SUBSTANCE EVALUATION REPORT

Public Name:	Beryllium
EC Number(s):	231-150-7
CAS Number(s):	7440-41-7

Submitting Member State Competent Authority: Federal Institute for Occupational Safety and Health, Friedrich-Henkel-Weg 1-25, D-44149 Dortmund, Germany, Tel: 049-231-9071-0, Fax: 049-231-9071-2611, Email: chemG@baua.bund.de

Year of evaluation (as given in the CoRAP): 2013

VERSION NUMBER: 2.1 DATE: September 2014

Conclusions of the most recent evaluation step*	Tick relevant box(es)
Concern not clarified; Need to request further information from the Registrant(s) with the draft decision	
Concern clarified; No need of further risk management measures	
Concern clarified; Need for risk management measures; RMO analysis to be performed	X
Other:	

*Include details in the executive summary.

DISCLAIMER

The report has been prepared by the evaluating Member State as a part of the substance evaluation process under the REACH Regulation (EC) No 1907/2006. The information and views set out in this document are those of the author and do not necessarily reflect the position or opinion of the European Chemicals Agency or other Member States. The Agency does not guarantee the accuracy of the information included in the report. Neither the Agency nor the evaluating Member State nor any person acting on either of their behalves may be held liable for the use which may be made of the information contained therein. Statements made or information contained in the report are without prejudice to any further regulatory work that the Agency or Member States may initiate at a later stage.

Executive summary

Grounds for concern

Beryllium is classified as a Carcinogen. This is a cause to closer view whether or not this substance reveals a risk for humans. It was chosen for substance evaluation to clarify whether employees are exposed to the substance and as a result bear an unacceptable risk.

Procedure

First substance evaluation: 2013

Human Health

The evaluation of the toxicity of beryllium has been based on the registration dossiers as well as on reviews by a variety of international bodies/regulatory programs and original publications. Data available up to September 2013 for all endpoints have been assessed.

Risk Communication, Labelling

The labelling of beryllium as provided by the lead registrant was reviewed based on the Classification and Labelling as listed under Index number 004-001-00-7 in Annex VI, Part 3, Table 3.1 of Regulation (EC) No 1272/2008 (CLP).

Worker exposure

No Chemical Safety Report has been provided by the registrants since the marketed tonnage for each individual registrant is below the limit of 10 t/a. Therefore, the exposure assessment of the eMSCA is based on data taken from literature and monitoring data from available sources.

Consumer Exposure

The evaluation of consumer uses and consumer exposure resulting thereof has been based on the information given in the registration dossiers as well as information taken from publications available in open literature, data bases and European national product registers. Registration data by the registrants/suppliers available before November 2013 were assessed. They were checked and verified against the information taken from the other sources.

Conclusions

Human Health

Evaluation of the existing information on the toxicity of beryllium indicated that the legal classification for acute oral toxicity as "Acute Tox. 3*; H301: Toxic if swallowed", for irritation as "Eye Irrit. 2; H319: Causes serious eye irritation" and "Skin Irrit. 2; H315: Causes skin irritation", might have been based on a combined evaluation of beryllium and its compounds.

A GLP compliant study following OECD TG 423 included in the registration dossiers reveals that beryllium metal does not produce significant toxic effects in rats following single oral exposure up to the limit dose of 2000 mg/kg bw. Furthermore, irritation on skin or eyes was neither observed in humans nor could it be induced in test animals in GLP compliant studies carried out in accordance with EU Regulation (EC) No 440/2008 or current OECD guidelines for the testing of chemicals

with pure beryllium metal. Therefore beryllium metal does not appear to fulfil the criteria according to Annex I of Regulation (EC) No 1272/2008 (CLP) for classification as "Acute Tox. 3*; H301", "Eye Irrit. 2; H319" or "Skin Irrit. 2; H315".

The classification of beryllium as "Acute Tox. 2, H330: Fatal if inhaled" as a minimum classification following Annex VI 1.2.1 of Regulation (EC) No 1272/2008 (CLP) was confirmed. An acute toxicity estimate (ATE) of 170 mg/m³ was calculated, thus Category 2 classification is warranted according to CLP Annex I, Table 3.1.1 (50-500 mg/m³ range). The ATE is based on a single inhalation exposure study in which 27 % of the male rats died 12-15 days post exposure to 800 mg/m³ of beryllium dust for 50 min and exposure time extrapolation to the 4-hour reference period for direct comparison with the criteria by applying Haber's Law (Cⁿ·t = k with n = 1).

Available human data demonstrated that inhalation exposure of beryllium can be attributed to the lung damage seen in occupationally exposed persons developing chronic beryllium disease (CBD). The current legal classification of beryllium for specific target organ toxicity repeated exposure has been translated from classification as "T; R48/23: Toxic: danger of serious damage to health by prolonged exposure through inhalation" under 67/548/EEC (DSD) with a general hazard statement not specifying the route of exposure. An explicit indication of inhalation as the route of exposure in the specific target organ toxicity repeated exposure hazard statement "STOT RE 1; H372: Causes damage to lungs through prolonged or repeated exposure by inhalation." is therefore justified.

CBD is characterized by initial beryllium sensitization (BeS) and the progressive development of granulomas and mononuclear cell infiltrates primarily in lung tissue. Past exposure to beryllium and evidence of beryllium sensitization are important parts of the clinical diagnosis of CBD. Beryllium sensitization is an early event associated with the development of CBD. Therefore beryllium appears to fulfill the criteria for classification as "Resp. Sens. 1, H334: May cause allergy or asthma symptoms or breathing difficulties if inhaled." according to Regulation (EC) No. 1272/2008 (CLP). As such a classification would not change risk management measures for a substance already classified as Carc. 1B, the evaluating Member State Competent Authority (eMSCA) is currently not planning to harmonise classification and labelling for this endpoint.

Beryllium is classified as Carc. 1B, H350i:"May cause cancer by inhalation." according to Annex VI, Part 3, Table 3.1 (list of harmonised classification and labelling of hazardous substances) of Regulation (EC) No 1272/2008 as a minimum classification and as Carc. Cat. 2, R49: "May cause cancer by inhalation." according to Annex VI, Part 3, Table 3.2 (list of harmonised classification and labelling of hazardous substances from Annex I to Directive 67/548/EEC) of Regulation (EC) No 1272/2008. The eMSCA considers this classification as justified.

Consumer Exposure

No further data is needed. The assessed data do not indicate a concern based on consumer exposure to beryllium via consumer uses.

The assessed data indicate a negligible exposure of consumers to beryllium. In the registration dossier consumer uses of beryllium are advised against. The registration data covers consumer contacts with articles containing parts comprising beryllium. In accordance with the information derived from other sources incorporated alloys have low beryllium content (details in Confidential Annex).

Worker Exposure

Exposure to beryllium and its compounds is expected in the aerospace, automotive, energy, defence, medical devices, and electronics industries where it is used as beryllium alloy, beryllium

metal, and beryllia ceramics. Publicly available data indicates that exposure is not sufficiently controlled, with the highest exposures occurring in industry sectors such as manufacture of basic metals, thermal handling / machining of beryllium products, especially in glass production and melting, pouring, casting, and grinding of beryllium alloys, in foundries and in recycling of electronic scrap. About 65,000 workers are assumed to be exposed in Europe according to Cherrie, J. et al., 2011.

Further steps

During the substance evaluating process, a long-term systemic DNEL (inhalation) of 60 ng/m³ has been derived based on chronic beryllium disease as a critical health effect in workers exposed to beryllium. Considering the available exposure data, this DNEL is significantly exceeded for almost all industrial uses where aerosol formation occurs. At critical uses the exposure exceeds the DNEL by up to two orders of magnitude. It should be noted, that the DNEL does not set a safe level for work with beryllium due to the fact that beryllium is carcinogenic and no exposure risk relation can currently be established. Even for exposure levels lower than the DNEL a remaining risk for the worker cannot be excluded.

Based on the arguments above, regulatory steps need to be taken.

The eMSCA intends to identify the substance as SVHC following Article 57a (based on the harmonised classification as Carc. 1B as a non-threshold-carcinogen) and 57f (based on STOT RE 1) with the goal of adding this substance to Annex XIV of REACH. In this way it is expected to enhance the use of state-of-the-art techniques for exposure reduction and to get an evaluation whether or not the specific uses are socio-economically justified.

In parallel, the current initiative of SCOEL to derive a binding occupational exposure limit (BOEL) is appreciated.

CONTENTS

1	IDE	ENTITY OF THE SUBSTANCE AND PHYSICAL AND CHEMICAL PROPERTIES	10
	1.1	Name and other identifiers of the substance	10
	1.2	Composition of the substance	10
	1.3	Physico-chemical properties	12
2	MA	NUFACTURE AND USES	14
	2.1	Quantities	
	2.2		
		2.2.1 Uses by workers in industrial settings	
	2.3		
		2.3.1 Uses by workers in industrial settings advised against	
		2.3.2 Use by professional workers advised against	
		2.3.3 Uses by consumers advised against	16
3	CLA	ASSIFICATION AND LABELLING	17
	3.1	Harmonised Classification in Annex VI of the CLP Regulation	17
	3.2	Self-classification	18
4	ENV	VIRONMENTAL FATE PROPERTIES	20
5	HUI	MAN HEALTH HAZARD ASSESSMENT	21
	5.1	Toxicokinetics (absorption, metabolism, distribution and elimination)	21
		5.1.1 Non-human information	
		5.1.2 Human information	
		5.1.3 Summary and discussion on toxicokinetics	22
	5.2	Acute toxicity	23
		5.2.1 Non-human information	
		5.2.1.1 Acute toxicity: oral	
		5.2.1.2 Acute toxicity: inhalation	
		5.2.1.3 Acute toxicity: dermal	
		5.2.1.4 Acute toxicity: other routes5.2.2 Human information	
		5.2.3 Summary and discussion of acute toxicity	
	5.3	Irritation	
		5.3.1 Skin	
		5.3.2 Eye 5.3.3 Respiratory tract	
		5.3.3 Respiratory tract5.3.4 Summary and discussion of irritation	
	<u> </u>		
	5.4	Corrosivity	27
	5.5	Sensitisation	27

		5.5.1	Skin	27
		5.5.2	Respiratory system	
		5.5.3	Summary and discussion on sensitisation	28
	5.6		ted dose toxicity	
		5.6.1	Non-human information	
			5.6.1.1 Repeated dose toxicity: oral	
			5.6.1.2 Repeated dose toxicity: inhalation	
			5.6.1.3 Repeated dose toxicity: dermal	
			5.6.1.4 Repeated dose toxicity: other routes	
			Human information	
		5.6.3	Summary and discussion of repeated dose toxicity	32
	5.7	Mutor	genicity	33
	5.7		Non-human information	
		5.7.1	5.7.1.1 In vitro data	
			5.7.1.1 In vito data	
		572	Human information	
			Summary and discussion of mutagenicity	
		5.7.5	Summary and discussion of indugementy	····· J+
	5.8	Carcir	nogenicity	35
			Non-human information	
			5.8.1.1 Carcinogenicity: oral	35
			5.8.1.2 Carcinogenicity: inhalation	
			5.8.1.3 Carcinogenicity: dermal	
		5.8.2	Human information	
		5.8.3	Summary and discussion of carcinogenicity	39
	5.9		ity for reproduction	
		5.9.1	Effects on fertility	
			5.9.1.1 Non-human information	
			5.9.1.2 Human information	
		5.9.2	Developmental toxicity	
			5.9.2.1 Non-human information	
		500	5.9.2.2 Human information	
		5.9.3	Summary and discussion of reproductive toxicity	40
	5.10	Endoc	rine disrupting properties	40
	5 1 1	Other	effects	40
	5.11		Non-human information	
		5.11.1		
			5.11.1.1 Neurotoxicity	
			5.11.1.2 Immunotoxicity5.11.1.3 Specific investigations: other studies	
		5 1 1 2	P Human information	
			Summary and discussion of specific investigations	
		5.11.5		
	5.12	Comb	ined effects	41
	5 13	Deriv	ation of DNEL(s) / DMEL(s)	42
	5.15		Overview of typical dose descriptors for all endpoints	
			2. Selection of the critical DNEL(s)/DMEL(s) and/or qualitative/semi-quantitative descriptor for c health effects	ritical
	5.14	Concl	usions of the human health hazard assessment and related classification and labelling	46
6	HUN	MAN H	IEALTH HAZARD ASSESSMENT OF PHYSICO CHEMICAL PROPERTIES	47
7	ENV	/IRON	MENTAL HAZARD ASSESSMENT	48

SUBSTANCE EVALUATION REPORT – BERYLLIUM (EC:231-150-7)

8	РВТ	AND	VPVB AS	SSESSMENT	
9	EXF	POSUR	E ASSES	SMENT	50
	9.1	Huma	n Health		
		9.1.1	Exposure	e assessment for worker	
			9.1.1.1	Overview of uses and exposure scenarios	
			9.1.1.2	Scope and type of exposure	51
				9.1.1.2.1 Monitoring data	51
				9.1.1.2.2 Modelled data	
				9.1.1.2.3 Comparison of monitoring and modelled data	
		9.1.2	Exposure	e assessment for consumer	57
	9.2	Enviro	onmental e	exposure assessment	
	9.3	Comb	ined expo	osure assessment	57
10	RIS	К СНА	RACTER	RISATION	58
	10.1	Huma	n Health		
		10.1.1	Workers	5	
				ers	
		10.1.3	Indirect of	exposure of humans via the environment	59
	10.2	Enviro	onment		
	10.3			aracterisation	
		10.3.1	Human h	health (combined for all exposure routes)	
		10.3.2	Environr	ment (combined for all exposure routes)	
11	OTH	IER IN	FORMA	TION	60
12	REF	EREN	CES		61
13	ABI	BREVL	ATIONS .		69
A١	NNEX	K: CON	FIDENTI	IAL INFORMATION	70

TABLES

Table 1: Substance identity	10
Table 2: Constituents	
Table 3: Impurities	
Table 4: Additives	11
Table 5: Overview of physicochemical properties	12
Table 6: Aggregated tonnage (per year)	
Table 7: Uses and applications of beryllium (according to: Darby, A. and Fishwick, D., 2011)	
Table 8 shows all given process categories (PROC) and sectors of end-use (SU) given by all registrants	
Table 8: Summary of PROCs and SUs at industrial side and by professional workers (data taken from the registration)	
dossiers)	16
Table 9: Classification and Labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classification a labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classification a labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classification a labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classification a labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classification a labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classification a labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classification a labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classification a labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classification a labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classification a labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classification a labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classification a labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classification a labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classification a labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classification a labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classification a labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classification a labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classification a labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classification a labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classification a labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classification a labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classification a labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classific	
labelling of hazardous substances) of Regulation (EC) No 1272/2008 (CLP)	1/
Table 10: Classification and Labelling according to Annex VI, Part 3, Table 3.2 (list of harmonised classification	
and labelling of hazardous substances from Annex I of Directive 67/548/EEC) of Regulation (EC) No 1272/2008	
(CLP)	18
Table 11: Classification and Labelling according to Regulation (EC) No 1272/2008 (CLP) as provided by the learning to the second sec	
registrant	
Table 13: Basic toxicokinetics according to registration dossier Table 14: Overview of everyimental studies on events toricity often and edministration eccending to registration	
Table 14: Overview of experimental studies on acute toxicity after oral administration according to registration dossier.	22
Table 15: Overview of experimental studies on acute toxicity after inhalation exposure according to registration	23
dossier	23
Table 16: Overview of experimental studies on acute toxicity after intratracheal exposure according to registrat	
dossier	
Table 17: Overview of experimental studies on skin irritation according to registration dossier	
Table 17: Overview of experimental studies on skin initiation according to registration dossier Table 18: Overview of experimental studies on eye irritation according to registration dossier	
Table 19: Overview of experimental studies on eye inflation according to registration dossier	
Table 20: Calculated epidemiological data on beryllium sensitization (BeS) according to original publications (not sensitization).	
registration dossiers)	28
Table 21: Overview of experimental studies on repeated dose toxicity after inhalation exposure according to	
registration dossier	30
Table 22: Calculated supporting epidemiological data according to the registration dossier	
Table 23: Calculated epidemiological data on chronic beryllium disease according to original publications (not in	
registration dossier)	
Table 24: Overview of experimental in vitro genotoxicity studies according to registration dossier	
Table 25: Overview of experimental studies on carcinogenicity according to registration dossier	
Table 26: Overview of data on carcinogenicity according to registration dossier	37
Table 27: Overview of data on carcinogenicity according to original publications	38
Table 28: Overview of experimental studies on immunotoxicity according to registration dossier	40
Table 29: Experimental in vitro cytotoxicity study according to registration dossier	41
Table 30: Overview of studies and dose descriptors per endpoint used for DNEL derivation	
Table 31: Overview of information considered during DNEL derivation for workers	
Table 32: Exposure monitoring data from [Cherrie, J., 2011; Vincent, R. et al., 2009]	
Table 33: Determination of the limits of quantification according to EN 13890	
Table 34: Branch groups adjusted by according numbers of measurements	
Table 35: Statistical analysis concerning branch groups, sampling > 6 h	
Table 36: Statistical analysis for single activities of work, sampling > 6 h	56

1 IDENTITY OF THE SUBSTANCE AND PHYSICAL AND CHEMICAL PROPERTIES

1.1 Name and other identifiers of the substance

 Table 1: Substance identity

Public Name:	Beryllium
EC number:	231-150-7
EC name:	Beryllium
CAS number (in the EC inventory):	7440-41-7
CAS number:	7440-41-7
CAS name:	Beryllium
IUPAC name:	Beryllium
Index number in Annex VI of the CLP Regulation	004-001-00-7
Molecular formula:	Be
Molecular weight range:	9.01218 g/mol
Synonyms:	Beryllium element, Glucinium

Structural formula: Be

1.2 Composition of the substance

Name: Beryllium

Description: mono-constituent substance, Beryllium metal in its elemental form

Degree of purity: $\geq 96.5 \%$

Table 2: Constituents

Constituents	Typical concentration	Concentration range	Remarks
beryllium,	confidential	confidential	Further information in
EC number: 231-150-7			confidential annex

Table 3: Impurities

Impurities	Typical concentration	Concentration range	Remarks
confidential	confidential	confidential	Further information in confidential annex

Table 4: Additives

Additives	Typical concentration	Concentration range	Remarks
confidential	confidential	confidential	Further information in confidential annex

1.3 Physico-chemical properties

Property	Value	Remarks
Physical state at 20°C and 101.3 kPa	solid (odourless solid, steel grey metal)	Handbook data
Melting/freezing point	1278°C	Experimental data
Boiling point	2471°C	Handbook data
Vapour pressure	_	In accordance with column 2 of REACH Annex VII section 7.5, a study does not need to be conducted if the melting point is above 300 °C.
Surface tension	_	In accordance with column 2 of REACH Annex VII section 7.6. a study does not need to be conducted if the water solubility is below 1 mg/L at 20 °C.
Water solubility	< 0.5 µg/L (20°C, pH 6.11)	The water solubility was determined according to OECD Guideline 105/ EU Method A.6 (column elution method). Experimental data
Partition coefficient n- octanol/water (log value)	_	In accordance with column 2 of REACH Annex VII section 7.8. a study does not need to be conducted if the substance is inorganic.
Flash point	idem	idem
Flammability	idem	idem
Explosive properties	idem	idem
Self ignition temperature	idem	idem
Oxidising properties	idem	idem
Granulometry	Micron Cumulative Size Weight % less than	The beryllium sample was analyzed using a Coulter Counter analysis method.
	<5 1.5	
	<10 10	
	<15 27	
	<20 48.7	
	<25 65.4	
	<30 76	

Table 5: Overview of physicochemical properties1

¹ The references of the values reported in Table 5 will be available in the technical dossier. In case references need to be included an additional column could be added manually to Table 5.

SUBSTANCE EVALUATION REPORT – BERYLLIUM (EC:231-150-7)

	< <u>-37</u> 86 < <u>44</u> 93.8	
Stability in organic solvents and identity of relevant degradation products	-	The substance is solid at environmentally relevant temperature and pressure, and hence no test is necessary.
Dissociation constant	idem	idem
Viscosity	idem	idem
Auto flammability	idem	idem
Reactivity towards container material	idem	idem
Thermal stability	solid (odourless solid, steel grey metal)	Handbook data
[enter other property, if relevant, or delete row]	1278°C	Experimental data

2 MANUFACTURE AND USES

2.1 Quantities

There is no manufacturing of beryllium metal and no employees involved in the production of beryllium metal in the European Union (EU). Beryllium metal is imported into Europe for use in industrial, scientific, defence and medical applications that requires further processing and/or assembly.

 Table 6: Aggregated tonnage (per year)

1 – 10 t	10 – 100 t	100 – 1000 t	1000- 10,000 t	10,000-50,000 t
_	Х	-	-	-

2.1.1 Manufacturing processes

Not relevant since Beryllium is not manufactured in the EU but only imported from outside the EU.

2.2 Identified uses

Beryllium is an essential material in the manufacture of products for the aerospace, automotive, energy, defence, medical, and electronics industries for more than half a century (Kolanz, 2010). It is a unique material exhibiting physical and mechanical properties unmatched by any other metal. Beryllium is one-third lighter than aluminium, making it one of the lowest-density metals. It is also one of the most rigid with a specific stiffness six times greater than steel. It possesses high heat-absorbing capability and has dimensional stability over a wide range of temperatures.

