of the micro-organisms during the exposure period.

After 28 days of exposure the degradation rate of benalaxyl based on the ThODNH4, was -2.1. Based on ThODNO3 the percentage of biodegradation of benalaxyl reached -2.0% after 28 days. This values indicates that benalaxyl was not degraded by the activated sludge and can therefore be considered as "not readily biodegradable".

11.1.2 BOD₅/COD

No data available.

11.1.3 Hydrolysis

Benalaxyl is stable to hydrolysis at pH 4 and 7 (Anonymous, 1982). At pH 9 and 50° C a DT₅₀ of 55 days was calculated. Using the Arrhenius equation DT₅₀ values at 20 and 25°C at pH 9 were calculated as 157 days and 86 days, respectively. The main hydrolysis product was identified as benalaxyl acid (M9, DL-alanine, N-2,6-xylyl-N-phenylacetyl).

Anonymus, 1982, GALBEN Hydrolysis, OECD guideline 111. The buffered aqueous solutions (0.05 M) of 1.5 to 15 mg/l benalaxyl (99.2% purity) were incubated in the dark at pH 4, 7 and 9 for a period of 5 days at 50°C and 70° Celsius.

Analysis was carried out by GLC (a.s.) and HPLC (benalaxyl acid).

Benalaxyl was found to be stable to hydrolysis at pH 4 and 7. At pH 9 and 50°C 53% benalaxyl remained after 5 days (DT₅₀ of 55d). At 70°C and pH 9 the DT₅₀ of benalaxyl was of 19 hours. At this temperature and pH values of 4 or 7 the hydrolysis of benalaxyl was not tested.

Based on the findings, hydrolytic constants (Kh) at lower temperatures were extrapolated using the Arrhenius equation. Thus, at pH 9 and 20°C the Kh is 0.0044d-1 with a corresponding DT50 of 157 days; at 25°C the Kh value is of 0.0081d-1 and the DT₅₀ is of 86 days. The main hydrolysis product at pH 9 is benalaxyl acid. This compound was referred to be more stable than the active substance.

Benalaxyl is stable to hydrolysis at pH 4 and 7. At pH 9 it has a DT_{50} of 55 days at 50°C and 19 hours at 70°C. A DT_{50} of 157 days at 20°C was extrapolated from the results at the higher temperatures

11.1.4 Other convincing scientific evidence

11.1.4.1 Field investigations and monitoring data (if relevant for C&L)

No data available.

11.1.4.2 Inherent and enhanced ready biodegradability tests

No data available.

11.1.4.3 Water, water-sediment and soil degradation data (including simulation studies)

Water-Sediment

Adequate data to assess the degradation of benalaxyl in sediment/water systems were evaluated during the first EU approval. The rates of degradation in the sediment/water study of Anonymus (1997) have been reevaluated according to the recommendations of the FOCUS Kinetics Group (FOCUS 2006, 2011).

The degradation of benalaxyl in two sediment/water systems was modelled according to the recommendations of the FOCUS Kinetics Guidance document. Benalaxyl degraded with SFO DT₅₀s in the total system of 141.9 to 199.4 days at 20°C (χ^2 error 2.596 to 4.261%).

Summary of route and rate of degradation in aquatic systems

Benalaxyl is categorised as "not readily biodegradable".

Since the original review was performed, a new data requirement to address the aquatic mineralisation of active substances has been stipulated under Regulation 1107/2009. A study has been performed to the OECD guideline 309 and benalaxyl was stable under the conditions of the test.

In two natural water/sediment systems from Italy (20°C, high organic loamy sand pond aquatic system and a low organic sandy river aquatic system) benalaxyl was observed to dissipate from the water compartment according to a biphasic process. Levels of radioactivity in the surface water of the Pond system decreased from 97% AR (0 h) to 16% AR at the end of the study. Benalaxyl declined from 94% AR to 1.4% AR after 100 days. In the River system, a similar but slower decline was observed. Levels of radioactivity in the surface water decreased from 95% AR (0 h) to 41% AR at 100 days. Benalaxyl decreased from 92% AR to 26% AR. In the original evaluation benalaxyl was concluded to dissipate from the water phase following a biphasic pattern with 1st order DT₅₀ values of 5 and 10 days, respectively for the Pond and River systems for the first phase. The second phase was slower and the corresponding 1st order DT₅₀ values were 32 and 61 days for the Pond and River systems. Extractable radioactivity from the Pond sediment increased from 5.7% of AR at 0 h to 68% AR after 100 days with a corresponding increase of benalaxyl levels from 5.7% AR to 53% AR (Maximum of 71% AR in sediment at 60 days). In the River sediment levels of extractable radioactivity increased from 5.6% AR at 0 h to 52% AR after 100 days of incubation with benalaxyl levels increasing from 5.6% AR to 43% AR. Unextractable radioactivity reached a maximum of 8.1% AR after 100 days (River aquatic sediment). No CO₂ was detected in the River system. In the Pond system CO₂ was only detected sporadically and reached a maximum of 0.4% AR at the end of the study.

The main degradation products found in both systems were identified M1 (max. of 7.6% AR and 7.7% AR after 100 days, respectively in the Pond and River total systems) and benalaxyl acid (M9, max. of 7.79% AR and 6.11% AR after 100 and 60 days, respectively in the Pond and River total systems).

 $DT_{50}s$ in the whole sediment/water systems have been recalculated according to FOCUS (2006, 2011) guidance. Benalaxyl degraded with SFO $DT_{50}s$ in the total system of 141.9 to 199.4 days at 20°C (χ^2 error 2.596 to 4.261%).

Soil

Data to assess the aerobic rate of degradation of benalaxyl in soil were evaluated during the first EU review and no further data were considered necessary. For further details, please refer to the DAR and addenda for benalaxyl (Portugal, 2000, 2003).

Rate of degradation in soil

Aerobic degradation of the active substance

Detailed summaries of the studies in support of the original approval (DAR, 2000, 2003) are presented below. Due to concerns regarding possible shortcomings in the existing soil metabolism studies (e.g. high rates used, enantiomeric ratios not determined) a soil metabolism study in four soils has been conducted.

 DT_{50} s were available from five soils investigated in the studies of Anonymous (1982) and Anonymous (1981), as summarised below. Benalaxyl was concluded to degrade with DT_{50} s of 36 to 100 days at 22°C.

The rates of degradation in the aerobic soil degradation studies of Anonymous (1982, 1981) have been reevaluated according to the recommendations of the FOCUS Kinetics Group (FOCUS 2006, 2011) in the study of Anonymous (2009).

The study investigated the aerobic degradation of 14 C-benalaxyl (M 9834, DL-alanine, N-(2,6-dimethylphenyl)-N(phenylacetyl)-methyl ester) in a silt loam soil in the dark over 133 days. 14 C-benalaxyl was applied to 100 g of soil at a concentration of 50 mg a.s./kg and maintained at $22 \pm 2^{\circ}$ C and 40% water holding capacity. Samples were taken at 7, 14, 28, 56, 77, 98 and 133 DAT for extraction and analysis.

¹⁴C-benalaxyl degraded throughout the study to 11.7% AR after 133 DAT. The major ¹⁴C metabolites Compound A ((methyl-N-(2,6-xylyl)-N-malonyl alaninate; M1), Compound B (N-(2,6-xylyl)-N-malonyl alanine; M2) and Compound C (benalaxyl-acid; M9) were identified. Throughout the study compounds A, B, and C reached a maximum of 31.0% AR (133DAT), 34.1% AR (98 DAT) and 4.9% AR (28 DAT), respectively. A total of 18.8% of the applied radioactivity (AR) was present as bound residues after 133 days. No loss of total ¹⁴C and no evolution of ¹⁴CO₂ was ascertained to occur.

The aerobic degradation scheme of benalaxyl in soil (aerobic condition) was defined.

The rate of degradation of benalaxyl (methyl-N-(phenylacetyl)-N-(2,6-xylyl)-alaninate;) was investigated by Anonymous (1981) in four recently collected Italian farmland soils: Triulzi (a loam tending to sandy loam); Linate (loam); Cantonazzo (clay loam); and Badia Polesine (sandy loam). Unlabelled benalaxyl was applied to 100 g (dry weight [dw] of soil) with 40% moisture content at a nominal rate of 0.5 or 5 mg a.s./100g dw soil. The rate of degradation of benalaxyl in Triulzi soil was also determined when the water content was raised to 69% (with sterile and fresh soil). Samples were maintained in the dark at 22 ± 2°C and water lost via evaporation was replaced. Samples were taken at 0, 7, 14, 28, 56, 70, 105 and 143 DAT or for soils with 69% maximum water holding capacity (MWHC) 0, 7, 18 29, 56 and 68 days post application or day 0, 84, 112, 212 post application for sterile soils. Soils were extracted using methanol/water (90:10 v/v) and analysed via HPLC and TLC.

Procedural recoveries at different levels of benalaxyl both in soil and water ranged from between 90 and 106%. Total recoveries of benalaxyl during the study from samples taken were between 94.5 to 98.5%.

This decline in benalaxyl was characterised by an initial lag phase where degradation was slow, followed by a period of rapid degradation. For a 50 mg/kg dose of benalaxyl the concentration of benalaxyl declined from 48.0-50.0 mg/kg (0 DAT) to 4.25-9.52 mg/kg at the end of the study (143-158 DAT). When the dose was 10 times lower (5 mg/kg soil), the concentration of benalaxyl declined from 4.86-5.52 mg/kg (0 DAT) to 0.25-0.72 (between 98 DAT and 143 DAT).

An increase in moisture content (from 40% MWHC to 69% MWHC) increased the rate of degradation of benalaxyl in the Triulzi soil. With an application of 5 mg/kg to the soil, benalaxyl declined from 4.86 mg/kg benalaxyl (0 DAT) to 0.72 mg/kg at 143 DAT when the soil was at 40% MWHC compared to a decline of

5.21–5.62 mg/kg (0 DAT) to 0.44–1.00 mg/kg at 68 DAT when at 60% MWHC. Under sterile conditions at 69% MWHC, degradation was much reduced and benalaxyl declined from 5.26 mg/kg (0 DAT) to 4.40 mg/kg at 212 DAT. This indicates that degradation is through microbial action and that benalaxyl is stable under sterile conditions.

The rate of degradation increased when benalaxyl was applied to a previously treated soil (Cantonazzo soil) indicating that the lag phase (due to microbial activity) was eliminated. When a dose of 5 mg/kg was applied to fresh Cantonazzo soil, levels reduced from 5.39 mg/kg (0 DAT) to 0.69 mg/kg at 73 DAT, following reapplication at 108 days after the initial treatment levels of benalaxyl then declined from 5.70 (at DAT 0 of the second application) to 0.8 mg/kg at day 54 (after the second application).

Determination of modelling endpoints for benalaxyl and soil metabolites from laboratory degradation studies, using Modelmaker 4.0, according to FOCUS kinetics was drawn by Anonymous (2009).

