CLH report

Proposal for Harmonised Classification and Labelling

Based on Regulation (EC) No 1272/2008 (CLP Regulation), Annex VI, Part 2

Substance Name: Fenpyroximate

EC Number: not allocated

CAS Number: 134098-61-6

Index Number: not allocated

Contact details for dossier submitter:

BAuA

Federal Institute for Occupational Safety and Health Federal Office for Chemicals Friedrich-Henkel-Weg 1-25 D-44149 Dortmund, Germany

Version number: 2

Date: March 2013

CONTENTS

1	IDE	ENTITY OF THE SUBSTANCE AND PHYSICAL AND CHEMICAL PROPERTIES	10
	1.1	Name and other identifiers of the substance	10
	1.2	Composition of the substance	10
	1.3	Physico-chemical properties	11
2	MA	NUFACTURE AND USES	12
	2.1	Manufacture	12
	2.2	Identified uses	12
	2.3	Uses advised against	12
3	CLA	ASSIFICATION AND LABELLING	12
	3.1	Classification in Annex VI (Tab. 3.2) of Regulation (EC) No 1272/2008	12
	3.2	Classification in Annex VI (Tab. 3.1) of Regulation (EC) No 1272/2008	12
4	ENV	VIRONMENTAL FATE PROPERTIES	13
	4.1	Degradation	13
		4.1.1 Stability	
		4.1.2 Biodegradation	14
		4.1.3 Summary and discussion of persistence	16
	4.2	Environmental distribution	
		4.2.1 Adsorption/desorption	
		4.2.2 Volatilisation	
		4.2.3 Distribution modelling	16
	4.3	Bioaccumulation	
		4.3.1 Aquatic bioaccumulation	
		4.3.2 Terrestrial bioaccumulation	
		4.3.3 Summary and discussion of bioaccumulation	17
	4.4	Secondary poisoning	17
5	HUI	MAN HEALTH HAZARD ASSESSMENT	18
	5.1	Toxicokinetics (absorption, metabolism, distribution and elimination)	
		5.1.1 Dermal absorption	19
	5.2	Acute toxicity	19
		5.2.1 Acute toxicity: oral	19
		5.2.2 Acute toxicity: inhalation	
		5.2.3 Acute toxicity: dermal	
		5.2.4 Acute toxicity: other routes	
		5.2.5 Summary and discussion of acute toxicity	
		5.2.6 Summary and discussion of specific target organ toxicity – single exposure (STOT-SE)	24

	5.3	Irritation2			
		5.3.1	Skin	24	
		5.3.2	Eye	24	
		5.3.3	Respiratory tract	25	
		5.3.4	Summary and discussion of irritation	25	
	5.4	Corro	sivity	26	
	5.5	Sensit	isation	27	
		5.5.1			
		5.5.2	Respiratory system		
			Summary and discussion of sensitisation		
	5.6	Repea	ted dose toxicity		
	2.0		Repeated dose toxicity: oral		
			Repeated dose toxicity: inhalation		
		5.6.3	Repeated dose toxicity: dermal		
			Other relevant information		
			Summary and discussion of repeated dose toxicity:		
	- -		· · ·	22	
	5.7		renicity		
			In vitro data		
			In vivo data		
			Human data		
			Other relevant information		
		5.7.5	Summary and discussion of mutagenicity		
	5.8	Carcin	nogenicity		
		5.8.1	Carcinogenicity: oral		
		5.8.2	Carcinogenicity: inhalation	35	
		5.8.3	Carcinogenicity: dermal	35	
		5.8.4	Carcinogenicity: human data		
		5.8.5	Other relevant information		
		5.8.6			
	5.9	Toxic	ity for reproduction		
			Effects on fertility		
			Developmental toxicity		
			Human data		
			Other relevant information		
		5.9.5			
	5 10	Other	effects	38	
	5.10		toxicity / Delayed neurotoxicity studies		
6	нл	MANF	EALTH HAZARD ASSESSMENT OF PHYSICO-CHEMICAL PROPERTIES		
7	ENV	/IRON	MENTAL HAZARD ASSESSMENT		
	7.1	Aquat	ic compartment (including sediment)	30	
	7.1		Toxicity test results		
		/.1.1			
	7.2	Terres	trial compartment	46	
	7.3	Atmos	spheric compartment	46	
	7.4	Micro	biological activity in sewage treatment systems	46	
	7.5	Calcu	lation of Predicted No Effect Concentration for secondary poisoning (PNEC_oral)	46	

7.6 Conclusion on the environmental classification and labelling	46
REFERENCES	49

TABLES

Table 1: Substance identity	
Table 2: The current Annex VI entry and the proposed harmonised classification	6
Table 3: Proposed classification according to the CLP Regulation	
Table 4: Proposed classification according to DSD	9
Table 5: Name and other identifiers of the substance	10
Table 6: Composition of the substance	10
Table 7: Summary of physico- chemical properties	11
Table 8: Ready biodegradability expressed as percentage of maximum theoretical CO ₂ production	
Table 9: Water/sediment characteristics of river and pond systems	15
Table 10: Dissipation times of [¹⁴ C-pyrazol] labelled fenpyroximate in aquatic systems	16
Table 11: Results of aquatic bioconcentration measurements	
Table 12: Dose levels and corresponding mortality in the oral rat study	20
Table 13: Dose levels and corresponding mortality in the oral mouse study	20
Table 14: Summary of acute oral toxicity	
Table 15: Mean analytical, gravimetric and nominal concentrations of fenpyroximate and the resultant mortaliti	ies of
rats exposed to fenpyroximate via inhalation in the first study (Hoffman, 1989)	
Table 16: Mean analytical, gravimetric and nominal concentrations of fenpyroximate and the resultant mortaliti	ies of
rats exposed to fenpyroximate via nose-only inhalation in the second study (Hoffman, 1991)	
Table 17: Results of the particle size determination in the second study (Hoffman, 1991)	22
Table 18: Summary of acute inhalative toxicity	
Table 19: Summary of acute dermal toxicity	22
Table 20: Summary of skin irritation	
Table 21: Summary of eye irritation studies	25
Table 22: Summary of skin sensitisation	27
Table 23: Summary of repeated oral toxicity	29
Table 24: Summary of repeated inhalation toxicity	29
Table 25: Results of particle size determination	30
Table 26: Incidence of selected mucosal changes in nasal passages $(NT_1 - NT_4)$	31
Table 27: Summary of repeated dermal toxicity	31
Table 28: In vitro genotoxicity studies performed with fenpyroximate technical	32
Table 29: In vivo genotoxicity study performed with fenpyroximate technical	33
Table 30: Summary on long term toxicity and carcinogenicity studies with fenpyroximate	34
Table 31: Summary of effects on fertility	36
Table 32: Summary of developmental toxicity	37
Table 33: Acute toxicity of fenpyroximate to fish	39
Table 34: Cumulative number of dead fish and percentage of mortality over 96 hours	40
Table 35: Long-term toxicity of fenpyroximate to fish	
Table 36: Survival of organisms at completion of hatch (test day 5) and survival, total length, wet weight and di	ry
weight of fathead minnow larvae determined at test termination of the early life-stage (30 days post-hatch) expo	osure to
fenpyroximate technical	42
Table 37: Acute toxicity of fenpyroximate to invertebrates	44
Table 38: Long-term toxicity of fenpyroximate to invertebrates	44
Table 39: Long-term toxicity of fenpyroximate to algae and aquatic plants	45
Table 40: Long-term toxicity of fenpyroximate to sediment dwelling organism	45

PROPOSAL FOR HARMONISED CLASSIFICATION AND LABELLING

Table 1: Substance identity

Substance name:	Fenpyroximate
EC number:	Not allocated
CAS number:	134098-61-6
Annex VI Index number:	Not allocated
Degree of purity:	> 960g/kg
Impurities:	There are a number of impurities claimed as confidential by the proposer

Proposed classification

Table 2: The current Annex VI entry and the proposed harmonised classification

	CLP Regulation (2 nd ATP to CLP)	Directive 67/548/EEC (Dangerous Substances Directive; DSD)
Current entry in Annex VI, CLP Regulation	None	None
Current proposal for consideration by RAC	Acute Tox 3; H301 Acute Tox 2; H330 Eye Irrit. 2; H319 Skin Sens. 1B; H317 Aquatic acute 1; H400 Aquatic chronic 1; H410 $M_{acute} = 100$ $M_{chronic} = 1000$	Xn; R22 T+; R26 Xi; R36 R43 N; R50/53
Resulting harmonised classification (future entry in Annex VI, CLP Regulation)	Acute Tox 3; H301 Acute Tox 2; H330 Eye Irrit. 2; H319 Skin Sens. 1B; H317 Aquatic acute 1; H400 Aquatic chronic 1; H410 $M_{acute} = 100$ $M_{chronic} = 1000$	Xn; R22 T+; R26 Xi; R36 R43 N; R50/53

CLP Annex I ref	Hazard class	Proposed classification	Proposed SCLs and/or M-factors	Current classification ¹⁾	Reason for no classification ²⁾
2.1.	Explosives	none		none	conclusive but not sufficient for classification
2.2.	Flammable gases	none		none	data lacking
2.3.	Flammable aerosols	none		none	data lacking
2.4.	Oxidising gases	none		none	data lacking
2.5.	Gases under pressure	none		none	data lacking
2.6.	Flammable liquids	none		none	data lacking
2.7.	Flammable solids	none		none	conclusive but not sufficient for classification
2.8.	Self-reactive substances and mixtures	none		none	data lacking
2.9.	Pyrophoric liquids	none		none	data lacking
2.10.	Pyrophoric solids	none		none	data lacking
2.11.	Self-heating substances and mixtures	none		none	conclusive but not sufficient for classification
2.12.	Substances and mixtures which in contact with water emit flammable gases	none		none	data lacking
2.13.	Oxidising liquids	none		none	data lacking
2.14.	Oxidising solids	none		none	conclusive but not sufficient for classification
2.15.	Organic peroxides	none		none	data lacking
2.16.	Substance and mixtures corrosive to metals	none		none	data lacking
3.1.	Acute toxicity - oral	Acute Tox. 3 - H301		none	
	Acute toxicity - dermal	none		none	conclusive but not sufficient for classification
	Acute toxicity - inhalation	Acute Tox. 2 - H330		none	
3.2.	Skin corrosion / irritation	none		none	conclusive but not sufficient for classification
3.3.	Serious eye damage / eye irritation	Eye Irrit 2 - H319		none	
3.4.	Respiratory sensitisation	none		none	data lacking

Table 3: Proposed classification according to the CLP Regulation

ANNEX VI REPORT - HARMONISATION OF C&L

3.4.	Skin sensitisation	Skin Sens. 1B - H317		none	
3.5.	Germ cell mutagenicity	none		none	conclusive but not sufficient for classification
3.6.	Carcinogenicity	none		none	conclusive but not sufficient for classification
3.7.	Reproductive toxicity	none		none	conclusive but not sufficient for classification
3.8.	Specific target organ toxicity –single exposure	none		none	conclusive but not sufficient for classification
3.9.	Specific target organ toxicity – repeated exposure	none		none	conclusive but not sufficient for classification
3.10.	Aspiration hazard	none		none	conclusive but not sufficient for classification
4.1.	Hazardous to the aquatic environment	Aquatic acute 1 - H400 Aquatic chronic 1 - H410	M _{acute} =100; M _{chronic} =1000	none	
5.1.	Hazardous to the ozone layer	none		none	data lacking

¹⁾ Including specific concentration limits (SCLs) and M-factors ²⁾ Data lacking, inconclusive, or conclusive but not sufficient for classification

Labelling: Signal word: Hazard statements: Precautionary statements: Danger H301, H330, H317, H319, H410 (P102), P273, P280, P284, P301+P304+P310, P302+P352, P305+P351+P338, P333+P313, P337+P313, P391, P403+P233, P405, P501

Proposed notes assigned to an entry:

Hazardous property	Proposed classification	Proposed SCLs	Current classification ¹⁾	Reason for no classification ²⁾
Explosiveness	none		none	conclusive but not sufficient for classification
Oxidising properties	none		none	conclusive but not sufficient for classification
Flammability	none		none	conclusive but not sufficient for classification
Other physico-chemical properties	none		none	conclusive but not sufficient for classification
Thermal stability	none		none	data lacking
Acute toxicity	Xn; 22 T+; R26		none	
Acute toxicity – irreversible damage after single exposure	none		none	conclusive but not sufficient for classification
Repeated dose toxicity	none		none	conclusive but not sufficient for classification
Irritation / Corrosion	Xi; R36		none	
Sensitisation	R43		none	
Carcinogenicity	none		none	conclusive but not sufficient for classification
Mutagenicity – Genetic toxicity	none		none	conclusive but not sufficient for classification
Toxicity to reproduction – fertility	none		none	conclusive but not sufficient for classification
Toxicity to reproduction – development	none		none	conclusive but not sufficient for classification
Toxicity to reproduction – breastfed babies. Effects on or via lactation	none		none	conclusive but not sufficient for classification
Environment	N; R50/53		none	

Table 4: Proposed classification	according to DSD
----------------------------------	------------------

¹⁾ Including SCLs
 ²⁾ Data lacking, inconclusive, or conclusive but not sufficient for classification

Labelling:	Indication of danger:	Xi, Xn, T+, N
	<u>R-phrases:</u>	R: 22-26-36-43-50/53
	S-phrases:	S: (1/2-)26-28-36/37-38-45-60-61

1 IDENTITY OF THE SUBSTANCE AND PHYSICAL AND CHEMICAL PROPERTIES

No REACH registration dossiers were available for Fenpyroximate on 15 March 2013.