Because of its unique combination of qualities, beryllium is a strategic and critical material for many industries. The beryllium industry produces three primary forms of beryllium: beryllium alloy (copper beryllium) is the largest, followed by beryllium metal, with beryllia ceramics (beryllium oxide) third. Beryllium alloys with metals such as copper, nickel, or aluminium have high strength and hardness. Depending on the desired strength and electrical conductivity, copper-beryllium wrought products typically contain 0.15 percent to 2.0 percent beryllium. Copper-beryllium alloys for engineered materials are common in the electronics, automotive, defence, and aerospace industries because of their unique properties of strength, electrical and thermal conductivity, magnetic transparency, and corrosion resistance.

In the following a tabular list of all identified uses is given (cf. Table 7). Chemical Safety Reports were not provided by any of the registrants because the marketed tonnage of beryllium did not exceed the 10 t/a limit. There are no occupational uses advised against.

Technology	Application
Aerospace	Engines and rockets
	Brakes and landing gear
	Satellites and gyroscopes
	Precision tools
	• Altimeters
	Mirrors
Energy and Electrical	Heat exchanger tubes
	Microelectronics
	Microwave devices
	Nuclear reactor components
	Oil field drilling devices
	Relays and Switches
Telecommunications	Undersea repeater housings
	Mobile phones
	Personal computers
	Transistor mountings
	Electrical connectors
	• Switches and springs
	• electromagnetic shielding
Biomedical	• X-ray tube windows
	Scanning electron microscopes
	Dental prostheses
	Medical lasers
Defence	Tank mirrors
	• Springs on submarine hatches
	Mast mounted sights
	Missile guidance
	Nuclear triggers
Fire prevention	Non-sparking tools
	Sprinkler systems
Automotive	• Air-bag triggers
	Anti-lock braking systems
	Steering wheel connectors
Miscellaneous	Plastic moulds
	• Bellows
	• Jewellery – aquamarine and emerald
	• Golf clubs
	Bicycle frames
	Camera shutters
	• Fishing rods
	• Pen clips
	Scrap metal recovery and recycling
	• Ceramics

Table 7: Uses and applications of beryllium (according to: Darby, A. and Fishwick, D., 2011)

2.2.1 Uses by workers in industrial settings

Table 8 shows all given process categories (PROC) and sectors of end-use (SU) given by all registrants.

Table 8: Summary of PROCs and SUs at industrial side and by professional workers (data taken from the registration dossiers)

		PROC resp. SU																	
	0	1	2	4	5	8	9	14	15	16	17	19	20	21	22	23	24	25	26
3.5.2 Formulation of alloys at industry side		x	x	х	x	b,a		x						x	х	х	x	х	х
3.5.3 Use of alloys at ind. side		Х	Х	Х	Х	b,a		Х	Х	Х	Х			Х	Х	Х	Х	Х	Х
Sector of end-use (SU)	Х		b					х	Х	Х	Х					Х	Х		
Use in ind. laboratories									Х					Х					
Sector of end-use (SU)	Х						Х	х	Х	Х	Х	Х				Х	Х		
3.5.4 Use by prof. workers									Х										
Sector of end-use (SU)								Х	Х	Х	Х		Х			Х	Х		
3.5.6 Article service life								Х						Х	Х	Х	Х	Х	

2.2.2 Uses by consumers

No consumer uses of beryllium have been identified. However, consumers use articles comprising parts containing beryllium. According to the registration data (ECHA 2013a) these articles belong to the article categories "AC 01: Other (non intended to be released): electronic articles" and "AC 1: Vehicles". Their Environmental release category is classified as "ERC 11a: Wide dispersive indoor use of long-life articles and materials with low release".

Further information on the uses by consumers is given in the confidential part of this report.

2.3 Uses advised against

2.3.1 Uses by workers in industrial settings advised against

There are no uses advised against.

2.3.2 Use by professional workers advised against

There are no uses advised against.

2.3.3 Uses by consumers advised against

Use of beryllium by consumers is a use advised against (ECHA 2013a).

Further information is given in the confidential part of this report.

3 CLASSIFICATION AND LABELLING

3.1 Harmonised Classification in Annex VI of the CLP Regulation

Beryllium is listed by Index number 004-001-00-7 in Annex VI, Part 3, Table 3.1 (list of harmonised classification and labelling of hazardous substances) of Regulation (EC) No 1272/2008 as follows:

Table 9: Classification and Labelling according to Annex VI, Part 3, Table 3.1 (list of harmonised classification and labelling of hazardous substances) of Regulation (EC) No 1272/2008 (CLP)

				Classifica		Labelling	Specific Conc.	Notes		
Index No	International Chemical Identification	EC No		Hazard Class and Category Code(s)		Pictogram, Signal Word Code(s)	Hazard statement code(s)	Suppl. Hazard statement Code(s)	Limits, M - Factors	
004-001-00-7	beryllium	231-150-7	7440-41-7		H350i H330 H301 H372 ** H319 H335 H315 H317	GHS06 GHS08 Dgr	H350i H330 H301 H372 ** H319 H335 H315 H317			

* For certain hazard classes, including acute toxicity and STOT repeated exposure, the classification according to the criteria in Directive 67/548/EEC does not correspond directly to the classification in a hazard class and category under this Regulation. In these cases the classification in this Annex shall be considered as a minimum classification.

** The classification under 67/548/EEC indicating the route of exposure has been translated into the corresponding class and category according to this Regulation, but with a general hazard statement not specifying the route of exposure as the necessary information is not available.

Pictograms:		: Skull and crossbones : Health hazard
Signal word:	Dgr:	Danger
Hazard statements:	H372.	May cause cancer by inhalation. Fatal if inhaled. Toxic if swallowed. Causes damage to organs through prolonged or repeated exposure. Causes serious eye irritation. May cause respiratory irritation. Causes skin irritation. May cause an allergic skin reaction.

Beryllium is covered by Index number 004-001-00-7 in Annex VI, Part 3, Table 3.2 (list of harmonised classification and labelling of hazardous substances from Annex I of Directive 67/548/EEC) of Regulation (EC) No 1272/2008 as follows:

Table 10: Classification and Labelling according to Annex VI, Part 3, Table 3.2 (list of harmonised classification and labelling of hazardous substances from Annex I of Directive 67/548/EEC) of Regulation (EC) No 1272/2008 (CLP)

Index No	International Chemical Identification	EC No	CAS No	Classification	Labelling	Concentration Limits	Notes
004-001-00-7	Beryllium	231-150-7		, -	T+ R: 49-25-26-36/37/38-43-48/23 S: 53-45		Е

Note E(Table 3.2):

Substances with specific effects on human health (see Chapter 4 of Annex VI to Directive 67/548/EEC) that are classified as carcinogenic, mutagenic and/or toxic for reproduction in categories 1 or 2 are ascribed Note E if they are also classified as very toxic (T+), toxic (T) or harmful (Xn). For these substances, the risk phrases R20, R21, R22, R23, R24, R25, R26, R27, R28, R39, R68 (harmful), R48 and R65 and all combinations of these risk phrases shall be preceded by the word 'Also'.

Indications of danger:	T+:	Very toxic
Risk phrases:	R49: R25: R26: R36/37/38: R43: R48/23:	May cause cancer by inhalation. Also toxic if swallowed. Also very toxic by inhalation. Irritating to eyes, respiratory system and skin. May cause sensitization by skin contact. Also toxic: danger of serious damage to health by prolonged exposure through inhalation.
Safety phrases:	S45: In	oid exposure - obtain special instructions before use. case of accident or if you feel unwell, seek medical advice immediately (show label where possible).

Note of the eMSCA:

No studies were located regarding effects in humans after oral exposure to beryllium or its compounds by ATSDR 2002. Systemic effects were observed in animals after oral exposure to beryllium compounds.

No data were located regarding the **dermal or ocular irritancy** of beryllium in laboratory animals by WHO 2001.

3.2 Self-classification

The following information including Precautionary statements is provided by the lead registrant:

Table 11: Classification and Labelling according to Regulation (EC) No 1272/2008 (CLP) as provided by the lead registrant

	Classifi	cation		Precautionary statements	
Name	Hazard Hazard Category statement		Signal Word Hazard Pictogram Code	Hazard statements	
beryllium, pure substance		H330 H351 H372	GHS08: health hazard	H330: Fatal if inhaled. H351: Suspected of causing cancer by inhalation. H372: Causes damage to lung through prolonged or repeated exposure by inhalation.	

8

Table 12: Classification and Labelling according to 67/548/EEC (DSD) as provided by the lead registrant

		Labelling							
Name	Classification	Indication of danger	Risk phrases	Safety phrases					
pure substance	T+; R26 Very toxic by inhalation. T; R48/23 Toxic: danger of serious damage to health by prolonged exposure through inhalation. Carc. Cat. 3; R40 Limited evidence of a carcinogenic effect.		R40 - Limited evidence of a carcinogenic effect. R48/23 - Harmful: danger of serious damage to health by prolonged exposure	 S45 - in case of accident or if you feel unwell, seek medical advice immediately (show the label where possible) S53 - avoid exposure - obtain special instructions before use 					

Note of the eMSCA:

The proposed self-classification is NOT compliant with the harmonised classification.

4 ENVIRONMENTAL FATE PROPERTIES

not assessed

5 HUMAN HEALTH HAZARD ASSESSMENT

5.1 Toxicokinetics (absorption, metabolism, distribution and elimination)

5.1.1 Non-human information

Method/ Guideline	Route Dose levels, Duration of	Species, Sex, No/group	Results (excretion via respiration, urine, faeces, bile, half-life time	Remarks	Reference
	exposure	0	plasma, residues in tissue)		
Acute Toxicity of Inhaled Beryllium Metal, Excretion, no guideline followed, non-GLP	nose-only aerosol inhalation, single (50 min) 800 mg/m ³ (625 µg Be metal/rat), sacrifices after 3, 7, 10, 14, 31, 59, 115, 171 d	Rat 74 M divided into groups of 6 per sacrifice time point	Be-clearance: half-life ~240 d	Key study Particle size distribution: 50 % effective cut off diameter = 1.7 µm MMAD/GSD: 1.4 +/- 0.1 µm/ 1.9 +/- 0.1 µm	P.J. Haley, G.L. Finch, M.D. Hoover, R.G. Cuddihy; Fundamental and applied Toxicology 15, 767-778, (1990)
Effects of Inhaled Beryllium on Lung Clearance, no guideline followed, non-GLP	inhalation, single, ⁸⁵ Sr-FAP followed by metallic Be at Be-burdens of 0, 1.7, 2,6, 12, 34 µg/mouse, followed up for 350 d	Mouse no data on sex or number	clear retardation of lung clearance of the ⁸⁵ Sr-FAP (fused aluminosilicate particles) marker and of Be from Be-burdens of 12 µg/mouse	supporting study Abstract only of early results of study published in 1998	G.L. Finch, L.J. Reddick, M.D. Hoover, K.J. Nikula; Toxicologist, Vol 13, No 1, March 1993
Low Lung Burdens of Beryllium Metal, no guideline followed, non-GLP	Be-burdens from 1.5 to 50 μg co-exposure to ⁸⁵ Sr-FAP observation period (for Be- clearance) 90 d, interim sacrifices at 8, 16, 40 d Clearance of ⁸⁵ Sr-FAP 60 d	Rat no data on sex or number	Clearance half life times: ⁸⁵ Sr-FAP 38, 64, 112, 135, 232 d for burdens of 0, 1.5, 2, 10 and 50 µg, respectively	supporting study Abstract only	G.L. Finch, P.J. Haley, M.D. Hoover, A.F. Eidson and R.G. Cuddhy; Toxicologist Vol 11, No 1, February 1991
Ion Formation test in Artificial Biological Fluids GLP, no guideline available	100 mg/l into Gamble's solution (pH 7.1) or Artificial lung fluid (pH 4.5), incubated at 37 °C in the dark under non- abrasive shaking for 1, 7, 14, 28 d.	cell-free	solubility at acidic pH (4.5) was higher than at neutral pH (7.1): 1.01, 10.5, 18.9, 33.9 mg/l vs. 0.166, 0.311, 0.325, 0.581 mg/l of Be metal for 1, 7, 14, and 28 d, respectively. Solubility was beryllium chloride >> copper-beryllium alloy > beryllium metal >> beryllium oxide ceramic	supporting study Beryllium Metal Powder (99.4 %) chemo- biokinetics general studies acidic pH (simulating a lysosomal environment)	TL1, unpublished record 2009a

5.1.2 Human information

This information is not available from the registration dossiers.

5.1.3 Summary and discussion on toxicokinetics

The data for toxicokinetics of beryllium were obtained from two rat studies and a mouse study. Inhaled beryllium particles in the $0.5-5.0 \mu m$ diameter range are deposited in the lower respiratory tract ($t_{1/2} \sim 240 d$), whereas larger particles are filtered out by the upper airways (Haley et al., 1990; Welch 2012). Insoluble particles deposited in the upper respiratory tract and tracheobronchial tree are cleared by mucociliary transport, and those deposited in the lower regions are cleared primarily by alveolar macrophages. The clearance of insoluble compounds from the lungs has been generally shown to be biphasic, with clearance times of days (by mucociliary transport and alveolar macrophages) to years (by dissolution and other translocation mechanisms) (Welch 2012). Clearance of beryllium from the lungs of rats exposed to beryllium metal by inhalation was best described by a single-component negative exponential function from days 3 to 171 post exposure (Haley et al., 1990). Single, acute inhalation exposure to beryllium metal can chronically retard the general particle clearance rate by damaging alveolar macrophages (WHO 2001, ATSDR 2002) and can induce lung damage in rats (Haley et al., 1990) and mice (Finch et al., 1993).

Although inhalation is the primary route of uptake of occupationally exposed persons, no human data are available on the fraction of deposited or absorbed/translocated beryllium. The deposition and clearance of beryllium, like those of other inhaled particles, are governed by important factors such as dose, size, and solubility (WHO 2001, ATSDR 2002, MAK 2003). Absorption of inhaled beryllium occurs following its mobilization by clearance mechanisms. Animal studies have shown that clearance of sparingly soluble beryllium compounds is biphasic, with an initial rapid phase attributed to mucociliary transport of particles from the tracheobronchial tree to the gastrointestinal tract, followed by a prolonged slow phase of clearance via translocation to tracheobronchial lymph nodes, uptake by alveolar macrophages, and solubilisation of beryllium. Absorbed beryllium is eliminated primarily through urine, whereas excretion of unabsorbed beryllium is primarily via the faecal route shortly after exposure by inhalation, through mucociliary clearance from the respiratory tract and ingestion of swallowed beryllium (WHO 2001).

The slow clearance from the lungs means that beryllium may remain in the human lungs for many years after exposure. The amount of beryllium remaining in the lungs at any time after exposure is a function of the amount deposited and the rate of clearance, which depend in turn on the dose, size, and solubility of the specific beryllium particles inhaled. Such data are available for soluble beryllium salts, but they do not appear to be available for the sparingly soluble inorganic beryllium compounds and the metal (WHO 2001). After deposition of insoluble particles in the lungs, most beryllium is stored (MAK 2003) as beryllium is cleared incompletely from the lungs. Beryllium has been found in the lungs of beryllium disease patients long after cessation of occupational exposure. Beryllium cleared from the lungs and not excreted is translocated to the tracheobronchial lymph nodes, skeleton, liver, kidney, and blood (Welch 2012). The biological half-time of beryllium in human serum was calculated to be 2–8 weeks (ATSDR 2002). A half-life of 64 weeks has been estimated for beryllium in the human skeleton, the ultimate site of beryllium storage (WHO 2001).

A substantial portion of the inhaled material is transported to the gastrointestinal tract by the mucociliary escalator and by the swallowing of the insoluble material deposited in the upper respiratory tract. Oral administration results in <1% absorption and storage (WHO 2001). Small quantities of beryllium metal dusts that are dissolved by gastric juices result in trace amounts of beryllium chloride that might be absorbed from the stomach. The proportion of beryllium absorbed

by the gastrointestinal tract was estimated with 0.006 % (Welch 2012). Most of the beryllium taken up by the oral route passes through the gastrointestinal tract unabsorbed and is eliminated in the faeces (EPA 1998).

Beryllium is poorly absorbed through the intact skin (WHO 2001, ATSDR 2002). Skin contact may play an important role in sensitization to beryllium even if beryllium is not absorbed through the skin, however. Direct traumatic penetration of the skin can lead to dermal granulomas (Welch 2012).

Beryllium is not biotransformed (EPA 1998, WHO 2001).

5.2 Acute toxicity

5.2.1 Non-human information

5.2.1.1 Acute toxicity: oral

Table 14: Overview of experimental studies on acute toxicity after oral administration according to registration dossier

Method/ Guideline	Route	Species, Strain, Sex,	Dose levels	Value LD ₅₀ /LC ₅₀	Remarks	Reference
		No/group				
Acute toxic class	Oral	Rat (10 w	single dose,	> 2000 mg/kg	Key study	TL1, unpublished
method, OECD	(gavage)	old),	Beryllium	bw	No mortality or	record 2009b
Guideline 423	Dosing	Wistar	Metal	not classified	clinical signs.	
(Acute Oral	volume	(SPF),	Powder		No macroscopic	
Toxicity - Acute	10 ml/kg	6 F after	99.4 %		findings at	
Toxic Class	bw	fasting for	(vehicle:		necropsy.	
Method), GLP		17-19 h	PEG-300)			

5.2.1.2 Acute toxicity: inhalation

Table 15: Overview of experimental studies on acute toxicity after inhalation exposure according to registration dossier

Method/	Route	Species,	Dose levels	Value	Remarks	Reference
Guideline		Strain,		LC ₅₀		
		Sex,				
		No/group				
Acute	nose-only	Rat	single (50 min),	not	Key study	P.J. Haley, G.L.
Toxicity of	aerosol	11-13 w	Beryllium Metal	suitable	20 animals died	Finch, M.D.
Inhaled	inhalation,	old	dust	for	spontaneously	Hoover, R.G.
Beryllium	sacrifices	74 M,	MMAD 1.4 µm	setting an	between days 12	Cuddihy;
Metal, no	after 3, 7,	groups of	(no vehicle),	LC ₅₀	and 15 post	Fundamental
guideline	10, 14, 31,	6 per	800 mg/m ³		exposure.	and applied
followed,	59, 115,	sacrifice	(625 µg Be		↑ lung weight,	Toxicology 15,
non-GLP	171 d	time point	metal/rat)		pneumonitis	767-778, (1990)
Responses	nose-only	Mouse	single (90 min),	not	Supporting	K.J. Nikula,
Induced by	aerosol	6-8 w old	Beryllium Metal	suitable	study	D.S. Swafford,
Inhaled	inhalation	A/j and	dust	for	No mortalities	M.D. Hoover,
Beryllium	sacrificed	C3H/HeJ	MMAD 1.4 µm,	setting an	or clinical signs.	M.D. Tohulka,
Metal, no	after 7 d	36 F of	GSD 1.9 µm,	LC ₅₀	Granulomatous	G.L. Finch,
guideline	(initial Be-	each strain	(no vehicle),		pneumonia,	Toxicologic

Method/ Guideline	Route	Species, Strain, Sex, No/group	Dose levels	Value LC ₅₀	Remarks	Reference
followed, non-GLP	burden) or after 6 months		1030 mg/m³ (60 μg Be/mouse)		minimal to mild interstitial fibrosis	Pathology 25, (1), 2 - 12, 1997
Effects of Inhaled Beryllium on Lung Clearance, no guideline followed, non-GLP	Inhalation: lung clearance marker (⁸⁵ Sr-FAP), metallic beryllium	Mouse no data on sex/strain or number	Single, metallic beryllium, Be-burdens of 0, 1.7, 2,6, 12 and 34 μ g/mouse, followed up for 350 d	not suitable for setting an LC_{50}	Supporting study Abstract only Pneumonic symptoms, increased lung weights from 12 µg burden.	G.L. Finch, L.J. Reddick, M.D. Hoover,, K.J. Nikula, Toxicologist, Vol 13, No 1, March 1993
Low Lung Burdens of Beryllium Metal, no guideline followed, non-GLP	Inhalation, observation period (Be- clearance 90 d, ⁸⁵ Sr- FAP 60 d), sacrifices at 8, 16, 40 d	Rat no data on sex/strain or number	Be-burdens 0, 1.5, 2, 10, 50 μg co-exposure to ⁸⁵ Sr- FAP	not suitable for setting an LC_{50}	Supporting study Abstract only Lung clearance reductions	G.L. Finch , P.J. Haley, M.D. Hoover, A.F. Eidson and R.G. Cuddihy; Toxicologist Vol 11, No 1, February 1991
Lung Carcino- genicity from Inhaled Beryllium (Be) Metal, no guideline followed, non-GLP	nose-only aerosol inhalation, observation period at least 365 d	Rat Fischer 344/N total no. 936 no data on sex	Single, metallic beryllium, MMAD 1.4 μm, GSD 1.9 μm, Be lung burdens: 0, 33, 84, 420 μg/rat	not suitable for setting an LC_{50}	Supporting study Abstract only Within the first 3 weeks 33 % males and 64 % females of the high dose died of acute pneumonitis.	G.L. Finch, F.F. Hahn, W.C. Griffith, M.D. Hoover, W.W. Carlton, A.H. Rebar, J.A. Mewhinney, R.G. Cuddihy; Toxicologist, Vol. 14, No 1, p 264, March 1994
Acute inhalation exposure, no guideline followed, non-GLP	nose-only aerosol inhalation, follow up 350 d	Mouse 11 w old C3H F	single (10.5-90 min), Be metal (no vehicle), MMAD 1.4 μ m, GSD 1.8 μ m, burden 0, 1.7, 2.6, 12, 34 μ g/mouse	not suitable for setting an LC_{50}	Supporting study No mortalities or clinical signs.	G.L. Finch , K.J. Nikula, M.D. Hoover; Toxicological Sciences 42, 36- 48 (1998)

5.2.1.3 Acute toxicity: dermal

This information is not available from the registration dossiers.