The decline of benalaxyl in two laboratory studies was modelled according to the recommendations of the FOCUS Kinetics Guidance document. A lag-phase was noted in all soils and the HS-SFO or SFO model satisfactorily describes the decline of benalaxyl in all soils. DT_{50} s of 18.1 to 57.8 days for were obtained for the decline phase under the conditions of the studies and modelling endpoints of DT_{50} s 19.7 to 39.3 days normalised to 20° C and pF2 were obtained.

11.1.4.4 Photochemical degradation

Benalaxyl is not easily photolysed under natural sunlight conditions during June – August at 45° 28' N, 3° 10' W coordinates since 60% AR is still present as benalaxyl after 64 days of exposure. At least 15 unidentified compounds were detected but none of them individually represented more than 5% of the initially applied radioactivity. Benalaxyl is not prone to photolysis.

11.2 Environmental transformation of metals or inorganic metals compounds

Not relevant for this proposal.

11.3 Environmental fate and other relevant information

Adsorption and desorption in soil

Data to assess the adsorption/desorption of benalaxyl were evaluated during the first EU review. For further details, please refer to the DAR and addenda for benalaxyl (Portugal, 2000, 2003).

The adsorption and desorption behaviour of benalaxyl was investigated (Anonymous, 1993) at 20 ± 1 °C in three different German soils (soil I: sandy loam, pH_(H2O) 4.6 and 1.8 % OC; soil II: sandy loam, pH_(H2O) 5.8 and 1.5 % OC; and soil III: sandy loam, pH_(H2O) 7.8 and 1.1 % OC)) using a batch equilibrium method.

The tests were carried out with the three soils using the following concentration and adsorption time:

Test series 1 Concentration: 200 µg/l; 1 mg/l; 5 mg/l

Time: 2h; 4h; 6h; 16h

Test series 2 Concentration: 40 µg/l; 200 µg/l

Time: 1h; 3h; 5h; 8h (only with 200 µg/l)

Test series 3 Concentration: 200 µg/l; 500 µg/l; 1 mg/l; 5 mg/l

Time: 10 min; 30 min; 60 min; 90 min

Desorption test Concentration: 200 µg/l

Time (adsorption): 16h; Time (desorption): 2 x 16h

In all cases, 5 g dry soil was pre-equilibrated for 48h in 10 ml of 0.01 M CaCl₂ in water. For the blank test a soil: solution ratio of 1:5 was used (no test substance) for the three soils. For the control test, the 0.01 M CaCl₂ solution with the test substance was used.

A soil: solution ratio of 1:5 (w/w) was used for the three soils. The steady phase (equilibration time) was reached in less than 10 minutes and so the Freundlich isotherm parameters (adsorption constant and freundlich exponent) were calculated from a linear plot for the three soils using the results at 90 minutes (test series 3).

The average mass balance was 105 ± 20 % for all three soils. The results presented in the report were calculated incorrectly. The corrected K_f , K_{foc} and 1/n values are summarised in the following table.

	•		•	,		
Soil	%oc	pH (H ₂ O)	$\mathbf{K}_{\mathbf{f}}$	1/n	Koc	Kom
Sandy loam I	1.8	4.6	4.77	0.6624	265	154*
Sandy loam II	1.5	5.8	8.33	0.6295	555	322
Sandy loam III	1.1	7.8	7.77	0.7141	707	410
Worst case (only 2 soils)				0.6295	555	322

Corrected Kocs for benalaxyl from Anonymous (1993)

Anonymous, 2018, [¹⁴C]Benalaxyl Determination of Adsorption/Desorption Behavior in Two Soils, GLP, OECD Guideline 106 (2000): Adsorption/Desorption using a Batch Equilibrium Method. OPPTS 835.1230: Adsorption/Desorption (Batch Equilibrium)

The adsorption and desorption behaviour of ¹⁴C-benalaxyl was investigated (Anonymous, 2018) in two different soils (Lufa 2.2: sandy loam, pH 5.4 and 1.8 % OC; and RefeSol 06-A: silty clay, pH 7.2 and 3.0 % OC) using a batch equilibrium method. Following preliminary tests (Tier 1 and 2), the adsorption isotherms (Tier 3) for both soils were calculated at a soil/solution ratio of 1/10 (4 g soil and 40 mL of 0.01 M CaCl₂), and at five test item concentrations (0.5, 0.25, 0.05, 0.025 and 0.005 mg/L). An adsorption equilibration time of 24 hours was used. All the tiers were carried out at 20 - 25°C and in the dark.

The Freundlich adsorption coefficients ($K_{F,\,abs}$) were 8.216 and 17.951 L/kg for the Lufa 2.2 and RefeSol 06-A soils, respectively. Freundlich adsorption coefficients related to organic carbon content ($K_{Foc,\,abs}$) for the two soils were 453.9 and 598.4 L/kg and the adsorption 1/n values were 0.9151 and 0.9377, an arithmetic mean of the results of the 2 soils can be used in exposure modelling ($K_{Foc} = 526.15$; 1/n = 0.93 for benalaxyl).

For the desorption experiments, a 24 hours desorption time was used to determine the desorption parameters.

The Freundlich desorption coefficient (K_F , $_{des}$) were 9.566 and 24.795 L/kg for the Lufa 2.2 and RefeSol 06-A soils, respectively. Freundlich desorption coefficients related to organic carbon content ($K_{Foc, des}$) for the two soils were 528.5 and 826.5 L/kg and the adsorption 1/n values were 0.9117 to 0.9941.

At the 48-hour sampling (Tier 1 and 2), the mass balance was between 100.1% AR and 104.2% AR for both soils and all soil/solution ratios after extraction and combustion. The parental mass balance was >95% for all samples.

At the desorption equilibrium at 48-hour sampling (Tier 3), the mean mass balance was between 97.1% AR and 100.8% AR for both soils using the highest and lowest concentrations (0.5 and 0.005 mg/L) and the soil/solution ratio of 1/10 after extraction and combustion.

In the Tier 3 experiments at a soil to solution ration of 1/10, the mass balances (radioactivity mass balance) after 24 hours of desoprtion was $\geq 95\%$. The average parental mass balance after 24 hours of desoprtion ranged from 89.2 % to 97.6 % AR; therefore, the test item was considered to be stable for at least 24 hours.

No adsorption to the surface of the test vessel over the test period was detected in control samples from Tier1/Tier 2.

It was noted that in one (Anonymous, 1993) of these studies, the reliability of the results cannot be confirmed taking into consideration the low values for the 1/n (deviating from the linear adsorption) and the quite poor fitting. The new study, on the contrary, is well conducted and results are appropriately presented even though only 2 soils were investigated and only 2 reliable endpoints would be available.

^{*}considered unreliable as it is only based on 3 concentrations, one of which only has a single replicate.

11.4 Bioaccumulation

Table 23: Summary of relevant information on bioaccumulation

Method	Results	Reference
Partition coefficient n-octanol/water	Log P _{ow} for Benalaxyl:	dRAR CA B.2.7
Method EEC A8	3.54 at 20°C and at pH=6.1	Anonymous (1995) N. 94/1087.B
Flow-Through Bluegill Bioconcentration/Depuration Study with ¹⁴ C-Galben In house method complying with US updated requirements No GLP	BCF = 57	dRAR B.9.2.2.3 CA 8.2.2.3/01 Anonymous (1985)
Flow-Through Bluegill Bioconcentration/Depuration Study with ¹⁴ C-Galben – Metabolite Identification Phase	Galben represented 50-60% of the total radioactivity (TR) found in the edible fraction	RAR B.9.2.2.3 CA 8.2.2.3/02 Anonymous (1985)

11.4.1 Estimated bioaccumulation

No data available.

11.4.2 Measured partition coefficient and bioaccumulation test data

Benalaxyl has a log Pow of 3.54 at 20°C and at pH=6.1, which indicates a low bioaccumulation potential.

The bioconcentration potential of benalaxyl in fish was investigated on Bluegill sunfish exposed to the a.s. at a concentration of 0.054 mg as/l under flow through conditions for up to 28 days, followed by a 14 days depuration period (Anonymous, 1985).

Benalaxyl concentration in fish reached a plateau level within 3 days of exposure corresponding to a BCF value of 57. Depuration was also rapid with a half life of less than 6 hours and more than 98% residues were eliminated from fish within 14 days indicating that benalaxyl can be considered as a non bioaccumulable substance.

Benalaxyl appears to be oxidised in fish giving rise to polar compounds and carboxy derivatives, that latter can be further metabolised to glucuronic acid and sulphate conjugated compounds.

One GLP Study of Anonymous (1995) regarding Octanol/water partition coefficient of benalaxyl, according to Method EEC A8 performed.

This study aimed to determine the partition coefficient n-octanol/water of Benalaxyl at 20°C.

The following result was obtained for Benalaxyl: Log Pow for Benalaxyl: 3.54 at 20°C and at pH=6.1

With regard to bioaccumulation of Benalaxyl, two 28 days dynamic studie on bioconcentration by bluegill sunfish were carried out.

Study 1: The Flow-Through Bluegill Bioconcentration/Depuration Study with 14C-Galben, Anonymus 1985, no GLP, included in the DAR (2000) for benalaxyl and the endpoint is listed in the Review Report (2004). The EU agreed BCF value in fish is 57 indicating that benalaxyl can be considered as a non bioaccumulable substance

The bioconcentration potential of Galben in bluegill sunfish was evaluated using 14C-Galben. Bluegill sunfish were exposed to 14C-Galben using a flow-through system, at a concentrations of 0.0524 mg a.s./L, in addition

to a control. Fish were exposed to the test concentrations for 28 days. For the elimination of 14C residues (depuration), the test fish were placed in clean water for 14 days.

Temperature and dissolved oxygen concentration were measured daily in each test aquarium. Water alkalinity, hardness and pH were measured weekly during the uptake and depuration phases.

14C residues in the water were measured on Days 1, 3, 7, 10, 14, 21 and 28 during the exposure phase and Days 1, 3, 7 and 14 during depuration, from both treated and control. 14C residues in fish were measured on Days 1, 3, 7, 10, 14, 21, and 38 from the treated tank and Days 1, 14 and 28 in the control, during the exposure phase. During depuration samples were taken on Days 1, 3, 7 and 14 in the treated tank and Day 14 from the control. Samples were analysed for [14C] residues using liquid scintillation counts (LSC).

Throughout the exposure phase, 14C-Galben values in water averaged 0.046 mg a.s./L. Comparison of the values obtained during the exposure period showed that the residue levels reached a plateau within 3 days of initiation of exposure. On a whole fish basis, the residues plateaued at an average value of approximately 2.6 mg/kg, thus the bioconcentration ratio was 2.6:0.046 or 57:1. During the depuration period, the residues were eliminated from the fish tissue with a half life of less than 6 hours. After 14 days of depuration, the residue level in the whole fish had declined to approximately 2% of the plateau phase.