1.1 Name and other identifiers of the substance

Table 5: Name and other identifiers of the substance

Chemical Name:	Benzoic acid, 4-[[[(E)-[1,3-dimethyl-5-phenoxy-1H-pyrazol-4- yl)methylene]amino]oxy]methyl]-,1,1-dimethylethyl ester
EC Name:	not allocated
CAS Number:	134098-61-6
IUPAC Name:	tert-butyl 4-[({[(E)-(1,3-dimethyl-5-phenoxy-1H-pyrazol-4- yl)methylene]amino}oxy)methyl]benzoate

1.2 Composition of the substance

There are a number of impurities stated as confidential by the producer.

Table 6:	Composition	of the substance	
----------	-------------	------------------	--

Chemical Name:	Benzoic acid, 4-[[[(E)-[1,3-dimethyl-5-phenoxy-1H-pyrazol-4- yl)methylene]amino]oxy]methyl]-,1,1-dimethylethyl ester
EC Number:	not allocated
CAS Number:	134098-61-6
IUPAC Name:	tert-butyl 4-[({[(E)-(1,3-dimethyl-5-phenoxy-1H-pyrazol-4- yl)methylene]amino}oxy)methyl]benzoate
Molecular Formula:	$C_{24}H_{27}N_3O_4$
Structural Formula:	$H_{3}C$
Molecular Weight:	421.5 g/mol
Typical concentration (% w/w):	confidential information
Concentration range (% w/w):	confidential information

1.3 Physico-chemical properties

REACH ref Annex, §	Property	Property IUCLID section		[enter comment/reference or delete column]		
VII, 7.1	Physical state at 20°C and 101.3 KPa	3.1	white powder (purity 98.6 %)	Draft Assessment Report		
VII, 7.2	Melting/freezing point	3.2	100 – 101 °C (purity 98.6 %)	Monograph EFSA conclusions		
VII, 7.3	Boiling point	3.3	not detectable before decomposition			
VII, 7.4	Relative density	3.4 density	1.25 at 20 °C (purity 98.6 %)			
VII, 7.5	Vapour pressure	3.6	< 1x10 ⁻⁵ Pa at 25 °C (purity 98.6 %)			
VII, 7.6	Surface tension	3.10	72.2 mN/m (20 °C, 90% saturated) (purity 98.6 %)			
VII, 7.7	Water solubility	3.8	21.4 μg/L at pH 5 29.8 μg/L at pH 9 (25 °C, purity 99.8 %)			
VII, 7.8	Partition coefficient n- octanol/water (log value)	3.7 partition coefficient	5.01			
VII, 7.9	Flash point	3.11	not relevant			
VII, 7.10	Flammability	3.13	not highly flammable (purity 98.6 %)			
VII, 7.11	Explosive properties	3.14	not explosive (purity > 96 %)			
VII, 7.12	Self-ignition temperature		no self-ignition (purity 98.6 %)			
VII, 7.13	Oxidising properties	3.15	no oxidising properties (based on structure)			
VII, 7.14	Granulometry	3.5	no data available, no data requirement			
XI, 7.15	Stability in organic solvents and identity of relevant degradation products	3.17	not determined			
XI, 7.16	Dissociation constant	3.21	no dissociation			
XI, 7.17,	Viscosity	3.22	not determined			
	Auto flammability	3.12	no self-ignition]		
	Reactivity towards container material	3.18	not determined			
	Thermal stability	3.19	215 - 219 °C (DSC) (purity 98.6 %)			

Table 7: Summary of physico- chemical properties

2 MANUFACTURE AND USES

2.1 Manufacture

Nihon Nohyaku Co. Ltd., Japan

2.2 Identified uses

Acaricide in agriculture, horticulture and viticulture

2.3 Uses advised against

3 CLASSIFICATION AND LABELLING

3.1 Classification in Annex VI (Tab. 3.2) of Regulation (EC) No 1272/2008

Fenpyroximate is not listed in Annex VI of .Regulation (EC) No 1272/2008

3.2 Classification in Annex VI (Tab. 3.1) of Regulation (EC) No 1272/2008

Fenpyroximate is not listed in Annex VI of Regulation (EC) No 1272/2008

4 ENVIRONMENTAL FATE PROPERTIES

The environmental fate properties assessment for fenpyroximate is based on the Draft Assessment Report and Proposed Decision of Germany prepared in the context of the possible inclusion of fenpyroximate in Annex I of Council Directive 91/414/EEC (DAR September 2005 + final addendum February 2008, RMS Germany) as well as the conclusion regarding the peer review of the pesticide risk assessment of the active substance fenpyroximate (EFSA Scientific Report (2008) 197, 1-104, Conclusion on the peer review of fenpyroximate).

4.1 Degradation

4.1.1 Stability

Hydrolysis

- Saxena A., McCann D. (1992), Report No. E-4013

Under sterile aqueous conditions at pH 5, 7 and 9 fenpyroximate was found to be hydrolytically stable at temperature of 25 °C. The study was performed according to US EPA Assessment Guidelines, Subdivision N, Section 161-1 (1982) with [pyrazole ¹⁴C]-labelled fenpyroximate dissolved in sterile buffers at a nominal concentration of approximately 9.5 ng/L. Degradation of fenpyroximate was very slow at each pH studied.

The half-life for the hydrolytic degradation of [pyrazole-¹⁴C]-fenpyroximate was calculated to be 180 days for pH 5 (correlation coefficient $r^2 = 0.9671$), 226 days for pH 7 ($r^2 = 0.9344$) and 221 days for pH 9 ($r^2 = 0.6586$).

Photolysis in water

- Swanson M.B. (1993), Report No. E-4015

Photodegradation of [pyrazole-¹⁴C]-fenpyroximate (Batch No.: CP1275, radiochemical purity \geq 98 %, specific activity 19.3 mCi/mmol) was studied in 0.01 M phosphate buffer at pH 7 under artificial light using xenon lamps that had a spectral energy distribution similar to that of natural sunlight.

The half-life for the decline of fenpyroximate was calculated of 1.5 hours according to first order kinetics.

The quantum yield (fraction of the absorbed photons that caused chemical change) was calculated to be 7.5 %, and the photon irradiance was 135 μ moles per hour per cm².

Environmentally relevant half-lives for Central Europe (55 degree of latitude) were assessed using the programme ABIWAS (Version 2.0) result in mean DT_{50} values of 1 hour (June, Minimum) to 24 hours (December, Maximum).

4.1.2 Biodegradation

4.1.2.1 Biodegradation estimation

4.1.2.2 Screening tests

Readily biodegradability

- Desmares-Koopmans M.J.E. (2002), Report No.: E-4040

The ready biodegradability of fenpyroximate was determined according to the Modified Sturm test (OECD guideline 301B). Fenpyroximate of purity 98.6 % was incubated in the test medium, inoculated with activated sludge (from municipal sewage treatment plant), at a concentration of 17.5 mg/L. The released carbon dioxide was monitored for a period of 29 days and quantified by precipitation as BaCO₃ followed by back titration of Ba(OH)₂ with 0.05 M HCl. A parallel experiment was performed using inoculated sodium acetate as reference substance and inoculated fenpyroximate and sodium acetate as toxicity control to validate the test results.

The results, expressed as a percentage of the maximum theoretical CO2 production, for fenpyroximate, toxicity control (fenpyroximate + sodium acetate) and the reference substance (sodium acetate) are shown in Table 8.

Time (days)	Time (days)fenpyroximate (17.5 mg/L)		Reference sodium acetate (20 mg/L)
7	0 %	17 %	54 %
14	1 %	24 %	68 %
23	1 %	30 %	70 %
29	1,5 %	33 %	74 %

Table 8: Ready biodegradability expressed as percentage of maximum theoretical CO₂ production

Fenpyroximate was found to be not readily biodegradable within 29 days.

In the toxicity control less than 25 % degradation occurred in 14 days (based on theoretical CO_2 production). Due to an increase in the degradation after 14 days the degradation in the toxicity control was 33 % after completion of the study. Since the criterion for the toxicity control was not met the test substance was assumed to be inhibitory to micro-organisms in the study performed. Therefore this may affect the assessment of ready biodegradability determined in this test.

4.1.2.3 Simulation tests

Biodegradation in water/sediment systems

- Völkl, S. (2001), Report No.: E-4027

The distribution, degradation and metabolism of fenpyroximate (NNI-850) [pyrazole-¹⁴C]fenpyroximate (Batch No.: CP-1609, radiochemical purity 99 %, specific activity 21.8 mCi/mmol) in equilibrated water-sediment systems were investigated. The study was performed according to the guidelines BBA-Richtlinie Teil IV, 5-1 "Abbaubarkeit und Verbleib von Pflanzenschutzmitteln im Wasser/Sediment System" (1990), Commission Directive 95/36/EC (1995) and SETAC Europe, Part 8.2 (1995). The water-sediment systems from a river (Rhine) and from a pond consisted of natural water filtered through a 0.2 mm sieve, and the uppermost 5 to 10 cm of sediment sieved through a 2 mm mesh (characterisation of the systems see Table 9)

System	F	River	Po	Pond		
	Sampling site	End of study	Sampling site	End of study		
		Water				
Temperature (°C)						
Surface	20.0	n.d.	12.7	n.d.		
5 cm above	20.0		11.8			
sediment						
PH						
Surface	8.31	8.42 ³⁾	7.67	8.08 ³⁾		
5 cm above	7.74		7.55			
sediment						
Redoxpotential (mV)						
Surface	211	207 ³⁾	102	213 ³⁾		
5 cm above	193		38			
sediment						
Oxygen content (mg/L)				2		
Surface	7.8	6.5 ³⁾	8.9	6.7 ³⁾		
5 cm above	7.4		4.8			
sediment						
$NO_3-N/(mg/L)$	1.08	0.14	0.29	0.29		
NO_2 -N (mg/L)	0.02	0.03	0.02	0.02		
NH ₄ -N (mg/L)	0.05	0.01	0.07	0.02		
2)						
N-total ²⁾ (mg/L)		1.20		0.80		
P as orthophosporous (mg/L)	0.07	0.17	0.09	0.03		
$P-total^{2}$ (mg/L)		0.17		0.05		
TOC ¹⁾	1.7	11.0	3.7	7.4		
Hardness (°dH)	11	28	18.5	34		
	ſ	Sediment	1	1		
pH (KCl)	7.27	n.d.	6.89	n.d.		
Redoxpotential (mV)	-154	-148	-78	-170		
N-total (g/kg sediment)	1.0	n.d.	4.1	n.d.		
P-total (g/kg sediment)	0.253	n.d.	0.482	n.d.		
Total organic carbon	0.74	n.d.	4.41	n.d.		
(g C/100g dry soil)						
Cation exchange capacity	8.7	n.d.	8.9	n.d.		
(mVal N/100g dry soil)						
Particle size distribution:						
Soil characterisation	Sandy loam		Silt loam			
Clay (%, $< 2\mu m$)	6.7		2.7			
Silt (%, $< 2-50 \mu m$)	32.3		59.6			
Sand (%, < 50µm)	61.0		37.7			
Dry mass (kg dry soil/kg	0.6	0.6	0.3	0.3		
fresh sediment)						
Biomass (mg microbial	51.6	61.0	256.0	214.5		
C/100g dry soil)						

Table 9: Water/sediment characteristics of river and pond systems

¹⁾ Parameters determined at RCC

²⁾ Determined after disintegration in the microwave oven

³⁾ Mean of control samples

n.d. – Not determined

The results of the aerobic incubation of fenpyroximate are summarised in Table 10.

Substance	Test system	Total system (days)		Water (days)		Sediment (days)	
		DT ₅₀	DT ₉₀	DT ₅₀	DT ₉₀	DT ₅₀	DT ₉₀
[¹⁴ C]-labelled	River	27.6	248.0	2.8	9.2	52.5	n.d.
fenpyroximate	Pond	24.3	126.7	3.1	24.3	40.8	n.d.