5.2.1.4 Acute toxicity: other routes

Table 16: Overview of experimental studies on acute toxicity after intratracheal exposure

 according to registration dossier

Method/ Guideline	Route	Species, Strain, Sex, No/group	Dose levels	Value LD ₅₀ / LC ₅₀	Remarks	Reference
Pulmonary Toxicity of	intratracheal instillation 1 ml	Monkey Cynomologus	1, 50, 150 μg Be metal:		Supporting study	P.J. Haley, K.F. Pavia, D.S.

Method/	Route	Species,	Dose levels	Value	Remarks	Reference
Guideline		Strain,		LD ₅₀ /		
		Sex,		LC ₅₀		
		No/group				
Beryllium	in anaesthetized	(Macaca	MMAD 1.4		focal	Swafford, D.R.
Metal and	monkey via	fascicularis)	μm, GSD 1.4		intense,	DAvila, M.D.
Beryllium	lung catheter in	no data on sex	μm, suspended		interstitial	Hoover, G.L. Finch;
Oxyde, no	deep part of	or number	and diluted in		fibrosis,	Immunopharmaco-
guideline	specified lobe		1 ml of saline		discrete	logy and Immuno-
followed, non-			(vehicle:		immune	tocicology, 16(4),
GLP			water)		granulomas	627-644 (1994)
Beryllium	intratracheal	Mouse	2, 8 µg		Supporting	J.M. Benson, A.M.
Administered	infusion;	7w old	Be/mouse,		study	Holmes, E.B. Barr,
by	0.1 ml, under	C3H/HeJ	Ground		no deaths	K.J. Nikula, T.H.
Intratracheal	anaesthesia via	40 F	metallic		Sacrifice	March; Inhalation
Instillation, no	a transoral	24 F (control)	beryllium in		1 h, 1, 7,	Toxiclogy, 12:733-
guideline	intratracheal		physiological		14, 28 d	749, 2000
followed, non-	catheter		saline (vehicle:			
GLP			water)			

5.2.2 Human information

This information is not available from the registration dossiers.

5.2.3 Summary and discussion of acute toxicity

The data for acute toxicity of beryllium were obtained from animal testing. Only the test on Acute Oral Toxicity was carried out in accordance with EU Regulation (EC) No 440/2008 or current OECD guidelines for the testing of chemicals. No signs of toxicity were seen in the GLP compliant study following OECD TG 423 at the highest possible dose of 2000 mg/kg bw. No lethality is observed for administration of beryllium metal via the oral route. No studies on dermal toxicity are available. However, given the absence of an indication on oral toxicity (TL1, unpublished record 2009a) and the poor absorption by the intact skin (WHO 2001, ATSDR 2002) acute dermal toxicity is unlikely.

A series of non-standard toxicity studies is available for acute inhalation toxicity. By means of a weight of evidence approach the information provided in the registration dossiers is sufficient to conclude that beryllium is fatal if inhaled. In rats fatalities of 33 % of the males and 64 % of the females within 3 weeks at 420 μ g beryllium lung burden have been reported (Finch 1994). In the key study 27 % of the male rats died 12-15 days post exposure from a lung burden of 625 μ g resulting from 50 min exposure at 800 mg/m³ of beryllium dust (Haley 1990). By extrapolation to a 4-hour period applying Haber's Law an **acute toxicity estimate of 170 mg/m³** within the Category 2 range of 50-500 mg/m³ for dusts according to the classification criteria can be calculated.

Beryllium is classified as Acute Tox. 2*, H330: "Fatal if inhaled." according to Annex VI, Part 3, Table 3.1 (list of harmonised classification and labelling of hazardous substances) of Regulation (EC) No 1272/2008 as a minimum classification and as T+, R26: "Very toxic by inhalation." according to Annex VI, Part 3, Table 3.2 (list of harmonised classification and labelling of hazardous substances from Annex I to Directive 67/548/EEC) of Regulation (EC) No 1272/2008. The acute toxicity estimate of 170 mg/m³ supports this classification according to CLP Annex I, Table 3.1.1. Classification for acute toxicity by the oral or dermal route is not warranted under Regulation (EC) 1272/2008 on classification, labelling and packaging of substances and mixtures (CLP) or under Directive 67/548/EEC for dangerous substances.

5.3 Irritation

5.3.1 Skin

Table 17: Overview of experimental studies on skin irritation according to registration dossier

Method/	Species,	Average score		Reversibility	Results	Remarks	Reference
Guideline	Strain,	24, 48, 72 h Erythema Oedema		yes/no			
	Sex, No/group						
Primary Skin	Rabbit,	0			not irritating	Key study	TL1,
Irritation	New	No erythema	a or		slight grey	Beryllium	unpublished
according to	Zealand	oedema at an	ny of the		staining of	Metal Powder	record 2009c
OECD 404	White,	observation	time		the treated	99.4 %, 0.5 g,	
(Acute	1 M, 2 F	points.			skin in all	unchanged	
Dermal					animals 1 h	(no vehicle)	
Irritation /					after test	shaved, 4 h,	
Corrosion),					item	semi-	
GLP					exposure	occlusive	

5.3.2 Eye

Table 18: Overview of experimental studies on eye irritation according to registration dossier

Method/ Guideline	Species, Strain,	Average Score 24, 48, 72h		Reversibility	Results	Remarks	Reference
	Sex, No/group	Cornea, Iris, Chemosis	Redness Conjunctiva				
Primary Eye Irritation according to OECD 405 (Acute Eye Irritation / Corrosion), GLP	Rabbit, New Zealand White, 1 M, 2 F	Chemosis: 1 h: 1/1/1 mean 0 of max. score 4	1h: 2/1/1 mean 1 of max. score 3	completely reversible 7 d after treatment Slight initial swelling after 1 h, but resolved by 24 h.	not irritating	Key study Beryllium Metal Powder 99.4 %, 0.1 g, unchanged (no vehicle), no washing	TL1, unpublished record 2009d

5.3.3 Respiratory tract

No specific studies are available from the registration dossiers.

5.3.4 Summary and discussion of irritation

The evidence for skin and eye irritation of beryllium was obtained from animal testing. Two GLP compliant studies following OECD TG 404 and 405, respectively, were submitted for beryllium. No signs of irritation were noted in the skin irritation study with beryllium metal powder (TL1, unpublished record, 2009b). Slight irritation of rabbit eyes, which was completely resolved after 7 days, was reported in the eye irritation study with beryllium metal powder (TL1, unpublished record, 2009d).

Single inhalation human exposure to levels above 100 μ g Be/m³ can cause acute chemical pneumonitis with symptoms such as cough, pulmonary oedema, shortness of breath (dyspnea), and inflammation. This acute toxicity was most commonly reported after inhalation of soluble beryllium

salts but beryllium metal has been associated with acute beryllium disease as well. Most of the persons affected recovered within a few weeks (MAK 2003, Welch 2012).

Beryllium is classified as STOT SE 3, H335: "May cause respiratory irritation." according to Annex VI, Part 3, Table 3.1 (list of harmonised classification and labelling of hazardous substances) of Regulation (EC) No 1272/2008 and as Xi, R37: "Irritating respiratory system." according to Annex VI, Part 3, Table 3.2 (list of harmonised classification and labelling of hazardous substances from Annex I to Directive 67/548/EEC) of Regulation (EC) No 1272/2008. The available data indicate that this classification is justified. Classification as skin or eye irritant is not warranted under Regulation (EC) 1272/2008 on classification, labelling and packaging of substances and mixtures (CLP) or under Directive 67/548/EEC for dangerous substances.

5.4 Corrosivity

No signs of corrosion were seen in the skin/eye irritation tests.

5.5 Sensitisation

5.5.1 Skin

Table 19: Overview of experimental studies on skin sensitisation according to registration dossier

Method/ Guideline	Species, Strain, Sex,	No sensitised/ total no of	Results	Remarks	Reference
	No/group	animals			
Contact	Guinea Pig,	0/10	Not sensitising	Key study	TL1,
Hypersensitivity	Albino		dermal induction:	Beryllium Metal Powder,	unpublished
Maximization-	Dunkin-		very slight skin	99.4 %,	record 2009e
Test according	Hartley,		reactions	c = 50 %, vehicle: PEG	
to OECD	10 M			300, shaved, induction:	
Guideline 406				1 intradermal, $c = 50 \%$,	
(Skin				1 epidermal, $c = 50 \%$,	
Sensitisation),				challenge: epicutaneous,	
GLP				occlusive	
Patch Testing	Guinea Pig,	BeSO ₄ :	Sensitisation with	Supporting study	Zissu D,
with Beryllium	Dunkin-	10-11/20,	$BeSO_4$	no positive control	Binet S,
Alloy Samples	Hartley,		test evaluates	intradermal and	Cavelier C,
according to	20 F	alloys:	sensitising	epicutaneous induction	Contact
OECD		6-12/20,	properties of	with BeSO ₄	Dermatitis
Guideline 406			BeSO ₄ , not	challenge: epicutaneous,	34:196-200
(Skin		Be metal:	beryllium metal or	occlusive 3% Beryllium	(1996)
Sensitisation),		12/20	its alloys.	Metal Powder	
non-GLP				vehicle: saline; water	
Patch Test:	Human	3/11 in test	no conclusion can	Supporting study	Curtis GH,
Cutaneous	M/F	group	be drawn due to	powdered metallic Be / Be	A.M.A.
Hypersensitivity	pre-sensitized	slightly	the presence of	metal discs, BeF ₂ (0.025-	Archives of
A Study of	workers from	positive	BeF ₂ in the test	0.2%), no vehicle	Dermatology
Thirteen Cases	Be industry	reactions	item	induction: epicutaneous	and
no guideline	control persons	controls: no		challenge: epicutaneous,	Syphilology
available; non-	never exposed	reactions to		degree of closure not stated	64:470-482
GLP	to Be	powdered		moistened unchanged	(1951)
		Be metal		substance	

5.5.2 Respiratory system

Table 20: Calculated epidemiological data on beryllium sensitization (BeS) according to original publications (not in registration dossiers)

Method/	Route of	Species,	Dose levels	Results	Remarks	Reference
Guideline	exposure	Sex,	Dose revers	Main effects/	Kemar Kö	Kelerence
Guideline	Duration	No	μg/m ³	Target		
	Duration	110	μ6/111	organs		
Popula-	occupational	Human,	median	Prevalence:	Key study	C. R. Schuler, M. S. Kent,
tion-based	exposure at a	153	concentration	BeS 7%	small	D. C. Deubner, M. T.
Cross-	copper-	workers	0.03	(10/153),	number of	Berakis, M., McCawley,
sectional	beryllium		97 % < 0.2	CBD 4%	employees	P.K. Henneberger, M. D.
health	alloy strip and		no sample > 2	(6/153) in area	limited	Rossman, K. Kreiss, Am.
survey	wire finishing		no sumpro / 2	$> 0.2 \ \mu g/m^3$	statistical	J. Ind. Med. 47, 195–205
502 (0)	facility			Be	power	(2005)
Exposure	occupational	Human,	100 analytical	BeS:	Key study	A. K. Madl, K. Unice, J. L.
response	exposure in a	27	results:	9 workers	comparison	Brown, M. E. Kolanz, and
analysis	beryllium	workers	50 samples <	CBD:	population	M. S., Kent, J. Occup.
for	metal-	with BeS	0.2,	18 workers	not	Environ. Hyg. 4, 448–466
beryllium	machining	or sub-	median	since 1995	included	(2007)
sensitiza-	plant	clinical	concentration	LTWA < 0.2,		
tion and		CBD	0.13	but		
CBD			LTWA > 0.05	$> 0.05 \ \mu g/m^3$		
Exposure	occupational	Human,	Lowest EC	BeS was	Key study	Schuler, C.R.; Virji, M.A.;
response	exposure	264	(average exp.)	associated	limited	Deubner, D.C.; Stanton,
relations	among short-	workers:	BeS:	with average	power to	M.L.; Stefaniak, A.B.;
for	term workers	26/264	0.09 (total)	and highest	detect an	Day, G.A.; Park, J.Y.;
beryllium	$(\leq 6 \text{ years})$	cases of	0.04	job exposures,	effect for	Kent, M.S.; Sparks, R.;
sensitiza-	tenure in	BeS	(respirable)	CBD with	CBD, due	Kreiss, K. (2012)
tion (BeS)	1999)	6/26	CBD:	cumulative	to truncated	Scandinavian Journal of
and CBD		cases of	0.20 (total)	exposure	period of	Work, Environment and
~		CBD	0.17 (respir.)		exposure	Health, 38, 270-281
Case	occupational	Human,	LTWA mean	susceptibility	Supporting	van Dyke, M.V.; Martyny,
control	exposure in	181	(median)	affected by	study	J.W.; Mroz, M.M.;
study	the nuclear	workers:	concentration	genetic host	confounder	Silveira, L.J.; Strand, M.;
	weapons	35 cases	BeS:	factor, a	- healthy	Cragle, D.L.; Tankersley,
	industry	of BeS	0.12 (0.02)	glutamic acid	worker	W.G.; Wells, S.M.;
		19 cases of CBD	CBD: 0.32 (0.11)	residue at	effect	Newman, L.S.; Maier,
		127	0.32 (0.11) control:	position 69 of the HLA-DPβ	 exposure misclassi- 	L.A. (2011a) Occupational and Environmental
		controls	0.13 (0.03)	chain	fication	Medicine, 68, 842-848
Case	occupational	Human,	LTWA mean	glutamic	Supporting	van Dyke, M.V.; Martyny,
control	exposure in	386	(median)	acid at	study	J.W.; Mroz, M.M.;
study	nuclear	workers:	concentration	position 69	- uncon-	Silveira, L.J.; Strand, M.;
Study						
	oricers					C
				•		
						1 0
study	workers	70 BeS, 61 CBD, and 255 control subjects	BeS: 0.25 (0.01) CBD: 0.64 (0.07) control: 0.15 (0.03)	(E69) and beryllium exposure both contribute to the odds of CBD	strained regression model - mis- classifica- tion	Fingerlin, T.E.; Stand, M., Fingerlin, T.E.; Sato, H.; Newman, L.S.; Maier, L.A. (2011b) American Journal of Respiratory and Critical Care Medicine, 183, 1680-1688

5.5.3 Summary and discussion on sensitisation

The data for sensitisation of beryllium were obtained from animal testing and human data. One GLP compliant study following OECD TG 406 was submitted for beryllium. No signs of skin sensitisation were observed in the guinea pig maximisation test with beryllium metal powder (TL1,

unpublished record 2009e), but it is generally thought that beryllium as a free metal does not significantly penetrate the intact skin (Welch 2012 and chapter 5.1.3). Delayed hypersensitivity reactions developed in a guinea pig maximisation test according to OECD TG 406 with metallic beryllium after intradermal sensitisation with beryllium sulphate (Zissu 1996).

The reactions of occupationally pre-sensitized workers to powdered beryllium metal cannot reliably be attributed to the beryllium metal due to impurities of beryllium fluoride in the test item (Curtis 1951). Granulomatous lesions of the skin may occur at the site of subcutaneous implantation of beryllium, which occurs when beryllium contaminates a wound or a beryllium splinter penetrates the skin. Healing rarely occurs until the contaminated skin lesions are excised (Welch 2012). Biopsied skin granulomas from beryllium workers had the same mononuclear infiltrates as detected in the lungs (ATSDR 2002).

The granulomas formed as a result of an immune reaction to beryllium particles in the lung following the inhalation of beryllium by humans, are distinct from other allergic reactions of the respiratory system (EPA 1998, WHO 2001, MAK 2002). The initial response is of an inflammatory nature caused by beryllium-induced phagocytosis and the subsequent release of lysosomal enzymes. The release of such enzymes is thought to be responsible for the damaging effects observed with respect to lung architecture. Unlike other particles (e.g., alpha quartz), beryllium is unusual in that it does not cause an antibody reaction (type I hypersensitivity), but rather a cell-mediated (type IV hypersensitivity), antigen-driven immune response (WHO 2001, Welch 2012). Because the beryllium ion is too small to be antigenic per se, it may function as a hapten, binding with a large carrier molecule (e.g., protein) to form an antigen. Once the antigen is created by the macrophage, it is presented to helper T-cells, which form sensitized T-cells. Once a population of sensitized T-cells is created, these cells transform and actively secrete lymphokines (WHO 2001).

Specific respiratory hypersensitivity of type I, normally seen as asthma, rhinitis/conjunctivitis and alveolitis, is not expected in case of the delayed type IV hypersensitivity. Chronic beryllium disease (CBD) begins as a sensitizing cell-mediated response to beryllium antigen and progresses to granulomatous lung disease (ATSDR 2002). For chronic beryllium disease it is not unusual to begin slowly after a practically (clinically) symptom-free latency period which can last up to 20 years. The course of the disease (at the tissue level) is often progressive, even after cessation of beryllium exposure (MAK 2003). Progression of the chronic disease is often slow (Welch 2012).

A key aspect of the identification of CBD is the demonstration of beryllium sensitization in a beryllium lymphocyte proliferation test (BeLPT). The basis of the test is that beryllium-reactive lymphocytes proliferate when presented with the beryllium antigen (presumably Be binding with a large carrier molecule (haptene)). The test involves an *in vitro* challenge of lymphocytes either from bronchoalveolar lavage fluid or from peripheral blood of exposed people with beryllium salts. The observation of beryllium-specific T lymphocyte proliferation indicates beryllium sensitization (WHO 2001, Welch 2012).

Beryllium is already classified as Skin Sens. 1, H317: "May cause an allergic skin reaction." according to Annex VI, Part 3, Table 3.1 (list of harmonised classification and labelling of hazardous substances) of Regulation (EC) No 1272/2008 and as Xi, R43: "May cause sensitization by skin contact." according to Annex VI, Part 3, Table 3.2 (list of harmonised classification and labelling of hazardous substances from Annex I to Directive 67/548/EEC) of Regulation (EC) No 1272/2008.

Based on the available human data, beryllium appears to fulfil the criteria for classification for respiratory sensitisation category 1 as Resp. Sens. 1, H334: "May cause allergy or asthma

symptoms or breathing difficulties if inhaled." according to Regulation (EC) No. 1272/2008 and Xn, R42: "May cause sensitisation by inhalation." according to Directive 67/548/EEC.

5.6 Repeated dose toxicity

5.6.1 Non-human information

5.6.1.1 Repeated dose toxicity: oral

This information is not available from the registration dossiers.

5.6.1.2 Repeated dose toxicity: inhalation

Table 21: Overview of experimental studies on repeated dose toxicity after **inhalation exposure** according to registration dossier

Method/ Guideline	Route of exposure Duration	Species, Strain, Sex, No /group	Dose levels mg/m ³	NO(A)EC mg/m ³	LO(A)EC mg/m ³	Results Main effects/ Target organs	Remarks	Reference
Lympho- cytic Responses Induced by Inhaled Beryllium Metal, no guideline followed, non-GLP	nose-only aerosol inhala- tion one single (90 min), sacrificed after 6 months	Mouse 6-8 w old A/J, C3H/He J 36 F of each strain	1030 60 μg Be/ mouse initial Be- burden after 7 d	no	1030	interstitial compact aggregates of lymphocytes in lung, chronic granulo- matous pneumonia, minimal to mild interstitial fibrosis	Supportin g study Refe- renced here due to long ob- servation period.	K.J. Nikula, D.S. Swafford, M.D. Hoover, M.D. Tohulka, G.L. Finch, Toxicologic Pathology 25, (1), 2 – 12, 1997
Dose- Response Relation- ships between Inhaled Be Metal and Lung Toxicity, no guideline followed, non-GLP	nose-only aerosol inhala- tion one single (10.5- 90 min), follow up 350 d	Mouse 11 w old C3H F	0, 1.7, 2.6, 12, 34 µg/ mouse	no	no	> 12 µg: ↑ lung weight, granulo- matous pneumonia, lymphocytic interstitial aggregates, mononuclear infiltrates	Supportin g study Refe- renced here due to long ob- servation period.	G.L. Finch, K.J. Nikula, M.D. Hoover; Toxicologic al Sciences 42, 36-48 (1998)
Toxicity of Inhaled Beryllium Metal, no guideline followed, non-GLP	nose-only aerosol inhala- tion one single (50 min), sacrifices after 3, 7, 10, 14, 31, 59, 115,	Rat 11-13 w old 74 M divided into groups of 6 per sacrifice time	800 625 μg Be metal/ rat	no	800	↑ lung weight, pneumonitis fibrosis, inflammation alveolar macrophage and epithelial hyperplasia,	Supportin g study Refe- renced here due to long ob- servation period.	P.J. Haley, G.L. Finch, M.D. Hoover, R.G. Cuddihy; Funda- mental and applied Toxicology

Method/ Guideline	Route of exposure Duration	Species, Strain, Sex, No /group	Dose levels mg/m ³	NO(A)EC mg/m ³	LO(A)EC mg/m ³	Results Main effects/ Target organs	Remarks	Reference
	171 d	point				mortality		15, 767- 778, (1990)
Reduced Lung Clearance induced by Low Lung Burdens of Beryllium Metal, no guideline followed, non-GLP	Inhala- tion obser- vation period (for Be- clearance) 90 d, interim sacrifices at 8, 16, 40 d	Rat	0, 1.5, 2, 10, 50 µg/ rat	no	no	Lung clearance reductions	Supportin g study Abstract only	G.L. Finch, P.J. Haley, M.D. Hoover, A.F. Eidson and R.G. Cuddihy; Toxicolo- gist Vol 11, No 1, February 1991

5.6.1.3 Repeated dose toxicity: dermal

This information is not available from the registration dossiers.