As the study was conducted according to an in-house method, the occurrence of deviations cannot be assessed against these methods Fish used in the study were treated for ISH ten days prior to test initiation. Current guidelines (OECD 305) state there must be at least a 14 day period following any treatment. Mortalities and other adverse effects were not recorded. Fish were not weighed and lipid content was not measured throughout the study. Fish were not fed for the duration of the study. TOC was not measured. The steady state BCF and kinetic BCF were not reported.

According to current OECD 305 guidelines, as the dissolved oxygen did not remain > 60% throughout the duration of the test and mortality was not recorded, the validity of the study according to current guidelines cannot be confirmed.

Study 2: The Flow-Through Bluegill Bioconcentration/Depuration Study with 14C-Galben – Metabolite Identification Phase, Author: Anonymous, 1985, no GLP. The study is included in the DAR (2000) for benalaxyl. Benalaxyl appears to be oxidised in fish giving rise to polar compounds and carboxy derivatives, that latter can be further metabolised to glucuronic acid and sulphate conjugated compounds. Edible and nonedible fractions were taken for metabolite identification using methods described in the previous report. Extracts were analysed by thin-layer chromatography (TLC). Galben represented 50-60% of the total radioactivity (TR) found in the edible fraction.

The results show that Galben comprised greater than 50% of the total 14C-resdiue in the edible fraction of bluegill sunfish exposed to 14C-Galben in a dynamic flow-through system. G7A, G8 and G14 were also present, but at levels less than 10%. With the exception of a polar species in one of the edible fractions, no metabolite comprised more than 10% of the total 14C-residue. The very low 14C-residue levels and limited amount of sample precluded further identification of polar species.

For the visceral samples, the results show Galben to be present only ion unconjugated form, G6 and G14 in conjugated form and G8 in both forms. Based on the nature of the hydrolytic enzyme preparation used, the conjugates are glucuronides and/or sulfates. After hydrolysis, no unidentified species comprised more than 10% of the total 14C-residue.

According CLP Regulation for organic substances the potential for bioaccumulation shall normally be determined by using the octanol/water partition coefficient, usually reported as a log Kow. The relationship between the log Kow of an organic substance and its bioconcentration as measured by the bioconcentration factor (BCF) in fish has considerable scientific literature support. Using a cut-off value of log Kow ≥ 4 is intended to identify only those substances with a real potential to bioconcentrate. While this represents a potential to bioaccumulate, an experimentally determined BCF provides a better measure and shall be used in preference if available. A BCF in fish of ≥ 500 is indicative of the potential to bioconcentrate for classification purposes. Some relationships can be observed between chronic toxicity and bioaccumulation potential, as toxicity is related to the body burden.

11.5 Acute aquatic hazard

Benalaxyl has a log P_{OW} of 3.54 at 20°C and at pH=6.1, less than 4, and a BCF in fish of 57 which indicates a low bioaccumulation potential. Evaluation of acute aquatic hazard for benalaxyl is based on studies which are considered fully validated test. presented in the table below and relevant studies for the classification purposes are also briefly summarised below.

The available acute toxicity data for relevant metabolites of benalaxyl (M1 - Compound A; M2 - Compound A; F4 acetyl; F7/F8; M9 - Benalaxyl acid) revealed toxicity values > 100 mg/L. Therefore, the studies with these metabolites are not described here, no relevance for classification.

Table 24: Summary of relevant information on acute aquatic toxicity

Method	Species	Test material	Results ¹	Reference
Fish				
96-hour (semi- static study) OECD 203 and EC method C.1	Rainbow Trout (Oncorhynchus mykiss)	Benalaxyl technical (purity: 98.4 % Benalaxyl (analysed))	LC ₅₀ = 4.8 mg/L (based on geom. mean measured concentrations)	RAR B.9.2.1. CA 8.2.1/06 Anonymous (2014a)
GLP 96-hour (semi- static study) OECD 203 and EC method C.1.	Rainbow trout (Oncorhynchus mykiss)	Benalaxyl Isomer R (purity: 98.6 %)	LC ₅₀ = 4.9 mg/L (based on mean measured concentrations)	RAR B.9.2.1. CA 8.2.1/07 Anonymous (2014b)
GLP 96-hour (semi- static study) OECD 203 and EC method C.1. GLP	Rainbow trout (Oncorhynchus mykiss)	Benalaxyl Isomer S (purity: 98.3 %)	LC ₅₀ = 5.0 mg/L (based on mean measured concentrations)	RAR B.9.2.1. CA 8.2.1/08 Anonymous (2014c)
Aquatic inverte	brates	•		
48 hours (static) OECD 202 and EC method C.2 GLP	Daphnia magna	Benalaxyl technical (purity: 98.4 % Benalaxyl (analysed))	EC ₅₀ = 15 mg/L (based on measured concentrations)	DRAR B.9.2.4.1 CA 8.2.4.1/02 Anonymous (Harris, S., 2014a)
48 hours (static) OECD 202 and EC method C.2 GLP	Daphnia magna	Benalaxyl Isomer R (purity: 98.6 % (98.8 total isomers, R/S ratio: 99.8/0.2))	EC ₅₀ = 13 mg/L (based on measured concentrations)	RAR B.9.2.4.1 CA 8.2.4.1/03 Anonymous (2014b)
48 hours (static) OECD 202 and EC method C.2 GLP	Daphnia magna	Benalaxyl Isomer S (purity: 98.3 %; (R/S ratio: 0/100))	EC ₅₀ = 17 mg/L (based on measured concentrations)	RAR B.9.2.4.1 CA 8.2.4.1/04 Anonymous (2014c)
48 hours (static) OECD 202, Part I, Guideline (1984) GLP	Daphnia magna	Benalaxyl (purity: 96.6 % Benalaxyl (analysed))	EC ₅₀ = 0.59 mg/L (based on measured concentrations)	RAR B.9.2.4.1 CA 8.2.4.1/01 Anonymus (1993)

Method	Species	Test material	Results ¹	Reference
Algae				
72 hours	Pseudokirchneriella	Benalaxyl technical	$E_r C_{50} = 3.5 \text{ mg/L}$	RAR
(static system)	subcapitata	(purity: 98.4 %)	$E_y C_{50} = 0.56 \text{ mg/L}$	B.9.2.6.1
OECD 201 and			(based on geometric	CA 8.2.6.1/02
EC method C.3			mean measured	Anonymous (2014a)
GLP			concentrations)	
72 hours	Pseudokirchneriella	Benalaxyl	$E_r C_{50} = 3.4 \text{ mg/L}$	RAR
(static system)	subcapitata	Isomer R	$E_y C_{50} = 0.85 \text{ mg/L}$	B.9.2.6.1
OECD 201 and	_	(purity: 98.6 %)	(based on geometric	CA 8.2.6.1/03
EC method C.3			mean measured	Anonymous (2014b)
GLP			concentrations)	
72 hours	Pseudokirchneriella	Benalaxyl	$E_r C_{50} = 3.4 \text{ mg/L}$	RAR
(static system)	subcapitata	Isomer S	$E_v C_{50} = 0.086 \text{ mg/L}$	B.9.2.6.1
OECD 201 and		(purity: 98.3 %)	(based on geometric	CA 8.2.6.1/04
EC method C.3			mean measured	Anonymous (2014c)
GLP			concentrations)	

¹ Indicate if the results are based on the measured or on the nominal concentration

11.5.1 Acute (short-term) toxicity to fish

With regard to acute (short-term) toxicity to fish of benalaxyl, eight studies were carried out. Five of these studies (Anonymous, 1979a, 1979b; 1979c; 1980; 1984) were evaluated during Annex I inclusion of benalaxyl and they were accepted as supportive information only. Three studies (Anonymous, 2014a; 2014b; 2014c) was submitted for the purpose of EU renewal. These studies are not considered relevant for the classification purposes.

Acute toxicity data with benalaxyl technical and its isomers (Isomer R and Isomers S) was available on one fish specie - rainbow trout (see Table above). All tests were conducted according to the OECD test guideline 203 and GLP and no significant deviations from the test guideline were identified. The 96 h LC₅₀ is 4.8 mg/L (based on geom. mean measured concentrations) for rainbow trout as no mortality or sublethal effects were observed in the study. The acute toxicity data for fish demonstrate both isomers to be of equal toxicity and the endpoints are comparable with that for benalaxyl technical (Isomer R: 96 h LC₅₀ = 4.9 mg/l; Isomer S: 96 h LC₅₀ = 5.0 mg/l).

Study 1: Anonymous, 2014a, Benalaxyl technical: Acute Toxicity to Rainbow Trout (*Oncorhynchus mykiss*), GLP, OECD 203 and EC method C.1

The 96-hour acute toxicity of benalaxyl technical to rainbow trout (*Oncorhynchus mykiss*) was determined under semi-static conditions, in a dose response test. The nominal test concentrations were 10, 18, 32, 56 and 100% v/v saturated solution, plus a control tested in parallel. Analysis of freshly prepared media for the 18, 32, 56 and 100% v/v saturated solutions at 0 and 72 hours showed mean measured concentrations of 3.4, 6.8, 11 and 22 mg benalaxyl technical/L, respectively. Seven fish in a single replicate were tested per treatment group.

The study was conducted in accordance with the referred guidelines. The test was considered to be valid given that none of the control fish died or showed signs of stress during the test and that the oxygen concentration at the end of the test was >60% of ASV (6.2 mg CVL) in the control and test vessels.

Based on mean measured concentrations, the 96-hour LC_{50} for benalaxyl technical and rainbow trout (*Oncorhynchus mykiss*) is 4.8 mg/L from geomean of the highest concentration causing no mortalities and the lowest concentration causing 100% mortality. The NOEC and LOEC were determined to be 3.4 and 6.8 mg a.s./L, respectively, based on mean measured concentrations.

Study 2: Anonymous, 2014b, Benalaxyl isomer R: Acute Toxicity to Rainbow Trout (*Oncorhynchus mykiss*), GLP, OECD 203 and EC method C.1

The 96-hour acute toxicity of benalaxyl isomer R to rainbow trout (*Oncorhynchus mykiss*) was determined under semi-static conditions, in a dose response test. A preliminary media preparation trial indicated that a dissolved test item concentration of approximately 28 mg/L was obtained from a saturated solution method of preparation indicating this to be the limit of water solubility of this item under test conditions. Following a preliminary range-finding test, fish were exposed, in groups of seven, to an aqueous solution of the test item over a range of concentrations of 10, 18, 32, 56 and 100% v/v saturated solution for a period of 96 hours at a temperature of approximately 14 °C. Analysis of freshly prepared media for the 18, 32, 56 and 100% v/v saturated solutions at 0 and 72 hours showed mean measured concentrations of 3.6, 6.7, 12 and 21 mg benalaxyl isomer R/L, respectively.