Table 10: Dissipation times of [¹⁴C-pyrazol] labelled fenpyroximate in aquatic systems

n.d. - Not determined

Fenpyroximate was rapidly eliminated from the water phase with a half-life of 2.8 days and 3.1 days in the river and pond water, respectively. The corresponding DT_{90} values were 9.2 days and 10.3 days. Elimination proceeded mainly by cleavage of the oxime-ether bond and by adsorption to the sediment. Thus it will not persist in the aqueous phase. The degradation of the parent molecule in the sediment was slower leading to DT_{50} values of 27.6 days and 24.3 days for the river and pond system, respectively. The metabolism of [¹⁴C]-fenpyroximate proceeded mainly via cleavage of the substituted oxime ether bonding.

Fenpyroximate adsorbs to sediment very fast. Therefore, around 40 % of the applied radioactivity is found in the sediment immediately after application, and disappearance from the water phase is rapid.

However, the active substance is very slowly mineralised in the water/sediment system (1.9 % CO₂ after 105 days), and bound residues were increasingly formed during the study period up to 28 % after 105 days.

4.1.3 Summary and discussion of persistence

Fenpyroximate was found to be not readily biodegradable in the available study.

In water/sediment systems fenpyroximate was metabolised at a moderate rate with DT_{50} values of 27.6 days and 24.3 days.

4.2 Environmental distribution

Not relevant for this dossier.

- 4.2.1 Adsorption/desorption
- 4.2.2 Volatilisation
- 4.2.3 Distribution modelling
- 4.3 Bioaccumulation
- 4.3.1 Aquatic bioaccumulation

4.3.1.1 Bioaccumulation estimation

Fenpyroximate has a log Kow of 5.01.

4.3.1.2 Measured bioaccumulation data

The bioconcentration of $[{}^{14}C]$ -fenpyroximate in bluegill sunfish (*Lepomis macrochirus*) was determined in a 36-day study, which included a 14-day uptake period and a 22-day depuration period. The lipid content of test fish was determined with an average of 9.2 % total lipids at test initiation (day 0) and an average of 9.4 % total lipids at study termination (day 36).

Fenpyroximate rapidly accumulated, principally in the non-edible tissues. Whole fish residue on days 7, 10 and 14 were within \pm 20 % of each other and BIOFAC modelling determined that residues in whole fish achieved 90 % of steady state by day 14. The maximum bioconcentration factor for whole fish of 1601 L/kg ww was reached after 14 days. Based on the fitted uptake and depuration rate constants, the kinetic BCF is 1842 L/kg ww. These BCF-values should be corrected for the high lipid content of test fish (9.2 %) to maximum BCF of 870 L/kg ww and BCF kinetic of 1001 L/kg ww (lipid normalized to 5 % lipid content).

Accumulated fenpyroximate was over 90 % depurated (97 % by BIOFAC data) after 22 days.

guideline/ test method	exposur e	log Ko W	Initial conc. [µg/L]	Steady state BCF [L/kg ww]	Kinetic BCF	Depur ation time CT50(d)	Depur ation time CT90(d)	Remarks	reference
OECD 305 & 305 E	14 d, flow - trough	5.1	0.115 (real) 0.1 (nom)	1601	1842	4.2	21	Whole fish based on TRR ¹⁾	Smith, S.M. and Young, B.M. (1997), Document No.: W-4045

Table 11: Results of aquatic bioconcentration measurements

¹⁾ Majority of the total radioactive residues (TRR) in water and fish are chromatographic analysed as parent substance (fenpyroximate)

4.3.2 Terrestrial bioaccumulation

No data available.

4.3.3 Summary and discussion of bioaccumulation

Fenpyroximate has a log Kow of 5.01. The experimentally derived steady state BCF of 1601 and kinetic BCF of 1842 (lipid normalized to 5 % lipid content to maximum BCF of 870 L/kg ww and BCF kinetic of 1001 L/kg ww) are above the trigger of 500 for not readily biodegradable substances. Based on the results of the bioconcentration study, fenpyroximate does significantly bioaccumulate.

4.4 Secondary poisoning

Not relevant for this dossier.

5 HUMAN HEALTH HAZARD ASSESSMENT

More details on the available toxicological studies are summarised in chapter B.6 of the Draft Assessment Report (DAR, 30 September 2005) prepared by Germany in the context of the evaluation of the fenpyroximate for possible inclusion into Annex I under Directive 91/414/EEC, which is attached to the IUCLID Dossier. A redacted version of the DAR is publically available from EFSA's homepage under http://dar.efsa.europa.eu/dar-web/provision/request/subid/112.

5.1 Toxicokinetics (absorption, metabolism, distribution and elimination)

After oral administration of [pyrazole-¹⁴C]-labelled fenpyroximate to rats the blood bio-kinetics showed no relevant sex differences which is in contrast to those of the [benzyl-¹⁴C] - labelled compound. The benzyl moiety was eliminated more rapidly in females when a high dose (400 mg/kg bw) was applied while elimination was more rapidly in males after using a low dose (2 mg/kg bw). Both absorption and elimination of the pyrazole and the benzyl labelled fenpyroximate were greatly delayed and half-lives were much longer for the high dose in relation to the low dose.

In the low dose group radioactivity in blood increased slowly with T_{max} values of 11.0 hours for males and 11.4 hours for females after applying the pyrazole labelled and 7.8 hours for males and 7.2 hours for females after applying the benzyl labelled compound. Radioactivity declined with half-lives between 6.1 and 8.9 hours for both labelled compounds. The mean concentration of radioactivity had decreased to or below the limit of detection after 72 hours and 48 hours for the pyrazole labelled and for the benzyl labelled fenpyroximate, respectively.

In the high dose group radioactivity increased slowly with T_{max} values of 100.8 hours for males and 90.0 hours for females after administration of the pyrazole labelled or 28.8 hours for males and 86.4 hours for females after administration of the benzyl labelled compound. Radioactivity declined with half-lives between 35.4 and 48.7 hours for both labels. The mean concentration of radioactivity had decreased to or below the limit of detection after 216 hours and 168 hours for the pyrazole labelled and for the benzyl labelled fenpyroximate, respectively.

A great number of metabolites was identified indicating that fenpyroximate was extensively metabolised by e.g. hydrolytic cleavage of the oxime bond, hydrolysis of the tert-butyl ester moiety, oxidation of the tert-butyl group, hydroxylation of the phenoxy ring and 3-methyl group, by isomerisation, N-demethylation and conjugation.

There were no changes in the metabolism of [pyrazole-¹⁴C]- or [benzyl-¹⁴C]-fenpyroximate upon repeated dosing or after applying the low or the high dose. The relative increase of the parent compound in the faeces after administration of the high dose was due to a lowered absorption rate.

Biliary excretion in rats after oral administration of either [pyrazole-¹⁴C]- or [benzyl-¹⁴C]fenpyroximate showed no significant differences between sexes and between the two labels. Radioactive material was excreted in bile at about 55 and 47 %, in urine at about 5 and 10 %, and in faeces at about 28 and 17 % for males and females, respectively, when the pyrazole labelled compound was used, and in bile at about 51 and 47 %, in urine at about 6 and 8 %, and in faeces at about 40 and 28 % for males and females, respectively, after administration of the benzyl labelled compound. In consequence excretion in bile, urine and faeces within 48 hours after dosing of the pyrazole labelled test substance resulted in 88 % and 73 % for males and females, respectively, and 97 % and 83 % for males and females, respectively, after administration of the benzyl labelled substance. The systemically available fenpyroximate (i.e.: absorbed in the gastrointestinal tract and excreted via bile and urine) amounted for both labels roughly between half and two thirds of the applied dose.

Oral administration of a single low dose of either [pyrazole-¹⁴C]- or [benzyl-¹⁴C]-fenpyroximate resulted in approximately 70 - 85 % of the applied dose being excreted via faeces and approximately 10 - 20 % via urine. 6 to 12 hours after dosing most radioactivity was found in the gastrointestinal tract with liver and some sections of the gastrointestinal tract being the tissues containing the highest concentration of radioactivity. 24 hours after dosing only little radioactivity remained in the gastrointestinal tract. Tissue residues were low 168 hours after administration.

When preceded by 14 daily doses of non radioactive fenpyroximate residues in tissues were also low 168 hours after administration of low doses of either [pyrazole-¹⁴C]- or [benzyl-¹⁴C]- fenpyroximate. Again the greatest part of the applied dose was excreted via faeces (more than 75 %). No alterations in tissue distribution were found after multiple dosing of fenpyroximate.

Oral administration of a single high dose of either [pyrazole-¹⁴C]- or [benzyl-¹⁴C]-fenpyroximate resulted in approximately 75 - 80 % of the applied dose being excreted via faeces and approximately 10 - 15 % via urine. Tissues with higher concentrations of radioactivity were fat, liver and portions of the gastrointestinal tract. 6 to 12 hours after dosing the majority of the applied radioactivity was still found in the contents of the gastrointestinal tract. Although excretion was delayed, most of the radioactivity was eliminated in urine and faeces at the 168 hours collection period and no evidence for accumulation of radioactivity in specific tissues could be found. In general residues in most tissues were low at this time. Tissues that contained still the highest amounts of radioactivity were liver, fat and kidney and some sections of the gastrointestinal tract.

5.1.1 Dermal absorption

The extent of the applied dose absorbed into the systemic circulation (systemic bioavailability = sum of [¹⁴C] - fenpyroximate equivalents recovered in the urine, faeces, non-application site skin and carcass) ranged from 0 to 5.3 % (1 mg/mL treatment group), 0.4 to 2.5 % (10 mg/mL treatment group), and 0.1 to 1.5 % (52 mg/mL treatment group). In general, systemic bioavailability increased with time and decreased with respect to dose. When application site skin values were included the percent of dose values ranged from 11 to 24 % (1 mg/mL treatment group), 4 to 7 % (10 mg/mL treatment group), and 3 to 8 % (52 mg/mL treatment group). Based on these results, for the further calculation a dermal absorption of 7% is used for the concentrate formulation and 24% is used for the spray dilution.

5.2 Acute toxicity

5.2.1 Acute toxicity: oral

Oral LD_{50} of fenpyroximate was between 350 mg/kg bw in rats (245 mg/kg bw in females and 480 mg/kg bw in males) and 500 mg/kg bw in mouse.

In the rat study clinical signs seen on the day of dosing in most groups included urinary and faecal staining, soft stool, eyes partially closed and hypoactivity. Additional signs seen in single animals included evidence of oral discharge in the 200 mg/kg dose group and hypopnea, prostration, abdominal griping and/or dry rales in the 600 and 800 mg/kg dose groups. Decreased food consumption was noted in a few surviving animals on the day after dosing and in most surviving

animals on the second day after dosing; this continued in a few animals through day 6.

	Range-finding study	LD ₅₀ determination study				
Dose level (mg/kg)	Total montality		Mortality			
	Total mortality	Male	Female	Total		
200	0/2	0/5	1/5	1/10		
280	1/2	2/5	4/5	6/10		
400	1/2	2/5	4/5	6/10		
600	1/2	2/5	5/5	7/10		
800	2/2	4/5	5/5	9/10		
LD ₅₀ (mg/kg)		480	245	350		

Table 12: Dose levels and corresponding mortality in the oral rat study

In the mouse study clinical signs seen on the day of dosing in most groups included ataxia, hypopnea, hypoactivity and prostration. Decreased food consumption was observed in most surviving animals on the day after dosing, this continued in some animals through day 5. Additional signs seen in two or more groups included urinary staining and abdominal griping. Hyperpnea, dyspnea, hypothermia or hyperactivity was observed in single animals in the 800 mg/kg dose group. Coarse tremors were seen in animals in the 1200 and 1700 mg/kg dose group.

Table 13: Dose levels and	corresponding mortality in	the oral mouse study
	conception and moreancy m	the of all mouse stady

	Range-finding study	LD50 determination study Mortality				
Dose level (mg/kg bw)	Total mortality					
		Male	Female	Total		
200	0/2	1/5	1/5	2/10		
280	2/2	0/5	2/5	2/10		
400	0/2	1/5	4/5	5/10		
600	1/2	3/5	2/5	5/10		
800	2/2	4/5	2/5	6/10		
1200			5/5	5/5		
1700			5/5	5/5		
LD ₅₀ (mg/kg bw)		520	440	500		

Table 14: Summary of acute oral toxicity

Method/ Guideline	Route	Species, Strain, Sex, No/group	Dose levels (mg/kg bw)	Value LD ₅₀ (mg/kg bw)	Remarks	Reference
OECD 401	Oral	Rat, SD 5M + 5F	200-280-400- 600-800	Male: 480 Female: 245 Combined: 350	Vehicle: Tween 80	Blaszcak, D.L. (1989), report no. T- 4001
OECD 401	Oral	Mouse, CD-1(ICR)BR 5M + 5F	200-280-400- 600-800- 1200-1700	Male: 440 Female: 520 Combined: 500	Vehicle: Tween 80	Blaszcak, D.L. (1989), report no. T- 4002

5.2.2 Acute toxicity: inhalation

In a first study Sprague-Dawley CD rats were exposed (whole body) to fenpyroximate as a dust at analytical concentrations of 0.067, 0.14, 0.36, 0.78 and 0.74 mg/L resulting in mortalities of 10 %, 0 %, 20 %, 100 % and 90 %, respectively. The LC₅₀ of fenpyroximate as active ingredient was 0.33 mg/L in males and 0.36 mg/L in females (0.36 mg/L for combined sexes). During exposure the most commonly signs of toxicity were laboured breathing or gasping. Other observations included lacrimation or nasal discharge. Most animals which died during exposure were observed to have died by the third hour. Upon removal from the chamber one male from group I and III, two males from group IV and nine animals (4 males, 5 females) from group V were found dead. Among survivors signs similar to those seen during exposure were exhibited. One additional group III female died on test day 6 and eight additional group IV animals (3 males, 5 females) died between test day 4 and 12. Signs associated with poor conditions preceded these death. Among surviving animals signs similar to those seen following exposure continued during the first week of the recovery period, after which they decreased in incidence.