5.6.1.4 Repeated dose toxicity: other routes

This information is not available from the registration dossiers.

5.6.2 Human information

Method/	Route of	Species,	Dose levels	Results	Remarks	Reference
Guideline	exposure	Sex,	DWA	Main effects/		
	Duration	No	μg/m ³	Target organs		
Estimating	occupational	Human,	Beryllium	Exposures were variable from	Supporting	Sanderson
Historical	exposure in	7347	(ore,	job to job, but regularly	study	T.W.,
Exposures	Be facility at	analytical	BeOH,	declining by period of	estimates	Peterson
of Workers	Reading	results	BeF, BeO,	observation (1953-1960, 1961-	for early	M.R. and
in a	(PA), USA	325	BeCu)	1970, 1971-1980, 1981-1992)	period	Ward
Beryllium	(extrapolated	different	(fume or	at statistically signific. levels.	1935-1970	E.M., Am.
Manu-	1935),	jobs in 23	aerosol-	The cumulative exposure	based on	J. Ind.
facturing	1947 – 1992	departments	dust)	correlates with tenure ($r =$	low	Med.
Plant	estimated by		Be dust:	0.84), and average and max.	number of	39:145-
	calculation		0.03 - 5.0	exposure correlate ($r = 0.90$).	samples	157, 2001

Table 23: Calculated epidemiological data on chronic beryllium disease according to original publications (not in the registration dossier)

Method/ Guideline	Route of exposure Duration	Species, Sex, No	Dose levels µg/m ³	Results Main effects/ Target organs	Remarks	Reference
Popula- tion-based	occupational exposure at a	Human, 153	median concentration	Prevalence: BeS 7%	Key study small	C. R. Schuler, M. S. Kent, D. C. Deubner, M. T.

Method/ Guideline	Route of exposure Duration	Species, Sex, No	Dose levels µg/m ³	Results Main effects/ Target organs	Remarks	Reference
Cross- sectional health survey	copper– beryllium alloy strip and wire finishing facility	workers	0.03 97 % < 0.2 no sample > 2	(10/153), CBD 4% (6/153) in area > 0.2 μg/m ³ Be	number of employees limited statistical power	Berakis, M., McCawley, P.K. Henneberger, M. D. Rossman, K. Kreiss, Am. J. Ind. Med. 47, 195–205 (2005)
Exposure response analysis for beryllium sensitiza- tion and CBD	occupational exposure in a beryllium metal- machining plant	Human, 27 workers with BeS or sub- clinical CBD	100 analytical results: 50 samples < 0.2, median concentration 0.13 LTWA > 0.05	BeS: 9 workers CBD: 18 workers since 1995 LTWA < 0.2, but > 0.05 μg/m ³	Key study comparison population not included	A. K. Madl, K. Unice, J. L. Brown, M. E. Kolanz, and M. S., Kent, J. Occup. Environ. Hyg. 4, 448–466 (2007)
Exposure response relations for beryllium sensitiza- tion (BeS) and CBD	occupational exposure among short- term workers $(\leq 6 \text{ years}$ tenure in 1999)	Human, 264 workers: 26/264 cases of BeS 6/26 cases of CBD	Lowest EC (average exp.) BeS: 0.09 (total) 0.04 (respirable) CBD: 0.20 (total) 0.17 (respir.)	BeS was associated with average and highest job exposures, CBD with cumulative exposure	Key study limited power to detect an effect for CBD, due to truncated period of exposure	Schuler, C.R.; Virji, M.A.; Deubner, D.C.; Stanton, M.L.; Stefaniak, A.B.; Day, G.A.; Park, J.Y.; Kent, M.S.; Sparks, R.; Kreiss, K. (2012) Scandinavian Journal of Work, Environment and Health, 38, 270-281
Case control study	occupational exposure in the nuclear weapons industry	Human, 181 workers: 35 cases of BeS 19 cases of CBD 127 controls	LTWA mean (median) concentration BeS: 0.12 (0.02) CBD: 0.32 (0.11) control: 0.13 (0.03)	susceptibility affected by genetic host factor, a glutamic acid residue at position 69 of the HLA-DPβ chain	Supporting study confounder - healthy worker effect - exposure misclassi- fication	van Dyke, M.V.; Martyny, J.W.; Mroz, M.M.; Silveira, L.J.; Strand, M.; Cragle, D.L.; Tankersley, W.G.; Wells, S.M.; Newman, L.S.; Maier, L.A. (2011a) Occupational and Environmental Medicine, 68, 842-848
Case control study	occupational exposure in nuclear workers	Human, 386 workers: 70 BeS, 61 CBD, and 255 control subjects	LTWA mean (median) concentration BeS: 0.25 (0.01) CBD: 0.64 (0.07) control: 0.15 (0.03)	glutamic acid at position 69 (E69) and beryllium exposure both contribute to the odds of CBD	Supporting study - uncon- strained regression model - mis- classifica- tion	van Dyke, M.V.; Martyny, J.W.; Mroz, M.M.; Silveira, L.J.; Strand, M.; Fingerlin, T.E.; Sato, H.; Newman, L.S.; Maier, L.A. (2011b) American Journal of Respiratory and Critical Care Medicine, 183, 1680-1688

5.6.3 Summary and discussion of repeated dose toxicity

The evidence on target organ toxicity through repeated exposure to beryllium was obtained from animal testing and epidemiological data. No repeated dose animal studies on inhalation exposure to beryllium metal exist. Instead the single dose studies in Table 21were assessed with regard to the delayed adverse effects on the respiratory tract after a recovery period of several days to one year. None of the animal tests was carried out in accordance with EU Regulation (EC) No 440/2008 or current OECD guidelines for the testing of chemicals. However, by means of a weight of evidence approach the information provided in the registration dossiers is sufficient to conclude that beryllium metal produces significant toxicity following exposure through inhalation. Due to the persistence of beryllium in the lung following a single inhalation exposure, long term exposure through persistent lung burden following the acute exposure event is evident.

Repeated chronic exposure is assumed to result in persistent lung lesions that are expected to be more severe, more extended compared to the chronic lesions following single exposures and which may occur in a shorter latency period.

Human data demonstrated that the incidence of chronic beryllium disease (CBD) can reliably be attributed to prolonged occupational exposure to any form of beryllium (ATSDR 2002, WHO 2001, EPA 1998, MAK 2003, Welch 2012). Overall, assumption of an **LOAEC for chronic beryllium disease of 0.2 \mug/m³ as time weighted average derived from human exposure seems to be justified due to consistency of the effect levels throughout the studies in Table 23.**

Based on the evidence from single dose animal studies it must be expected that a single inhalation exposure may also have the potential to cause CBD in humans.

Beryllium is classified as STOT RE 1, H372: "Causes damage to organs through prolonged or repeated exposure." According to Annex VI, Part 3, Table 3.1 (list of harmonised classification and labelling of hazardous substances) of Regulation (EC) No 1272/2008 and as T, R48/23: "Toxic: danger of serious damage to health by prolonged exposure through inhalation." according to Annex VI, Part 3, Table 3.2 (list of harmonised classification and labelling of hazardous substances from Annex I to Directive 67/548/EEC) of Regulation (EC) No 1272/2008.

5.7 Mutagenicity

5.7.1 Non-human information

5.7.1.1 In vitro data

Method/	Test system	Concentrations	Results		Remarks	Reference
Guideline	(Organism,	tested (give range)	+ S9	- S 9	give information	
	strain)				on cytotoxicity and other	
UDS test according to OECD TG 482 (Genetic Toxicology: DNA Damage and Repair, Unscheduled DNA Synthesis in Mammalian Cells In Vitro), GLP	Primary Hepatocytes of Male Wistar Rats	0, 50 % or 100 % ^a of Be metal extract in 2 ml cell culture medium (0.409 to 0.653 μ g/l) with metabolic activation by cell line, positive control: 2-acetyl-	negative		Key study no cytotoxicity, the repair of pre- existing DNA damage induced by the positive control is decreased with 100 % Be extract	TL2, unpublished record 2010
		aminofluorene			100 /0 De extract	
Gene Mutation Assay in Chinese Hamster V79 Cells to OECD TG 476 (In vitro Mammalian Cell Gene Mutation Test), GLP	Chinese hamster lung fibroblasts (V79) HPRT locus	6.3, 12.5, 25, 50, 75, 100 % ^b (95 % with S9 mix) Be metal powder extract in MEM (3.120, 4.477, 14.02 μg/L)	nega- tive	nega- tive	Key study no cytotoxicity, but tested up to precipitating concentrations	TL2, unpublished record 2009a
Cell Transformation Assay (SHE Assay) according to EU Method B.21 (In Vitro Mammalian	Syrian hamster embryonic cells (SHE cells)	25 % to 100 % ^c of Be metal powder extract in cell culture medium with metabolic	positive (increase in number of transformed SHE colonies)		Key study no cytotoxicity, but tested up to precipitating concentrations	TL2, unpublished record 2009b

 Table 24: Overview of experimental in vitro genotoxicity studies according to registration dossier

Method/	Test system	Concentrations	Results		Remarks	Reference	
Guideline	(Organism, strain)	tested (give range)	+ 89	- 89	give information on cytotoxicity and other		
Cell Transformation Test), GLP		activation by SHE cells					
Chromosome Aberration Test according to OECD TG 473 (In vitro Mammalian Chromosome Aberration Test), GLP	Human Lympho- cytes from 2 healthy female donors	3.1, 6.3, 12.5, 25, 37.5, 50, 75, 100 % ^d (95 % with S9 mix) Be metal powder extract in cell culture medium (3.258, 20.27 ug/ml with fetal calf serum, 20.83, 4.434 ug/ml without fetal calf serum)	nega- tive	nega- tive	Key study no cytotoxicity, but tested up to precipitating concentrations	TL2, unpublished record 2009c	
S. typhimurium and E. Coli Reverse Mutation Assay according to OECD TG 471 (Bacterial Reverse Mutation Assay), GLP	S. typhi- murium TA 1535, TA 1537, TA 98, TA 100 E. Coli WP2 uvrA	2.5, 10, 20, 40, 60, 80, 100 % ^e Be metal powder extract in 0.9 % saline (72 h, 37 °C)	nega- tive	nega- tive	Key study no cytotoxicity, but tested up to limit concentrations	TL2, unpublished record 2009d	

Information available from Strupp 2011:

a) Analytical concentration in the 100% extract: 61 μ g beryllium per liter = 6.8 μ mol l⁻¹ (not determined in the main experiment, but in a range-finding experiment).

b) Analytical concentration in the 100% extract: 4 μ g beryllium per liter = 0.4 μ mol l⁻¹.

c) Analytical concentration in the 100% extract: 22.95 μ g beryllium per liter = 2.5 μ mol 1⁻¹.

d) Analytical concentration in the 100% extract: 21 μ g beryllium per liter = 2.3 μ mol 1⁻¹.

e) Analytical concentration in the 100% extract: 734 µg beryllium per liter = 81 µmol 1^{-1} .

5.7.1.2 In vivo data

This information is not available from the registration dossiers.

5.7.2 Human information

This information is not available from the registration dossiers.

5.7.3 Summary and discussion of mutagenicity

The data on the genotoxic potential of beryllium were obtained from in vitro testing. All of the five tests were carried out in accordance with EU Regulation (EC) No 440/2008 or current OECD guidelines for the testing of chemicals. Beryllium has the ability to induce morphological transformations in cultured mammalian cells (TL2, unpublished record 2009b) and exerts effects on the repair of pre-existing DNA damage (TL2, unpublished record 2010). These results are not supported by results obtained in tests for mutagenicity which are generally of higher significance (ECHA 2013b). Beryllium metal powder shows no genotoxicity regarding DNA damage, cytogenicity and gene mutation in Ames, HPRT, chromosome aberration or UDS test. Bacterial mutagenesis assays are frequently negative due to limited capacity for uptake of metal ions (ECHA 2013b). In mammalian cells secondary mechanisms instead of direct genotoxicity seem to be the processes underlying beryllium-induced indirect effects related to genotoxicity (IARC 2012). By

means of a weight of evidence approach it can be concluded from the available *in vitro* data that beryllium metal is unlikely to be able to induce heritable mutations in the germ cells of humans.

Data available for germ cell mutagenicity are conclusive but not sufficient for classification according to Regulation (EC) No. 1272/2008 and Directive 67/548/EEC.

5.8 Carcinogenicity

5.8.1 Non-human information

5.8.1.1 Carcinogenicity: oral

This information is not available from the registration dossiers.

5.8.1.2 Carcinogenicity: inhalation

Title/Method/ Guideline	Route of	Species, Strain,	Dose levels,	Results Main effects/	Remarks	Reference		
Guideline	exposure, duration	Strain, Sex,	if	Target				
	uuration	No/ group	available	organs/				
		100 group	available	Tumours				
Blastomogenic	single and	Rat	Dose-	lung cancer	Supporting	Litvinov N.N.,		
Activities of	chronic	albino	effect	induced (no	study	Kazenashev V.F.,		
various Beryllium	inhalation of	mongrel	depen-	more details	Publication	Bugryshev P.F.,		
compounds no	metallic	_	dence is	available)	in Russian,	1983, Eksp. Onkol.,		
guideline	beryllium		esta-		short	5 (4): 23-26		
followed, non-	-		blished		summary			
GLP					only			
Comparative	Single, nose-	Mouse	Be lung	Both strains:	Supporting	Nikula K.J., Finch		
Pulmonary	only	6-8 w old	burden:	↓ survival	study	G.L. Hoover M.D.		
Carcinogenicity	inhalation of	A/J,	A/J 47µg	A/J:	Be metal	Belinsky S.A.;		
of Beryllium	Be metal	C3H/HeJ	(3.0 µg/g	↑ incidence of	Clearance	Abstracts of the 34 th		
no guideline	sacrifices 11	206 each	bw)	lung neoplasia	half-times	Annual Meeting		
followed, non-	to 22 months	strain	C3H/HeJ	(not typified)	A/J: 97 d	(SOT) Vol 15, No 1,		
GLP		controls, 50	63 µg (3.4	A/J more	C3H/HeJ:	Abstr. 252, March		
		each strain	µg/g bw)	sensitive	108 d	1995		
Alterations in the	Induced	Rat	beryllium	No conclusive	Supporting	Belinsky S.A.,		
K-ras and p53	pulmonary		metal	evidence of	study,	Swafford D.S.,		
Genes in Rat lung	adeno-			involvement of	Mechanistic	Finch G.L., Mitchell		
tumours	carcinomas,			K-ras (activa-	study with	C.E., Kelly G., Hahn		
no guideline	squamous			tion low inci-	little	F.F., Anderson		
followed, non-	cell			dence of $2/24$)	experimen-	M.W. Nikula K.J.,		
GLP	carcinomas			or p53 genes	tal detail	Environ Health		
	by beryllium			in Be lung car-		Perspect 105 (Suppl		
	metal			cinogenicity		4): 901-906 (1997)		
Lung	Single, nose-	Rat	lung	incidence of	Supporting	Finch G.L, F.F.		
Carcinogenicity	only aerosol	Fischer	burdens	lung tumours:	study	Hahn, W.C. Griffith,		
from Inhaled	inhalation	344/N	0, 33, 84,	2, 62, 89, 89 %	Abstract	M.D. Hoover, W.W.		
Beryllium (Be)	observation	total no.	420 µg/rat	(M)	only	Carlton, A.H. Rebar,		
Metal, no	period at	936		0, 83, 96, 100	metallic	J.A. Mewhinney,		
guideline	least 365 d			% (F)	beryllium,	R.G. Cuddihy;		
followed, non-				adeno-, squa-	MMAD 1.4	Toxicologist, Vol.		
GLP				mous cell	μm, GSD	14, No 1, p 264,		
				carcinomas	1.9	March 1994		
Comparative	Single, nose-	Rat	lung	Substantial	Supporting	Finch G.L., Hoover		

	• • • • •	• • •,	1. /	• • • • • •
Table 25: Overview of e	experimental studie	s on carcinogenicity	v according to	registration dossier
	mportitionital staate	s on caremogemen.	j uccoranis to	

Title/Method/ Guideline	Route of exposure, duration	Species, Strain, Sex, No/ group	Dose levels, if available	Results Main effects/ Target organs/ Tumours	Remarks	Reference
Pulmonary Responses to Inhaled Be Metal in Rats versus Mice, no guideline followed, non- GLP	only inhalation of Be metal, lifespan observation period	Fischer 344/N Mouse A/J, C3H/HeJ	burdens: 0.2 - 450 $\mu g/g \ lung$ in rats 1 - 300 $\mu g/g \ lung$ in mice	neoplastic response at 17 µg Be/g rat lung, minimal at 300 µg Be/g A/J lung	study Abstract only type, location, incidence of neoplasia not reported	M.D., Nikula K.J., Belinsky S.A., Haley P.J. Hahn F.F., Abstracts of the VII International Congress of Toxicology, 7(1): 20-P-11, (July 1995)
Carcinogenic Responses to Inhaled Metallic Beryllium, equivalent or similar to other guideline: US NTP program, non-GLP	single nose- only aerosol inhalation 112 min, 3 daily exposures of 139 mins, lifespan observation	Mouse hetero- zygous TSG-p53 knockout mice (+/-) and (+/+) wildtype littermates (15 M/F)	Initial lung burdens: 12 +/- 4 µg, 54 +/-6 µg	Pulmonary neoplasms (mostly squamous cell carcinomas) in 4/28 (14 %) p53+/- mice 19 months post exposure at high dose	weight of evidence Metallic Beryllium MMAD 1.4µm	Finch G.L., March T.H., Hahn F.F., Barr E.B., Belinsky S.A., Hoover M.D. Lechner J.F. Nikula K. J. Hobbs C.H., Toxicologic Pathology, 26(4):484-491 (1998)
Dose-Response Relationships, no guideline followed, non- GLP	single nose- only aerosol inhalation (10.5- 90 min), follow up 350 d	Mouse 11 w old C3H 34 F	0, 1.7, 2.6, 12, 34 μg Be/ mouse	No tumours reported (observation time maybe to short)	Weight of evidence Be metal Reference due to long observation period	G.L. Finch, K.J. Nikula, M.D. Hoover; Toxicological Sciences 42, 36-48 (1998)
Carcinogenicity of Beryllium Hydroxide and Alloys, no guideline followed, non- GLP	Single Intra- tracheal in 0.4 ml saline followed by 0.2 ml saline, up to 19 months	Rat Wistar 35 F	0.5, 2.5 mg Be metal (100 %)	Lung neo- plasms (adeno- carcinomas, adenomas): 0.5 mg 67 % 2.5 mg 100 % 16-19 months	Weight of evidence considered to have some relevance for humans	Groth D.H., Kommineni C., Mackay G.R., Environmental Research 21, 63-84 (1980)
Neoplasia Experimentally Induced by Beryllium Compounds no guideline followed, non- GLP	different routes Variable durations 2 – 40 months, variable post exposure period	mouse, rat, guinea pig, rabbit, dog, pig, monkey no data on sex/strain or number		Adenocarci- noma, epider- moid carcino- ma, mixed carcinoma, pleural meso- thelioma, alveolar cell carcinoma	Supporting study Beryllium Com- pounds percentage of tumour types not given	Schepers G.W., Progr. Exp. Tumor Res. 2:203-244 (1961)
Analysis of K - ras, p53 and c- raf-1 mutations in rat lung tumours no guideline followed, non- GLP	Single, nose- only aerosol inhalation of Be metal 8-48 min, 14 months post exposure period	Rat Fischer 344/N 30 M 30 F	410 (30 min) 500 (8 min) 830 (48 min) 980 (39 min) mg/m ³	64 % lung tumour incidence, adenocarcino- mas, cuboidal or columnar cells growing over fine pa- pillary stroma.	Supporting study gene dys- functions associated with human lung cancer not involved	Nickell-Brady C., Hahn F.F., Finch G.L., Belinsky S.A., Carconogenesis 15 (2):257-262 (1994)
Animal models of Beryllium- induced Lung Disease no guideline	Single inhalation rats surviving <1 year	Rat Fischer 344/N M/F	Mean lung burden of 17 µg Be metal/g rat lung	50 % benign and/or malignant lung tumours	Supporting study overview article	Finch G.L., Hoover M.D., Fletcher F.H., Nikula K.J. Belinsky S.A. Haley P.J. Griffit W.C.,

Title/Method/ Guideline	Route of exposure, duration	Species, Strain, Sex, No/ group	Dose levels, if available	Results Main effects/ Target organs/ Tumours	Remarks	Reference
followed, non- GLP		Mouse A/J, C3H/HeJ	~ 60µg (~ 300µg Be/g A/J lung)	↑ lung tumour incidence and multiplicity in strain A/J mice		Environ Health Perspect 104 (Suppl 5) 973-979 (1996)

5.8.1.3 Carcinogenicity: dermal

This information is not available from the registration dossiers.

