

Committee for Risk Assessment

RAC

Annex 1 Background document

to the Opinion proposing harmonised classification and labelling at EU level of

dinotefuran (ISO); (RS)-1-methyl-2-nitro-3-(tetrahydro-3-furylmethyl)guanidine

EC Number: -CAS Number: 165252-70-0

CLH-O-000007342-79-01/F

The background document is a compilation of information considered relevant by the dossier submitter or by RAC for the proposed classification. It is based on the official CLH report submitted to consultation and additional information (if applicable).

Adopted 14 September 2023

Belgium

Dinotefuran

CLH

REGULATION (EC) NO 1272/2008 (CLP REGULATION),

ANNEX VI, PART 2

Proposal for Harmonised Classification and Labelling for a biocidal active substance

CLH REPORT

Dinotefuran

EC Number: -

CAS Number: 165252-70-0

Index Number: 612-RST-VW-Y

Contact details of dossier submitter:

FPS Public Health, Food Chain Safety and Environment DG 5/ Department of Product Policy and chemical Substances / Management of Chemical Substances BELGIUM

On behalf of the Belgian Biocidal unit

Version number: 2 Date: October 2022

Belgium	Dinotefuran	CLH
Table of Conten	its	
STATEMENT		
SUMMARY		
1 PRESENTATION OF	THE ACTIVE SUBSTANCE	
1.1 IDENTITY OF THE ACT	IVE SUBSTANCE	15
1.2 INTENDED USES AND	EFFECTIVENESS	15
2. PROPOSED HARMONI SUBSTANCE ACCOR	SED CLASSIFICATION AND LABELLING OF T	HE ACTIVE
2.1 PROPOSED HARMONIS	ED CLASSIFICATION AND LABELLING FOR THE A	CTIVE17
2.1.1 HISTORY OF THE	PREVIOUS CLASSIFICATION AND LABELLING	19
2.2 PROPOSED CLASSIF PRODUCT(S)	ICATION AND LABELLING AND PACKAGING FOR T	THE REPRESENTATIVE
2.3 DATA SOURCES		20
3. SUMMARY OF THE HU	JMAN HEALTH RISK ASSESSMENT	
3.1 SUMMARY OF THE ASS	SESSMENT OF EFFECTS ON HUMAN HEALTH	21
3.2 REFERENCE VALUES		21
3.3 RISK CHARACTERISAT	ION	21
4. SUMMARY OF THE EN	IVIRONMENTAL RISK ASSESSMENT	
4.1 FATE AND BEHAVIOUR	IN THE ENVIRONMENT	22
4.2 EFFECTS ASSESSMENT	٢	23
4.3 EXPOSURE ASSESSME	NT	23
4.4 RISK CHARACTERISAT	ION	23
5. ASSESSMENT OF EXC	CLUSION CRITERIA, SUBSTITUTION CRITERI	A AND POP 24
A Assessment of intrir	nsic properties and effects of the active subs	tance 25
A.1 General substance info	prmation	25
A.1.1 Identity of the Subst	ance	25
A.1.2 Composition of the s	ubstance (reference specifications)	26
A.1.3 Physical and chemica	al properties of the active substance	28
A.1.3.1 Physical hazards a	nd respective characteristics	
A.1.3.2 Assessment of phy	vsical hazards according to the CLP criteria	37
A.1.3.3 Explosives		
A.1.3.3.1 Short summary a properties	and overall relevance of the provided information	on explosive
A.1.3.3.2 Comparison with	the CLP criteria	
A.1.3.3.3 Conclusion on cla	assification and labelling for explosive properties.	
A.1.3.4 Flammable gases ((including chemically unstable gases)	
A.1.3.5 Flammable aerosol	Is and aerosols	