Table 15: Mean analytical, gravimetric and nominal concentrations of fenpyroximate and the resultant mortalities of rats exposed to fenpyroximate via inhalation in the first study (Hoffman, 1989)

Group	Fenpyroximate concentration (mg/L)			Mortality				
	Analytical	Gravimetric	Nominal*	Male	Female	Total		
Ι	0.067	0.072	0.63	1/5	0/5	1/10		
Π	0.14	0.17	0.52	0/5	0/5	0/10		
III	0.36	0.41	1.4	1/5	1/5	2/10		
IV	0.78	0.90	28	5/5	5/5	10/10		
V	0.74	0.81	1.8	4/5	5/5	9/10		
* - the high nomonal level in group IV was the result of the fluidised bed generator being used instead of the								
Sibata dust fe	eder			-	-			

In a second study Sprague-Dawley CD® rats were exposed via nose-only inhalation to fenpyroximate as a dust at analytical concentrations (active ingredient) of 0.51, 0.20 and 0.096 mg/L resulting in mortalities of 67 %, 40 % and 0 %, respectively. The LC₅₀ was calculated to be 0.31 mg/L for the combined sexes, 0.21 mg/L for the males and 0.33 mg/L for the females. During exposure the most commonly signs of toxicity were laboured breathing, however, it should be noted that observations are limited during exposure while the animals are restrained in the nose-only tubes. Upon removal from the chamber six animals (2 males, 4 females) were found dead following group I exposure (including one accidental death) and two males were found dead following group II exposure. One additional group I male died within an hour following exposure. The surviving animals from all three exposures showed various responses including laboured breathing, rales, gasping, nasal discharge and ano-genital staining. An additional group II male and female rat were found dead on test day two. Among surviving animals signs similar to those seen immediately following exposure were noted during the first few days of the recovery period, after which they generally abated.

Table 16: Mean analytical, gravimetric and nominal concentrations of fenpyroximate and the resultant mortalities of rats exposed to fenpyroximate via nose-only inhalation in the second study (Hoffman, 1991)

Group	Fer	oncentration (mg	Mortality					
	Analytical ^a	Analytical ^b	Gravimetric ^b	Nominal ^b	Male	Female	Total	
Ι	0.51	0.58	0.65	2.7	3/5	3/4 °	6/9 ^c	
Π	0.20	0.22	0.24	0.53	3/5	1/5	4/10	
III	0.096	0.11	0.11	0.23	0/5	0/5	0/10	
^a – Concentra	ation based on	percentage of a	ctive ingredient					
^b – Concentration based on formulation								
^c – Excludes	one accidental	death						

Group	Mass Median Aerodynamic Diameter (microns)	Geometric Standard Deviation	% of Particles in Diameter ≤ 1 µm	% of Particles in Diameter ≥ 1 µm
Ι	2.9	2.3	11	94
II	2.5	2.3	15	96
III	3.0	2.2	8.8	94
Mean	2.8	2.3	12	95

Table 18: Summary of acute inhalative toxicity

Method/ Guideline	Route	Species, Strain, Sex, No/group	Dose levels (mg/L)	Value LD ₅₀ (mg/L)	Remarks	Reference
OECD 403	Inhalative	Rat, SD CD 5M + 5F	0.067-0.14- 0.36-0.78- 0.74	Male: 0.33 Female: 0.36 Combined: 0.36	4 h, whole body	Hoffman, G.M. (1989), report no. T- 4004
OECD 403	Inhalative	Rat, SD CD 5M + 5F	0.096-0.20- 0.51	Male: 0.21 Female: 0.33 Combined: 0.31	4 h, nose only	Hoffman, G.M. (1991), report no. T- 4052

5.2.3 Acute toxicity: dermal

Fenpyroximate showed low acute dermal toxicity (LD_{50} , rat: >2000 mg/kg bw). All animals survived throughout the study. No severe dermal effects were seen during the course of the study.

Method/ Guideline	Route	Species, Strain, Sex, No/group	Dose levels (mg/kg bw)	Value LD ₅₀ (mg/kg bw)	Remarks	Reference
OECD 402	dermal	Rat, SD 5M + 5F	2000	>2000	Moistened with 0.9% saline	Blaszcak, D.L. (1989), report no. T- 4003

5.2.4 Acute toxicity: other routes

No data are available.

5.2.5 Summary and discussion of acute toxicity

Oral LD_{50} of fenpyroximate was between 350 mg/kg bw in rats (245 mg/kg bw in females and 480 mg/kg bw in males) and 500 mg/kg bw in mice.

According to Directive 67/548/EEC Substances and preparations shall be classified as:

"R22 Harmful if swallowed" and assigned the symbol "Xn"

in case following criteria are fulfilled:

 LD_{50} per oral, rat: 200 < $LD_{50} \le 2000$ mg/kg,

Therefore, classification as harmful, symbol Xn, and risk phrase R22 "Harmful if swallowed" is proposed for fenpyroximate.

According to Regulation (EC) No 1272/2008 a substance is allocated to Acute Tox. 3 if an oral LD_{50} is derived in the following range: $50 < LD_{50} \le 300$ mg/kg bw. The LD_{50} in female rats was 245 mg/kg bw. Therefore, Acute Tox. 3 and the Hazard Statement H301: Toxic if swallowed is proposed.

The dermal toxicity was low (LD₅₀>2000 mg/kg bw). Therefore, no classification of dermal toxicity is required.

The acute inhalation toxicity was tested in two studies. In the first study, the LC_{50} of fenpyroximate as active ingredient was 0.33 mg/L in males and 0.36 mg/L in females (0.36 mg/L for combined sexes). In the second study, the LC_{50} was calculated to be 0.31 mg/L for the combined sexes, 0.21 mg/L for the males and 0.33 mg/L for the females. However, fenpyroximate was formulated with 10% dioxosilane (silicon dioxide), the toxicological contribution of this compound for the mortality observed in the inhalation study was investigated and considered to be negligible. The mortality in the studies is due to the active substance and not to the dioxosilane.

According to Directive 67/548/EEC substances and preparations shall be classified as: "R26 Very toxic by inhalation" and assigned the symbol "T+" in case following criteria are fulfilled:

LC50 inhalation, rat, for aerosols and particulates: ≤ 0.25 mg/litre/4h.

Consequently, classification as very toxic, symbol T+, and risk phrase R26 "very toxic by inhalation" is proposed for fenpyroximate.

According to CLP regulation substances can be allocated to Acute Tox. 2 based on acute toxicity by inhalation if the following criteria are fulfilled for dustes and mists: 0.05 mg/L < LC50 < 0.5 mg/L. In the submitted studies, dusts have been tested. The experimental exposure period was 4 h. Therefore, no further correction is necessary. Consequently, classification as Acute Tox. 2, H330 "Fatal if inhaled" is proposed.

Proposed classification:

Directive 67/548/EEC: Xn, R22 Harmful if swallowed T+, R26 Very toxic by inhalation

CLP Regulation:

Acute Tox. 3, H301 Toxic if swallowed

Acute Tox. 2, H330 Fatal if inhaled

5.2.6 Summary and discussion of specific target organ toxicity – single exposure (STOT-SE)

According to Regulation (EC) No 1272/2008, "the information required to evaluate specific organ toxicity comes either from single exposure in humans, such as: exposure at home, in the workplace or environmentally, of from studies conducted in experimental animals."

According to the Guidance to Regulation (EC) No 1272/2008 (13 July 2009), "older acute toxicity studies which tended to only measure lethality as an observational endpoint (e.g. to determine LD50/LD50) will generally not provide useful information for STOT-SE."

The available studies on fenpyroximate are valid according to the data requirements. However, they are considered to provide no sufficient information for STOT-SE.

5.3 Irritation

5.3.1 Skin

No skin irritating potential of fenpyroximate was observed in the rabbit. Neither erythema nor oedema were seen on any of the treated skin sites and untreated control skin sites of each animal at any occasion of observation (1, 24, 48 and 72 hours) after removal of the patches.

Method/ Guideline	Species, Strain, Sex,	Average score 1, 24, 48, 72 h		Reversi- bility	Results	Remarks	Reference
	No/group	Erythema	Oedema	yes/no			
OECD 404	Rabbit,	0-0-0-0	0-0-0-0	Not	Not	None	Kosaka, T.
	KBL:NZW			applicable	irritating		(1988), report no.
	6M						T-4010

Table 20: Summary of skin irritation

5.3.2 Eye

The eye irritating potential of fenpyroximate was tested in rabbits. Changes due to irritation were found neither in the cornea nor in the iris of any treated eyes. In respect to the conjunctivae all animals showed redness of grade 1 (some blood vessels definitely hyperemic) from 1 to 24 hours and 4 of 6 animals showed redness to 48 hours after the treatment. Chemosis of grade 1 was

observed in 6 of 6 animals 1 h after treatment and disappeared by 24 hours after the treatment. All changes due to irritation in the conjunctivae disappeared by 3 days after the treatment in either group.

Information concerning eye irritation in farmers who used fenpyroximate 5 % SC was gathered by Nihon Nohyku (Sano, Y., Nokata, M.: Effects on Fenpyroximate in human. Eyes and skin irritation. Nihon Nohyaku Co. September 1992, unpublished report). Eye irritation was found in 1991 in 23 cases and in 1992 in 3 cases of farmers applying fenpyroximate 5 % SC in citrus field but was not reported in farmers using the formulation in any other crop. The occurrence of eye irritation only during use in citrus fields was considered to be related to the planting conditions of this crop, resulting in a higher exposure to the pesticide spray, in contrast to other crops (e.g. apple). The irritation was primary and recovery was obtained within a short time after application. The incidence of eye irritation in 1992 was lower than that in 1991 in spite of an increase of the amount of fenpyroximate 5 % SC sold, as a greater attention to avoid exposure to fenpyroximate 5 % SC was made popular among farmers and the use of glasses and goggles was recommended.

The following information was submitted in the report:

Spray conditions:

Single use of fenpyroximate 5% SC or tank mix use with one to three further pesticides.

Dilution ratio of fenpyroximate 5% SC: 1000, 1500 or 2000

Volume rate: 800-2000 l/10 a

Applicator: Power sprayer

Condition of eye irritation:

Subjective symptom: Feeling as being of foreign substance in the eyes, being dim, irritation, pain, decreased eyesight, bloodshot eye, weeping

Instances of diagnosis by occultist: Inflammation of cornea and iris, corneal erosion

Method/ Guideline	Species, Strain,		Average score 1, 24, 48, 72 h			Reversi- bility	Results	Remar ks	Reference
	Sex, No/group	Cor- nea	Iris	Redness Conjunc tiva	Chemosis	yes/no			
OECD 405	Rabbit, KBL:NZ W 6M	0-0-0- 0	0-0-0- 0	1-1-0.7- 0	1-0-0-0	Yes	Not irritating	None	Kosaka, T. (1988), report no. T-4009

Table 21: Summary of eye irritation studies

5.3.3 Respiratory tract

No data available.

5.3.4 Summary and discussion of irritation

No skin irritating potential of fenpyroximate was observed in the rabbit. Therefore, no classification is required.

A slight eye irritation was observed in rabbits. On basis of this study a classification would not be necessary. However, eye irritation was observed in workers and farmers.

According to Directive 67/548/EEC substances and preparations shall be classified as: "R36 Irritating to eyes" and assigned the symbol "Xi" in case following criteria are fulfilled:

"Substances or preparations which cause significant ocular lesions, based on practical experience in Humans".

Therefore, classification of fenpyroximate as irritant, symbol Xi, and risk phrase R36 "Irritating to eyes" is proposed.

According to CLP regulation substances are classified in category 2 (irritating to eyes) if there is adequate existing human experience which provides evidence that the substance is irritating to eyes. The submitted data on human effects are considered to be an evidence of the irritating potential.

Proposed classification:

Directive 67/548/EEC: Xi, R36 Irritating to eyes

CLP Regulation: Eye Irrit. 2, H319 Causes serious eye irritation

5.4 Corrosivity

No evidence for a corrosive activity of fenpyroximate was observed in skin and eye irritation studies.