The study was conducted in accordance with the referred guidelines. The test was considered to be valid. Based on mean measured concentrations, the 96-hour LC_{50} for benalaxyl isomer R and rainbow trout (Oncorhynchus mykiss) equalled 4.9 mg/L (95% CI: 3.6-6.7 mg/L). The NOEC and LOEC were determined to be 3.6 and 6.7 mg/L, respectively.

Study 3: Anonymous, 2014c, Benalaxyl isomer S: Acute Toxicity to Rainbow Trout (Oncorhynchus mykiss), GLP, OECD 203 and EC method C.1

The 96-hour acute toxicity of benalaxyl isomer S to rainbow trout (*Oncorhynchus mykiss*) was determined under semi-static conditions, in a dose response test. A preliminary media preparation trial indicated that a dissolved test item concentration of approximately 28 mg/L was obtained from a saturated solution method of preparation indicating this to be the limit of water solubility of this item under test conditions. Following a preliminary range-finding test, fish were exposed, in groups of seven, to an aqueous solution of the test item over a range of concentrations of 10, 18, 32, 56 and 100% v/v saturated solution for a period of 96 hours at a temperature of approximately 14°C. Analysis of freshly prepared media for the 10, 18, 32, 56 and 100% v/v saturated solutions at 0 and 72 hours showed mean measured concentrations of 2.2, 4.1, 7.1, 11 and 21 mg Benalaxyl isomer S/L, respectively.

The study was conducted in accordance with the referred guidelines. The test was considered to be valid given that none of the control fish died or showed signs of stress during the test and that the oxygen concentration at the end of the test was >60% of ASV (6.2 mg CVL) in the control and test vessels.

Based on mean measured concentrations, the 96-hour LC_{50} for benalaxyl isomer S and rainbow trout (Oncorhynchus mykiss) equalled 5.0 mg/L (95% CI: 4.2-5.8 mg/L). The NOEC and LOEC were determined to be 2.2 and 4.1 mg/L, respectively.

11.5.2 Acute (short-term) toxicity to aquatic invertebrates

With regard to acute (short-term) toxicity to aquatic invertebrates of benalaxyl, four studies were carried out. One of these studies (Anonymous, 1993) was evaluated during Annex I inclusion of benalaxyl and it was fully accepted. Three studies (Anonymous, 2014a, 2014b, 2014c) was submitted for the purpose of EU renewal.

Acute toxicity data with benalaxyl technical and its isomers (Isomer R and Isomers S) was available on Daphnia magna (see Table above). All tests were conducted according to the OECD test guideline 202 and GLP and no significant deviations from the test guideline were identified.

The 48-hour acute toxicity of benalaxyl to *Daphnia magna* was determined in a static system, with groups of 20 daphnids per treatment (Anonymous, 1993). According to the current OECD 202 Guideline, the test is considered valid since no mortality occurred in the controls and the dissolved oxygen concentration at the end of the test was >3 mg/L (actual 96% which corresponds to approx. 8mg/L) in the control and test vessels.

The 48 hour EC $_{50}$ value for benalaxyl and *Daphnia magna* was calculated to be 0.59 mg/L. The No Observed Effect Concentration after both 24 and 48 hours exposure was 0.18 mg/L respectively.

The studies are relevant for the classification purposes.

Study 1: Anonymous, 1993, Acute Immobilisation Test on *Daphnia magna*, GLP, OECD 202 and EC method C.2

The 48-hour acute toxicity of benalaxyl to *Daphnia magna* was determined in a static system, with groups of 20 daphnids per treatment. Nominal concentrations were 0.18, 0.32, 0.58, 3.2 and 5.8 mg/L, with four replicates per treatment. A solvent control was also tested. The number of immobilised daphnids in each replicate test vessel was recorded at 24 and 48 hours of exposure.

Temperature, dissolved oxygen content and pH were measured during the test but the frequency was not reported. Adherence to the OECD 202 Guideline can therefore not be confirmed. The report did not confirm the conduct of a reference test. The sampling of test solutions for analysis of test concentrations was not reported, therefore concentrations cannot be confirmed. There was no confirmation if the daphnids were fed during the test.

According to the current OECD 202 Guideline, the test is considered valid since no mortality occurred in the controls and the dissolved oxygen concentration at the end of the test was >3 mg/L (actual 96% which corresponds to approx. 8mg/L) in the control and test vessels. As no analysis of test concentration was measured, it must be noted that this study was originally included in the DAR (2000) for supportive information only.

The 48 hour EC50 value for benalaxyl and Daphnia magna was calculated to be 0.59 mg/L. The No Observed Effect Concentration after both 24 and 48 hours exposure was 0.18 mg/L respectively.

Study 2: Anonymous, 2014a, Benalaxyl technical: Daphnia sp., 48-Hour Acute Immobilization Test GLP, OECD 202 and EC method C.2

The acute toxicity of benalaxyl technical to *Daphnia magna* was determined in a 48 hour immobilisation test under static conditions. A preliminary media preparation trial indicated that a dissolved test item concentration of approximately 25 mg/L was obtained from a saturated solution method of preparation indicating this to be the limit of water solubility of this item under test conditions. Daphnids were exposed to an aqueous solution of the test item at concentrations of 10, 18, 32, 56 and 100% v/v saturated solution, plus a control tested in parallel. Analysis of the 18, 32, 56 and 100 % v/v saturated solution test preparations showed measured test concentrations to range from 4.18 to 24.4 mg/L at 0 hours, and from 4.44 to 24.4 mg/L at 48 hours. There was no significant change < 80% (98.3 to 106.2%) in the measured concentrations at 48 hours and so the results are based on 0-Hour measured test concentrations only.

A total of 100 organisms (5 per replicate, 4 replicates per concentration) were exposed to the five concentrations of the test substance, a control and a reference substance (Potassium dichromate), for 48 hours under static conditions.

The study was conducted in accordance with the referred guidelines. The test was considered to be valid given that no more than 10% of the control daphnids showed signs of disease or stress (e.g. discoloration or unusual behavior) during the test and that the dissolved oxygen concentration at the end of the test was >3 mg/L in the control and test vessels. The 48 hour EC₅₀ value for benalaxyl technical and *Daphnia magna* was estimated to be 15 mg/L (measured) with 95% confidence limits of 13 - 17 mg/L. The No Observed Effect Concentrations after 24 and 48 hours exposure were 8.4 and 4.2 mg/L respectively. The Lowest Observed Effect Concentrations after 24 and 48 hours exposure were 14 and 8.4 mg/L respectively.

Study 3: Anonymous, 2014b, Benalaxyl isomer R: Daphnia sp., 48-Hour Acute Immobilization Test, GLP, OECD 202 and EC method C.2

The acute toxicity of benalaxyl isomer R to *Daphnia magna* was determined in a 48 hour immobilisation test under static conditions. A preliminary media preparation trial indicated that a dissolved test item concentration of approximately 28 mg/L was obtained from a saturated solution method of preparation indicating this to be the limit of water solubility of this item under test conditions. Daphnids were exposed to an aqueous solution of the test item at concentrations of 10, 18, 32, 56 and 100% v/v saturated solution, plus a control tested in parallel. Analysis of the 32, 56 and 100% v/v saturated solution test preparations showed measured test concentrations to range from 9.15 to 27.3 mg/L at 0 hours, and from 9.53 to 27.2 mg/L at 48 hours. There was no significant change < 80% (99.4 to 104.2%) in the measured concentrations at 48 hours and so the results are based on 0-Hour measured test concentrations only.

A total of 100 organisms (5 per replicate, 4 replicates per concentration) were exposed to the five concentrations of the test substance, a control and a reference substance (Potassium dichromate), for 48 hours under static conditions.

The study was conducted in accordance with the referred guidelines. The test was considered to be valid given that none of the control daphnids showed immobilization or other signs of disease or stress and that the dissolved oxygen concentration at the end of the test was >3 mg/L in the control and test vessels.

The 48 hour EC₅₀ value for benalaxyl isomer R and *Daphnia magna* was estimated to be 13 mg/L (measured) with 95% confidence limits of 12 - 15 mg/L. The No Observed Effect Concentrations after both 24 and 48 hour exposures was 9.2 mg/L. The Lowest Observed Effect Concentrations after both 24 and 48 hour exposures was 15 mg/L respectively.

Study 4: Anonymous, 2014c, Benalaxyl isomer S: Daphnia sp., 48-Hour Acute Immobilization Test, GLP, OECD 202 and EC method C.2

The acute toxicity of benalaxyl isomer S to *Daphnia magna* was determined in a 48 hour immobilisation test under static conditions. A preliminary media preparation trial indicated that a dissolved test item concentration of approximately 28 mg/L was obtained from a saturated solution method of preparation indicating this to be the limit of water solubility of this item under test conditions. Daphnids were exposed to an aqueous solution of the test item at concentrations of 10, 18, 32, 56 and 100% v/v saturated solution, plus a control tested in parallel. Analysis of the 18, 32, 56 and 100 % v/v saturated solution test preparations showed measured test concentrations to range from 6.66 to 25.0 mg/L at 0 hours, and from 6.31 to 24.4 mg/L at 48 hours. There was no significan t change < 80% (96.4 to 104.4%) in the measured concentrations at 48 hours and so the results are based on 0-Hour measured test concentrations only.

A total of 100 organisms (5 per replicate, 4 replicates per concentration) were exposed to the five concentrations of the test substance, a control and a reference substance (Potassium dichromate), for 48 hours under static conditions.

The study was conducted in accordance with the referred guidelines. The test was considered to be valid given that none of the control daphnids showed immobilization or other signs of disease or stress and that the dissolved oxygen concentration at the end of the test was >3 mg/L in the control and test vessels.

The 48 hour EC₅₀ value for benalaxyl isomer S and *Daphnia magna* was estimated to be 17 mg/L (measured) with 95% confidence limits of 15 - 20 mg/L. The No Observed Effect Concentrations after both 24 and 48 hours exposures was 6.7 mg/L. The Lowest Observed Effect Concentrations after both 24 and 48 hours exposures was 8.8 mg/L respectively.

11.5.3 Acute (short-term) toxicity to algae or other aquatic plants

With regard to acute (short-term) toxicity to algae of benalaxyl, four studies were carried out. One of these studies (Anonymous, 1982) was evaluated during Annex I inclusion of benalaxyl and it was accepted as supportive information only. Three studies (Anonymous, 2014a; 2014b; 2014c) was submitted for the purpose of EU renewal.