Belgium	Dinotefuran	CLH
A 1 3 7 Gases under pressure		30
A 1 3 8 Flammable solids		39
A 1 3 8 1 Short summary and or	verall relevance of the provided information of	on flammable solids 40
A.1.3.8.2 Comparison with the (TP criteria	40
A.1.3.8.3 Conclusion on classific	ation and labelling for flammable solids	
A.1.3.8.4 Self-reactive substance	es	
A.1.3.8.5 Short summary and or	verall relevance of the provided information of	on self-reactive
substances	· · · · · · · · · · · · · · · · · · ·	41
A.1.3.8.6 Comparison with the C	CLP criteria	41
A.1.3.8.7 Conclusion on classific	ation and labelling for self-reactive substance	es41
A.1.3.9 Pyrophoric liquids		41
A.1.3.10 Pyrophoric solids		41
A.1.3.10.1 Short summary and	overall relevance of the provided information	on pyrophoric solids
A.1.3.10.2 Comparison with the	CLP criteria	42
A.1.3.10.3 Conclusion on classif	ication and labelling for pyrophoric solids	42
A.1.3.11 Self-heating substance	S	42
A.1.3.11.1 Short summary and substances	overall relevance of the provided information	on self-heating 42
A.1.3.11.2 Comparison with the	CLP criteria	42
A.1.3.11.3 Conclusion on classif	ication and labelling for self-heating substand	ces43
A.1.3.12 Substances which in co	ontact with water emit flammable gases	43
A.1.3.13 Oxidising liquids		43
A.1.3.14 Oxidising solids		43
A.1.3.14.1 Short summary and	overall relevance of the provided information	on oxidising solids .43
A.1.3.14.2 Comparison with the	CLP criteria	44
A.1.3.14.3 Conclusion on classif	ication and labelling for oxidising solids	44
A.1.3.15 Organic peroxides		44
A.1.3.16 Corrosive to metals		44
A.1.3.17 Desensitised explosives	s	44
A.1.4 Analytical methods for det	ection and identification	45
A.2 Effects against target organi	isms	47
A.2.1 Intended uses		47
A.2.2 Summary on efficacy		47
A.2.2.1 Efficacy		47
A.2.2.2 Mode of action		47
A.2.2.3 Resistance		47
A.2.2.4 Conclusion on efficacy		47
A.3 Assessment of effects on Hu	ıman Health	48
A.3.1 Toxicokinetics		48

Belgium	Dinotefuran	CLH
A.3.1.1 Short summary and overall rele	vance of the provided toxicokinetic information.	
A.3.1.2 Values and conclusions used for	the risk assessment	
A.3.2 Acute toxicity / STOT SE		57
A.3.2.1 Acute oral toxicity		57
A.3.2.1.1 Short summary and overall re	levance of the provided information on acute or	al toxicity
A.3.2.1.2 Comparison with the CLP crite	eria	60
A.3.2.1.3 Conclusion on classification a	nd labelling for acute oral toxicity	60
A.3.2.1.4 Conclusion on acute oral toxic	ity related to risk assessment	60
A.3.2.2 Acute dermal toxicity	· ·	61
A.3.2.2.1 Short summary and overall retoxicity	levance of the provided information on acute de	ermal 62
A.3.2.2.2 Comparison with the CLP crite	eria	62
A.3.2.2.3 Conclusion on classification a	nd labelling for acute dermal toxicity	62
A.3.2.2.4 Conclusion on acute dermal to	oxicity related to risk assessment	62
A.3.2.3 Acute inhalation toxicity		63
A.3.2.3.1 Short summary and overall retoxicity	levance of the provided information on acute in	halation 65
A.3.2.3.2 Comparison with the CLP crite	ria	65
A.3.2.3.3 Conclusion on classification an	nd labelling for 250 acute inhalation toxicity	65
A.3.2.3.4 Conclusion on acute inhalation	n toxicity related to risk assessment	65
A.3.2.4 Specific target organ toxicity -	single exposure Category 1 and 2 (STOT SE 1 a	nd 2)67
A.3.2.4.1 Short summary and overall re	levance of the provided information on STOT SE	1 and 2 71
A.3.2.4.2 Comparison with the CLP crite	eria	71
A.3.2.4.3 Conclusion on classification and	nd labelling for STOT SE 1 and 2	71
A.3.2.5 Specific target organ toxicity –	single exposure Category 3 (STOT SE 3)	71
A.3.2.5.1 Short summary and overall re	levance of the provided information on STOT SE	372
A.3.2.5.2 Comparison with the CLP crite	eria	76
A.3.2.5.3 Conclusion on classification and	nd labelling for STOT SE 3	76
A.3.2.5.4 Overall conclusion on acute to	exicity related to risk assessment	76
A.3.3 Skin corrosion and irritation		77
A.3.3.1 Short summary and overall rele corrosion/irritation	vance of the provided information on skin	
A.3.3.2 Comparison with the CLP criteri	a	78
A.3.3.3 Conclusion on classification and	labelling for skin corrosion/irritation	78
A.3.3.4 Overall conclusion on skin irrita	tion and corrosivity related to risk assessment	78
A.3.4 Serious eye damage and Eye irrit	ation	79
A.3.4.1 Short summary and overall rele damage/eye irritation	vance of the provided information on serious ey	e 81
A.3.4.2 Comparison with the CLP criteri	a	81