5.5 Sensitisation

5.5.1 Skin

A maximisation test in the guinea pig showed a sensitisation rate of 36 %. No evidence of sensitising potential was observed in a Buehler test.

Method/ Guideline	Species, Strain, Sex, No/group	Number of animals sensitised/Total number of animals	Results	Remarks	Reference
OECD 406, Magnusson- Kligman test	Guinea pig, Crj:Hartley, 25 F Negative Control, 25 F Treatment group, 10 F DNCB 10 F control to DNCB	0/25 (negative control) 9/25 (fenpyroximate technical)	Sensitising	Vehicle: Induction: Water in oil emulsion of Freund's complete adjuvant in salt solution; Challenge: test compound in white petrolatum	Kosaka, T. (1988), report no. T-4015
OECD 406, Buehler test	Guinea pig, Crj:Hartley, 20 F Negative control, 20 F Treatment group 10 F DNCB 10 F Control to DNCB	0/20 (negative control) 0/20 (fenpyroximate technical)	No evidence of sensitising potential	Vehicle: 50% aqueous dilution of the test material	Teale, H.J. (1990), report no. T-4016

Table 22: Summary of skin sensitisation

5.5.2 Respiratory system

No indication in the inhalation toxicity studies. No further data available.

5.5.3 Summary and discussion of sensitisation

In the Magnusson/Kligman test a sensitisation rate of 36% was obtained. In the Buehler test no animals were sensitized.

Comparison with criteria:

Toxicological result	DSD criteria	CLP criteria ¹
Kosaka, T. (1988):	Adjuvant type test method: $\geq 30 \%$ of	Guinea pig maximisation test
9/25 (36 %) of the animals positive	the animals positive	Category 1A:
		\geq 30 % responding at \leq 0.1 %
5 % intra dermal induction		intradermal induction dose or
concentration		$\geq 60 \%$ responding at > 0.1 % to $\leq 1 \%$ intradermal induction dose
		Categrory 1B:
		$\geq 30 \%$ to < 60 % responding at > 0.1
		% to ≤ 1 % intradermal induction
		dose or
		\geq 30 % responding at > 1 %
		intradermal induction dose
Teale, H.J. (1990):	Other test method: $> 15\%$ of the	Buehler assay
0/20 (0 %) of the animals positive	animals positive	Category 1A:
		≥ 15 % responding at ≤ 0.2 % topical
50 % (% w/w) dermal induction		induction dose or
concentration		≥ 60 % responding at > 0.2 % to ≤ 20
		% topical induction dose
		Categrory 1B:
		≥ 15 % to < 60 % responding at > 0.2
		% to ≤ 20 % topical induction dose or
		\geq 15 % responding at > 20 % topical
		induction dose

In the Magnusson/Kligman test a sensitisation rate of 36% was obtained. The Magnusson/Kligman test is considered to be an appropriate animal test according to Directive 67/548/EEC. Therefore, classification with risk phrase R43 "May cause sensitisation by skin contact" is proposed. The negative result in a second test (Buehler test) is not relevant because the sensitising activity of the test substance was clearly evidenced.

Based to the results in the maximization assay (Kosaka, 1988) and considering the classification criteria in CLP regulation (amended by commission regulation (EU) No 286/2011 of 10 March 2011), the test compound fulfills the criteria to be classified as skin sensitiser category 1B (H317).

Proposed classification:

Directive 67/548/EEC: Xi, R43 May cause sensitisation by skin contact

CLP Regulation: Skin Sens. 1B, H317 May cause an allergic skin reaction

¹ amended by Commission Regulation (EU) No 286/2011 of 10 March 2011 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures

5.6 Repeated dose toxicity

5.6.1 Repeated dose toxicity: oral

The results of the oral repeated dose toxicity studies indicate that the NOEL of fenpyroximate technical when administered for at least 90 days was 20 ppm (corresponding to 1.30 mg/kg/day in males and 1.65 mg/kg/day in females) for rats and the NOAEL in dogs for this time period was < 2 mg/kg/day. A subchronic toxicity study in the dog over one year resulted in a NOAEL of 1.5 mg/kg/day.

Method/ Guideline	Route of exposure, duration	Species, strain, sex, no/group	Dose levels ppm (mg/kg bw/day)	NO(A)EL ppm (mg/kg bw/day)	LO(A)EL ppm (mg/kg bw/day)	Results, main effects, target organs	Remarks	Reference
OECD 408	Oral, diet, 13 weeks	Rat, SD CD, 10M, 10F	0-20- 100-500 M: (0- 1.3- 6.57- 35.22; F: 0-1.65- 8.29- 38.60)	M: 1.30 mg/kg bw/day, F: 1.65 mg/kg bw/day	M: 6.57 mg/kg bw/day, F: 8.29 mg/kg bw/day	Food intake and bw gain ↓		Aughton, P. (1989), Report-No T- 4019
OECD 409	Oral, capsule, 13 weeks	Dog, Beagle, 4M, 4F	(0-2-10- 50)	(<2)	(2)	Diarrhoea, emaciation, bw gain ↓, bradycardia, leukocyte count ↓, clin. chemistry		Broadmeadow, A. (1989), Report-No. T- 4021
OECD 452	Oral, capsule, 52 weeks	Dog, Beagle, 4M, 4F	(0-0.5- 1.5-5- 15)	(1.5)	(5)	Diarrhoea, bradycardia, salivation		Broadmeadow, A. (1989), Report-No. T- 4022

Table 23: Summary of repeated oral t	toxicity
--------------------------------------	----------

5.6.2 Repeated dose toxicity: inhalation

A nose only inhalation toxicity study over four weeks in the rat resulted in a NOAEL of 2 mg/m³.

Method/ Guideline	Route of exposure, duration	Species, strain, sex, no/group	Dose levels mg/m ³	NO(A)EL mg/m ³	LO(A)EL mg/m ³	Results, main effects, target organs	Re- marks	Reference
OECD	Inhalation,	Rat, SD	0-2-10-	2	10	laboured		Hoffman,
412	nose only,	CD,	50			breathing, rales,		G.M. (1991),
	6 hours,	Control				bw gain ↓, food		Report-No. T-
	five	and				consumption \downarrow ,		4055
	days/week,	highest				atrophy and		
	4 weeks	dose				metaplasia of		
		group:				nasal passage		
		10M,				mucosa,		
		10F,				erythrocytes		
		Other				and leukocytes		

Table 24: Summary of repeated inhalation toxicity

groups:	↑, lung weights	
5M, 5F	↑	

Group	Target Concentration (mg/m ³)	Mass Median Aerodynamic Diameter (µm)	Geometric Standard Deviation	% Particles in Diameter ≤ 1 µm	% of Particles in Diameter ≥ 1 µm
Ι	0 (control)	0.82	1.5	72	100
II	2	2.8	2.2	9.0	96
III	10	3.2	2.2	6.9	93
IV	50	3.1	2.1	6.4	95

Table 25: Results of particle size determination

Few sporadic gross lesions were observed during the gross post mortem examinations. Animals killed immediately after a 4-week exposure showed atrophy of the respiratory and olfactory mucosa in the nasal passages of the high dose groups. Squamous metaplasia of the respiratory mucosa was higher in number in mid- and high-dose males and high dose females than in controls. The incidences of these effects found was either lower or not observed among animals which were sacrificed after a 14 days recovery period. Microscopic changes were also seen in the tissues examined. The incidences of these findings were either similar between the control and the treated group, or otherwise occurred sporadically. Because of the low number of effects, the reversibility and no clear evidence of a marked organ dysfunction no classification is required.

Dose level (mg/m ³)		0		2		10	50	
	Males	Females	Males	Females	Males	Females	Males	Females
NT ₁ Respiratory mucosa:	1	1	1	0	3	0	2	3
squamous metaplasia								
NT ₁ Respiratory mucosa:	0	0	0	0	0	0	1	0
atrophy								
NT ₂ Respiratory mucosa:	0	0	0	0	0	0	1	0
atrophy								
NT ₂ Olfactory mucosa:	0	0	0	0	0	0	0	2
atrophy								
NT ₂ Respiratory/olfactory	0	0	0	0	0	0	1	0
mucosa: desquamation								
NT ₃ Respiratory mucosa:	0	0	0	0	0	0	1	0
atrophy								
NT ₃ Olfactory mucosa:								
atrophy								
NT ₄ Olfactory mucosa	0	0	0	0	0	0	2	2
atrophy								
NT ₄ Respiratory/olfactory	0	0	0	0	0	0	1	0
mucosa: desquamation								
Recovery Sacrifice								
NT ₁ Respiratory mucosa:	2	0					1	1
squamous metaplasia								
NT ₁ Respiratory mucosa:	0	0					0	0
atrophy								
NT ₂ Respiratory mucosa:	0	0					0	0
atrophy								
NT ₂ Olfactory mucosa:	0	0					0	0
atrophy								
NT ₂ Respiratory/olfactory	0	0					0	0
mucosa: desquamation								
NT ₃ Respiratory mucosa:	0	0					0	0
atrophy								
NT ₃ Olfactory mucosa:	0	0					0	0
atrophy								
NT ₄ Olfactory mucosa	0	0					0	0
atrophy								
NT ₄ Respiratory/olfactory	0	0					0	0
mucosa: desquamation								

Table 26: Incidence of selected	mucosal changes in nasal	passages $(NT_1 - NT_4)$
1 doie 20. mendence of selected	i mucosai changes mi nasai	pussuges (111 1114)

5.6.3 Repeated dose toxicity: dermal

A dermal toxicity study over 21 days in rats resulted in a NOAEL of 300 mg/kg bw/day.

Table 27: Summary of repeated dermal toxicity

Method/ Guideline	Route of exposure, duration	Species, strain, sex, no/group	Dose levels mg/kg bw/day	NO(A)EL mg/kg bw/day	LO(A)EL mg/kg bw/day	Results, main effects, target organs	Re- marks	Reference
OECD 410	Dermal, 21 days	Rat, SD, 5M, 5F	0-100- 300- 1000	300	1000	bw gain and food consumption ↓, liver weight ↑		Wilkinson, G.E. (1992), Report-No.: T-4059

5.6.4 Other relevant information

No data available.

5.6.5 Summary and discussion of repeated dose toxicity:

In the studies on repeated dose toxicity mainly unspecific effects have been observed (decreased body weight gain and food consumption, diarrhoea, emaciation). No substance related mortality was observed. The observed effects are considered to be reversible. There was no clear evidence of a marked organ dysfunction. The effects are unspecific. According to the criteria for non classification concerning specific target organ toxicity (STOT-RE) no classification is required.

No classification for repeated dose toxicity is proposed

Proposed classification:

Directive 67/548/EEC: no classification is proposed

CLP Regulation: no classification is proposed

5.7 Mutagenicity

The potential genotoxicity of fenpyroximate was investigated in a series of both in vitro and in vivo studies. All regular end points for genetic damage (point mutations, chromosome damage and DNA-damage and repair) were assessed. Considering all findings, it can be concluded that fenpyroximate is not mutagenic nor genotoxic.

5.7.1 In vitro data

No evidences of genotoxicity have been observed in the in vitro studies.

Table 28: In	vitro genotoxic	ity studies p	performed w	with fenpy	roximate technical
		· · · · · · · · · · · · · · ·			

Study type, Guideline	Test system	Concentrations/ doses	Results	Reference
DNA repair test,	Bacillus subtilis (H17 (rec ⁺), H45	With & without S-9:	negative	Watanabe, M
not indicated	(rec ⁻))	10, 20, 50, 100, 200, 500 µg/disk		(1988),
				Report-No. T-
				4038
Reverse mutation	Salmonella typhimurium (TA 98,	With & without S-9:	negative	May, K.
assay,	TA 100, TA 1535, TA 1537,	50, 158, 500, 1580, 5000		(1989),
OECD 471	TA 1538)	μg/plate		Report-No. T-
	Escherichia coli (WP2 uvrA)			4034
Mammalian	Human lymphocytes	With & without S-9:	negative	Hodson-
cytogenetic test,		1.25, 5, 20 μg/mL		Walker, G.
OECD 473				(1989),
				Report-No. T-
				4036
Mammalian	Chinese hamster cells (V79)	With & without S-9:	negative	Hodson-
cytogenetic test,		3, 10, 30, 100, 330 µg/mL		Walker, G.
OECD 476				(1989),
				Report-No. T-
				4035
Unscheduled	Rat hepatocytes	0.005 – 255 μg/mL	negative	Cifone, M.A.

		r	
DNA Synthesis,			(1989),
OECD 482			Report-No. T-
			4039

5.7.2 In vivo data

There was no evidence of induced chromosomal or other damage leading to micronucleus formation in polychromatic erythrocytes of treated mice 24, 48 or 72 hours after oral administration of fenpyroximate, even at a dosage which caused marked clinical symptoms and some evidence of toxicity to the bone marrow.