Acute toxicity data with benalaxyl technical and its isomers (Isomer R and Isomers S) was available on *Pseudokirchneriella subcapitata*. All tests were conducted according to the OECD test guideline 201 and GLP standards and no significant deviations from the test guideline were identified. The study for benalaxyl technical is not considered relevant for the classification purposes. The 72-hour E_rC_{50} based on growth inhibition is 3.5 mg/L and E_yC_{50} based on yield is 0.086 mg/L. Results that were based on nominal concentrations were analytically verified and the measured concentrations were in the range of 40% to 183% of the initial nominal concentrations. The acute toxicity data on algae also demonstrates the R-isomer (72-hour $E_rC_{50} = 3.4$ mg/L; 72-hour $E_yC_{50} = 0.85$ mg/L;) to be of equivalent toxicity to technical benalaxyl. Although the algae endpoint for the S-isomer (72-hour $E_rC_{50} = 3.4$ mg/L; 72-hour $E_yC_{50} = 0.086$ mg/L;) is lower than that for the active substance, it is within an order of magnitude of the active substance endpoint.

Study 1: Anonymous, 1982, Toxicity Study with Technical Galben on Selenastrum capricornutum, GLP, OECD 201

A static toxicity test was conducted to determine the effects of the test substance Technical Galben on the growth of the unicellular green alga, Selenastrum capricornutum. Three replicates, of five test concentrations of 0.01, 0.1, 1.0, 10 and 100 mg a.s./L and a solvent control were prepared. Selenastrum capricornutum was kept under test conditions for 96 hours. Cell density in each test vessel was monitored at 24, 48, 72 and 96 hours after the start of the test.

No reference was made to the conduct of a reference test to assess laboratory conditions, thus it cannot be confirmed when the last reference test was performed. As the 1981 guideline does state a reference substance may occasionally be tested, this may be considered to not have negatively impacted on the validity of the study.

According to the current OECD 201 (2011) guideline, deviations were noted. No reporting of a reference test was observed within the study which, according to the guidelines is desirable at least twice a year. No reference was made to observations of health at the end of the test, although microscopic examination was carried out to complete the cell count. Test concentrations were arranged in a series of > 3.2 spacing factor. The composition of the algal medium differs to that in current guidelines but conforms to the 1981 guideline. No analysis of test concentrations was reported for the duration of the study. The guideline states concentrations should be analysed if an analytical procedure is available. As the study was conducted in 1982, such a procedure may not have been available. No coefficient of variation was reported throughout the study. The effect of Galben on yield was not evaluated in conjunction with growth rate, as specified in the 2011 guideline.

According to the 1981 version of OECD 201, under which the test was conducted, the validity would be questionable as no analysis of test concentration was conducted. However, the guideline does state this is to be determined where practicable. Also, the other two conditions for validity were met. These were the control exhibiting log phase growth within 48 hours and a standing crop at 96 hours of 105 cells, in addition to one test concentration demonstrating no significant decrease in growth compared to the control and one concentration showing growth inhibition of more than 50% at 96 hours were met. As a consequence of the date of the study, it was not conducted according to GLP. It must be noted that the study was originally included in the DAR (2000) for supportive information only.

According to the current OECD 201 guideline (2011), coefficient of variation is not reported, but biomass increase in control increased by more than a factor of 16 within the 72-hour test period (actual:600). The validity of the study cannot therefore be concluded, based on current guidelines. Based on nominal concentrations, the 96-hour E_rC_{50} was determined to be 2.4 mg a.s./L.

Study 2: Anonymous, 2014a, Benalaxyl technical: Algal Growth Inhibition Test , GLP, OECD 201 and EC method C.3

The 72-hour toxicity of benalaxyl technical to the single cell green alga *Pseudokirchneriella subcapitata* was determined in a static system. A preliminary media preparation trial indicated that a dissolved test item concentration of approximately 25 mg/L was obtained from a saturated solution method of preparation indicating this to be the limit of water solubility of this item under test conditions. Algae were exposed to solutions of the test item at nominal concentrations of 0.16, 0.50, 1.6, 5.0, 16 and 50% v/v saturated solution (three replicate flasks per test item concentration) for 72 hours, under constant illumination and shaking at a temperature of 24 ± 1 °C. Control cultures were run in parallel (six replicate flasks). A positive control study (Harlan Study Number 41303826) using potassium dichromate as the reference item was also conducted. Chemical analysis of the test preparations at 0 hours showed measured test concentrations ranging from 0.031 to 12 mg/L whilst concentrations in the range of 0.031 to 9.3 mg/L were observed at 72 hours (40% to 183% of the 0-Hour measured test concentrations). Given the variability in the results obtained at 0 and 72 hours it was considered appropriate to calculate the results based on the geometric mean measured test concentrations

only, which were determined to be 0.031, 0.066, 0.31, 0.96, 2.7 and 10 mg/L in the 0.16, 0.50, 1.6, 5.0, 16 and 50% v/v saturated solutions, respectively.

The study was conducted in accordance with the referred guidelines. The test was considered to be valid given that none deficiencies. The following data show that the cell concentration of the control cultures increased by a factor of 176 after 72 hours. This increase was in line with the OECD Guideline that states the enhancement must be at least by a factor of 16 after 72 hours.

Mean cell density of control at 0 hours: 6.14×10^3 cells per mL Mean cell density of control at 72 hours: 1.08×10^6 cells per mL

The mean coefficient of variation for section by section specific growth rate for the control cultures was 6% and hence satisfied the validation criterion given in the OECD Guideline which states the mean must not exceed 35%.

The coefficient of variation for average specific growth rate for the control cultures over the test period (0 - 72 h) was 3% and hence satisfied the validation criterion given in the OECD Guideline which states that this must not exceed 7%.

The 72-hour E_rC_{50} was determined to be 3.5 mg/L, the 72-hour E_yC_{50} was 0.56 mg/L. The No-Observed-effect concentration (NOEC) for both growth rate and yield was determined to be 0.066 mg/L (all endpoints based on mean measured concentrations).

Study 3: Anonymous, 2014b, Benalaxyl isomer R: Algal Growth Inhibition Test, GLP, OECD 201 and EC method C.3

The 72-hour toxicity of benalaxyl isomer R to the single cell green alga *Pseudokirchneriella subcapitata* was determined in a static system. A preliminary media preparation trial indicated that a dissolved test item concentration of approximately 28 mg/L was obtained from a saturated solution method of preparation indicating this to be the limit of water solubility of this item under test conditions. Algae were exposed to solutions of the test item at nominal concentrations of 0.16, 0.50, 1.6, 5.0, 16 and 50% v/v saturated solution (three replicate flasks per test item concentration) for 72 hours, under constant illumination and shaking at a temperature of 24 ± 1°C. Control cultures were run in parallel (six replicate flasks). A positive control study (Harlan Study Number 41303826) using potassium dichromate as the reference item was also conducted. Chemical analysis of the test preparations at 0 hours showed measured test concentrations ranging from 0.059 to 11.3 mg/L whilst concentrations in the range of 0.071 to 11.3 mg/L were observed at 72 hours (88% to 121% of the 0-Hour measured test concentrations). Given the variability in the results obtained at 0 and 72 hours it was considered appropriate to calculate the results based on the geometric mean measured test concentrations only, which were determined to be 0.065, 0.13, 0.35, 1.3, 3.6 and 11.3 mg/L in the 0.16, 0.50, 1.6, 5.0, 16 and 50% v/v saturated solutions, respectively.

The study was conducted in accordance with the referred guidelines. The test was considered to be valid given that none deficiencies. The following data show that the cell concentration of the control cultures increased by a factor of 176 after 72 hours. This increase was in line with the OECD Guideline that states the enhancement must be at least by a factor of 16 after 72 hours.

Mean cell density of control at 0 hours: 6.14×10^3 cells per mL Mean cell density of control at 72 hours: 1.08×10^6 cells per mL

The mean coefficient of variation for section by section specific growth rate for the control cultures was 6% and hence satisfied the validation criterion given in the OECD Guideline which states the mean must not exceed 35%.

The coefficient of variation for average specific growth rate for the control cultures over the test period (0 - 72 h) was 3% and hence satisfied the validation criterion given in the OECD Guideline which states that this must not exceed 7%.

The results of the laboratory study on the effects of benalaxyl isomer R on *Pseudokirchneriella subcapitata*, strain CCAP 278/4 demonstrate the 72-hour E_rC_{50} to be 3.4 mg/L, the 72-hour E_yC_{50} to be 0.85 mg/L (all endpoints based on geometric mean measured concentrations). The No-Observed-effect concentration (NOEC) was determined to be 0.35 and the Low-Observed Effect Concentration (LOEC) equalled 1.3 mg/L.

Study 4: Anonymous, 2014c, Benalaxyl isomer S: Algal Growth Inhibition Test, GLP, OECD 201 and EC method C.3

The 72-hour toxicity of benalaxyl isomer S to the single cell green alga *Pseudokirchneriella subcapitata* was determined in a static system. A preliminary media preparation trial indicated that a dissolved test item concentration of approximately 28 mg/L was obtained from a saturated solution method of preparation indicating this to be the limit of water solubility of this item under test conditions. Algae were exposed to solutions of the test item at nominal concentrations of 0.16, 0.50, 1.6, 5.0, 16 and 50% v/v saturated solution (three replicate flasks per test item concentration) for 72 hours, under constant illumination and shaking at a temperature of 24 ± 1°C. Control cultures were run in parallel (six replicate flasks). A positive control study (Harlan Study Number 41303826) using potassium dichromate as the reference item was also conducted. Chemical analysis of the test preparations at 0 hours showed measured test concentrations ranging from 0.042 to 12.4 mg/L whilst concentrations in the range of 0.042 to 12.6 mg/L were observed at 72 hours (93% to 102% of the 0-Hour measured test concentrations). Given that no significant decline in measured concentration occurred between 0 and 72 hours it was considered appropriate to calculate the results based on the 0-Hour measured test concentrations only, which were determined to be 0.042, 0.13, 0.41, 1.3, 3.8 and 12.4 mg/L in the 0.16, 0.50, 1.6, 5.0, 16 and 50% v/v saturated solutions, respectively.

The study was conducted in accordance with the referred guidelines. The test was considered to be valid given that none deficiencies. The following data show that the cell concentration of the control cultures increased by a factor of 176 after 72 hours. This increase was in line with the OECD Guideline that states the enhancement must be at least by a factor of 16 after 72 hours.

Mean cell density of control at 0 hours: 6.14×10^3 cells per mL Mean cell density of control at 72 hours: 1.08×10^6 cells per mL

The mean coefficient of variation for section by section specific growth rate for the control cultures was 6% and hence satisfied the validation criterion given in the OECD Guideline which states the mean must not exceed 35%.

The coefficient of variation for average specific growth rate for the control cultures over the test period (0 - 72 h) was 3% and hence satisfied the validation criterion given in the OECD Guideline which states that this must not exceed 7%.

The results of the laboratory study on the effects of benalaxyl isomer S on *Pseudokirchneriella subcapitata*, strain CCAP 278/4 demonstrate the 72-hour E_rC_{50} to be 3.4 mg/L, the 72-hour E_yC_{50} to be 0.086 mg/L (all endpoints based 0-Hour measured concentrations). The No-Observed-effect concentration (NOEC) was determined to be < 0.042 and the Low-Observed Effect Concentration (LOEC) equalled 0.042 mg/L.