Belgium	Dinotefuran	CLH
A.3.4.3 Conclusion on classification and	labelling for serious eye damage/eye irritation	82
A.3.4.4 Overall conclusion on eye irritati	on and corrosivity related to risk assessment	82
A.3.5 Skin sensitisation		83
A.3.5.1 Short summary and overall relevant	vance of the provided information on skin sensiti	sation85
A.3.5.2 Comparison with the CLP criteria	ìì	85
A.3.5.3 Conclusion on classification and	labelling for skin sensitisation	86
A.3.5.4 Overall conclusion on skin sensit	isation related to risk assessment	86
A.3.6 Respiratory sensitisation		86
A.3.6.1 Short summary and overall relevent sensitisation	vance of the provided information on respiratory	86
A.3.6.2 Comparison with the CLP criteria	a	86
A.3.6.3 Conclusion on classification and	labelling for respiratory sensitisation	86
A.3.6.4 Overall conclusion on respiratory	sensitisation related to risk assessment	86
A.3.7 Repeated dose toxicity/STOT RE		87
A.3.7.1 Short term repeated dose toxicit	:y	87
A.3.7.1.1 Short-term oral toxicity		87
A.3.7.1.2 Short-term dermal toxicity		92
A.3.7.1.3 Short-term inhalation toxicity		93
A.3.7.1.4 Overall conclusion on short-te	rm repeated dose toxicity related risk assessmer	ıt94
A.3.7.2 Sub-chronic repeated dose toxic	ity	95
A.3.7.2.1 Sub-chronic oral toxicity		95
A.3.7.2.2 Sub-chronic dermal toxicity		101
A.3.7.2.3 Sub-chronic inhalation toxicity	· · · · · · · · · · · · · · · · · · ·	101
A.3.7.2.4 Overall conclusion on sub-chro	onic repeated dose toxicity related risk assessme	nt 102
A.3.7.3 Long-term repeated dose toxicit	у	103
A.3.7.3.1 Long-term oral toxicity		103
A.3.7.3.2 Long-term dermal toxicity		108
A.3.7.3.3 Long-term inhalation toxicity.		108
A.3.7.3.4 Overall conclusion on long-ter	m repeated dose toxicity related risk assessment	t108
A.3.7.4 Specific target organ toxicity – r	epeated exposure (STOT RE)	108
A.3.7.4.1 Short summary and overall re	levance of the provided information on STOT RE	108
A.3.7.4.2 Comparison with the CLP crite	ria	114
A.3.7.4.3 Conclusion on classification an	d labelling for STOT RE	114
A.3.8 Genotoxicity / Germ cell mutageni	city	115
A.3.8.1 In vitro		115
A.3.8.2 In vivo		117
A.3.8.2.1 Short summary and overall re mutagenicity	evance of the provided information on germ cell	119
A.3.8.2.2 Comparison with the CLP crite	ria	119