Table 29: In vivo	genotovicity	etudy r	performed	with fe	nnvrovimate tec	hnical
1 auto 29. III vivo	genoloxicity	/ study p	Jerrormeu	with ic	iipyioximate tet	JiiiiCai

Study type, Guideline	Test system	Concentrations/ doses	Results	Reference
Micronucleus test, OECD 474	Mouse bone marrow erythrocytes	80, 400, 2000 mg/kg bw	negative	Hodson- Walker, G. (1989), Report-No. T-4037

5.7.3 Human data

No data available.

5.7.4 Other relevant information

No data available.

5.7.5 Summary and discussion of mutagenicity

No evidences of genotoxicity have been observed. No classification for genotoxicity is required.

Proposed classification:

Directive 67/548/EEC: no classification is proposed

CLP Regulation: no classification is proposed

5.8 Carcinogenicity

5.8.1 Carcinogenicity: oral

A combined chronic toxicity/carcinogenicity 2-year study was conducted in rats and a carcinogenicity 18-months study was conducted in mice.

Method/	Route of	Species,	Dose	NO(A)FI	I O(A)FI	Results,	Remarks	Reference
Guideline	exposure,	strain, sex,	levels	NO(A)EL ppm		LO(A)EL ppm		main	Keinai KS	Kelelence
Guidenne	duration	no/group	ppm	(mg/kg		(mg/kg		effects,		
	uurunon	no, gi oup	(mg/kg	bw/day)		bw/day)		target		
			bw/day)		, , , , , , , , , , , , , , , , , , ,			organs		
OECD	Oral/diet	Rat,	0-10-25-	25	(M:	75	(M:	No		Aughton,
453	24 months	SD CD	75-150	0.97,	F:	3.00,	F:	evidence		P. (1989);
		50M+50F	(M: 0-	1.21)		3.18)		of		Report
		(oncogenicity	0.40-					oncogenic		No.: T-
		phase)	0.97-					potential,		4023
		30M+30F	3.00-					bw gain,		
		(toxicity	6.20, F:					food and		
		phase)	0-0.49-					water		
			1.21-					intake ↓,		
			3.18-					Clinical		
			8.01)					chemistry		
OECD	Oral/diet	Mouse,	0-25-100-	25	(M:	100	(M:	No		Shirasu,
451	18 months	Crj:CD-1,	400-800	2.4,	F:	9.5,	F:	evidence		Y. (1989);
		50M+50F	(M: 0-	2.5)		10.2)		of		Report
			2.43-					oncogenic		No.: T-
			9.47-					potential,		4026
			38.02-					bw gain,		
			69.63; F:					food		
			0-2.46-					intake ↓,		
			10.22-					ovarian		
			41.46-					atrophy,		
			73.10)					organ		
								weight		
								changes		

Table 30: Summary on long term toxicity and carcinogenicity studies with fenpyroximate

The NOAEL for chronic toxicity in rats was based on effects on bodyweight gain, food intake and food conversion in dose groups 75 and 150 ppm. There was a temporary decrease of the glucose level in blood in animals receiving 150 ppm. Parameters of urine (low urinary volume, low pH, high specific gravity) were temporary changed in males receiving 150 ppm. Some organ weight differences were observed at 150 ppm. The relative liver weight in females receiving 25 ppm of the oncogenicity phase but not of the toxicity phase was decreased. However, the difference is not considered to be an adverse effect. The NOAEL of the study is considered to be 25 ppm (equivalent to 0.97 and 1.16 mg/kg bw/d for males and females respectively). There was no evidence of any oncogenic potential for fenpyroximate in rats.

In mice, the NOAEL of the study was based on effects on bodyweight and food consumption at 100 ppm. Females in the 800 ppm group showed a slight but significant decrease in segmented form neutrophile in the differential leukocyte count at 52 weeks of treatment. In the 400 ppm and 800 ppm group females showed a significant increase in the overall incidence of ovarian atrophy. Some organ weight differences were observed in the 400 ppm and the 800 ppm dose group. The dietary administration of fenpyroximate to ICR mice at dose levels up to 800 ppm for 18 month revealed no

carcinogenic potential in both sexes. The NOAEL in this study was set at 25 ppm for both sexes, which was equal to 2.4 mg/kg/day in males and 2.5 mg/kg/day in females.

5.8.2 Carcinogenicity: inhalation

No data available.

5.8.3 Carcinogenicity: dermal

No data available.

5.8.4 Carcinogenicity: human data

No data available.

5.8.5 Other relevant information

No data available.

5.8.6 Summary and discussion of carcinogenicity

No evidence of oncogenic potential was observed in rats and mice. No classification of carcinogenicity is required. No specific organ toxicity was observed. Therefore, also no classification of specific organ toxicity (STOT-RE) is required.

Proposed classification:

Directive 67/548/EEC: no classification is proposed

CLP Regulation: no classification is proposed

5.9 Toxicity for reproduction

5.9.1 Effects on fertility

In the two-generation reproduction toxicity study conducted with Sprague-Dawley rats, fenpyroximate technical did not affect reproductive performance. The NOAEL for reproductive performance and fertility was 100 ppm (corresponding to approximately 8 mg/kg bw/day). Based on reductions in bodyweight gain in the adults and in the offspring during lactation the NOAEL for general toxicity toxicity was 30 ppm (equivalent to approximately 2 mg/kg bw/day).

Method/ Guideline	Route of exposure	Species, strain, sex, no/group	Dose levels ppm	Critical effect	NO(A)EL Parental toxicity ppm	NO(A)EL Reproductive toxicity ppm (mg/kg bw/day)	NO(A)EL offspring toxicity ppm	Reference
OECD 416	Oral/diet	Rat, SD CD, 24M+24F	0-10- 30-100	bw gain ↓ during lactation, no effect on fertility	30 (2)	100 (8)	30 (2)	Higgins, C. (1989), Report No.: T- 4028

Table 31: Summary of effects on fertility

5.9.2 Developmental toxicity

Developmental toxicity studies with fenpyroximate, conducted in Sprague-Dawley rats and in New Zealand White rabbits, showed no evidence of teratogenic effects for fetuses, and no evidence of developmental toxicity in the absence of maternal toxicity.

In the rat developmental toxicity study, the NOAEL for maternal toxicity was 5 mg/kg bw/day based on decreased bodyweights and food consumption at 25 mg/kg bw/day. The NOAEL for developmental toxicity was 5 mg/kg bw/day, based on increased incidence of supernumerary ribs at 25 mg/kg bw/day.

In rabbits a preliminary developmental toxicity study was conducted with only 3 or 4 animals per dose group. Based on depressed bodyweight gain, slightly reduced food and water consumption and reduced faecal output in the high dose group (5 mg/kg bw/day) the NOAEL of maternal toxicity was 2.5 mg/kg bw/day. Increased post implantation loss in two females and smaller foetuses with anomalies of one female were observed in dose group 5.0 mg/kg bw/day. The NOAEL of developmental toxicity was 2.5 mg/kg bw/day.

In the main developmental toxicity study in rabbits, the NOAEL for maternal toxicity was 2.5 mg/kg bw/day based on decreased bodyweight gain and food and water consumption and reduced faecal output at 5.0 mg/kg bw/day.

An increased incidence of slightly folded retinas was observed at 5.0 mg/kg bw/day. The NOAEL of developmental toxicity was 2.5 mg/kg bw/day.

Method/ Guideline	Route of exposure	Species, strain, sex, no/group	Dose levels mg/kg bw/day	Critical effect 1) dams 2) fetuses	NO(A)EL Maternal toxicity mg/kg bw/day	NO(A)EL Teratogenicity mg/kg bw/day	NO(A)EL Embryotoxicity mg/kg bw/day	Reference
OECD 414	Oral, gavage, day 6-15 of gestation	Rat, SD CD 22F	0-1-5- 25	 bw, food intake ↓, supernumerary ribs 	5	25	5	Higgins, C. (1989) Report No.: T- 4030
OECD 414	Oral, gavage, day 6-15 of gestation	Rabbit, NZ white, 4F, goup 1 mg/kg bw/day only 3F	0-1-2.5-5	 bw gain, food and water intake ↓, Post implantation loss ↑ 2) smaller foetuses with anomalies of one female 	2.5	5	2.5	Bailey,G.P. (1989) Report No.: T- 4032
OECD 414	Oral, gavage, day 6-19 of gestation	Rabbit, NZ white, 15F	0-1- 2.5-5	 bw gain, food and water intake ↓, slightly folded retinas↑ 	2.5	5	2.5	King, V.C. (1989), Report No.: T- 4033

Table 32: Summary of developmental toxicity

5.9.3 Human data

No data available.

5.9.4 Other relevant information

No data available.

5.9.5 Summary and discussion of reproductive toxicity

No effects on fertility and no teratogenicity were observed. Developmental effects have only been observed in the highest dose groups together with maternal toxicity and only with small incidence. Therefore, no classification of reproductive toxicity is required.

Proposed classification:

Directive 67/548/EEC: no classification is proposed

CLP Regulation: no classification is proposed

5.10 Other effects

Neurotoxicity / Delayed neurotoxicity studies

In an acute delayed neurotoxicity study in hen administration of fenpyroximate at 5000 mg/kg bw elicited no overt or histopathological change that could be ascribed to a neurotoxic effect of the test material. In contrast the birds treated with tri-ortho-cresyl-phosphate (positive control group) exhibited effects consistent with delayed neurotoxicity.

These results indicated that under the conditions of this study fenpyroximate did not cause delayed neurotoxicity in the hen.

6 HUMAN HEALTH HAZARD ASSESSMENT OF PHYSICO-CHEMICAL PROPERTIES

The physico-chemical properties are not relevant for the classification.

7 ENVIRONMENTAL HAZARD ASSESSMENT

7.1 Aquatic compartment (including sediment)

7.1.1 Toxicity test results

7.1.1.1 Fish

Short-term toxicity to fish

The acute toxicity of fenpyroximate to fish is summarised in Table 33.

Guideline/	Species	Exposure			Results	Reference
Test method		Design	Duration (h)	Endpoint	Value (mg/L)	
OECD 203	Oncorhynchus mykiss	flow trough	96	LC ₅₀	0.00105 m.m. ¹⁾	Knacker, T. et al. (1992a), Document No.: W-4002
OECD 203	Lepomis macrochirus	flow trough	96	LC ₅₀	0.002 m.m. ¹⁾	Dionne, E. (2001), Document No.: W- 4055
OECD 203	Cyprinus carpio	flow trough	96	LC ₅₀	0.0055 m.m. ¹⁾	Knacker, T. et al. (1992b), Document No.: W-4004

Table 33: Acute toxicity of fenpyroximate to fish

¹⁾ m.m. ... mean measured

The acute study with fish *Oncorhynchus mykiss* can be regarded as the key study for the aquatic toxicity of fenpyroximate and hence for classification and labeling. Therefore the study is presented in more detail below:

Author:	Knacker T., Brodesser J., Schallnaß H. (1992)
Report:	A study of the acute toxicity to fish (Oncorhynchus mykiss) of
	fenpyroximate under flow-through conditions. Batelle Europe, Frankfurt,
	Germany.
Report No.:	W-4002; unpublished report
Guidelines:	OECD Guidelines No. 203 (1984)
	US EPA Pesticide Assessment Guideline, Subdivision E, No. 72-1
GLP:	yes
Validity:	acceptable

Material and methods:

To determine the acute toxicity of fenpyroximate (Batch No. 9005, purity 99.35 %) to rainbow trout, fish were exposed under flow-through conditions over a period of 96 hours. The nominal test substance concentrations were 0.0 (control and solvent control), 0.26, 0.43, 0.71, 1.2, 2.0 and $3.3 \mu g/L$. Acetone was used as solvent for the preparation of stock solutions. Therefore, a solvent control was added to the test system.

After approximately 3, 6, 24, 48, 72 and 96 hours the fish in each test vessel were observed for about 3 to 6 min. Any sublethal effects or changes in the behaviour of the fish which occurred in comparison to the control fish were reported. Probit analysis was used to determine LC_{50} -values and 95 % confidence limits if three or more test substance concentrations caused effects between 0 and 100 %. In case less than three test substance concentrations caused effects between 0 and 100 % or the test was designed that in two consecutive concentration steps 0 and 100 % responses were measured the Arcsin-Transformation was used to determine LC_{50} -values and the binomial test was used to determine the 95 % confidence limits.

Findings:

The nominal concentrations to which the test organisms were exposed were 0.26, 0.43, 0.71, 1.2, 2.0 and 3.3 μ g as/L. The analytically determined actual concentrations of the test material in the test solutions at the beginning of the study were found to be within the range of 67 – 75 % with an average of 69.7 % for the active substance fenpyroximate. The analytically determined concentrations of the test material in the test solutions after 96 hours were found to be within the range of 38 – 57 % of the nominal values with an average of 46.8 % for the active substance fenpyroximate. The analytically determined actual concentrations of the test material in the stock solutions were found to be within the range of 87 – 116 % with an average of 97.3 % for the active substance fenpyroximate after 0, 12, 24, 36, 48, 60, 72 and 84 hours of the test period.