11.5.4 Acute (short-term) toxicity to other aquatic organisms

No data are available.

11.6 Long-term aquatic hazard

Evaluation of chronic aquatic hazard for benalaxyl is based on studies which are considered valid in the Renewal Assessment Report of benalaxyl. All valid studies are presented in the table below and relevant studies for the classification purposes are also briefly summarised below.

Table 25: Summary of relevant information on chronic aquatic toxicity

Method	Species	Test material	Results ¹	Reference
Fish	T	1	T	
30 days (ELS; flow- through) OECD 210 (2013)	Zebrafish (Danio rerio)	Benalaxyl Technical (purity: 98.4%)	NOEC = 0.079 mg/L (body weight) (based on measured concentrations)	RAR B.9.2.2.1 CA 8.2.2.1/02 Anonymous (2014)
GLP				
Invertebrates 21 days (flow though)				RAR
OECD 202, Part II, Guideline (1984)	Daphnia magna	Benalaxyl Technical (purity: 96.6%)	NOEC = 0.03 mg/L (based on measured average concentrations)	B.9.2.5.1 CA 8.2.5.1/01 Anonymous (1992b)
GLP				
28 days (spiked water) OECD 207 and BBA-Guideline proposal (1995)	Chironomus riparius	Benalaxyl Technical (purity: 96.68% ± 0.95%)	NOEC = 3.13 mg/L (based on nominal concentrations)	RAR B.9.2.5.3 CA 8.2.5.3/01 Anonymous
GLP		± 0.5570)	concentrations)	(1998)
Algae				
72 hours (static system)	D 11: 1 : 11	Benalaxyl technical (purity: 98.4%)	NOEC = 0.066 mg/L (based on geometric mean measured concentrations)	RAR B.9.2.6.1
OECD 201 and EC method C.3	Pseudokirchneriell a subcapitata			CA 8.2.6.1/02 Anonymous (2014a)
72 hours (static system)	Pseudokirchneriell	Benalaxyl Isomer R (purity: 98.6 %)	NOEC = 0.35 mg/L	RAR B.9.2.6.1
OECD 201 and EC method C.3	a subcapitata		(based on geometric mean measured	CA 8.2.6.1/03 Anonymous
GLP			concentrations)	(2014b)
72 hours (static system)		Benalaxyl Isomer S (purity: 98.3 %)	NOEC < 0.042 mg/L	RAR B.9.2.6.1
OECD 201 and EC method C.3	Pseudokirchneriell a subcapitata		(based on geometric mean measured concentrations)	CA 8.2.6.1/04 Anonymous (2014c)
GLP	ults are based on the me			(20140)

¹ Indicate if the results are based on the measured or on the nominal concentration

11.6.1 Chronic toxicity to fish

Two studies testing the chronic (long-term) toxicity of benalaxyl, towards two different fish species are available. One of these studies (Anonymous, 1992a) was evaluated during Annex I inclusion of benalaxyl and the second study (Anonymous, 2014) was submitted for the purpose of EU renewal.

A prolonged toxicity test on Rainbow Trout (*Oncorhynchus mykiss*) was performed with benalaxyl (Jonas, W., 1992a). The study was conducted according to the OECD guideline 204 and GLP. Based on survival and growth of fish during this study, the NOEC (21 d) is 0.49 mg a.s./L (based on measured concentrations). This study is not relevant for the classification purposes.

The long-term toxicity of benalaxyl to fish was investigated with Zebrafish (*Danio rerio*) eggs and larvae in a 30 d post hatch toxicity test under flow-through conditions according to the OECD guideline 210 (GLP) (Anonymous, 2014). A NOEC of hatching success was determined to be 8.33 mg/L. The NOEC for survival, length, body weight (wet and dry weight) are 2.68, 0.85, 0.079 mg/L, respectively. This study is not relevant for the classification purposes.

Study 1: Anonymous, 1992a, Benalaxyl Prolonged Toxicity Test on the Rainbow Trout (*Oncorhynchus mykiss*), GLP, OECD 204 (1984)

The 21-day post hatch toxicity of benalaxyl to rainbow trout (*Oncorhynchus mykiss*) was determined in flow-through test, with groups of 10 fish per treatment exposed to 0.034, 0.060, 0.109, 0.196, 0.352, 0.634, 1.142, 2.056 and 3.70 mg a.s./L. A control and solvent control were also tested.

Fish were observed on days 1, 4, 7, 9, 11, 14, 16, 18 and 21 for mortality and sublethal effects of exposure. Temperature, dissolved oxygen content and pH were measured on the observation days. On days 1, 11 and 21, 200 ml of the test concentrations were sampled from the middle of the containers, filled into glass bottles and stored at \leq 4°C until analysis by GC.

The study was conducted in accordance with the referred guidelines.

Under OECD 204 guidelines deviations were noted in the maintenance of the fish and observations. Aquaria were aerated in the flow-through test, although this is considered acceptable for semi-static procedures only. Fish were not fed during the test, contrary to the recommendation of a minimum of daily feeding in the guideline. Although fish were observed on Days 1, 4, 7, 9, 11, 14, 16, 18 and 21 and dead fish were removed during these observations, the guideline states that fish should be inspected daily and dead fish removed when observed. As there are no current guidelines in place for this test, any deviations cannot be determined.

The test was considered to be valid. None of the control fish died or showed signs of stress during the test and the oxygen concentration was > 60% of the air saturation value throughout the study.

As there are no current guidelines in place for this test, the validity according to current criteria cannot be determined.

The NOEC for rainbow trout was determined to be 0.49 mg a.s./L, based on measured concentrations.

Study 2: Anonymous, 2014, Toxicity of Benalaxyl Technical to Zebrafish (*Danio rerio*) in an Early-Life Stage Test, GLP, OECD 210 (2013)

The 30-day post hatch toxicity of benalaxyl technical to zebrafish (Danio rerio) was determined in an early-life stage test. Fertilised zebrafish eggs were exposed to the test item in a flow-through system at test item concentrations of 0.079, 0.26, 0.85, 2.68 and 8.33 mg/L and a control. The eggs and larvae were observed daily for any sublethal effects and mortality.

The study was conducted in accordance with the referred guidelines. The test was considered to be valid given that none deficiencies. All endpoints were based on mean measured concentrations. The NOEC for hatching success of zebrafish eggs was determined to be 8.33 mg/L. The NOEC for survival, length and wet- and drybody weight are 2.68, 0.85, 0.079 mg/L respectively.

11.6.2 Chronic toxicity to aquatic invertebrates

One study is available testing the chronic toxicity of benalaxyl towards the water flea, Daphnia magna (Anonymous, 1992b). The study was conducted in accordance with the referred guidelines. According to the OECD 202 (1984) guidelines the study can be considered valid. There was a minor deviation in light intensity

noted under current OECD 211 guidelines, with lux not being within the recommended range of 1000-1500. Taking into consideration the OECD 211 (2012) guidelines, mortality of the parent animals in the control was not more than 20% and the mean number of living offspring produced per parent animal surviving at the end of the test is 60, the study remains valid and acceptable for risk assessment.

The 21 d EC₅₀ (immobilisation) was calculated to be 0.12 mg/l, the EC₀ (immobilisation, 21d) was 0.03 mg/l, and the EC₀ (reproduction, 21d) was 0.03 mg/l. An overall NOEC of 0.03 mg/L was established. All values are based on measured average concentrations. This study is relevant for the classification purposes.

Study: Anonymous, Benalaxyl Reproduction Test on *Daphnia magna*, GLP, OECD 202, Part II, Guideline (1984)

The toxicity of Benalaxyl to *Daphnia magna* was determined over 21 days under flow-through conditions, with groups of 40 daphnids (2 replicates of 20) per treatment exposed to nominal concentrations of 0.041, 0.122, 0.34, 1.1 and 3.3 mg/L. A control and solvent control were also prepared. The number of immobilised daphnids, observations of abnormal behaviour and the number of young daphnia (F1) were recorded on Days 1, 4, 7, 9, 11, 14, 16, 18 and 21. Temperature, pH and dissolved oxygen were measured in each test item and control solution on observations days. Samples were taken on Days 1, 11 and 21 for analysis of Benalaxyl by gas chromatography (GC).

The mean measured concentrations represented $78\% \pm 25\%$ of nominal values for the test duration. Based on measured average concentrations, the 21-day EC₅₀ (immobilisation, 21d) of 0.12 mg/l, EC₀ (immobilisation, 21d) of 0.03 mg/l, and EC₀ (reproduction, 21d) of 0.03 mg/l and an overall NOEC of 0.03 mg/l were established.

The study was conducted in accordance with the referred guidelines. According to the OECD 202 (1984) guidelines the study can be considered valid. There was a minor deviation in light intensity noted under current OECD 211 guidelines, with lux not being within the recommended range of 1000-1500.

Taking into consideration the OECD 211 (2012) guidelines, mortality of the parent animals in the control was not more than 20% and the mean number of living offspring produced per parent animal surviving at the end of the test is 60, the study remains valid and acceptable for risk assessment.

The 21 d EC $_0$ (immobilisation and reproduction) was calculated to be 0.03 mg/l. The NOEC value is 0.03 mg/L (based on measured average concentrations).

11.6.3 Chronic toxicity to algae or other aquatic plants

With regard to chronic (long-term) toxicity to algae of benalaxyl, four studies were carried out. One of these studies (Anonymous, 1982) was evaluated during Annex I inclusion of benalaxyl and it was accepted as supportive information only. Three studies (Anonymous, 2014a; 2014b; 2014c) was submitted for the purpose of EU renewal.

Chronic toxicity data with benalaxyl technical and its isomers (Isomer R and Isomers S) was available on Pseudokirchneriella subcapitata (see Table above). All tests were conducted according to the OECD test guideline 201 and GLP standards and no significant deviations from the test guideline were identified. The study for benalaxyl technical is not considered relevant for the classification purposes. For benalaxyl the No-Observed-effect concentration (NOEC) for both growth rate and yield was determined to be 0.066 mg/L and the Low-Observed Effect Concentration (LOEC) equalled 0.031 mg/L (all endpoints based on mean measured concentrations). These studies are not relevant for the classification purposes.

11.6.4 Chronic toxicity to other aquatic organisms

One study is available testing the chronic toxicity of benalaxyl towards the *Chironomus riparius* (Anonymous, 1998). The test was conducted according to the OECD 207 and BBA-Guideline proposal (1995) and GLP standards. The value for the LC_{50} was calculated to be 17.7 mg a.s./L. The NOEC was 3.13 mg a.s./L and the LOEC was 6.25 mg a.s./L caused by the delay in development of larvae at and above concentrations of 6.25

mg a.s./L. Results were based on nominal concentrations. This study is not relevant for the classification purposes.