Belgium	Dinotefuran	CLH
A.3.8.2.3 Conclusion on classification ar	d labelling for germ cell mutagenicity	
A.3.8.2.4 Overall conclusion on genotox	icity related to risk assessment	
A.3.9 Carcinogenicity	·	
A.3.9.1 Short summary and overall rele	vance of the provided information on carcinogeni	city 124
A.3.9.2 Comparison with the CLP criteria	a	
A.3.9.3 Conclusion on classification and	labelling for carcinogenicity	
A.3.9.4 Overall conclusion on carcinoger	nicity related to risk assessment	129
A.3.10 Reproductive toxicity		
A.3.10.1 Sexual function and fertility		
A.3.10.1.1 Short summary and overall r sexual function and fertility	elevance of the provided information on adverse	effects on 133
A.3.10.1.2 Comparison with the CLP crit	eria	
A.3.10.1.3 Overall conclusion on sexual	function and fertility related to risk assessment	
A.3.10.2 Developmental toxicity		135
A.3.10.2.1 Short summary and overall r development	elevance of the provided information on adverse	effects on 139
A.3.10.2.2 Comparison with the CLP crit	eria	141
A.3.10.2.3 Overall conclusion on effects	on development related to risk assessment	141
A.3.10.3 Effects on or via lactation		141
A.3.10.3.1 Short summary and overall r lactation	elevance of the provided information on effects o	n or via 141
A.3.10.3.2 Comparison with the CLP crit	eria	142
A.3.10.3.3 Overall conclusion on effects	on or via lactation related to risk assessment	142
A.3.10.4 Conclusion on classification and	l labelling for reproductive toxicity	142
A.3.10.5 Overall conclusion on reproduc	tive toxicity related to risk assessment	142
A.3.11 Aspiration hazard		142
A.3.11.1 Short summary and overall rel	evance of the provided information on aspiration	hazard 142
A.3.11.2 Comparison with the CLP criter	ia	
A.3.11.3 Conclusion on classification and	l labelling for aspiration hazard	142
A.3.12 Neurotoxicity		143
A.3.12.1 Short summary and overall rel	evance of the provided information on neurotoxic	ity 146
Acute and subchronic neurotoxicity		146
Developmental neurotoxicty		146
A.3.12.2 Comparison with the CLP criter	ia	147
A.3.12.3 Conclusion on neurotoxicity rel	ated to risk assessment	147
A.3.13 Immunotoxicity		
A.3.13.1 Short summary and overall rel	evance of the provided information on immunoto	xicity151
A.3.13.2 Comparison with the CLP criter	ia	151
A.3.13.3 Conclusion on immunotoxicity	related to risk assessment	151

Belgium	Dinotefuran	CLH
A.3.14 Endocrine disruption		
A.3.15 Further Human data		
A.3.16 Other data		
A.4 Environmental effects assessment		
A.4.1 Fate and distribution in the enviro	nment	155
A.4.1.1 Degradation		155
A.4.1.1.1 Abiotic degradation		155
A.4.1.1.2 Biotic degradation, initial stud	lies	160
A.4.1.1.3 Rate and route of degradation products	n including identification of metabolites and	degradation 161
A.4.1.1.3.1 Biological sewage treatment	t	161
A.4.1.1.3.2 Biodegradation in freshwate	er	161
A.4.1.1.3.3 Biodegradation in seawater		174
A.4.1.1.3.4 Higher tier degradation stud	lies in water or sediment	174
A.4.1.1.3.5 Biodegradation during manu	ure storage	174
A.4.1.1.3.6 Biotic degradation in soil		174
A.4.1.1.3.6.1 Laboratory soil degradation	on studies	174
A.4.1.1.3.6.2 Higher tier degradation st	udies in soil	185
A.4.1.1.3.7 Short summary and overall conclusion on rapid degradation	relevance of the provided information on do on for classification and labelling purposes	egradation and 185
A.4.1.2 Distribution		
A.4.1.2.1 Adsorption onto/desorption fr	om soils	186
A.4.1.2.2 Higher tier soil adsorption stu	dies	
A.4.1.2.3 Volatilisation		
A.4.1.3 Bioaccumulation		
A.4.1.3.1 Short summary and overall re and conclusion on bioaccumula	elevance of the provided information on bioa ation potential for classification and labelling	accumulation g purposes189
A.4.1.4 Monitoring data		
A.4.2 Effects on environmental organism	ns	190
A.4.2.1 Atmosphere		190
A.4.2.2 Toxicity to sewage treatment pl	ant (STP) microorganisms	190
A.4.2.3 Aquatic compartment		191
A.4.2.3.1 Freshwater compartment		191
A.4.2.3.2 Sediment compartment (fresh	nwater)	201
A.4.2.3.3 Marine compartment		204
A.4.2.3.4 Seawater sediment compartmeter	nent	206
A.4.2.3.5 Higher tier studies on aquatic	organisms	206
A.4.2.4 Terrestrial compartment		207
A.4.2.5 Groundwater		207
A.4.2.6 Birds and mammals		207