Cumulative number of dead fish and percentage of mortality in each test concentration during the test period is summarised in Table 34.

Time	Cumulative numbers of dead fish (% mortality)								
(h)	Solvent	Control	0.26 µg/L	0.43 μg/L	0.71 μg/L	1.2 μg/L	2.0 μg/L	3.3 μg/L	
	control								
0	0/10 (0)	0/10 (0)	0/10 (0)	0/10 (0)	0/10 (0)	0/10 (0)	0/10 (0)	0/10 (0)	
3	0/10 (0)	0/10 (0)	0/10 (0)	0/10 (0)	0/10 (0)	0/10 (0)	0/10 (0)	0/10 (0)	
6	0/10 (0)	0/10 (0)	0/10 (0)	0/10 (0)	0/10 (0)	0/10 (0)	0/10 (0)	4/10 (40)	
24	0/10 (0)	0/10 (0)	0/10 (0)	0/10 (0)	0/10 (0)	1/10 (10)	3/10 (30)	10/10 (100)	
48	0/10 (0)	0/10 (0)	0/10 (0)	0/10 (0)	0/10 (0)	1/10 (10)	4/10 (40)	10/10 (100)	
72	0/10 (0)	0/10 (0)	0/10 (0)	0/10 (0)	0/10 (0)	1/10 (10)	4/10 (40)	10/10 (100)	
96	0/10 (0)	0/10 (0)	0/10 (0)	0/10 (0)	0/10 (0)	1/10 (10)	5/10 (50)	10/10 (100)	

Table 34: Cumulative number of dead fish and percentage of mortality over 96 hours

Conclusion:

Based on the actual measured mean concentrations throughout the test (on average 58.3 % of the nominal value), the study resulted in a LC_{50} (96 h) of 0.00105 mg as/L. The 95 % confidence limit for LC_{50} after 96 h was calculated to be 0.00070 - 0.00192 mg as/L. The NOEC was determined to be 0.00041 mg as/L.

Long-term toxicity to fish

The long term toxicity of fenpyroximate to fish is summarised in Table 35.

Guideline/	Species	Exposure			Results	Reference
Test method		Design	Duration (d)	Endpoint	Value (mg/L)	
OECD 204	Oncorhynchus mykiss	flow trough	21	NOEC	0.00019 m.m. ¹⁾	Knacker, T. et al. (1992c), Document No.: W-4013
OECD 210	Pimephales promelas	ELS, flow trough	34	NOEC	0.00011 nom growth	Sousa, J. (2001), Document No.: W- 4061

Table 35: Long-term toxicity of fenpyroximate to fish

¹⁾ m.m. ... mean measured

Author:	Sousa J.V. (2001)
Report:	Fenpyroximate technical – the toxicity to fathead minnow (<i>Pimephales promelas</i>) during an early life-stage exposure
	Springborn Laboratories Inc., Wareham, Massachusetts, USA;
Report No:	W-4061; WAT 2004-50
Guidelines:	FIFRA Guideline No. 72-4
GLP:	Yes
Validity:	Acceptable

Material and methods:

To determine the toxicity of fenpyroximate (Batch No. 702155, purity 98.6 %; [¹⁴C]-fenpyroximate: Batch No. CP-2284, radiochemical purity 99.5 %, specific activity 5.05 mbq/mg) to fathead minnow during an early life-stage, the test substance was added, 24 hours after egg fertilisation, to well water at a range of different concentrations and exposure was continued through 34 days. The test was performed in glass vessels, containing 15 L test solution, under flow-through conditions (turnover rate for one vessel in 24 h: approximately 6.6). Incubation cups, each containing 60 eggs, were distributed to each of the test aquaria when embryos were ≤ 24 hours old. For each concentration two test vessels were set up. The diluter stock solutions used in the definitive test were prepared every 3 to 7 days by combining 1.0 mL of the 431 µg as/L non-radiolabeled fenpyroximate technical stock solution and 1.6 mL of the [¹⁴C]-fenpyroximate primary stock in the same flask and bringing to a volume of 25.0 mL with acetone. 0.017 mL/ cycle of this stock solution was delivered in the diluter's mixing chamber and constituted the highest nominal concentration $(0.20 \,\mu g/L)$ used in the test. This solution was subsequently diluted to provide the remaining nominal exposure concentrations (0.013, 0.025, 0.050, 0.10 µg/L). The environmental conditions were: Test solution with well water, pH 6.6 - 7.5, temperature 23.1 - 26.4 °C, total hardness as (CaCO₃) 34 - 50 mg/L, total alkalinity as (CaCO₃) 30-36 mg/L, specific conductance 150 - 210 µmhos/cm, oxygen saturation 67 - 109 %, and a photoperiod of 8 h dark and 16 h light with a light intensity of 80 - 90 footcandles. Acetone was used as solvent for the preparation of stock solutions. Therefore, a solvent control was added to the test system.

Dead and live embryos were counted daily until hatching was complete (exposure day 4). On test day 5 the surviving larvae present in each incubation cup if greater than 40 were thinned to 40 organisms per replicate and placed into their respective exposure aquaria. During the post-hatch exposure period, dead larvae were removed when observed and behaviour and appearance of larvae were observed and recorded daily. At test termination surviving larvae were anaesthetised and

measured and weighed individually. Dissolved oxygen concentration, temperature and pH were measured once daily in each test vessel and the controls throughout the exposure period. Total hardness, total alkalinity and specific conductance were measured weekly in the control, low and high test concentrations. Water samples were taken from one replicate test solution of each treatment level and the control on test days 0, 4, 11, 18, 21, 28 and 34 for total [¹⁴C] analysis. The high test concentration was analysed for [¹⁴C]-fenpyroximate by HPLC/RAM. The stock was analysed for fenpyroximate by HPLC/UV.

At the termination of the early life-stage exposure, data obtained on organism survival at hatch, larval survival and larval growth (total length, wet weight and dry weight) at test termination were analysed for significant differences between treatment and control organisms. For all statistical analyses conducted either 95 % or 99 % level of certainty was used.

Findings

Analyses were performed on days 0, 4, 11, 18, 21, 28 and 34. Measured concentrations resulted in mean measured concentrations which were 110 % of the nominal levels. The mean measured concentrations of total [¹⁴C] defined the treatment levels tested as 0.014, 0.027, 0.056, 0.11 and 0.23 μ g/L. Analysis of the quality control samples resulted in measured concentrations which were consistent and ranged from 94.7 to 118 % of the nominal fortified levels (0.0106 to 0.254 μ g/L). These results established that the appropriate quality control was maintained during the analysis of the exposure solutions. HPLS/RAM analysis of high concentration resulted in measured concentrations ranging from 53 - 89 % of nominal and indicated that the parent substance accounted for 100 % of the radioactivity present in the solution. Diluter stock analyses (HPLC/UV) ranged from 116 - 125 % of nominal.

Survival of organisms at hatch, larval survival total length, wet weight and dry weight are summarised in Table 36.

- Embryo survival at the different treatment was not statistically different from the survival of the control organisms (90 %).
- Following 30-day post-hatch exposure, larval survival in the different treatment levels ranged from 96 to 100 % and was not statistically different from control organisms (94 %).
- At test termination, there was a significant difference in larval length at the 0.23 μ g/L test concentration, compared to the pooled control (31.2 mm).
- Mean wet and dry weight of larvae at the end of the test also showed no statistically significant difference between control and different treatments.

Table 36: Survival of organisms at completion of hatch (test day 5) and survival, total length, wet weight and dry weight of fathead minnow larvae determined at test termination of the early life-stage (30 days post-hatch) exposure to fenpyroximate technical

Mean measured		Survival of	30 days post-hatch						
concentration (µg/L)		organisms at hatch (%)	Larval survival (%)	Total length (SD) ^a in mm	Wet weight (SD) ^a in mg	Dry weight (SD) ^a in mg			
Control	А	88	95	31.3 (1.4)	290 (40)	71.7 (11)			
	В	88	95	31.7 (2.4)	309 (68)	78.2 (19)			
	Mean	88	95	31.5 (1.9)	300 (56)	75.0 (15)			
Solvent control	А	92	98	31.0 (2.0)	294 (57)	72.3 (14)			

Mean measured concentration (µg/L)		Survival of	30 days post-hatch						
		organisms at hatch (%)	Larval survival (%)	Total length (SD) ^a in mm	Wet weight (SD) ^a in mg	Dry weight (SD) ^a in mg			
	В	90	88	30.9 (2.9)	300 (88)	74.6 (23)			
	Mean	91	93	31.0 (2.5)	297 (73)	73.4 (19)			
Pooled control		90	94	31.2 (2.2)	298 (65)	74.2 (17)			
0.014	А	90	98	31.7 (2.3)	311 (68)	78.5 (18)			
	В	90	95	31.7 (1.5)	313 (50)	78.7 (13)			
	Mean	90	96	31.7 (1.9)	312 (59)	78.6 (16)			
0.027	А	90	100	31.2 (2.0)	298 (58)	72.8 (15)			
	В	85	98	31.4 (1.8)	313 (63)	77.0 (16)			
	Mean	88	99	31.3 (1.9)	305 (61)	74.9 (15)			
0.056	А	92	98	30.9 (2.1)	301 (55)	73.5 (14)			
	В	90	100	31.2 (1.7)	300 (51)	72.4 (14)			
	Mean	91	99	31.1 (1.9)	301 (53)	72.9 (14)			
0.11	А	92	100	30.8 (2.1)	291 (58)	71.7 (15)			
	В	87	100	31.3 (1.6)	309 (50)	76.0 (12)			
	Mean	89	100	31.0 (1.8)	300 (54)	73.9 (14)			
0.23	А	88	100	29.8 (3.6)	280 (95)	68.9 (24)			
	В	88	98	31.0 (1.9)	299 (62)	74.4 (17)			
	Mean	88	99	$30.3 (2.9)^{b}$	289 (80)	71.6 (21)			

a: SD = standard deviation

b: Statistically different from the pooled control based on Williams' Test

Conclusion: Larval length was the most sensitive indicator of the toxicity of fenpyroximate technical to fathead minnow. Therefore the no observed effect concentration (NOEC) for fenpyroximate technical and fathead minnow was determined to be 0.00011 mg/L. The lowest observed effect concentration (LOEC) was 0.00023 mg/L.

7.1.1.2 Aquatic invertebrates

Short-term toxicity to aquatic invertebrates

The acute toxicity of fenpyroximate to invertebrates is summarised in Table 37.

Guideline/	Species	Exposure			Results	Reference
Test method		Design	Duration (h)	Endpoint	Value (mg/L)	
OECD 202, part I	Daphnia magna	static	48	EC ₅₀	0.00328 m.m. ¹⁾	Knacker, T. et al. (1992d), Document No.: W-4021

¹⁾ m.m. ... mean measured

Long-term toxicity to aquatic invertebrates

The long-term toxicity of fenpyroximate to invertebrates is summarized in Table 38.

Table 38: Long-term toxicity of fenpyroximate to invertebrates

Guideline/	Species	Exposure			Results	Reference
Test method		Design	Duration (d)	Endpoint	Value (mg/L)	
OECD 202, part II	Daphnia magna	Semi- static	21	NOEC reproducti on	0.00068 m.m. ¹⁾	Knacker, T. et al. (1992e), Document No.: W-4034

¹⁾ m.m. ... mean measured

7.1.1.3 Algae and aquatic plants

The toxicity of fenpyroximate to algae and aquatic plants is summarised in Table 39.

	Table 39: Long-term	toxicity of f	enpyroximate f	to algae and	l aquatic plants
--	---------------------	---------------	----------------	--------------	------------------

Guideline/	Species	Exposure		Results		Reference
Test method		Design	Duration (h)	Endpoint	Value (mg/L)	
OECD 201	Scenedesmus subspicatus	static	72	$\begin{array}{c} E_r C_{50} \\ E_b C_{50} \\ NOEC \end{array}$	0.00554 nom 0.00344 nom 0.001 nom	Heusel, R. (1992), Document No.: N- 4016; A48254

¹⁾ m.m. ... mean measured

7.1.1.4 Sediment organisms

The toxicity of fenpyroximate to sediment dwelling organism is summarised in Table 40.

Table 40: Long-term toxicity of fenpyroximate to sediment	t dwelling organism
---	---------------------

Guideline/ Species		Exposure		Results		Reference
Test method		Design	Duration (d)	Endpoint	Value (mg/L)	
BBA Draft guideline 1995	Chironomus riparius	static, spiked water	28	NOEC (emergence)	0.01 nom 0.00859 i.m. ¹⁾	Heusel, R. (1997), Document No.: W- 4044; A57599

¹⁾ i.m. ... initial measured concentration

7.2 Terrestrial compartment

Not relevant for this type of dossier.

7.3 Atmospheric compartment

Not relevant for this type of dossier.