5.8.2 Human information

Method/	Route of	Species,	Results	Remarks	Reference
Guideline	exposure,	Sex,	Main effects/		
	duration	No	Target organs/		
1 .	D 11' C	11	Tumours	0 1	
cohort	Beryllium Case	Human,	Excess lung	Supporting study	Infante P.F., J.K.
study	Registry July	white,	cancer risk in	Small number of cases	Wagoner, N.L. Sprince,
(retro-	1952 – December	≥ 15 a	persons with	short follow up times	Environmental
spective)	1975	421 M	previous acute	for workers enrolling	Research 21, 35-43
			beryllium disease	later in the Registry	(1980)
cohort	working in	Human,	\uparrow (lung) tumour	Supporting study	Mancuso T.F and A.A.
mortality	beryllium plants	white,	incidence, no	lack of Standard	El Attar, Journal of
study	1937 – 1948,	15 – 65 a	conclusion of Be	Mortality Ratios and	Occupational Medicine
(retro-	follow up to 1966	3685 M	effects can be	consideration of	11, (8), 422 – 434
spective)			drawn due to	confounding factors	(1969)
			limitations	No exposure data	
cohort	Beryllium Case	Human,	↑ risk for	Supporting study	Steenland K. and Ward
mortality	Registry July	≥ 15 a	pneumoconiosis*	exposure not further	E., J Natl Cancer Inst
study	1952 – 1988	689 M/F	and lung cancer	specified except for	83, 1380-1385, 1991
(retro-				having worked in	
spective)				beryllium industry	
cohort	Facility workers	Human	causal	Supporting study	Levy P.S., Roth H.D.,
study	of 7 US Be plants	16 – 65 a	association of	weakness of the	Hwang P.M.T. Powers
(retro-	1940 – 1969,	9225 M	lung cancer and	exposure side: no	T.E., Inhalation
spective)	follow up to 1988		beryllium	measurements, only	Toxicology, 14: 1003-
			exposure not	crude estimates	1015, 2002
			compatible		
cohort-	Workplace	Human,	association	Supporting study	Deubner D.C., Roth
nested	exposure of Be	3569 M/F	between lung	Partial re-assessment	H.D. Levy P.H, J
case-	workers 1940 –		cancer and Be	of a very complex	Occup Environ Med.
control	1970, follow up		exposure not	study design	2007; 49: 953-959
study	to 1988		valid	(Sanderson 2001)	
case	Workplace	Human,	association	Supporting study	Levy P.S. Roth H.D.
control	exposure of Be	15 – 65 a	between (high)	Re-examination of	Deubner D.C. J Occup
study	workers 1940 –	3569 M	exposure to Be	Findings From a	Environ Med. 2007;
(retro-	1969, follow up	142 cases	products and lung	Nested Case-Control	49:96-101
spective)	to 1988	710 controls	cancer	Study (Ward 1992)	
			challenged		
Nested	Workplace	Human,	↑ lung cancer	Supporting study	Sanderson W. T., Ward
case	exposure of Be	15 – 65 a	among workers	Significant findings	E.M., Steenland K. and

Table 26: Overview of data on carcinogenicity according to registration dossier

Method/ Guideline	Route of exposure, duration	Species, Sex, No	Results Main effects/ Target organs/ Tumours	Remarks	Reference
control study (retro- spective)	workers 1940 – 1969, follow up to 1988 and follow up from 1988 to 1992	3569 M 142 cases 710 controls	with higher lagged beryllium exposures	mainly based on log transformed exposure data and artificial exposure lagging over 10/20 a (Ward 1992)	Petersen M.R., Am. J. Ind. Med. 39:133-144 2001
cohort study (retro- spective)	working in beryllium plants Employment 1937-48, follow up to 1967	Human, white, 15 – 65 a 3685 M	Prior chemical respiratory illness seems to increase the subsequent development of lung cancer	Supporting study lack of Standard Mortality Ratios and consideration of confounding factors No exposure data	Mancuso T.F., Environmental Research 3, 251-275 (1970)
cohort study (retro- spective)	working in beryllium plants January 1942 – September 1968 employment, follow up to 1976	Human, white, ≥ 15 a 3055 M	statistically significant increase in neoplastic and non-neoplastic lung disease and heart disease	Supporting study duration of tenure (surrogate for exposure) not correlated to incidence and unclear exposure patterns	Wagoner J.K., P.F. Infante and D.L. Bayliss, Environmental Research 21, 15-34 (1980)
cohort study (retro- spective)	working in beryllium plants 1937 – 1948, follow up 1976	Human, white, ≥ 15 a 3685 M	In Be workforce the incidence of cancer was overall increased	Supporting study no correlation to the duration of employment	Mancuso T.F., Environmental Research 21, 48-55, (1980)
cohort study (retro- spective)	Facility workers of 7 US Be plants 1940 – 1969, follow up to December 1988	Human, 16 – 65 a 9225 M	↑ lung cancer among workers with a history of (primarily) acute beryllium disease	weight of evidence Little exposure data lung cancer due to high exposure not substantiated	Ward E., Okun A., Ruder A., Fingerhut M., and Steenland K., American Journal of Industrial Medicine 22:885-904 (1992)
clinical case study	unintentional, occupational Inhalation of Be containing dusts from sharpening tools (max 2 % Be) for 0.5 h/w 1970 to 1988	Human , 60 – 70 a 1 M	Lung tumour: adenocarcinoma, Stadium IV three years after his retirement	Supporting study Information on a single patient, only diagnoses and exposure estimates Other potential noxes: Asbestos, Smoking	Kampen V. van, J.Buenger, R. Merget, Bruening T., BGFA- Info 02/08, 6 – 9, (2008) Forschungsinstitut für Arbeitsmedizin der Deutschen Gesetzlichen Unfallversicherung

* defined as chronic granulomatous lung disease

Table 27: Overview of data on carcinogenicity according to original publications (not in	
registration dossiers)	

Method/ Guideline	Route of exposure, duration	Species, Sex, No	Results Main effects/ Target organs/ Tumours	Remarks	Reference	
Nested	Workplace	Human,	Average	weight of evidence	Schubauer-Berigan,	
case	exposure of	15 – 65 a	beryllium	reanalysis of data from a	M.K.; Deddens, J.A.;	
control	Be workers	3569 M	exposure was	published case-control	Steenland, K.;	
study	1940 – 1969,	142 cases	related to lung	study of workers at a	Sanderson, W.T.;	
(retro-	follow up to	710 controls	cancer risk after	beryllium processing	Petersen, M.R. (2008)	
spective)	1992		adjustment for	facility (Sanderson 2001)	Occup Environ Med., 65,	
			birth cohort		379-383	
Cohort	Facility	Human,	Association	weight of evidence	Schubauer-Berigan,	
mortality	workers of 7	16 – 65 a	between	follow-up of cause-	M.K.; Couch, J.R.;	

Method/ Guideline	Route of exposure, duration	Species, Sex, No	Results Main effects/ Target organs/ Tumours	Remarks	Reference	
study	US Be plants 1940 – 1970, follow up to 2005	9199 M	maximum annual and cumulative beryllium exposure and lung cancer	specific mortality in workers of 7 plants (3 with quantitative Be exposure estimates) (Ward 1992)	Petersen, M.R.; Carreon, T.; Jin, Y.; Deddens, J.A. (2011) Occup Environ Med., 68, 345-353	

5.8.3 Summary and discussion of carcinogenicity

The data on carcinogenicity of beryllium were obtained from animal testing and epidemiological studies. None of the tests on carcinogenicity was carried out in accordance with EU Regulation (EC) No 440/2008 or current OECD guidelines for the testing of chemicals. However, by means of a weight of evidence approach the available information is sufficient to support the conclusion that beryllium is likely to be a human carcinogen. Lung cancer occurred in rats and mice following single inhalation exposure of beryllium metal. Single intratracheal instillation of beryllium metal in rats induced lung tumours (Table 25). The available animal data are not suitable for risk quantification.

Epidemiologic studies have reported increases in lung-cancer risk in two worker cohorts exposed to beryllium. Due to co-exposure of beryllium metal and beryllium compounds at the workplace differentiation between elemental and other forms of beryllium is not possible (Table 27). Although beryllium exposure remains a plausible explanation for the increased lung cancer mortality experienced by these workers, alternative explanations cannot be excluded (Boffetta 2012). A meaningful cancer dose-response assessment cannot be conducted until more information is available on existing or new worker cohorts including complete work history, possible exposure to other carcinogens, and better exposure histories (McCleskey 2009).

Beryllium is classified as Carc. 1B, H350i:"May cause cancer by inhalation." according to Annex VI, Part 3, Table 3.1 (list of harmonised classification and labelling of hazardous substances) of Regulation (EC) No 1272/2008 as a minimum classification and as Carc. Cat. 2, R49: "May cause cancer by inhalation." according to Annex VI, Part 3, Table 3.2 (list of harmonised classification and labelling of hazardous substances from Annex I to Directive 67/548/EEC) of Regulation (EC) No 1272/2008. The eMSCA considers this classification as justified.

5.9 Toxicity for reproduction

5.9.1 Effects on fertility

5.9.1.1 Non-human information

This information is not available from the registration dossiers.

5.9.1.2 Human information

This information is not available from the registration dossiers.

5.9.2 Developmental toxicity

5.9.2.1 Non-human information

This information is not available from the registration dossiers.

5.9.2.2 Human information

This information is not available from the registration dossiers.

5.9.3 Summary and discussion of reproductive toxicity

There are only limited data available regarding the reproductive and developmental toxicity of **beryllium compounds** in animals by routes of exposure that are relevant to humans. No animal experiments of the reproductive or developmental toxicity of inhaled beryllium are available (WHO 2001). Many of the animal studies may have been conducted at doses that result in maternal toxicity (Welch 2012).

Based on the available data a conclusion on the classification of beryllium for reproductive toxicity according to Regulation (EC) No. 1272/2008 and Directive 67/548/EEC is not possible. Beryllium is a known carcinogen (classified as Carc. 1B, H350i). A classification to possible reproductive effects would not change risk management measures for a substance already classified as Carc. 1B, thus the eMSCA is currently not planning to request further information for this endpoint.

5.10 Endocrine disrupting properties

This information is not available from the registration dossiers.

5.11 Other effects

5.11.1 Non-human information

5.11.1.1 Neurotoxicity

This information is not available from the registration dossiers.

5.11.1.2 Immunotoxicity

Method/	Route of	Species	Dose levels	Results	Remark	Reference
Guideline	exposure			Main effects	s	
	Duration					
Pulmonary	intratracheal	Monkey	1, 50, 150 µg	↑ No. of lung	Sup-	Haley P.J. K.F.
Toxicity of	instillation	Cyno-	Be metal:	lymphocytes, >	porting	Pavia, D.S.
Beryllium	1 ml in	mologus	MMAD 1.4	50 µg: granuloma	study	Swafford, D.R.
Metal and	anaesthetized	(Macaca	μm, GSD	formation and		Davila, M.D.
Beryllium	monkey via	fascicularis)	1.4,	marked Type II		Hoover, G.L.
Oxyde, no	lung catheter		suspended	cell (pneumo-		Finch,
guideline	in deep part		and diluted	cytes) hyperplasia		Immunopharmacol
followed, non-	of specified		in 1 ml of	and variable		ogy and Immuno-
GLP	lobe		saline	lymphocyte		toxicology, 16(4),

Table 28: Overview of experimental studies on immunotoxicity according to registration dossier

Method/ Guideline	Route of exposure Duration	Species	Dose levels	Results Main effects	Remark s	Reference
			(vehicle: water)	infiltration		627 – 644 (1994)
Immuno- toxicity of Be Metal and Beryllium Oxide in Cynomolgus Monkeys	as above	as above	as above	as above	Sup- porting study Sum- mary only	Haley P.J., G.L. Finch, D. Davilla, M.D. Hoover, The Toxicologist, Vol 12, (1) 31 st meeting, February 1992

5.11.1.3 Specific investigations: other studies

Table 29: Experimental in vitro cytotoxicity study according to registration dossier

Method/	Test system	Concentrations	Results	Remarks	Reference
Guideline	(Organism,	tested			
	strain)				
Cytotoxicity Assay In vitro:	mouse cell	2.05 g extracted	No cytotoxic	Supporting	TL3, unpublished
Evaluation of Bioavaila-	line L929	for 24 h at 37 \pm	effects were	study	record 2008
bility (XTT-Test) according		1.5 °C in 20.5	observed	Beryllium	
to Guideline ISO 10993:		ml phosphate	following	Metal	
"Biological Evaluation of		buffer (pH 4.5),	incubation	Powder	
Medical Devices" Part 5:		supplemented	with an extract		
"Tests for cytotoxicity: In		with 10 % (v/v)	of Be Metal		
vitro methods", Chapter		FCS	Powder up to		
8.2.: "Tests on extracts",		3, 10, 30, 100 %	the highest		
1999 and Part 12: "Sample		of the extract	tested		
preparation and reference			concentration.		
materials", 2002, GLP					

5.11.2 Human information

This information is not available from the registration dossiers.

5.11.3 Summary and discussion of specific investigations

The data for immunotoxicity of beryllium were obtained from animal testing. A study published as abstract and peer-reviewed article was intended to cover the endpoint immunotoxicity. The observed lung effects are consistent with those seen in man and rodents. However, the significance of the observed beryllium specific immune response for human safety evaluation is not clear with regard to the dose-response-relationship, as the exposure route is not relevant for humans and the results have not been confirmed in inhalation experiments in monkeys (chapter 5.5.3).

5.12 Combined effects

This information is not available from the registration dossiers.

5.13 Derivation of DNEL(s) / DMEL(s)

The process of DNEL/DMEL derivation is outlined in Section R.8.4 of the REACH Guidance (ECHA, 2012). According to this guideline, a DNEL for the leading health effect needs to be derived for every relevant human population and every relevant route, duration and frequency of exposure, if feasible.

For carcinogenic substances, two types of effect levels can be established: derived no effect level (DNEL) for carcinogens with a threshold and derived minimal effect level (DMEL) for carcinogens without a threshold. If it is not possible to identify a DNEL/DMEL, this shall be clearly stated and fully justified.

According to REACH, the derivation of a DNEL/DMEL is required only for substances that are classified and registered in quantities of ≥ 10 tonnes per year. Since all current beryllium registrations are for marketed quantities of less than 10 t/a, no Chemical Safety Reports and DNEL/DMEL calculations are provided within the registration dossiers. Nevertheless, for quantitative risk assessment a guidance value (i.e., OEL, DNEL/DMEL etc.) is needed in order to assess the available exposure data. Thus, DNEL/DMEL values for beryllium were calculated by the eMSCA according to the REACH provisions despite its low marketed tonnage.

5.13.1 Overview of typical dose descriptors for all endpoints

No dose-descriptors are available from the registration dossiers. The dose-descriptors have therefore been gathered from available and relevant epidemiological data published in the open literature. Out of this database together with the information published in reviews of international bodies/regulatory programs (ATSDR 2002, WHO 2001, EPA 1998, MAK 2003) suitable studies and typical dose descriptors for derivation of DNEL values are selected.

A review of all available dose descriptors per each toxicity endpoint indicates that the major concern associated with acute and chronic exposures to beryllium is lung cancer and chronic beryllium disease.

Endpoint carcinogenicity

Available animal studies show severe limitations (i.e., single dose treatment, short duration, limited animal numbers etc.) that do not allow the quantitative interpretation of their results (Section 5.8.3).

Several epidemiologic studies investigate the relationship between occupational exposures to beryllium and development of lung cancer in exposed workers (reviewed in Table 26 and Table 27). The most of them are seriously questioned by industry and scientific community (i.e., Boffetta et al., 2012), and are not considered as a reliable basis for cancer risk quantification. Major criticism is focused on the high uncertainties associated with exposure assessment and selection of the most appropriate exposure metrics (e.g. role of particle size and surface area concentrations, peak versus cumulative exposures, breathing zone concentrations), the handling of confounding factors such as smoking and health status, and the lack of plausible MOA for lung cancer development that can be reliably tested in an animal model.

Overall, the available animal and human studies are considered not suitable for evaluation of the dose response for lung cancer development and thus they cannot provide a reliable starting point for quantitative risk assessment.

Endpoint chronic beryllium disease

This is the most prominent effect observed at the lowest exposure levels in epidemiological studies. The three studies which were used for derivation of the long-term systemic DNELs are summarized below. An **LOAEC for chronic beryllium disease of 0.2 \mug/m³ as time weighted average is obtained from human exposure in all three studies.**

Endpoint	Study used	Dose descriptor	Remarks on study [*]
Repeated dose toxicity: sub-acute / sub-chronic / chronic	A population-based cross- sectional health survey in a small collective of workers daily exposed to airborne beryllium full-shift or 8 hours (Schuler 2005)		Historical airborne beryllium measurements (personal full-shift samples) indicated that beryllium sensitization and chronic beryllium disease were associated with an area in which beryllium air levels exceeded $0.2 \ \mu g/m^3$, and not with areas where this level was rarely exceeded.
Repeated dose toxicity: sub-acute / sub-chronic / chronic	Exposure response analysis for beryllium- sensitized or CBD diagnosed workers exposed to airborne beryllium over an 8-hour workday not routinely using respiratory protection (Madl 2007)	LOAEC: 0.2 µg/m ³ beryllium air levels	Historical airborne beryllium measurements (personal 8 h samples) showed that beryllium-sensitized workers and workers diagnosed with chronic beryllium disease were exposed to beryllium concentrations greater than 0.2 μ g/m ³ (95th percentile), and 90 % were exposed to beryllium concentrations greater than 0.4 μ g/m ³ (95th percentile) within given year of there working history.
Repeated dose toxicity: sub-acute / sub-chronic / chronic	Exposure response relations for beryllium sensitization and CBD among short-term workers exposed to airborne beryllium over an 8-hour workday (Schuler 2012)		Historical personal exposure estimates of average, cumulative, and highest-job-worked exposure for airborne total, respirable, and submicron mass concentration beryllium (8 h full-shift personal samples) for the entire duration of onsite work history of six years or less indicated that chronic beryllium disease was associated with cumulative exposure.

Table 30: Overview of studies and dose descriptors per endpoint used for DNEL derivation

* It has to be noted that U.S. workplace dust sampling methods that measure "total dust" are different to European dust sampling methods measuring "inhalable dust". According to Getschman (2013) it is difficult to compare the measurement results of these sampling methods.

5.13.2 Selection of the critical DNEL(s)/DMEL(s) and/or qualitative/semiquantitative descriptor for critical health effects

Beryllium metal is not produced in Europe but it is imported for use in a range of industries such as aerospace, automotive, energy, medicine, defence and electronics. Considering its physicochemical properties and industrial use, exposures to beryllium in the workplaces occur primarily via the inhalation route.

Lung cancer and beryllium sensitization (BeS) with subsequent development of chronic beryllium disease (CBD) are considered the critical health effects associated with occupational exposure to beryllium and its compounds. Consequently, two types of effect levels are required to control exposure at the workplace: (1) a health-based long-term systemic DNEL (inhalation) for protection of CBD development, and (2) a risk-based DMEL for assessment of the cancer risks associated with beryllium exposure. As discussed earlier (chapter 5.8.3), the available animal studies and epidemiologic data do not provide a reliable base for DMEL calculation. Therefore, cancer risks associated with occupational exposure to beryllium cannot be quantitatively assessed within this

evaluation. With respect to the risks of developing a CBD, a long-term systemic DNEL for inhalation was calculated according to the provisions of the REACH Guidance and compared with the exposure data.

It should be noted that CBD is still a significant occupational problem. In Germany, CBD is recognized as an occupational disease and is listed under Nr. 1110 in Annex 1 of the Occupational Diseases Ordinance (BKV, 2009). The recognized cases of CBD over the last few years have remained quite steady at 2-3 new cases per year (BMAS/BAuA, 2013; Reports are available for download at <u>www.baua.de/suga</u>).

Endpoint carcinogenicity

The carcinogenic properties of beryllium and its compound have been subject to evaluation by, several national authorities and regulatory agencies. These are briefly reviewed for information purposes.

In Germany, beryllium and its inorganic compounds have been classified as carcinogenic Category 1 (Substances which cause cancer and make a considerable contribution to the risk of cancer) (DFG 2013). As for the majority of carcinogenic substances, no health-based workplace exposure limit for beryllium could be established at this point. For carcinogens without a threshold, the concept of risk-based limit values developed by the Committee on Hazardous Substances (AGS) is currently applied (Announcement 910, published in 2008 and still in a testing phase: http://www.baua.de/en/Topics-from-A-to-Z/Hazardous-Substances/TRGS/Announcement-910.html). These risk-based values should be considered when performing a risk assessment, however they are not legally binding yet (legal basis expected for 2015). At present, the AGS is working on the development of an exposure-risk relationship for beryllium.

Outside the EU, the US EPA (1998) has classified beryllium as a Group B1, probable human carcinogen, and derived an inhalation Unit Risk estimate of 0.0024 per μ g/m³. This value is the geometric mean of eight estimates ranging from 0.00016 to 0.0072 per μ g/m³. Base for the calculation are dose-response data from an occupational study by Wagoner et al. (1980) and exposure estimates from industrial hygiene reviews by NIOSH (1972) and Eisenbud and Lisson (1983). After adjustments for differences in smoking habits and vital statistics, EPA calculated elevated, but not statistically significant, SMR of 1.36 to 1.44. For Unit Risk calculations, two median exposure levels of 100 and 1000 μ g/m³ and relative risks of 1.98 and 2.09 were used as the 95% upper-bound estimate of the above risk figures.