Belgium	Dinotefuran	CLH
A.4.2.7 Primary and secondary poisonir	ıg	208
A.4.3 Endocrine disruption		208
A.4.4 Derivation of PNECs		208
A.4.5 Overall summary of acute and ch criteria	ronic aquatic toxicity data and Con	nparison with the CLP 209
A.4.5.1 Acute aquatic hazard		209
A.4.5.2 Long-term aquatic hazard (inclu	uding information on bioaccumulat	ion and degradation).210
A.4.5.3 Conclusion on classification and the CLP criteria	labelling for environmental hazard	ds and comparison with 212
A.5 Assessment of additional hazards		213
A.5.1 Hazardous to the ozone layer		213
A.6 Additional Labelling		213
A.7 Assessment of exclusion criteria, su	Ibstitution criteria and POP	213
A.7.1 Exclusion criteria		213
A.7.1.1 Assessment of CMR properties.		213
A.7.1.2 Assessment of endocrine disrup	ting properties	213
A.7.1.3 PBT Assessment (following Ann	ex XIII to Regulation (EC) No 1907	7/2006)214
A.7.2 Substitution criteria		214
A.7.3 Assessment of long-range enviror compartments	nmental transportation and impact	on environmental
D. Appendices		
Appendix I: List of endpoints		215
Appendix II: Human exposure calculation	ons	215
Appendix III: Environmental emission (and exposure) calculations	215
Appendix IV: List of terms and abbrevia	ations	215
Appendix V: Overall reference list (inclu	Iding data owner and confidentialit	ty claim)215
Appendix VI: Confidential information242		
Appendix VII: Study summaries (releva	Int for the CLH proposal)	242