Study: Anonymous, Assessment of Side Effects of Benalaxyl Technical on the Larvae of Midge, *Chironomus riparius* with the Laboratory Test Method, GLP, OECD 207 and BBA-Guideline proposal (1995)

The effects of Benalaxyl on the life cycle of the midge (*Chironomus riparius*) via the water column were determined under static conditions with artificial sediment for a period of 28 days. The test substance was applied to the water column at nominal concentrations of 0.78, 1.56, 3.13, 6.25, 12.5, 25, 50 and 100 mg a.s./L. There were four replicates per test concentration, each containing twenty five larvae. Test vessels were observed three times per week to make a visual assessment of any behavioural difference compared with the control. During the period of expected emergence (normally starting at Day 10 and lasting until Day 24) a daily check of emerged midges was performed. The sex and number of emerging adults were recorded daily.

Temperature, oxygen concentration and pH were recorded at test start and end, and twice a week in all vessels for the duration of the test.

Samples of the overlying water, pore water and sediment were taken and separated 1 hour, 7 days and 28 days after application from the 1.56 mg a.s./L, 25 mg a.s./L and the blank. Analysis was reported in a separate study by Isagro Ricerca, number 2232.

The study was conducted in accordance with the referred guidelines. According to the OECD 207 and BBA-Guideline proposal (1995) guidelines the study can be considered valid.

Under the BBA guideline (1995) deviations were noted in timing of egg mass sampling prior to insertion of larvae, pH exceeding the limit as a consequence of algal growth, and observations not being conducted on Day 24. These were not considered to have a negative impact on the study. According to the current OECD 219 guidelines deviations were noted with the egg masses being sampled between 3 and 4 days before insertion into the test system (4 to 5 recommended), a higher number of larvae being introduced into each vessel than recommended (20) and the light intensity being slightly higher than the 500-1000 recommendation. None of these are thought to negatively impact the study.

According to the guidelines under which the study was conducted (OECD 207 and BBA-Guideline proposal (1995) as emergence in the control was higher than 70% (actual: 92%, 93% and 97%) and the mean development time for larvae was not more than 20 days after application (i.e. a development rate of 0.05) and not shorter than 10 days (i.e. a development rate of 0.1), the study was considered valid. Under OECD 219 the study would be considered valid as the controls had at least a 70% emergence at the end of the test, emergence to adults from control vessels occurred between 12 and 23 days and at the end of the test the oxygen concentration was at least 60% air saturation and pH was between 6 and 9.

The value for the LC_{50} was calculated to be 17.7 mg a.s./L. The NOEC was 3.13 mg a.s./L and the LOEC was 6.25 mg a.s./L caused by the delay in development of larvae at and above concentrations of 6.25 mg a.s./L. The maximum acceptable toxicant concentration (MATC) was 4.42 mg a.s./L. Results were based on nominal concentrations.

11.7 Comparison with the CLP criteria

11.7.1 Acute aquatic hazard

Acute aquatic toxicity data for benalaxyl are available for fish, aquatic invertebrates and algae, covering the three trophic levels that need to be assessed for CLP classification.

The criteria for Category Acute 1 in line with Table 4.1.0 from the Guidance on the Application of the CLP Criteria are:

96 hr LC₅₀ (for fish) \leq 1 mg/l and/or 48 hr EC₅₀ (for crustacea) \leq 1 mg/l and/or 72 or 96 hr E_rC_{50} (for algae or other aquatic plants) ≤ 1 mg/l.

The 96 h LC₅₀ in fish ($Rainbow\ trout$) was 5.1 mg/L – the criteria does not fulfilled for aquatic acute toxicity category 1.

For aquatic invertebrates (*Daphnia magna*) the 48 h EC_{50} immobilisation was. 0.59 mg a.s./L lower than 1 mg/l; the classification criteria fulfilled for aquatic acute toxicity category 1.

The 72 h E_rC_{50} in Pseudokirchneriella subcapitata was 3.5 mg a.s./L - the criteria does not fulfilled for aquatic acute toxicity category 1.

Based on the available data it is concluded that benalaxyl fulfilled the criteria for classification as Aquatic Acute Category 1 (\leq 1 mg/l) according to the CLP based on effect at daphnia magna. As the lowest acute toxicity endpoint ranging < 0.1 to \leq 1 mg/L, the corresponding Acute M-factor should be 1, based on the criteria set in Table 4.1.3 of the CLP Regulation.

11.7.2 Long-term aquatic hazard (including bioaccumulation potential and degradation)

The ready biodegradability of benalaxyl (96.68% radiochemical purity) investigated in a Manometric Respiratory Test (OECD 301 F) over a period of 28 days at 22°C in the dark with benalaxyl tech. at a concentration of 24.9 mg/l applied to activated sludge value, based on ThODNO3 the percentage of biodegradation of benalaxyl reached –2.0% after 28 days. This values indicates that benalaxyl was not degraded by the activated sludge and can therefore be considered as "not readily biodegradable".

Benalaxyl does not meet the criterion of rapid degradation, > 70 % within a 28 day period the aquatic environment.

An experimental bioconcentration study in fish is available. In the experimental study, whole fish BCF values for Benalaxyl (BCF = 57) were less than the CLP trigger value of 500 indicating a low potential for bioaccumulation.

Benalaxyl does not meet the CLP criterion (BCF \geq 500) as a bioaccumulative substance.

In addition, the log P_{OW} of benalaxyl is 3.54 (at 20°C, pH = 6.1 and purity = 99.4%) which is below the CLP criterion of log $P_{OW} > 4$.

Long-term aquatic toxicity data for benalaxyl are available for fish, aquatic invertebrates and algae, covering the three trophic levels that need to be assessed for CLP classification.

The criteria for Aquatic Chronic Toxicity Category 1 (for non rapidly degradable substances) in line with Table 4.1.0 from CLP Regulation:

NOEC or ECx(for fish) $\leq 0.1 \text{ mg/l}$ and/or NOEC or ECx (for crustacea) $\leq 0.1 \text{ mg/l}$ and/or

NOEC or ECx (for algae or other aquatic plants) $\leq 0.1 \text{ mg/l}.$

The lowest NOEC value is the measured 21d-NOEC of 0.03 mg a.s./L for Daphnia magna. This value is \leq 0.1 mg/L, and since benalaxyl is considered to be 'not rapidly degradable', it should be classified according to Regulation (EC) No. 1272/2008 as:

Aquatic Chronic Toxicity Category1 with a chronic M-factor = 1. based on $0.01 < \text{NOEC} \le 0.1 \text{ mg/L}$, according to CLP criteria stipulated in Annex I, p.4, Table 4..1.3.

11.8 CONCLUSION ON CLASSIFICATION AND LABELLING FOR ENVIRONMENTAL HAZARDS

Based on the CLP Regulation (1278/2008) criteria and available data, the proposal for classification for benalaxyl is:

Hazard Class and Category code(s)	M factor	Hazard Statement
Aquatic Acute Category 1, H400	1	Very toxic to aquatic life
Aquatic Chronic Category 1, H410	1	Very toxic to aquatic life with long lasting effects

12 EVALUATION OF ADDITIONAL HAZARDS

12.1 Hazardous to the ozone layer

None

13 ADDITIONAL LABELLING

None

14 REFERENCES

14.1 Physico-chemical properties

Year	Title
1995	Benalaxyl purified active substance: Physical and chemical properties of the purified active substance, BIOLAB, Project report No.: 94/1087.B, Company file No.: 108, GLP. Unpublished
1995 1993	Boiling point determination of benalaxyl purified active substance, EniChem I.G.D., Project report No.: 030/95, Company file No.: 110, GLP. Unpublished Flammability (Solids) test substance: Benalaxyl., NATEC, Project report No.: NA 91 9628/2, Company file No: 102 GLP. Unpublished
	1995 1995

14.2 Toxicology and metabolism

Data point	Year	Title
CA_B.6.1.2.1	1996a	Triolo, A.14C-Benalaxyl, Preliminary pharmacokinetics study in the rat after single oral administration RBM, Istituto di Ricerche Biomediche "A. Marxer", Italy; RBM Exp. No. 950606. Company file No. 111, Not GLP/ Not published Triolo, A. 14C-Benalaxyl, Blood pharmacokinetics, excretion and tissue
CA_B.6.1.2.2	1996b	distribution of radioactivity in the rat after a single oral administration (final report) RBM, Istituto di Ricerche Biomediche "A. Marxer", Italy; RBM Exp. No. 950607. Company file No. 112,GLP / Not published
CA_B.6.1.2.3	1996с	Triolo, A. 14C-Benalaxyl, Blood pharmacokinetics, excretion and tissue distribution of radioactivity in the rat after repeated oral administrations. RBM, Istituto di Ricerche Biomediche "A. Marxer", Italy; RBM Exp. No. 950608. Company file No. 113, GLP / Not published
CA_B.6.1.2.4	1997	Castoldi, F.C., Pizzingrilli, G. Profiling of radiolabelled metabolites of 14C-Benalaxyl in urine and faeces of male rats after single and repeated oral administration, Isagro Ricerca, Italy – Report No. R/ABT.96.01. Company file No. 113/1, GLP/Not published
CA_B.6.1.2.5	2001	Kemp, L. [14C]-Benalaxyl Biliary excretion study in the rat, Huntingdon Life Sciences, Ltd, UK – Study No. IGA 001/12155. Company file No. 188, GLP Not published
CA_B.6.1.2.6	1981	Santi, R., Guarnieri, R. Absorption, metabolism and excretion of 14C-GALBEN in Albino rats (part 1) Farmoplant, Italy. Company file No. 59, Not GLP/Not published
CA_B.6.1.2.7	1983	Guarnieri, R., Pizzingrilli, G.F., Santi, R., Valcamonica, C.14C-GALBEN Metabolism in albino rats (part 2), Farmoplant, Italy. Company file No. 60, Not GLP/Not published
CA_B.6.1.3.1	1983	Pizzingrilli, G.F., Valcamonica, C. In vitro degradation of 14C-GALBEN with rat liver microsomes, supplementary study, Farmoplant, Italy. Company file No. 89, Not GLP /Not published
CA_B.6.1.3.5	2007	Jing Qiu Qiuxia Wang Wentao Zhu Guifang Jia Xinquan Wang Zhiqiang Zhou Stereoselective determination of benalaxyl in plasma by chiral high-performance liquid chromatography with diode array detector and application to pharmacokinetic study in rabbits Chirality. 2007 Jan;19(1):51-5.
CA_B.6.1.3.6	2011	Ping Zhang 1, Wentao Zhu, Ziheng Dang, Zhigang Shen, Xinyuan Xu, Ledan Huang, Zhiqiang Zhou Stereoselective Metabolism of Benalaxyl in Liver Microsomes From Rat and Rabbit Chirality. 2011 Feb; 23(2):93-8
CA_B.6.3.2.1	1985	Maltoni, C., Soffritti, M., Perino, G.et. al. Short-term range finding study of evaluation of chronic and oncogenic potential of Galben® in Swiss mice (Oral Dosing Study) Bentivoglio (BT) Experimental Laboratories of the Institute of Oncology "F. Addarii", Italy; Study No. BT 5004 bis.Company file No. 14; Not GLP / Not published
CA_B.6.3.2.5	1982	Mondino, A., Verardi, A., et al., Study of the toxicity of repeated oral administration of product M 9834 (GALBEN) to Beagle dogs at the dosage levels of 10, 200 and 800 ppm for 52 weeks, RBM, Institute of Biomedical Research "Antoine Marxer", Italy; Experiment No. 1170. Company file No. 12, GLP / Not published
CA_B.6.4.1.3	1979a	De Carneri, I., et al, Microbiological mutagenesis study on CRA 109 (M 9834); Genetic mutation test in Salmonella typhimurium (Ames), Farmitalia Carlo Erba, Italy. Company file No. 18, Not GLP / Not published
CA_B.6.4.1.4	2002a	Wollny, H.E Salmonella Typhimurium reverse mutation assay with BENALAXYL RCC-CCR, Germany; Project No. 709401. Company file No. 207 GLP / Not published