The study by Wagoner et al. (1980) has been criticized for underestimating the expected lung cancer rates, for not adjusting for latency or smoking status, and for including workers who never worked at the plant (EPA 1998). Further, no quantification of individual worker exposures was available or attempted in this study, and duration of employment was used as a surrogate measure. Beryllium assessment is currently under review and the latest draft can be found at the IRIS website.

NRC (2008) (http://www.nap.edu/catalog.php?record_id=12464) considered the available human and animal data on beryllium exposure inadequate for a meaningful dose-response assessment and cancer risk calculations. The authors suggested that additional information is necessary regarding the most relevant dose metrics (e.g. peak or cumulative exposure) and the mode of action for tumour induction, influence of beryllium physicochemical characteristics, potential co-exposure to other lung carcinogens at the workplace, and identification of an animal model representing most closely cancer development in humans.

Endpoint chronic beryllium disease

Guidance values for OEL for beryllium and its compounds have been developed by several national authorities and regulatory agencies.

The American Conference of Governmental Industrial Hygienist (ACGIH) adopted recently a threshold limit value time-weighted average (TLV-TWA) of 0.05 μ g/m³ based on prevention of BeS and CBD (ACGIH, 2009). Development of this standard was based on studies by Kelleher et al. (2001) and Madl et al. (2007) indicating that incidences of BeS and disease development are very low at this level. Specifically, a total of 27 beryllium-sensitized and CBD workers have been identified that included 9 cases with BeS, 16 cases with subclinical CBD, and 2 cases with CBD (Madl et al., 2007). From the 27 cases, 10 individuals had lifetime weighted (LTW) average exposures of less than 0.2 μ g/m³ while the rest (17 workers) had exposures above 0.2 μ g/m³. For three of the cases LTW was between 0.05 and 0.1 μ g/m³, and 7 cases had LTW in the range 0.1 to 0.2 μ g/m³. ACGIH points out that this TLW-TWA is based on long-term average concentrations, and peak exposures may also play an important role for BeS.

Within this evaluation, the LOAEC of 200 ng/m³ identified in several epidemiologic studies (chapter 5.13.1) is considered as a starting point for long-term systemic DNEL calculation. Applying a factor of 3 for the use of LOAEC instead of NOAEC as a point of departure (POD), a DNEL of 66 ng/m³ (rounded to 60 ng/m³) is calculated (Table 31). The REACH methodology suggests the use of additional factor of 5 to account for intraspecies variability (especially if data originates from small collectives), however this can be omitted since CBD is observed among already sensitive individuals. No further assessment factors are required for this calculation. The long-term systemic DNEL of 60 ng/m³ should be protective for beryllium sensitization and development of CBD.

Exposure pattern	Route	Descriptor	Value	Remarks
Long-term systemic effect	Inhalation	Relevant dose descriptor for development of chronic beryllium disease	LOAEC: 200 ng/m ³	A time weighted average obtained from epidemiologic studies with occupationally exposed workers
		Modification of the relevant dose descriptor		Not needed since data originate from occupational studies
		Assessment factor (AF)	AF Value	Remarks
		Dose response	3	Extrapolation from LOAEC to NOAEC
		Intraspecies	1	For workers, the default factor of 5 is replaced with 1 since CBD is observed among already sensitive individuals
		Exposure duration	1	Not needed since data originate from occupational studies
		Quality of database	1	
		DNEL	200 / 3 = 66 1	ng/m ³ (rounded to 60 ng/m ³)

Table 31: Overview of information considered during DNEL derivation for workers

5.14 Conclusions of the human health hazard assessment and related classification and labelling

Evaluation of the existing information on the toxicity of beryllium indicated that the legal classification for acute oral toxicity as "Acute Tox. 3*; H301: Toxic if swallowed", for irritation as "Eye Irrit. 2; H319: Causes serious eye irritation" and "Skin Irrit. 2; H315: Causes skin irritation", might have been based on a combined evaluation of beryllium and its compounds.

Following the requirements set down in Annex I of Regulation (EC) No 1272/2008 (CLP) and the data available, beryllium metal does not appear to fulfil the criteria for classification as "Acute Tox. 3*; H301", "Eye Irrit. 2; H319" or "Skin Irrit. 2; H315".

The legal classification of beryllium for acute inhalation toxicity is "Acute Tox. 2*, H330: Fatal if inhaled", meaning that it is a minimum classification following Annex VI 1.2.1 of Regulation (EC) No 1272/2008 (CLP). This (minimum) classification appears to be appropriate as the acute toxicity estimate of 170 mg/m³ is in the category 2 range. Therefore the asterisk can be deleted, when classification and labelling is harmonised.

The legal classification of beryllium for specific target organ toxicity repeated exposure has been translated from classification as "T; R48/23: Toxic: danger of serious damage to health by prolonged exposure through inhalation" under 67/548/EEC (DSD) indicating inhalation as the route of exposure into the corresponding class and category according to Regulation (EC) No 1272/2008 (CLP), but with a general hazard statement not specifying the route of exposure. It is conclusively proven from human data on chronic beryllium disease (CBD) that no other route of exposure can cause the lung damage in accordance to the criteria in Annex I. Therefore the route of exposure should be indicated in the hazard statement as "STOT RE 1; H372: Causes damage to lungs through prolonged or repeated exposure by inhalation."

Based on the extensive data regarding beryllium exposure via inhalation resulting in development of chronic beryllium disease (CBD) sufficient evidence on respiratory sensitisation in humans is available that indicated classification as respiratory sensitizer category 1, H334: "May cause allergy or asthma symptoms or breathing difficulties if inhaled." according to Regulation (EC) No. 1272/2008 (CLP) is appropriate. As such a classification would not change risk management measures for a substance already classified as Carc. 1B, the eMSCA is currently not planning to harmonise classification and labeling for this endpoint.

Beryllium is classified as Carc. 1B, H350i:"May cause cancer by inhalation." according to Annex VI, Part 3, Table 3.1 (list of harmonised classification and labelling of hazardous substances) of Regulation (EC) No 1272/2008 as a minimum classification and as Carc. Cat. 2, R49: "May cause cancer by inhalation." according to Annex VI, Part 3, Table 3.2 (list of harmonised classification and labelling of hazardous substances from Annex I to Directive 67/548/EEC) of Regulation (EC) No 1272/2008. The eMSCA considers this classification as justified.

6 HUMAN HEALTH HAZARD ASSESSMENT OF PHYSICO CHEMICAL PROPERTIES

not assessed.

7 ENVIRONMENTAL HAZARD ASSESSMENT

not assessed

8 PBT AND VPVB ASSESSMENT

not assessed

9 EXPOSURE ASSESSMENT

9.1 Human Health

9.1.1 Exposure assessment for worker

9.1.1.1 Overview of uses and exposure scenarios

Production

Beryllium is not produced in Europe. The needed semi-finished products, like panels and profiles, are imported, mainly from the USA. In 2007, the USA exported 19.6 tons of beryllium into the EU and Switzerland.

World production of beryllium has been reported to be about 200 t/a [ACGIH, 2009] resp. approximately 280 t in 2010 [Beryllium Science and Technology Association, BeST, 2012]. The beryllium market review 2010 [Merchant Research and Consulting Ltd., 2010] assumes that the use of beryllium will grow at a yearly rate of about 2 %. BeST (2012) assumes an annual consumption of 320 t in 2020 and 435 t in 2030.

Beryllium is provided in its metallic form, as copper-alloy, and as beryllium oxide for ceramic parts.

Chemical Safety Reports were not available during substance evaluation. Instead of exposure scenarios with detailed information on uses, registrants provided a tabular list of use descriptors (see

Table 8).

Processing, use, and disposal

For the major part, beryllium is used as a component of **alloys** in a content of less than 2 %

- as master alloy in thermal processes (for production of low concentration alloys), or as
- an additive to prevent oxidation processes in the melt.

Alloys with a beryllium content significantly above 2 % occur in special applications, like

- construction of scientific equipment,
- nuclear technology, and
- aerospace industry.

To a large extent (about 75 %), beryllium containing **articles** are used in electrical and electronic parts, in switches, springs, connectors, etc. Usually, these components are very small and are installed in the final equipment in a way that they cannot be accessed directly.

Beryllium containing **metal scrap** is usually collected by converters and led to metal recycling. **Filter dust** from exhaust installations of metal-using companies that also use beryllium alloys of low beryllium concentrations are disposed off on land-fills.

In summary, it can be stated that because of its various uses, beryllium can be contained in many products.

Table 7 contains a list of industry branches and articles in which beryllium containing parts are used [Darby, A. and Fishwick, D., 2011].

9.1.1.2 Scope and type of exposure

Exposure to beryllium containing **articles** (electrical / electronic parts, etc.) is unlikely as, usually, they are small, non-switched and not directly accessible in the final product, except for **repair and recycling**. Metal scrap and filter residues may expose workers of recycling and maintenance companies.

Concerning the pathway, occupational exposure to beryllium is expected to occur mainly through inhalation of dust (No. of occupational disease (BK-No.) 1110). Skin contact is possible as well. Ingestion as exposure pathway will be neglected according to the assumption that standard occupational hygiene measures are implemented at typical workplaces.

According to Cherrie [Cherrie, J. et al., 2011], 65,971 workers are potentially exposed in the EU to beryllium. Foundries that work with Cu-Be alloy are of particular concern as workers in these foundries may have beryllium exposures exceeding the occupational exposure limit. Cherrie gives an estimate of 1,239 foundry workers.

The American Conference of Governmental Industrial Hygienists [ACGIH 2009] estimated 134,000 workers to be potentially exposed to beryllium in the United States. The production of beryllium is limited to two beryllium mines employing approximately 200 workers. Exposure to beryllium may primarily be expected in

- the production of beryllium, (not relevant for Europe)
- the thermal handling or machining of beryllium products and in
- recycling of beryllium and its alloys (and minerals).

9.1.1.2.1 Monitoring data

French study

In a socioeconomic study for the protection of workers who use beryllium and beryllium compounds [Cherrie, J. et al., 2011], about 65,000 workers in 16 branches of industry are indicated (Table 32). This set of data describes the situation in France in 2009.

Processes with the assumed highest exposures are

- melting,
- pouring, and
- hot work, as well as
- mechanical grinding and machining of beryllium alloys.

Therefore, the industry branch "manufacture of basic metals" (NACE 27) with 1,239 employees belongs to the areas with the highest exposure. A more detailed look at this specific part of the

study on beryllium exposure in the French industry is also given in Table 32 and confirms this statement [Vincent, R. et al., 2009]. In all activity sectors, except NACE 27.52 ("casting of steel") and 27.53 ("casting of light metals"), the median exceeds the ACGIH limit of 0.05 μ g/m³ [ACGIH, 2009]. The highest exposure exists for manufacture of basic metals, casting of other non-ferrous metals, primary copper transformation, casting of steel and manufacture of radio, television and communication equipment and apparatus.

SUBSTANCE EVALUATION REPORT – BERYLLIUM (EC:231-150-7)

			M	Madra		005	Damas		Percentiles	
NACE Code		Ν	Mean	Median	GM	GSD	Range	25 th	75 th	90 th
Code			(µg/m³)	(µg/m³)	(µg/m³)		(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)
24	Manufacture of chemicals and chemical products	2	-	-	-*	-	0.5 - 2.3	-	-	-
26.1	Manufacture of glass and glass products	4	-	-	0.707	_**	0.25 - 1	-	-	-
27	Manufacture of basic metals	159	5.366	0.422	0.494	13.0	0.005 - 95.4	0.06	4.21	16.1
27.42	Aluminium production	32	0.388	0.191	0.147	5.4	0.05 - 2.53	0.05	0.55	0.95
27.44	Copper primary transformation	13	2.532	1.9	0.968	11.0	0.005 - 7	1.17	3.62	5.56
27.52	Casting of steel	53	3.444	0.1	0.238	9.1	0.005 - 51.9	0.05	1.31	7.72
27.53	Casting of light metals	12	0.017	0.015	0.016	1.3	0.01 - 0.03	0.015	0.018	0.023
27.54	Casting of other non-ferrous metals	48	13.023	6.69	5.249	5.0	0.062 - 95.4	2.93	16	29.36
28	Manufacture of fabricated metal products, except machinery and equipment	76	0.185	0.015	0.023	6.8	0.001 - 1.84	0.007	0.11	0.6
32	Manufacture of radio, television and communication equipment and apparatus	29	2.4	0.01	0.036	31.5	0.004 - 19.24	0.004	1.04	10.44
33	Manufacture of medical, precision and optical instruments, watches and clocks	74	0.16	0.03	0.032	7.3	0.001 - 2.23	0.005	0.14	0.5
35	Manufacture of transport equipment other than motor vehicles	14	0.008	0.005	0.007	1.6	0.005 - 0.15	0.005	0.01	0.015

Table 32: Exposure monitoring data from [Cherrie, J., 2011; Vincent, R. et al., 2009]

* Mean, Median, GM and GSD not available ** GSD not available

German Monitoring data (IFA)

The German worker exposure data were provided by the IFA-'Institute for Occupational Safety and Health of the German Social Accident Insurance' (formerly BGIA; German: Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung) in a special report [IFA, 2013].

Data source characteristics

The new data provided by IFA were measured in industry for the years 2000 to 2011. The data are differentiated into

- personal sampling data taken while the individual was carrying out all activities (i.e. active plant work, control room work and break periods) and
- data from stationary sampling in the different workplaces.

The identification and documentation of the following evaluated data from exposures in the workplace are based on the criteria of the MGU [BGIA, 2009] - measuring hazard identification of accident insurance carrier (formerly BGMG). A quality management system which essentially implements the requirements of DIN EN ISO 9001 ensures the standard of MGU. The testing laboratories operated in accordance with DIN EN ISO 17025.

All data collected will be merged into the exposure database MEGA (measurement data to exposure to hazardous substances at work). The MEGA exposure database is maintained and evaluated for the Institutions for Statutory Accident Insurance and Prevention by IFA.

The limit of quantification (LoQ) is given in Table 33.

Method of sampling	personal	sampling	stationary			
Diameter of sampling device [mm]	3	7	70	150		
Flow rate [L/min]	3.5	10	66.67	375		
Period of sampling [h]			2			
LoQ [µg/m³]	0.48	0.17	0.050	0.018		
Sampling system	Total du	st (GSP)	PM4G	Total dust (VC25G)		

Table 33: Determination of the limits of quantification according to EN 13890

If individual measurements are below the limit of quantification (LoQ) of the applied analytical method, half of this value is taken into account within the statistical evaluation. The MEGAPRO software, developed by IFA, allows the statistical analysis of the data of the exposure database MEGA according to different selection criteria and evaluation strategies. As the LoQ is partially higher than the DNEL of $0.060 \ \mu g/m^3$, more sensitive analysis methods will have to be developed.

Criteria for the inclusion of data in the evaluation

- measurements related to exposure
- ➢ sampling duration
- \blacktriangleright exposure time ≥ 6 hours.
- Exclusion of data collectives consisting of loss than 10 measurement
 - consisting of less than 10 measurements or

- data from less than three different German Social Accident Insurances or
- data from less than five different companies².

In order to achieve a better comparability to the DNEL of 0.060 μ g/m³, the MEGA measurement data given in mg/m³ were converted into μ g/m³ by multiplying by the factor of 1000.

Evaluation strategy and selection criteria

The evaluation is made in the form of

- industry (branch groups) and
- activity groups, and further differentiated by the
- sampling strategy (static or on the person) and the
- presence of a LEV (Local Exhaust Ventilation).

A general overview of the branch groups handling beryllium, identified in the German IFA-report, (correlating with the main uses mentioned at the beginning of chapter No. 2, "Manufacture and Uses"), is given in Table 34 below.

Table 34: Branch groups adjusted by according numbers of measurements (IFA 2013, chapter7.1, table 1 and 2, page 9f.

Branch group groups	Number of measurements (sampling >6 h)
Disposal, recycling	116
Building trade	10
Foundry	101
Glas	16
Engine building	14
Metal working	79
Other branch groups	33
Overall result:	369

A deeper analysis of the exposure of workers in the main work area group separated into exposure relevant processes is considered separately in the same way in Table 35.

Lege	Legend of symbols							
*	 Measurement data below quantification limit are considered by half of the quantification limit-value 							
**	=	Data of less than 5 facilities which might possibly be a too small number of sites for characterization of a whole branche						
!	=	Number of measurements below quantification limit is larger than number of positive detections. Therefore, no value is given.						
+	=	the value is <i>below</i> the detecion limit (subject to sampling period, sampling value, etc.)						
LoQ	=	Quantification limit						

Below, in Table 35, for each branch groups, the measurement results for a sampling time of > 6 h are given as 90 %- and 95 %-percentile (enhanced by number of evaluated data, number of

² Management agreement between the German Social Accident Insurances and the German Statutory Accident Insurance for the purpose of data protection.

facilities, number of data below the according detection limit, and the highest detection limit during the measurements).

Data collective No. /	No. of	No. of	Frequenc	y below	Max.	Exposur		e cor	ncentrati	on [µ	Jg/m³]		
branch group	measure-ments	facilities	LoC	Ç	LoQ	ļ	50 %		50 % 90 %		90 %	95 %	
			number	%	[µg/m³]**	value		value		value			
No.7 (no restriction)	369	117	309	83 %	7.6	!	LoQ	+	0.462	+	0.767		
No.13 disposal,	116	31	110	94.8	7.6	!	LoQ	!	LoQ	+	0.19		
recycling													
No.14 construction	10	5	8	80	2.1	!	LoQ	+	1.05		2.52		
No.16 foundry	101	16	68	67.3	2.7	!	LoQ	+	0.697	+	1.05		
No.17 glass	16	3**	13	81.3	1.4	!	LoQ	+	0.98		2.78		
production													
No.19 engineering	14	9	12	85.7	2	!	LoQ	().358	().554		
No.20 metalworking	79	33	70	88.6	2.8	!	LoQ	+	0.18	+	0.228		
No.22 other industries	33	20	28	84.8	0.81	!	LoQ	+	0.375	+	0.512		

Table 35: Statistical analysis con	cerning branch groups	s, sampling > 6 h (IFA 2013, chap.4,	table 1)
------------------------------------	-----------------------	--------------------------------------	----------

All industries mentioned in Table 35, show high exposures to beryllium. But the highest exposure levels have been observed in construction and in foundries (95 % percentile). The high exposure to beryllium in glass production is probably attributable to the use of beryllium oxide. However no information is given on this in the IFA documentation.

In Table 36 below, the branches are subdivided showing the exposure for single activities (sampling time: > 6 h).

Data collective No. / work	No. of	No. of	Frequenc	y below	Max.	Exposu	Exposure concentration [µg/m ³]		ug/m³]	
activity groups	measure-	facilities	Lo	Q	LoQ	50 %		90 %		95 %
	ments		number	%	[µg/m³]**	value	'	value	1	value
No.7 (no restriction)	369	117	309	83.7	7.6	!	+	0.462	+	0.767
No.24 lathe, planing, CNC- machine	23	14	19	82.6	4	!	+	0.124	+	0.143
No.23 recycling of electronic scrap, picture tubes	26	10	24	92.3	7.6	ļ	!	LoQ	+	0.057
No.34 recycling of electronic scrap, degrading	49	16	49	100	2.7	!	!	LoQ	!	LoQ
No.57 recycling of electronic scrap, shredding	19	5	15	78.9	2.2	!	+	0.106	+	0.11
No.25 glas, mould	12	2**	10	83.3	1.4	!	+	1.26		4.16
production, repair, general										
No.58 foundry, moulding shop	21	2**	21	100	0.16		!	LoQ	!	LoQ
No.59 foundry, casting	27	9	17	63	0.47		(0.521	(0.878
No.60 foundry, fettling shop	17	3**	12	70.6	2.3	!	+	1.08	+	1.16
No.30 foundry, smelter	31	9	14	45.2	0.17	0.0995	(0.417	(0.469
No.28 sawing, milling,	14	7	12	85.7	0.25	!	+	0.2		1.83
blanking										
No.29 polish, buffing	18	12	15	83.3	0.44	!	+	0.254	(0.571
No.31 welding	22	13	19	86.4	1.5		+	0.173	+	0.694
No.32 other fields	75	38	69	92	2.1		!	LoQ	+	0.481
No.33 separation system, machining process	15	8	13	86.7	2.8	!	+	1.33	+	1.36

Table 36: Statistical anal	lysis for single activites	of work, sampling > 6	5 h (IFA 2013, chap.5, tab.1)
	i jois ioi single dell'ites	or work, sumpring > c	¹ (11 11 2010, chap:0, tab.1)

According to Table 36, the most noticeable exposure levels are observed in fettling shops of foundries (No.60), during sawing, milling, blanking (No.28), in separation and machining processes (No.33) due to building of aerosols, as well as mould production, repair, and general work in glass production (No.25) due to high temperatures.

Exposures to beryllium *below* the according LoQ or below 0.06 μ g/l were received for the following work activities: degrading of electronic scrap (No.34), recycling of picture tubes (No.23), and moulding shop of foundries (No.58).