Belgium	Dinotefuran	CLH
TABLE 1-1: MAIN CON	ISTITUENT(S)	15
TABLE 1-2: RELEVANT	IMPURITIES AND ADDITIVES	15
TABLE 1-3: USE OF TH	HE ACTIVE SUBSTANCE	15
TABLE 1-4: EFFECTIVE	ENESS OF THE ACTIVE SUBSTANCE	16
TABLE 2-1: PROPOSE) HARMONISED CLASSIFICATION AND LABELLING OF THE SUBSTANCE	
TABLE 2-2: REASON F	OR NOT PROPOSING HARMONISED CLASSIFICATION AND LABELLING A	ND THE
STATUS UNDER CL	_H CONSULTATION	
TABLE 2-3: PROPOSED	CLASSIFICATION AND LABELLING ACCORDING TO REGULATION (EC)) NO
1272/2000 Ταβί ε 2-4· Ραςκάςια		19 19
TABLE 2 11 THEIMER	OF THE ASSESSMENT OF FEFECTS ON HUMAN HEALTH	21
TABLE 3-1: SOMMARY		
TABLE 3-2: REFERENCE	OF EXPOSIBE SCENARIOS	
TABLE 3-4: CONCLUS	ION OF RISK CHARACTERISATION FOR INDUSTRIAL USER	21
TABLE 3-5: CONCLUS	ION OF RISK CHARACTERISATION FOR PROFESSIONAL USER	21
TABLE 3-6: CONCLUS	ION OF RISK CHARACTERISATION FOR NON-PROFESSIONAL USER	
TABLE 3-7: CONCLUS	ION OF RISK CHARACTERISATION FOR INDIRECT EXPOSURE	
TABLE 4-1: SUMMARY	TABLE ON COMPARTMENTS EXPOSED AND ASSESSED	
TABLE 4-2: SUMMARY	TABLE ON RELEVANT METABOLITES/DEGRADANTS	
TABLE 4-3: SUMMARY	TABLE ON RELEVANT PHYSICO-CHEMICAL AND FATE AND BEHAVIOUR	PARAMETER OF
THE ACTIVE SUBST	TANCE	
TABLE 4-4: SUMMARY	TABLE ON CALCULATED PNEC VALUES	23
TABLE 4-5: SUMMARY	TABLE ON CALCULATED PEC VALUES	23
TABLE 4-6: SUMMARY	TABLE ON CALCULATED PEC/PNEC VALUES	23
TABLE 5-1: ASSESSME	ENT OF EXCLUSION CRITERIA, SUBSTITUTION CRITERIA AND POP	24
TABLE A-1: SUMMARY	' TABLE ON SUBSTANCE IDENTITY	25
TABLE A-2: STRUCTUR	RAL FORMULA	25
TABLE A-3: ORIGIN O	F THE NATURAL ACTIVE SUBSTANCE OR PRECURSOR(S) OF THE ACTIVE	SUBSTANCE
		25
TABLE A-4. METHOD (TABLE A-5: MATH CON	JF MANUFACIURE	
	=c	20
	<u>-</u> 5	
TABLE A 7: ADDITIVE		TVFS) IN
BATCHES USED FO	REALED STATES AND PROPOSED SPECIFICATION	26
TABLE A-9: CONCENT	RATION OF CONSTITUENTS (MAIN CONSTITUENTS, IMPURITIES, ADDIT	TVFS) IN
BATCHES USED FO	R (ECO)TOXICITY STUDIES AND PROPOSED SPECIFICATION	
TABLE A-10: PHYSICA	AL AND CHEMICAL PROPERTIES OF THE ACTIVE SUBSTANCE	
TABLE A-11: PHYSICA	AL HAZARDS AND RESPECTIVE CHARACTERISTICS	
TABLE A-12: SUMMAR	<pre>XY TABLE OF STUDIES ON EXPLOSIVE PROPERTIES</pre>	
TABLE A-13: SUMMAR	RY TABLE OF STUDIES ON FLAMMABLE GASES (INCLUDING CHEMICALLY	UNSTABLE
GASES)		
TABLE A-14: SUMMAR	<pre>XY TABLE OF STUDIES ON FLAMMABLE AEROSOLS AND AEROSOLS</pre>	
TABLE A-15: SUMMAR	<pre>XY TABLE OF STUDIES ON OXIDISING GASES</pre>	
TABLE A-16: SUMMAR	XY TABLE OF STUDIES ON GASES UNDER PRESSURE	
TABLE A-17: SUMMAR	<pre>XY TABLE OF STUDIES ON FLAMMABLE LIQUIDS</pre>	
TABLE A-18: SUMMAR	<pre>XY TABLE OF STUDIES ON FLAMMABLE SOLIDS</pre>	
TABLE A-19: SUMMAR	<pre>XY TABLE OF STUDIES ON SELF-REACTIVITY</pre>	
TABLE A-21: SUMMAR	XY TABLE OF STUDIES ON PYROPHORIC SOLIDS	41
TABLE A-22: SUMMAR	<pre>XY TABLE OF STUDIES ON SELF-HEATING SUBSTANCES</pre>	
TABLE A-25: SUMMAR	<pre>XY TABLE OF STUDIES ON OXIDISING SOLIDS</pre>	43