Data point	Year	Title
CA_B.6.4.1.5	1979b	De Carneri, I., et al, Microbiological study of mutagenesis on CRA 109 (M 9834): DNA damage and repair test (Mitotic gene conversion in Saccharomyces cerevisiae D4), Farmitalia Carlo Erba, Italy. Company file No. 19, Not GLP /Not published
CA_B.6.4.1.6	1980	De Carneri, I., et al, Microbiological study of mutagenesis on CRA 109 (M 9834): In vitro gene mutation test in Schizosaccharomyces pombe P1, Farmitalia Carlo Erba, Italy. Company file No. 20, Not GLP / Not published
CA_B.6.4.1.7	2002a	Schulz, M In vitro chromosome aberration test in Chinese Hamster Ovary (CHO) Cells with benalaxyl, RCC-CCR, Germany; Project No. 709404. Company file No. 211, GLP / Not published
CA_B.6.4.1.8	1980	Mondino, A. Fumero, S., et al., "In vitro" study of the induction of chromosome aberrations by compound M 9834 in human lymphocyte cultures, RBM, Institute of Biomedical Research "Antoine Marxer", Italy. Company file No. 21, Not GLP / Not published
CA_B.6.4.1.9	1983	Myhr, B.C., Brusick, D.J, Evaluation of GALBEN in the primary rat hepatocyte; Unscheduled DNA Synthesis Assay, Litton Bionetics Inc., USA; LBI Assay No. 6836; Project No. 20991; Company file No. 24, GLP / Not published
CA_B.6.4.1.11	1983	Monaco, M., Foster, R., Nunziata, A. Gene Mutation in Chinese Hamster V 79 Cells; Test substance: GALBEN TH, Life Science Research, Italy; Experiment No. LSR-RTC FMT 001; Company file No. 23, Not GLP / Not published
CA_B.6.4.2.2	2000	Golzio, L, Micronucleus induction in bone marrow cells of rats treated by Intraperitoneal route with the test article Benalaxyl Tech RBM, Italy; Experiment No. 990863; Company file No. 181, GLP / Not published
CA_B.6.4.2.3	1980	Mondino, A., In vivo" study of the induction of chromosome aberrations in the Chinese hamster by compound M 9834, administered orally RBM, Institute of Biomedical Research "Antoine Marxer", Italy; Experiment No. M 201; Company file No. 22, Not GLP / Not published
CA_B.6.5.1.1	1983	Becci, P.J., Thompson, S.W., Davidson, T.J., Lifetime oral dosing studies in rats: combined oncogenicity and chronic toxicity of GALBEN technical (M 9834), Food & Drug Research Laboratory, USA; FDRL Report No. 6568-11. Company file No. 13, GLP / Not published
CA_ B.6.5.2.2	2000	Maltoni, C, Carcinogenicity study in the mouse: Data on historical controls – Swiss mice. Attachment to the Final Report Evaluation of chronic toxicity and oncogenic potential of GALBEN® (CAS No. 71626-11-4) in, Swiss mice (Oral Dosing Study), Company file No. 14A, Not GLP / Not published
CA_B.6.5.2.3	2001a	Millar, P.M. BT 5004: Evaluation of chronic toxicity and oncogenic potential of Galben [®] (CAS No. 71626-11-4) in Swiss mice (oral dosing study). Pathology
CA_B.6.5.2.4	2001b	Millar, P.M. BT 5004: Evaluation of chronic toxicity and oncogenic potential of Galben® (CAS No. 71626-11-4) in Swiss mice (oral dosing study). Report of the Pathology Working Group on Urinary Bladder Tumours Report dated 8 February 2001; Company file No. 186A; Not GLP / Not published
CA_B.6.6.1.1	1983	Johnson, W.D., Becci, P.J., Two-generation reproduction study in rats with GALBEN technical, Food & Drug Research Laboratory, USA; FDRL Study No. 7220. Company file No. 17, GLP / Not published
CA_B.6.6.2.1	1982	Mondino, A., Peano, S., et. al., 13-week oral subacute toxicity study of the product M 9843 (GALBEN) administered to Charles River CD (SD) BR rats in the diet, RBM, Institute of Biomedical Research "Antoine Marxer", Italy; Experiment No. 1284. Company file No. 10, GLP/Not published

14.3 Environment

Data point	Year	Title
CA 7.1.2.1.1/01	1982	Degradation of 14C-GALBEN in soil under aerobic conditions, Non-GLP, Unpublished
CA 7.1.1.1/03	2015a	Degradation and Metabolism of ¹⁴ C-benalaxyl in four soils incubated under aerobic conditions, GLP, Unpublished
CA 7.2.2.2/01	2015b	Aerobic Mineralisation of ¹⁴ C-benalaxyl in Surface Water - Simulation Biodegradation Test, GLP, Unpublished
CA 7.1.2.2.1/01	1981	Degradation rate of GALBEN in the soil laboratory measurement + Appendix A: Analytical Method, Non-GLP, Unpublished
CA 7.1.2.1.1/03, CA 7.1.2.1.2/04	2009	Determination of modelling endpoints for benalaxyl and soil metabolites from laboratory degradation studies, using Modelmaker 4.0, according to FOCUS kinetics, Non-GLP, Unpublished
CA 7.1.3.1.1/01	1993	Adsorption/Desorption test substance: Benalaxyl, GLP, Unpublished
CA 7.1.3.1.1/02	2018	[14C]Benalaxyl determination of adsorption/desorption behaviour in two soils.
CA 7.2.2.3/01	1997	[14C-U-Aniline Ring] benalaxyl: Degradation and Retention in Water-Sediment Systems, GLP, unpublished
CA 8.2.1/01	1979a	Four-day static aquatic toxicity studies with M 9834 in goldfish, Not GLP, Unpublished
CA 8.2.1/02	1979b	Four-day static aquatic toxicity studies with M 9834 in guppy, Not GLP, Unpublished
CA 8.2.1/03	1979c	Four-day static aquatic toxicity studies with M 9834 in rainbow trout, Not GLP, Unpublished
CA 8.2.1/04	1980	Determination of the acute toxicity of M 9834, technical grade for Cyprinus carpio L, Not GLP, Unpublished
CA 8.2.1/05	1984	Bluegill sunfish 96 hour static acute toxicity test with GALBEN, GLP, Unpublished
CA 8.2.2.1/02	2014	Toxicity of Benalaxyl Technical to Zebrafish (Danio rerio) in an Early-Life Stage Test, GLP, Unpublished
CA 8.2.4.1/02	2014a	Benalaxyl technical: Daphnia sp., 48-Hour Acute Immobilization Test, GLP, Unpublished
CA 8.2.2.1/03	2014b	Benalaxyl isomer R: Daphnia sp., 48-Hour Acute Immobilization Test, GLP, Unpublished
CA 8.2.2.1/04	2014c	Benalaxyl isomer S: Daphnia sp., 48-Hour Acute Immobilization Test, GLP, Unpublished
CA 8.2.5.3/01	1998	Assessment of side effects of benalaxyl technical on the larvae of the midge, Chironomus riparius with the laboratory test method, GLP, Unpublished
CA 8.2.2.1/01	1992a	Benalaxyl prolonged toxicity test on the Rainbow Trout (Oncorhynchus mykiss), GLP, Unpublished
CA 8.2.5.1/01	1992b	Benalaxyl reproduction test on Daphnia magna, Report No. 90 9455, GLP, Unpublished
CA 8.2.4.1/01	1993	Benalaxyl reproduction test on Daphnia magna. Here: Acute Immobilisation test on Daphnia magna, Addendum to the study, GLP, Unpublished
CA 8.2.1/06	2014a	Benalaxyl technical: Acute Toxicity to Rainbow Trout (Oncorhynchus mykiss), GLP, Unpublished
CA 8.2.1/07	2014b	Benalaxyl isomer R: Acute Toxicity to Rainbow Trout (Oncorhynchus mykiss), GLP, Unpublished
CA 8.2.1/08	2014c	Benalaxyl isomer S: Acute Toxicity to Rainbow Trout (Oncorhynchus mykiss), GLP, Unpublished
CA 8.2.6.1/01	1982	Toxicity study with technical Galben on Selenastrum capricornutum, Not GLP, Unpublished

Data point	Year	Title
CA 8.2.6.1/02	2014a	Benalaxyl technical: Algal Growth Inhibition Test, Harlan Laboratories, Ltd., UK, Report No. 41206978, FMC Study No. 2014ETX-BEN0611, GLP, Unpublished
CA 8.2.6.1/03	2014b	Benalaxyl isomer R: Algal Growth Inhibition Test, Harlan Laboratories, Ltd., UK, Report No. 41206983, FMC Study No. 2014ETX-BEN0617, GLP, Unpublished
CA 8.2.6.1/04	2014c	Benalaxyl isomer S: Algal Growth Inhibition Test, Harlan Laboratories Ltd., UK, Report No. 41206986, FMC Study No. 2012ETX-BEN0621, GLP, Unpublished

15 ANNEXES

The five sections (below) of the revised Renewal Assessment Report (RAR, 2018) of the active substance Benalaxyl containing confidential data have been included as confidential attachments.

Benalaxyl_RAR_03_Vol-3CA_B-1_2018-08-revised.pdf

 $Benalaxyl_RAR_04_Vol_3CA_B-2_2018-08-revised.pdf$

Benalaxyl_RAR_08_Vol-3CA_B-6_2018-10-revised.pdf

Benalaxyl_RAR_10_Vol-3CA_B 8_2018-10-revised.pdf

 $Benalaxyl_RAR_11_Vol\text{-}3CA_B\text{-}9_2018\text{-}10\text{-}revised.pdf}$