9.1.1.2.2 Modelled data

None

9.1.1.2.3 Comparison of monitoring and modelled data

None

9.1.2 Exposure assessment for consumer

No consumer uses resulting in consumer exposure to beryllium were identified. However, consumers use articles comprising parts containing beryllium. The registration data (ECHA 2013a) refers the article categories "AC 01: Other (non intended to be released): electronic articles" and "AC 1: Vehicles". The beryllium containing articles in electrical and electronic parts are usually very small and installed within the final equipment in a way that they can not be reached directly. During normal and foreseeable usage this will only result in negligible consumer exposure, if any as the beryllium containing parts will generally be alloys with low beryllium content. This also holds true for contacts during do-it-yourself or recreational activities, which could involve both article categories mentioned.

Further information on the exposure assessment for consumers is given in the confidential part.

9.2 Environmental exposure assessment

not assessed

9.3 Combined exposure assessment

not assessed

10 RISK CHARACTERISATION

10.1 Human Health

10.1.1 Workers

Exposure to beryllium and its compounds at the workplace occurs mainly via inhalation; the contribution of the dermal exposure pathway is not regarded as relevant to the inhalation risk considered in this report. For risk characterization, the inhalation exposure data is compared to the long-term systemic DNEL (inhalation) of $0.06 \ \mu g/m^3$. The DNEL value is based on epidemiologic studies with occupationally exposed collectives where BeS und CBD were identified as critical systemic effects resulting from beryllium exposure (see chapter 5.13.2 for details).

Comparison of the DNEL of $0.06 \ \mu g/m^3$ and publicly available exposure data (see exposure information described in chapter 9.1.1) indicates that the risks associated with the use of beryllium are not sufficiently controlled. It should be noted, however, that the exposure data considered in this report were collected in only two European countries – Germany and France. Therefore, a general conclusion about the risks associated with the use of beryllium and its compounds throughout Europe might be associated with uncertainties. Nevertheless, in both cases exposure data significantly exceed the calculated DNELs, and similar exposure situations are also expected in other countries.

With respect to the exposure data provided by Cherrie et al., 2011, the highest exposure exists for manufacture of basic metals, casting of other non-ferrous metals, primary copper transformation, casting of steel and manufacture of radio, television and communication equipment and apparatus. As shown in Table 32, in all activity sectors except NACE 27.53 ("casting of light metals"), already the 75th percentile of the exposure data significantly exceed the long-term systemic DNEL (inhalation) of $0.06 \ \mu g/m^3$. Manufacturing of parts and equipment products is also associated with elevated risks, although the excess is not as high as those for NACE 27 activities. Manufacturing of transport equipment other than motor vehicles (NACE 35, Table 32) is the only branch where exposures can be regarded as safe.

Considering the German monitoring data provided by the IFA institute (Table 35), exposure to beryllium in industry sectors such as building trade (Nr. 14), foundry (Nr. 16), and glass production (Nr. 17) exceed significantly the calculated DNEL. For the remaining industry sectors exposure values are also clearly above the calculated DNEL. Work activities such as glass, mould production, and repair (No. 25), welding (Nr. 31), casting (Nr. 59) and machining (Nr. 33) belong to the areas where the exceedance of the DNEL is the highest (Table 36). It has to be noted that the high exposure to Beryllium in glass production is probably attributable to the use of beryllium oxide. However no information is given on this in the IFA documentation.

Overall, the publicly available exposure monitoring data for beryllium from both the French and the evaluating MSCA indicates that there are practically no industry sectors/ work areas where exposure is sufficiently controlled below the DNEL of $0.06 \ \mu g/m^3$.

10.1.2 Consumers

No risk characterisation for consumers was performed as no consumer uses resulting in consumer exposure to beryllium have been identified.

10.1.3 Indirect exposure of humans via the environment

not assessed

10.2 Environment

not assessed

10.3 Overall risk characterisation

not assessed

10.3.1 Human health (combined for all exposure routes)

not assessed

10.3.2 Environment (combined for all exposure routes)

not assessed

11 OTHER INFORMATION

The evaluation of the toxicity of beryllium has been based on the registration dossiers as well as on reviews by a variety of international bodies/regulatory programs and original publications. Available data for all endpoints have been assessed. Beryllium has been evaluated by the International Programme on Chemical Safety (WHO 2001), the U.S. Department of Health and Human Services (ATSDR 2002), the German Senate Commission for the Testing of Harmful Working Materials (MAK 2002, 2003), and the U.S. Environmental Protection Agency (EPA, 1998). Where relevant, the original publications were reviewed and evaluated as indicated in the text. In addition literature was searched in the on-line databases DIMDI, ToxNet (HSDB, Toxline incl. PubMed), ISI Web of Knowledge, and Scopus, latest search September 2013.

REFERENCES

Author	Date	Title	Publication/source details
American Conference of Governmental Industrial Hygienists (ACGIH)	2009	Threshold Limit Value-Time-Weighted Average: Beryllium and Beryllium Compounds	Cincinnati, OH, USA: ACGIH, 2009:1-14.
Agency for Toxic Substances and Disease Registry (ATSDR)	2002	Toxicological Profile for Beryllium	U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES - Public Health Service
Belinsky, S.A., Swafford, D.S., Finch, G.L., Mitchell, C.E., Kelly, G., Hahn, F.F., Anderson, M.W., Nikula K.J.	1997	Alterations in the K-ras and p53 genes in rat lung tumors	Environmental Health Perspectives 105 (Suppl 4), 901-906
Benson, J.M., A.M. Holmes, E.B. Barr, K.J. Nikula, T.H. March	2000	Particle clearance and histopathology in lungs of C3H/HeJ mice administered beryllium/copper alloy by intratracheal instillation	Inhalation Toxiclogy 12 (8), 733-749
DGUV	2009	Measurement system for exposure assessment of the German Social Accident Insurance Institutions - MGU	http://www.dguv.de/medien/ifa /en/wun/pdf /org/org1/bgmg_e.pdf
	2009	Occupational Diseases Ordinance, Annex 1	http://www.baua.de/en/Topics- from-A-to-Z/Occupational- Diseases/Occupational- Diseases.html
	2013	Sicherheit und Gesundheit bei der Arbeit 2011	Download von www.baua.de/suga
Boffetta, P., Fryzek, J.P., Mandel, J.S.	2012	Occupational exposure to beryllium and cancer risk: a review of the epidemiologic evidence	Critical reviews in toxicology 42 (2), 107-118
Cherrie, J.W., Gorman M. Ng, Shafrir A., van Tongeren M., Mistry R., Warwick O, Corden C, Rushton L, Hutchings S	Publis hed 05/201 1	Health, socio-economic and environmental aspects of possible amendments to the EU Directive on protection of workers from the risks related to exposure to corcinogens and mutagens at work, Beryllium and beryllium compounds	IOM Research Project: P937/4
Curtis, G.H.	1951	Cutaneous Hypersensitivity Due to Beryllium - A Study of 13 Cases	A.M.A. Archives of Dermatology and Syphilology 64 (4), 470-482
Darby, A. Fishwick, D.	2011	Beryllium A review of the health effects and the evidence for screening or surveillance in workers exposed to beryllium	HSE Books, Research report RR 873
Deubner, D.C.,	2007	Empirical evaluation of complex	Journal of Occupational and

Author	Date	Title	Publication/source details
Roth, H.D., Levy, P.H.		epi.demiologic study designs: Workplace exposure and cancer	Environmental Medicine 49 (9), 953-959
Deutsche Forschungsgemeins chaft (DFG)	2013	List of MAK and BAT Values 2013: Maximum Concentrations and Biological Tolerance Values at the Workplace	Online ISBN: 9783527675128 (DOI: 10.1002/9783527675128) last access 6 th of December, 2013
European Chemicals Agency (ECHA)	2012	Guidance on information requirements an Chemical Safety Assessment	Chapter R.8a: Characterisation of dose [concentration]– response for human health Version 2.1 August 2012
European Chemicals Agency (ECHA)	2013	Information site on registered substances	http://echa.europa.eu/de/inform ation-on-chemicals/registered- substances; last access 5 th November 2013; status: last updated on 17 th October 2013
European Chemicals Agency (ECHA)	2013	Guidance on information requirements an Chemical Safety Assessment	Chapter R.7a: Endpoint specific guidance, Version 2.2 August 2013
Eisenbud, M; Wanta, RC; Dustan, C; et al.	1949	Non-occupational berylliosis	Journal of Industrial Hygiene and Toxicology 31:282-294.
Eisenbud, M. and Lisson, J.	1983	Epidemiological aspects of beryllium-induced non-malignant lung disease: A 30-year update	Journal of Occupational Medicine 25:196-202.
U.S. Environmental Protection Agency, Washington, DC (US EPA)	1998	Toxicological Review of Beryllium and Compounds (CAS No. 7440-41-7)	EPA/635/R-98/008 (April 1998)
Finch, G.L., P.J. Haley, M.D. Hoover, A.F. Eidson and R.G. Cuddhy	1991	Reduced lung clearance induced by low lung burdens of beryllium metal in rats	Toxicologist Vol 11, No 1, February 1991
Finch, G.L., Reddick L.J., Hoover, M.D., Nikula, K.J.	1993	Effects of inhaled beryllium metal on mouse lung clearance and toxicity	Toxicologist, Vol 13, No 1, March 1993
Finch, G.L, F.F. Hahn, W.C. Griffith, M.D. Hoover, W.W. Carlton, A.H. Rebar, J.A. Mewhinney, R.G. Cuddihy	1994	F344 Rat Lung Carcinogenicity from Inhaled Beryllium (Be) Metal	Toxicologist, Vol 14, No 1, p. 264, March 1994
Finch, G.L., Hoover, M.D., Nikula, K.J., Belinsky, S.A., Haley, P.J., Hahn F.F.	1995	Comparative Pulmonary Responses to Inhaled Beryllium Metal in Rats versus Mice	Abstracts of the VII International Congress of Toxicology, 7 (1), 20-P-11, July 1995
Finch, G.L., Hoover, M.D.,	1996	Animal models of beryllium-induced lung	Environmental health perspectives

Author	Date	Title	Publication/source details
Fletcher, F.H., Nikula, K.J., Belinsky, S.A., Haley, P.J., Griffit, W.C.		disease	104 (Suppl. 5), 973-979
Finch, G.L., K.J. Nikula, M.D. Hoover	1998	Dose-response relationships between inhaled beryllium metal and lung toxicity in C3H mice	Toxicological Sciences 42 (1), 36-48
Finch, G.L., March, T.H., Hahn, F.F., Barr, E.B., Belinsky, S.A., Hoover, M.D., Lechner, J.F., Nikula, K. J., Hobbs C.H.	1998	Carcinogenic responses of transgenic heterozygous p53 knockout mice to inhaled (PuO2)-Pu-239 of metallic beryllium	Toxicologic Pathology 26 (4), 484-491
Getschman, Benjamin, John,	2013	Evaluation of the validity of the inhalable and "total" dust concentration ratio, Master's thesis,	University of Iowa, 2013
Groth, D.H., Kommineni, C., Mackay, G.R.	1980	Carcinogenicity of Beryllium Hydroxide and Alloys	Environmental Research 21 (1), 63-84
Haley, P.J., Finch, G.L. Hoover, M.D. Cuddihy, R.G.	1990	The acute toxicity of inhaled beryllium metal in rats	Fundamental and applied Toxicology 15 (4), 767-778
Haley, P.J., Finch, G.L., Davila, D.R., Hoover, M.D.	1992	The Immunotoxicity of Beryllium Metal and Beryllium Oxide in Cynomolgus Monkeys	The Toxicologist, Vol 12 (1), 31 st meeting, February 1992
Haley, P.J., K.F. Pavia, D.S. Swafford, D.R. DAvila, M.D. Hoover, G.L. Finch	1994	Comparative Pulmonary Toxicity of Beryllium Metal and Beryllium-Oxide in Cynomolgus Monkeys	Immunopharmacology and Immunotocicology 16 (4), 627-644
IARC (WHO)	2012	Beryllium and Beryllium Compounds, in: Review of Human Carcinogens - Arsenic, Metals, Fibres, and Dusts	IARC Monographs on the evaluation of carcinogenic risks to humans, Volume 100C, 95-120
Institute for Occupational Safety and Health of the German Social Accident Insurance in Skt. Augustin / Germany, (Institut für Arbeitsschutz der deutschen gesetzlichen Unfallversicherung (IFA)), Koch, U.	2013	MEGA-Auswertungen zur Erstellung von REACH-Expositionsszenarien für Beryllium und seine Verbindungen	http://www.dguv.de/ifa/Gefahr stoffdatenbanken/Expositionsd atenbank- MEGA/Expositionsdaten-aus- MEGA-in- Publikationen/Publikationen- nach-Stoffen/index-2.jsp esp. http://www.dguv.de/medien/ifa /de/fac/reach/mega_auswertung en/beryllium_und_seine_verbin dungen-2.pdf
Infante, P.F., Wagoner, J.K., Sprince, N.L.	1980	Mortality Patterns from Lung-Cancer and Nonneoplastic Respiratory-Disease Among White Males in the Beryllium Case Registry	Environmental Research 21 (1), 35-43

Author	Date	Title	Publication/source details
Kampen, V. van, Buenger, J., Merget, R., Bruening, T	2008	Lung tumours by using beryllium containing tools? (Lungentumor durch die Bearbeitung berylliumhaltiger Werkzeuge?)	BGFA-Info 02/08, 6-9, Forschungsinstitut für Arbeitsmedizin der Deutschen Gesetzlichen Unfallversicherung / Berufsgenossenschaftliches Forschungsinstitut für Arbeitsmedizin (BGFA)
Kelleher, P.C., Martyny, J.W., Mroz, M.M., Maier, L.A., Ruttenber, A.J., Young, D.A. and Newman, L.S.	2001	Beryllium particulate exposure and disease relations in a beryllium machining plant	Journal of Occupational and Environmental Medicine, 43, 238-249
Kreiss K., Mroz M.M., Newman L.S., Martyny J. and Zhen B.	1996	Machining risk of beryllium disease and sensitization with median exposures below 2 $\mu g/m^3$	American Journal of Industrial Medicine 30(1):16-25.
Levy, P.S., Roth, H.D., Hwang, P.M.T., Powers T.E.	2002	Beryllium and lung cancer: A reanalysis of a NIOSH cohort mortality study	Inhalation Toxicology 14 (10), 1003-1015
Levy, P.S., Roth, H.D., Deubner D.C.	2007	Exposure to beryllium and occurrence of lung cancer: A reexamination of findings from a nested case-control study	Journal of Occupational and Environmental Medicine 49 (1), 96-101
Lide, D.R.	2008	CRC Handbook of Chemistry and Physics	CRC Handbook of Chemistry and Physics. Section 4: Properties of the Elements and Inorganic Compounds. CRC Press Taylor and Francis Group, Boca Raton, 89th edition
Litvinov, N.N., Kazenashev, V.F., Bugryshev, P.F.	1983	Blastomogenic activities of various beryllium compounds [in Russian]	Eksperimental'naja onkologija 5 (4), 23-26
Madl, A.K., K. Unice, J.L. Brown, M.E. Kolanz and M.S. Kent	2007	Exposure-response analysis for beryllium sensitization and chronic beryllium disease among workers in a beryllium metal machining plant	Journal of Occupational and Environmental Hygiene 4 (6), 448–466
Deutsche Forschungsgemeins chaft (DFG) / Maximale Arbeitsplatz – Konzentration (MAK-Wert)	2002	Beryllium und seine Verbindungen	MAK, 34. Lieferung, Nachtrag 2002 Loseblattsammlung
Deutsche Forschungsgemeins chaft (DFG) / Maximale Arbeitsplatz – Konzentration (MAK-Wert)	2003	Beryllium und seine anorganischen Verbindungen	MAK, 37. Lieferung, 2003 Loseblattsammlung

Author	Date	Title	Publication/source details
Mancuso, T.F and A.A. El Attar	1969	Epidemiological study of the beryllium industry. Cohort methodology and mortality studies	Journal of Occupational Medicine 11 (8), 422-434
Mancuso, T.F.	1970	Relation of Duration of Employment and Prior Respiratory Illness to Respiratory Cancer Among Beryllium Workers	Environmental Research 3 (3), 251-275
Mancuso, T.F.	1980	Mortality Study of Beryllium Industry Workers Occupational Lung-Cancer	Environmental Research 21 (1), 48-55
McCleskey, T.M., Buchner, V., Field, R.W., Scott, B.L.	2009	Recent advances in understanding the biomolecular basis of chronic beryllium disease: a review	Reviews on Environmental Health 24 (2), 75-115
National Institute for Occupational Safety and Health (NIOSH). U.S. Department of Health, Education, and Welfare, Washington DC.	1972	Criteria for a recommended standard. Occupational exposure to beryllium.	NIOSH Report No. NIOSH/72- 10268
National Institute for Occupational Safety and Health (NIOSH). U.S. Department of Health, Education, and Welfare, Washington DC.	1997	NIOSH Pocked guide to Chemical Hazards	DHHS (NIOSH); Publication No. 97-140; Washington, D.C.U.S. Government Printing Office: 1997, p. 28
Nickell-Brady, C., Hahn, F.F., Finch, G.L., Belinsky, S.A.	1994	Analysis of K-Ras, P53 and C-Raf-1 Mutations in Beryllium-Induced Rat Lung-Tumors	Carcinogenesis 15 (2), 257-262
Nikula, K.J., Finch, G.L., Hoover, M.D., Belinsky, S.A	1995	Comparative Pulmonary Carcinogenicity of Beryllium in A/J and C3H/HeJ Mice	Abstracts of the 34 th Annual Meeting (SOT), Vol 15, No 1, Abstract 252, March 1995
Nikula, K.J., D.S. Swafford, M.D. Hoover, M.D. Tohulka, G.L. Finch	1997	Chronic granulomatous pneumonia and lymphocytic responses induced by inhaled beryllium metal in A/J and C3H/HeJ mice	Toxicologic Pathology 25 (1), 2-12
National Research Council (NRC), Washington, DC	2008	Managing health effects of beryllium exposure.	Committee on Beryllium Alloy Exposures, Committee on Toxicology, Board on Environmental Studies and Toxicology, Division on Earth and Life Studies
Oesterheld, G.	1916	Schmelzpunkt und Schmelzwärme des Berylliums	Metallographische Mitteilungen aus dem Institut für physikalische Chemie der Universität Göttingen
O'Neil, M.J.	2006	The Merck Index: An Encyclopedia of	Merck Research Laboratories,

Author	Date	Title	Publication/source details
		Chemicals, Drugs and Biologicals	Merck & Co., Inc., Whitehouse Station, NJ (2006), p. 191
Sanderson, W.T., Ward, E.M., Steenland, K. and Petersen, M.R.	2001	Lung cancer case-control study of beryllium workers	American Journal of Industrial Medicine 39 (2), 133-144
Sanderson, T.W., Peterson, M.R. and Ward, E.M.	2001	Estimating historical exposures of workers in a beryllium manufacturing plant	American Journal of Industrial Medicine 39 (2), 145-157
Sax, N.I.	1984	Dangerous Properties of Industrial Materials; 6th edition	New York, NY: Van Nostrand Reinhold 1984., p.421
Schepers, G.W.	1961	Neoplasia experimentally induced by beryllium compounds	Progress in experimental tumor research 2, 203-244
Schubauer-Berigan, M.K., Deddens, J.A., Steenland, K., Sanderson, W.T., Petersen, M.R.	2008	Adjustment for temporal confounders in a reanalysis of a case - control study of beryllium and lung cancer	Occupational and Environmental Medicine 65 (6), 379-383
Schubauer-Berigan, M.K., Couch, J.R., Petersen, M.R., Carreon, T., Jin, Y., Deddens, J.A.	2011	Cohort mortality study of workers at seven beryllium processing plants: update and associations with cumulative and maximum exposure	Occupational and Environmental Medicine 68 (5), 345-353
Schuler, C.R., M.S. Kent, D.C. Deubner, M.T. Berakis, M. McCawley, P.K. Henneberger, M.D. Rossman, K. Kreiss	2005	Process-related risk of beryllium sensitization and disease in a copper-beryllium alloy facility	American Journal of Industrial Medicine 47 (3), 195–205
Schuler, C.R., Virji, M.A., Deubner, D.C., Stanton, M.L., Stefaniak, D.L., Day, G.A., Park, J.Y., Kent, M.S., Sparks, R., Kreiss, K.	2012	Sensitization and chronic beryllium disease at a primary manufacturing facility, part 3: exposure-response among short-term workers	Scandinavian Journal of Work, Environment and Health 38 (3), 270-281
Steenland, K. and Ward E.	1991	Lung cancer incidence among patients with beryllium disease: a cohort mortality study	Journal of the National Cancer Institute 83 (19), 1380-1385
Strupp, C.	2011	BeryIIium Metal - Literature Review and Recent - Toxicological Studies	Beryllium Industry Cancer Advisory Panel Meeting, May 2011, Boston
Strupp, C.	2011	Beryllium metal II. a review of the available toxicity data	Annals of Occupational Hygiene 55 (1), 43-56