Belgium	Dinotefuran	CLH
TABLE A-27: SUMMARY TABLE OF STUDI	ES ON THE HAZARD CLASS DESENSITISED EXPLOSIVES	44
TABLE A-28: ANALYTICAL METHODS		46
TABLE A-29: SUMMARY TABLE OF INTEN	DED USES	47
TABLE A-30: EXPERIMENTAL DATA ON TH	IE EFFICACY OF THE ACTIVE SUBSTANCE AGAINST TAR	GET
ORGANISM(S)		
TABLE A-31. SUMMARY TABLE OF TUXIC		
TABLE A 32: SUMMARY TABLE OF HUMAN	N DATA ON ACUTE ORAL TOXICITY	
TABLE A-34: SUMMARY TABLE OF OTHER	STUDIES RELEVANT FOR ACUTE ORAL TOXICITY	59
TABLE A-35: SUMMARY TABLE OF ANIMA	I STUDIES ON ACUTE DERMAL TOXICITY	61
TABLE A-36: SUMMARY TABLE OF HUMAN	DATA ON ACUTE DERMAL TOXICITY	
TABLE A-37: SUMMARY TABLE OF OTHER	STUDIES RELEVANT FOR ACUTE DERMAL TOXICITY	
TABLE A-38: SUMMARY TABLE OF ANIMA	L STUDIES ON ACUTE INHALATION TOXICITY	63
TABLE A-39: SUMMARY TABLE OF HUMAN	N DATA ON ACUTE INHALATION TOXICITY	65
TABLE A-40: SUMMARY TABLE OF OTHER	STUDIES RELEVANT FOR ACUTE INHALATION TOXICITY	(65
TABLE A-41: SUMMARY TABLE OF ANIMA	L STUDIES ON SPECIFIC TARGET ORGAN TOXICITY ST	OT SE 1
and 2		67
TABLE A-42: SUMMARY TABLE OF HUMAN	N DATA ON SPECIFIC TARGET ORGAN TOXICITY STOT	SE 1 OR
TABLE A-43: SUMMARY TABLE OF OTHER	STUDIES RELEVANT FOR SPECIFIC TARGET ORGAN TO	OXICITY
STOT SE 1 AND 2		70
TABLE A-44: SUMMARY TABLE OF ANIMA	L STUDIES ON STOT SE 3	71
TABLE A-45: SUMMARY TABLE OF HUMAN	N DATA ON STOT SE 3	71
TABLE A-46: SUMMARY TABLE OF OTHER	STUDIES RELEVANT FOR STOT SE 3	71
TABLE A-47: SUMMARY TABLE OF IN VIT	RO STUDIES ON SKIN CORROSION/IRRITATION	77
TABLE A-48: SUMMARY TABLE OF ANIMA	L STUDIES ON SKIN CORROSION/IRRITATION	77
TABLE A-49: SUMMARY TABLE OF HUMAN	N DATA ON SKIN CORROSION/IRRITATION	78
TABLE A-50: SUMMARY TABLE OF IN VIT	RO STUDIES ON SERIOUS EYE DAMAGE AND EYE IRRITA	ATION 79
TABLE A-51: SUMMARY TABLE OF ANIMA	L STUDIES ON SERIOUS EYE DAMAGE AND EYE IRRITAT	'ION 79
TABLE A-52: SUMMARY TABLE OF HUMAN	N DATA ON SERIOUS EYE DAMAGE AND EYE IRRITATION	81
TABLE A-53: SUMMARY TABLE OF ANIMA	L STUDIES ON SKIN SENSITISATION	83
TABLE A-54: SUMMARY TABLE OF HUMAN	N DATA ON SKIN SENSITISATION	85
TABLE A-55: SUMMARY TABLE OF OTHER	STUDIES RELEVANT FOR SKIN SENSITISATION	85
TABLE A-56: SUMMARY TABLE OF ANIMA	L DATA ON RESPIRATORY SENSITISATION	
TABLE A-57: SUMMARY TABLE OF HUMAN	N DATA ON RESPIRATORY SENSITISATION	86
TABLE A-58: SUMMARY TABLE OF OTHER	STUDIES RELEVANT FOR RESPIRATORY SENSITISATION	N86
TABLE A-59: SUMMARY TABLE OF ORALS	SHORT-TERM ANIMAL STUDIES (USUALLY 28-DAY STU	DIES) 87
TABLE A-60: SUMMARY TABLE OF HUMAN	N DATA ON SHORT-TERM ORAL TOXICITY	91
TABLE A-61: SUMMARY TABLE OF DERMA	AL SHORT-TERM ANIMAL STUDIES (USUALLY 28-DAY S	TUDIES).92
TABLE A-62: SUMMARY TABLE OF HUMAN	N DATA ON SHORT-TERM DERMAL TOXICITY	93
TABLE A-63: SUMMARY TABLE OF INHAL	ATION SHORT-TERM ANIMAL STUDIES (USUALLY 28-D/	4Y 02
		53
TABLE A OT. SUMMARY TABLE OF NUMAL TABLE OF NUMAL		IDIEC) OF
TABLE A 03. SUMMARY TABLE OF UNAL Δ	A DATA ON SUB-CHEONIC OPAL TOVICITY	101
TABLE A 00. SUMMARY TABLE OF HUMAI	A SUB-CHRONIC ANIMAL STUDIES (USUALLY QA-DAY	
	LE SOB CHICOME ANTIME STODIES (USUALET JO-DAT	
TABLE A-68: SUMMARY TABLE OF HUMAN	N DATA ON SUB-CHRONIC DERMAL TOXICITY	
TABLE A-69: SUMMARY TABLE OF INHAL	atory sub-chronic animal studies (usually 90-	CAY
STUDIES)		101
I ABLE A-70: SUMMARY TABLE OF HUMAN	N DATA ON SUB-CHRONIC INHALATION TOXICITY	102