7.4 Microbiological activity in sewage treatment systems

Not relevant for this type of dossier.

7.5 Calculation of Predicted No Effect Concentration for secondary poisoning (PNEC_oral)

Not relevant for this type of dossier.

7.6 Conclusion on the environmental classification and labelling

Fenpyroximate is hydrolytically stable. Fenpyroximate was found to be not readily biodegradable within 29 days in the Modified Sturm test (OECD guideline 301B).

Fenpyroximate has a log Kow of 5.01. In a BCF study, a maximum BCF value of 1601 was obtained based on plateau total radioactive residue in whole fish and average total radioactive residue in water, whereas a kinetic BCF value of 1842 was obtained based on uptake and elimination rate constants. Also the lipid normalized maximum BCF of 870 L/kg ww and BCF kinetic of 1001 L/kg ww (normalized to 5 % lipid content of test fish) are above the trigger of 100/ 500 for not readily biodegradable substances.

The acute toxicity of fenpyroximate to fish and invertebrates is high in the $\mu g/L$ range with a toxicity of LC₅₀ = 1.05 $\mu g/L$ to fish and of EC₅₀ = 3.28 $\mu g/L$ to aquatic invertebrates.

Fenpyroximate shows also a high toxicity to algae ($\text{ErC}_{50} = 5.54 \ \mu g/L$, NOEC = 1 $\mu g/L$). The lowest endpoints in long- term studies were observed with fish (35-d early life stage study NOEC = 0.1 $\mu g/L$) and aquatic invertebrates (21-d reproduction study NOEC = 0.68 $\mu g/L$).

Conclusion of environmental classification according to Directive 67/548/EEC

In aquatic toxicity studies, ErC_{50} values for algae, acute LC_{50} value for fish and EC_{50} value for invertebrates were obtained at fenpyroximate concentrations < 1 mg/L. Fenpyroximate is not readily biodegradable according to the Modified Sturm test (OECD 301B). In a BCF study, a kinetic BCF value of 1842 L/kg ww and lipid normalized BCF value of 1001 L/kg ww was obtained based on uptake and elimination rate constants.

Fenpyroximate therefore fulfils the criteria for classification with N; R50/53.

Conclusion of environmental classification according to Regulation EC 1272/2008

In aquatic toxicity studies, ErC_{50} values for algae, acute LC_{50} value for fish and EC_{50} value for invertebrates were obtained at fenpyroximate concentrations < 1 mg/L.

Fenpyroximate is not readily biodegradable according to the Modified Sturm test (OECD 301B).

In a BCF study, a kinetic BCF value of 1842 L/kg ww and lipid normalized BCF value of 1001 L/kg ww was obtained based on uptake and elimination rate constants.

Fenpyroximate therefore fulfils the criteria for classification as aquatic environmental hazard acute category 1, H400 and aquatic environmental hazard chronic category 1, H410.

The acute M-factor for fenpyroximate is 100. This value is based on LC50 value of 0.00105 mg/L obtained for fish *Oncorhynchus mykiss* in a 96-h flow through study. The chronic M-factor is 1000, based on the chronic toxicity data for the fish (35-d early life stage study NOEC = $0.1 \mu g/L$).

JUSTIFICATION THAT ACTION IS REQUIRED ON A COMMUNITY-WIDE BASIS

Fenpyroximate is an active substance in the meaning of Directive 91/414/EEC. Following article 36(2) or Regulation (EC) 1272/2008 such substances should normally be subject to harmonised classification.

REFERENCES

Author (s)	Year	Title, Company Report No., GLP (where relevant), (Un)Published
Aughton, P.	1989	NNI-850: Toxicity study by dietary administration to CD rats for 13 weeks, Live Science Research Ltd., Eye, Suffolk, England, Report No. T-4019, GLP, unpublished
Aughton, P.	1989	NNI-850: Combined oncogenicity and toxicity study by dietary administration to CD rats for 104 weeks, Live Science Research Ltd., Eye, Suffolk, England, Report No. T-4023, GLP, unpublished
Bailey, G.P.	1989	NNI-850: Preliminary teratology study in the rabbit, Live Science Research Ltd., Eye, Suffolk, England, Report No. T-4032, GLP, unpublished
Blaszcak, D.L.	1989	Acute oral toxicity study in rats, test material: NNI-850 technical Bio/dynamics Inc., East Millstone, New Jersey, USA, Report No. 4001, GLP, unpublished
Blaszcak, D.L.	1989	Acute oral toxicity study in mice, test material: NNI-850 technical Bio/dynamics Inc., East Millstone, New Jersey, USA, Report No. 4002, GLP, unpublished
Blaszcak, D.L.	1989	Acute dermal toxicity study in rats, test material: NNI-850 technical Bio/dynamics Inc., East Millstone, New Jersey, USA, Report No. 4003, GLP, unpublished
Broadmeadow, A.	1989	NNI-850: Toxicity study by oral (capsule) administration to Beagle dogs for 13 weeks, Live Science Research Ltd., Eye, Suffolk, England, Report No. T-4021, GLP, unpublished
Broadmeadow, A.	1989	NNI-850: Toxicity study by oral (capsule) administration to Beagle dogs for 52 weeks, Live Science Research Ltd., Eye, Suffolk, England, Report No. T-4022, GLP, unpublished
Cifone, M. A.	1989	Mutagenicity test on NNI-850, technical grade in the rat primary hepatocyte unscheduled DNA synthesis assay, Hazleton Laboratories America Inc., Kensington, Maryland, USA, Report No.: T-4039, GLP, unpublished
Desmares-Koopmans M.J.E.	2002	Determination of "ready" biodegradability: Carbon dioxide (CO ₂) evolution test (modified sturm test) with fenpyroximate, NOTOX B.V., 's-Hertogenbosch, Netherlands, Report No.: E-4040, GLP, unpublished
Dionne, E.	2001	Fenpyroximate technical - acute toxicity to bluegill sunfish (Lepomis macrochirus) under flow-through conditions, Springborn Laboratories, Inc., Wareham, Massachusetts, USA, Document No.: W-4045, GLP, unpublished
Heusel, R.	1992	Fenpyroximate substance technical (Hoe 094552 00 ZC99 0001). Effect to Scenedesmus subspicatus (green alga) in a growth inhibition test (method OECD), Hoechst, Ökologisches Labor, Frankfurt a. M., Germany, Document No.: N-4016; A48254, GLP, unpublished
Heusel, R.	1997	Fenpyroximate: 14C-labelled, Code AE F94552. Chronic toxicity to the sediment dwelling chironomid larvae Chironomus riparius, Hoechst Schering AgrEvo GmbH, Umweltforschung Oekobiologie, Frankfurt a. M., Germany, Document No.: W-4044; A57599, GLP, unpublished
Higgins, C.	1989	NNI-850_ Reproductive performance study in rats treated continuously through two successive generations, Live Science Research Ltd., Eye, Suffolk, England, Report No. T-4028, GLP, unpublished
Higgins, C.	1989	NNI-850_ Teratology study in the rat, Live Science Research Ltd., Eye,

		Suffolk, England, Report No. T-4030, GLP, unpublished
Hodson-Walker, G.	1989	NNI-850: Investigation of mutagenic activity at the HGPRT locus in a Chinese hamster V79 cell mutation system, Life Science Research Limited, Eye, Suffolk, England, Report No.: T-4035, GLP, unpublished
Hodson-Walker, G.	1989	In vitro assessment of the clastogenic activity of NNI-850 in cultured human lymphocytes, Third Amended Report, Life Science Research Limited, Eye, Suffolk, England, Report No.: T-4036, GLP, unpublished
Hodson-Walker, G.	1989	NNI-850: Assessment of clastogenic action on bone marrow erythrocytes in the micronucleus test, Life Science Research Limited, Eye, Suffolk, England, Report No.: T-4037, GLP, unpublished
Hoffmann, G.M.	1989	An acute inhalation toxicity study of NNI-850 in the rat, Bio/dynamics Inc., East Millstone, New Jersey, USA, Report No. T-4004, GLP, unpublished
Hoffmann, G.M.	1991	An acute nose only inhalation toxicity study of NNI-850 in the rat, Bio/dynamics Inc., East Millstone, New Jersey, USA, Report No. T-4052, GLP, unpublished
Hoffmann, G.M.	1991	An four week nose only inhalation toxicity study of NNI-850 in the rat, Bio/dynamics Inc., East Millstone, New Jersey, USA, Report No. T-4055, GLP, unpublished
King, V.C.	1989	NNI-850: Teratology study in the rabbit, Live Science Research Limited, Eye, Suffolk, England, Report No.: T-4033, GLP, unpublished
Knacker, T. et al	1992a	A study of the acute toxicity to fish (Oncorhynchus mykiss) of fenpyroximate under flow-through conditions, Batelle Europe, Frankfurt, Germany, Document No.: W-4002, GLP, unpublished
Knacker, T. et al	1992b	A study of the acute toxicity to fish (Cyprinus carpio) of fenpyroximate under flow-through conditions, Batelle Europe, Frankfurt, Germany, Document No.: W-4004, GLP, unpublished
Knacker, T. et al	1992c	A study of the prolonged toxicity to fish (Oncorhynchus mykiss) of fenpyroximate under flow-through conditions, Batelle Europe, Frankfurt, Germany, Document No.: W-4013, GLP, unpublished
Knacker, T. et al	1992d	A study of the acute toxicity to freshwater aquatic invertebrate (Daphnia magna) of fenpyroximate, Batelle Europe, Frankfurt, Germany, Document No.: W-4021, GLP, unpublished
Knacker, T. et al	1992e	A study of the chronic toxicity to Daphnia magna of fenpyroximate, Batelle Europe, Frankfurt, Germany, Document No.: W-4034, GLP, unpublished
Kosaka, T.	1988	NNI-850: Primary eye irritation study in rabbits (Study No. 87-0097) Institute of Environmental Toxicology, Kodaira, Tokyo, Japan, Report No. T-4009, GLP, unpublished
Kosaka, T.	1988	NNI-850: Primary dermal irritation study in rabbits (Study No. 87-0098) Institute of Environmental Toxicology, Kodaira, Tokyo, Japan, Report No. T- 4010, GLP, unpublished
Kosaka, T.	1988	Dermal sensitisation study in guinea pigs (Study No. 87-0099) Institute of Environmental Toxicology, Kodaira, Tokyo, Japan, Report No. T-4015, GLP, unpublished
May, K.	1989	 NNI-850 (technical grade): Assessment of mutagenic potential in amino-acid auxotrophs of Salmonella typhimurium and Escherichia coli (the Ames test). Life Science Research Limited, Eye, Suffolk, England, Report No. T-4034, GLP, unpublished
Sano, Y.	1992	Effects on Fenpyroximate in human. Eyes and skin irritation. Nihon Nohyaku Co. Ltd., Report No. H-4001, unpublished

Saxena A., McCann D.	1992	Hydrolysis of pyrazole- ¹⁴ C-fenpyroximate in buffered aqueous solutions, Batelle Memorial Institute, Columbus, Ohio, USA, Report No.: E-4013, GLP, unpublished
Shirasu, Y.	1989	18-month oral oncogenicity study in mice, Institute of Environmental Toxicology, Kodaira, Tokyo, Japan, Report No.: T-4026, GLP, unpublished
Smith, S. and Young, B.	1997	Bioaccumulation of [14C]-Fenpyroximate in bluegill sunfish (Lepomis macrochirus), AgrEvo Research Center Environmental Chemistry Department, Pikeville, USA, Document No.: W-4045, GLP, unpublished
Sousa, J.	2001	Fenpyroximate technical - the toxicity to feathead minnow (Pimephales promelas) during an early life-stage exposure, Springborn Laboratories, Inc., Wareham, Masschusetts, USA, Document No.: W-4061, GLP, unpublished
Swanson, M.B.	1993	Direct photolysis of [pyrazole- ¹⁴ C]-fenpyroximate in a buffered aqueous solution under artificial sunlight, Batelle Memorial Institute, Columbus, Ohio, USA, Report No.: E-4015, GLP, unpublished
Teale, H.J.	1990	NNI-850 technical delayed dermal sensitisation test in guinea pigs, Toxicol. Laboratories Limited, Ledbury, Herefordshire, England, Report No. T-4016, GLP, unpublished
Völkl, S.	2001	[¹⁴ C]-fenpyroximate (NNI-850) [pyrazole-labelled] degradation and metabolism in aquatic systems, RCC Ltd, Environmental Chemistry & Pharmaanalytics Division, Itingen, Switzerland, Report No.: E-4027, GLP, unpublished
Watanabe, M.	1988	NNI-850: DNA repair test (rec-assay) (study no. 88-0072), The Institute of Environmental Toxicology, Tokyo, Japan, Report No. T-4038, GLP, unpublished
Wilkinson, G.E. et al.	1992	21-day repeated dose dermal toxicity study of fenpyroximate in the rat, Battelle Columbus Operations, Columbus, Ohio, USA, Report No. 4059, GLP, unpublished