Author	Date	Title	Publication/source details
Strupp, C.	2011	Beryllium metal I. experimental results on acute oral toxicity, local skin and eye effects, and genotoxicity	Annals of Occupational Hygiene 55 (1), 30-42
TL1	2009a	Beryllium Metal Powder, Copper-Beryllium alloy Powder, Beryllium Oxide Ceramic Powder, Beryllium Chloride - Ion Formation test in Artificial Biological Fluids	Unpublished study record, confidential
TL1	2009b	Beryllium Metal Powder: Acute Oral Toxicity Study in Rats	Unpublished study record, confidential
TL1	2009c	Beryllium Metal Powder - Primary Skin Irritation Study in Rabbits (4H Semi-Occlusive Appli-cation)	Unpublished study record, confidential
TL1	2009d	Beryllium Metal Powder - Primary Eye Irritation Study in Rabbits	Unpublished study record, confidential
TL1	2009e	Beryllium Metal Powder - Contact Hypersensitivity in Albino Guinea Pigs, Maximization-Test	Unpublished study record, confidential
TL2	2009a	Gene Mutation Assay in Chinese Hamster V79 Cells In Vitro (V79 / HPRT) with Beryllium Metal Powder	Unpublished study record, confidential
TL2	2009b	Cell Transformation Assay in Syrian Hamster Embryo Cells (SHE Assay) with Beryllium Metal Powder	Unpublished study record, confidential
TL2	2009c	Chromosome Aberration Test in Human Lymphocytes In vitro with Beryllium Metal Powder	Unpublished study record, confidential
TL2	2009d	Salmonella Typhimurium and Escherichia Coli reverse mutation assay with beryllium metal powder (extract in 0.9 % saline)	Unpublished study record, confidential
TL2	2010	An Extract of Beryllium Metal Powder: Unscheduled DNA synthesis in Primary Hepatocytes of Male Rats in vitro	Unpublished study record, confidential
TL3	2008	Cytotoxicity Assay In vitro: Evaluation of Bioavailability (XTT-Test) with BE Metal Powder	Unpublished study record, confidential
van Dyke, M.V., Martyny, J.W., Mroz, M.M., Silveira, L.J., Strand, M., Cragle, D.L., Tankersley, W.G., Wells, S.M., Newman, L.S., Maier, L.A.	2011	Exposure and genetics increase risk of beryllium sensitisation and chronic beryllium disease in the nuclear weapons industry	Occupational and Environmental Medicine 68 (11), 842-848
van Dyke, M.V., Martyny, J.W., Mroz, M.M., Silveira, L.J., Strand, M., Fingerlin, T.E.,	2011	Risk of Chronic Beryllium Disease by HLA- DPB1 E69 Genotype and Beryllium Exposure in Nuclear Workers	American Journal of Respiratory and Critical Care Medicine 183 (12), 1680-1688

SUBSTANCE EVALUATION REPORT – BERYLLIUM (EC:231-150-7)

Author	Date	Title	Publication/source details
Sato, H., Newman, L.S., Maier, L.A.			
Vincent R, Catani J, Creau Y et al.	Publis hd in 2009	Occupational exposure to beryllium in French enterprises: a survey of airborne exposure and surface levels.	Ann Occup Hyg 2009; 53(4): 363 72.
Wagoner, J.K., P.F. Infante and D.L. Bayliss	1980	Beryllium - Etiologic Agent in the Induction of Lung-Cancer, Nonneoplastic Respiratory- Disease, and Heart-Disease Among Industrially Exposed Workers	Environmental Research 21 (1), 15-34)
Ward, E., Okun, A., Ruder, A., Fingerhut, M., and Steenland, K.	1992	A Mortality Study of Workers at 7 Beryllium Processing Plants	American Journal of Industrial Medicine 22 (6), 885-904
Welch, Laura S.	2012	Beryllium	Welch, L.S. 2012. Beryllium. Patty's Toxicology. Chapter 5, 113–144.
World Health Organization (WHO)	2001	Beryllium and Beryllium Compounds	Concise International Chemical Assessment Document 32
Zissu, D., Binet, S., Cavelier, C.	1996	Patch testing with beryllium alloy samples in guinea pigs	Contact Dermatitis 34 (3), 196-200

13 ABBREVIATIONS

Table 37: List of abbreviations

Action Anterical Contention of Overnineital Industrial Progenists ACTE Acute toxicity estimate BeS beryllium essitization BOEL Binding occupational exposure limit bw Body weight CBD Chronic beryllium disease C&L Classification and Labelling d day(s) DWA Daily Weighted Average EC Effective Concentration F Female FAP fused aluminosilicate particles FCS Fetal calf serum GLP Good laboratory praxis GSD Geometric standard deviation h hour(s) IFA Institute for Occupational Safety and Health of the German Social Accident Insurance (formerly BGIA; German: Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung) i.v. intravenous LOQ limit of quantification LTW(A) Lifetime-weighted average M Male MACK Maximale Arbeitsplatz-Konzentration MEGA Database of measurements of exposure to hazardous substances at work of German IFA MEM minimum essential medium <th>ACGIH</th> <th>American Conference of Governmental Industrial Hydionists</th>	ACGIH	American Conference of Governmental Industrial Hydionists			
BeS beryllium sensitization BOEL Binding occupational exposure limit bw Body weight CBD Chronic beryllium disease C&L Classification and Labelling d day(s) DWA Daily Weighted Average EC Effective Concentration F Female FAP fused aluminosilicate particles FCS Fetal calf serum GLP Good laboratory praxis GSD Geometric standard deviation h hour(s) IFA Institute for Occupational Safety and Health of the German Social Accident Insurance (formerly BGIA; German: Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung) i.v. intravenous LoQ limit of quantification LTW(A) Lifetime-weighted average M Male MAAE Maximale Arbeitsplatz-Konzentration MEGA Database of measurements of exposure to hazardous substances at work of German IFA MMAD Mass median aerodynamic diameter MEM minimum essential medium OEL Occupational exposure limit		American Conference of Governmental Industrial Hygienists			
BOEL Binding occupational exposure limit bw Body weight CBD Chronic beryllium disease C&L Classification and Labelling d day(s) DWA Daily Weighted Average EC Effective Concentration F Female FAP fused aluminosilicate particles FCS Fetal calf serum GLP Good laboratory praxis GSD Geometric standard deviation h hour(s) IFA Institute for Occupational Safety and Health of the German Social Accident Insurance (formerly BGIA; German: Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung) i.v. intravenous LoQ limit of quantification LTW(A) Lifetime-weighted average M Male MEGA Database of measurements of exposure to hazardous substances at work of German IFA MMAD Mass median aerodynamic diameter MEM minimum essential medium OEL Occupational exposure limit PEG polyethylene glycol PROC Process category RMO <					
bw Body weight CBD Chronic beryllium disease C&L Classification and Labelling d day(s) DWA Daily Weighted Average EC Effective Concentration F Female FAP fused aluminosilicate particles FCS Fetal calf serum GLP Good laboratory praxis GSD Geometric standard deviation h hour(s) IFA Institute for Occupational Safety and Health of the German Social Accident Insurance (formerly BGIA; German: Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung) i.v. intravenous LoQ limit of quantification LTW(A) Lifetime-weighted average M Male MAK Maximale Arbeitsplatz-Konzentration MEGA Database of measurements of exposure to hazardous substances at work of German IFA MMAD Mass median aerodynamic diameter MEM minimum essential medium OEL Occupational exposure limit PEG polyethyleng glycol PROC		•			
CBDChronic beryllium diseaseC&LClassification and Labellingdday(s)DWADaily Weighted AverageECEffective ConcentrationFFeenaleFAPfused aluminosilicate particlesFCSFetal calf serumGLPGood laboratory praxisGSDGeometric standard deviationhhour(s)IFAInstitute for Occupational Safety and Health of the German Social Accident Insurance (formerly BGIA; German: Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung)i.v.intravenousLoQlimit of quantificationLTW(A)Lifetime-weighted averageMMaleMAKMaximale Arbeitsplatz-KonzentrationMEGADatabase of measurements of exposure to hazardous substances at work of German IFAMMADMass median aerodynamic diameterMEMminimum essential mediumOELOccupational exposure limitPEGpolyethylene glycolPROCProcess categoryRMORisk management optionsSCOELScientific Committee on Occupational Exposure LimitsSMRStandardized mortality ratioSUSectors of end-useSVHCSubstances of very high concernWwweek					
C&LClassification and Labellingdday(s)DWADaily Weighted AverageECEffective ConcentrationFFemaleFAPfused aluminosilicate particlesFCSFetal calf serumGLPGood laboratory praxisGSDGeometric standard deviationhhour(s)IFAInstitute for Occupational Safety and Health of the German Social Accident Insurance (formerly BGIA; German: Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung)i.v.intravenousLoQlimit of quantificationLTW(A)Lifetime-weighted averageMMaleMAKMaximale Arbeitsplatz-KonzentrationMEADatabase of measurements of exposure to hazardous substances at work of German IFAMMADMass median aerodynamic diameterMEMminimum essential mediumOELOccupational exposure limitPEGpolyethylene glycolPROCProcess categoryRMORisk management optionsSCOELScientific Committee on Occupational Exposure LimitsSMRStandardized mortality ratioSUSectors of end-useSVHCSubstances of very high concernTWATime weighted averagewweek	÷				
dday(s)DWADaily Weighted AverageECEffective ConcentrationFFemaleFAPfused aluminosilicate particlesFCSFetal calf serumGLPGood laboratory praxisGSDGeometric standard deviationhhour(s)IFAInstitute for Occupational Safety and Health of the German Social Accident Insurance (formerly BGIA; German: Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung)i.v.intravenousLoQlimit of quantificationLTW(A)Lifetime-weighted averageMMaleMAKMaximale Arbeitsplatz-KonzentrationMEADatabase of measurements of exposure to hazardous substances at work of German IFAMMADMass median aerodynamic diameterMEMminimum essential mediumOELOccupational exposure limitPEGpolyethylene glycolPROCProcess categoryRMORisk management optionsSCOELScientific Committee on Occupational Exposure LimitsSMRStandardized mortality ratioSUSectors of end-useSVHCSubstances of very high concernTWATime weighted averagewweek	-	•			
DWADaily Weighted AverageECEffective ConcentrationFFemaleFAPfused aluminosilicate particlesFCSFetal calf serumGLPGood laboratory praxisGSDGeometric standard deviationhhour(s)IFAInstitute for Occupational Safety and Health of the German Social Accident Insurance (formerly BGIA; German: Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung)i.v.intravenousLOQlimit of quantificationLTW(A)Lifetime-weighted averageMMaleMAKMaximale Arbeitsplatz-KonzentrationMEGADatabase of measurements of exposure to hazardous substances at work of German IFAMMADMass median aerodynamic diameterMEMminimum essential mediumOELOccupational exposure limitPEGpolyethylene glycolPROCProcess categoryRMORisk management optionsSCOELScientific Committee on Occupational Exposure LimitsSMRStandardized mortality ratioSUHCSubstances of very high concernTWATime weighted averagewweek		-			
ECEffective ConcentrationFFemaleFAPfused aluminosilicate particlesFCSFetal calf serumGLPGood laboratory praxisGSDGeometric standard deviationhhour(s)Institute for Occupational Safety and Health of the German Social Accident Insurance (formerly BGIA; German: Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung)i.v.intravenousLoQlimit of quantificationLTW(A)Lifetime-weighted averageMMaleMAKMaximale Arbeitsplatz-KonzentrationMEGADatabase of measurements of exposure to hazardous substances at work of German IFAMMADMass median aerodynamic diameterMEMminimum essential mediumOELOccupational exposure limitPEGpolyethylene glycolPROCRroces categoryRMORisk management optionsSUEScientific Committee on Occupational Exposure LimitsSURStandardized mortality ratioSUSectors of end-useWweek		• • •			
FFemaleFAPfused aluminosilicate particlesFCSFetal calf serumGLPGood laboratory praxisGSDGeometric standard deviationhhour(s)IFAInstitute for Occupational Safety and Health of the German Social Accident Insurance (formerly BGIA; German: Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung)i.v.intravenousLoQlimit of quantificationLTW(A)Lifetime-weighted averageMMaleMAKMaximale Arbeitsplatz-KonzentrationMEGADatabase of measurements of exposure to hazardous substances at work of German IFAMMADMass median aerodynamic diameterMEMminimum essential mediumOELOccupational exposure limitPEGpolyethylene glycolPROCProcess categoryRMORisk management optionsSCOELScientific Committee on Occupational Exposure LimitsSMRStandardized mortality ratioSUSectors of end-useSVHCSubstances of very high concernTWATime weighted averagewweek					
FAPfused aluminosilicate particlesFCSFetal calf serumGLPGood laboratory praxisGSDGeometric standard deviationhhour(s)IFAInstitute for Occupational Safety and Health of the German Social Accident Insurance (formerly BGIA; German: Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung)i.v.intravenousLoQlimit of quantificationLTW(A)Lifetime-weighted averageMMaleMAKMaximale Arbeitsplatz-KonzentrationMEGADatabase of measurements of exposure to hazardous substances at work of German IFAMMADMass median aerodynamic diameterMEMminimum essential mediumOELOccupational exposure limitPEGpolyethylene glycolPROCProcess categoryRMORisk management optionsSCOELScientific Committee on Occupational Exposure LimitsSUSectors of end-useSVHCSubstances of very high concernTWATime weighted averagewweek					
FCSFetal calf serumGLPGood laboratory praxisGSDGeometric standard deviationhhour(s)IFAInstitute for Occupational Safety and Health of the German Social Accident Insurance (formerly BGIA; German: Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung)i.v.intravenousLoQlimit of quantificationLTW(A)Lifetime-weighted averageMMaleMAKMaximale Arbeitsplatz-KonzentrationMEGADatabase of measurements of exposure to hazardous substances at work of German IFAMMADMass median aerodynamic diameterMEMminimum essential mediumOELOccupational exposure limitPEGpolyethylene glycolPROCProcess categoryRMORisk management optionsSCOELScientific Committee on Occupational Exposure LimitsSMRStandardized mortality ratioSUSectors of end-useSVHCSubstances of very high concernTWATime weighted averagewweek					
GLPGood laboratory praxisGSDGeometric standard deviationhhour(s)IFAInstitute for Occupational Safety and Health of the German Social Accident Insurance (formerly BGIA; German: Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung)i.v.intravenousLoQlimit of quantificationLTW(A)Lifetime-weighted averageMMaleMAKMaximale Arbeitsplatz-KonzentrationMEGADatabase of measurements of exposure to hazardous substances at work of German IFAMMADMass median aerodynamic diameterMEMminimum essential mediumOELOccupational exposure limitPEGpolyethylene glycolPROCProcess categoryRMORisk management optionsSCOELScientific Committee on Occupational Exposure LimitsSMRStandardized mortality ratioSUSectors of end-useSVHCSubstances of very high concernTWATime weighted averagewweek		•			
GSDGeometric standard deviationhhour(s)IFAInstitute for Occupational Safety and Health of the German Social Accident Insurance (formerly BGIA; German: Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung)i.v.intravenousLoQlimit of quantificationLTW(A)Lifetime-weighted averageMMaleMAKMaximale Arbeitsplatz-KonzentrationMEGADatabase of measurements of exposure to hazardous substances at work of German IFAMMADMass median aerodynamic diameterMEMminimum essential mediumOELOccupational exposure limitPEGpolyethylene glycolPROCProcess categoryRMORisk management optionsSCOELScientific Committee on Occupational Exposure LimitsSMRStandardized mortality ratioSUSectors of end-useSVHCSubstances of very high concernTWATime weighted averagewweek					
IFAInstitute for Occupational Safety and Health of the German Social Accident Insurance (formerly BGIA; German: Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung)i.v.intravenousLoQlimit of quantificationLTW(A)Lifetime-weighted averageMMaleMAKMaximale Arbeitsplatz-KonzentrationMEGADatabase of measurements of exposure to hazardous substances at work of German IFAMMADMass median aerodynamic diameterMEMminimum essential mediumOELOccupational exposure limitPEGpolyethylene glycolPROCProcess categoryRMORisk management optionsSCOELScientific Committee on Occupational Exposure LimitsSMRStandardized mortality ratioSUSectors of end-useSVHCSubstances of very high concernTWATime weighted averagewweek					
BGIA; German: Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung)i.v.intravenousLoQlimit of quantificationLTW(A)Lifetime-weighted averageMMaleMAKMaximale Arbeitsplatz-KonzentrationMEGADatabase of measurements of exposure to hazardous substances at work of German IFAMMADMass median aerodynamic diameterMEMminimum essential mediumOELOccupational exposure limitPEGpolyethylene glycolPROCProcess categoryRMORisk management optionsSCOELScientific Committee on Occupational Exposure LimitsSMRStandardized mortality ratioSUSectors of end-useSVHCSubstances of very high concernTWATime weighted averagewweek					
LoQlimit of quantificationLTW(A)Lifetime-weighted averageMMaleMAKMaximale Arbeitsplatz-KonzentrationMEGADatabase of measurements of exposure to hazardous substances at work of German IFAMMADMass median aerodynamic diameterMEMminimum essential mediumOELOccupational exposure limitPEGpolyethylene glycolPROCProcess categoryRMORisk management optionsSCOELScientific Committee on Occupational Exposure LimitsSMRStandardized mortality ratioSUSectors of end-useSVHCSubstances of very high concernTWATime weighted averagewweek	IFA				
LTW(A)Lifetime-weighted averageMMaleMAKMaximale Arbeitsplatz-KonzentrationMEGADatabase of measurements of exposure to hazardous substances at work of German IFAMMADMass median aerodynamic diameterMEMminimum essential mediumOELOccupational exposure limitPEGpolyethylene glycolPROCProcess categoryRMORisk management optionsSCOELScientific Committee on Occupational Exposure LimitsSMRStandardized mortality ratioSUSectors of end-useSVHCSubstances of very high concernTWATime weighted averagewweek	i.v.	intravenous			
MMaleMAKMaximale Arbeitsplatz-KonzentrationMEGADatabase of measurements of exposure to hazardous substances at work of German IFAMMADMass median aerodynamic diameterMEMminimum essential mediumOELOccupational exposure limitPEGpolyethylene glycolPROCProcess categoryRMORisk management optionsSCOELScientific Committee on Occupational Exposure LimitsSMRStandardized mortality ratioSUSectors of end-useSVHCSubstances of very high concernTWATime weighted averagewweek	LoQ	limit of quantification			
MAKMaximale Arbeitsplatz-KonzentrationMEGADatabase of measurements of exposure to hazardous substances at work of German IFAMMADMass median aerodynamic diameterMEMminimum essential mediumOELOccupational exposure limitPEGpolyethylene glycolPROCProcess categoryRMORisk management optionsSCOELScientific Committee on Occupational Exposure LimitsSMRStandardized mortality ratioSUSectors of end-useSVHCSubstances of very high concernTWATime weighted averagewweek	LTW(A)	Lifetime-weighted average			
MEGADatabase of measurements of exposure to hazardous substances at work of German IFAMMADMass median aerodynamic diameterMEMminimum essential mediumOELOccupational exposure limitPEGpolyethylene glycolPROCProcess categoryRMORisk management optionsSCOELScientific Committee on Occupational Exposure LimitsSMRStandardized mortality ratioSUSectors of end-useSVHCSubstances of very high concernTWATime weighted averagewweek	М	Male			
MMADMass median aerodynamic diameterMEMminimum essential mediumOELOccupational exposure limitPEGpolyethylene glycolPROCProcess categoryRMORisk management optionsSCOELScientific Committee on Occupational Exposure LimitsSMRStandardized mortality ratioSUSectors of end-useSVHCSubstances of very high concernTWATime weighted averagewweek	MAK	Maximale Arbeitsplatz-Konzentration			
MEMminimum essential mediumOELOccupational exposure limitPEGpolyethylene glycolPROCProcess categoryRMORisk management optionsSCOELScientific Committee on Occupational Exposure LimitsSMRStandardized mortality ratioSUSectors of end-useSVHCSubstances of very high concernTWATime weighted averagewweek	MEGA	Database of measurements of exposure to hazardous substances at work of German IFA			
OELOccupational exposure limitPEGpolyethylene glycolPROCProcess categoryRMORisk management optionsSCOELScientific Committee on Occupational Exposure LimitsSMRStandardized mortality ratioSUSectors of end-useSVHCSubstances of very high concernTWATime weighted averagewweek	MMAD				
PEGpolyethylene glycolPROCProcess categoryRMORisk management optionsSCOELScientific Committee on Occupational Exposure LimitsSMRStandardized mortality ratioSUSectors of end-useSVHCSubstances of very high concernTWATime weighted averagewweek		minimum essential medium			
PROCProcess categoryRMORisk management optionsSCOELScientific Committee on Occupational Exposure LimitsSMRStandardized mortality ratioSUSectors of end-useSVHCSubstances of very high concernTWATime weighted averagewweek	OEL	Occupational exposure limit			
RMORisk management optionsSCOELScientific Committee on Occupational Exposure LimitsSMRStandardized mortality ratioSUSectors of end-useSVHCSubstances of very high concernTWATime weighted averagewweek	PEG				
SCOELScientific Committee on Occupational Exposure LimitsSMRStandardized mortality ratioSUSectors of end-useSVHCSubstances of very high concernTWATime weighted averagewweek					
SMR Standardized mortality ratio SU Sectors of end-use SVHC Substances of very high concern TWA Time weighted average w week	RMO	Risk management options			
SU Sectors of end-use SVHC Substances of very high concern TWA Time weighted average w week	SCOEL	Scientific Committee on Occupational Exposure Limits			
SVHCSubstances of very high concernTWATime weighted averagewweek	SMR	Standardized mortality ratio			
TWA Time weighted average w week	SU	Sectors of end-use			
w week	SVHC	Substances of very high concern			
	TWA	Time weighted average			
WHO World Health Organization	W	week			
	WHO	World Health Organization			

ANNEX: CONFIDENTIAL INFORMATION