Belgium	Dinotefuran	CLH
ΤΔΒΙ Ε Δ-71 · SUMMARY ΤΔΒ	LE OF ORAL LONG-TERM ANIMAL STUDIES	103
TABLE A-72: SUMMARY TAB		107
TABLE A 72: SUMMARY TAB	LE OF DERMAL LONG-TERM ANIMAL STUDIES	108
TABLE A 73: SUMMARY TAB		108
TABLE $A - 75$: SUMMARY TAB	LE OF THOMAN DATA ON LONG-TERM ANIMAL STUDIES	108
TABLE A 75: SUMMARY TAB		108
TABLE A 70: SOMMART TAB	CORRESPONDING CUIDANCE VALUES TO ASSIST CLASSIFICATION F	
RF		113
Ταβί ε Δ-78. Slimmary ταβ		115
TABLE Λ 70: SUMMARY TAB		117
TABLE Λ - 80: SUMMARY TAB		118
TABLE A 60: SUMMARY TAB		120
TABLE A 01. SUMMART TAB		120
TABLE A-02. SUMMART TAB		122
TABLE A-65. SUMMART TAB	OF COME FACTORS THAT MAY BE TAKEN INTO CONSIDERATION IN	
CLASSIFICATION AND LA	OF SOME FACTORS THAT MAY BE TAKEN INTO CONSIDERATION IN	179
TABLE A-85. SUMMARY TAB		
FEDTILITY	LE OF ANIMAL STODIES ON ADVERSE EFFECTS ON SEXUAL FUNCTION	120
TABLE A-86. SUMMARY TAB		
FERTILITY	LE OF HOMAN DATA ON ADVENSE EFFECTS ON SEXUAL FUNCTION P	133
TABLE Δ -87. SUMMARY TAB	I E OF OTHER RELEVANT STUDIES FOR SEVUAL FUNCTION AND FED	TILITY 133
TABLE A -88: SUMMARY TAB		135
TABLE A 60. SUMMART TAB	LE OF ANIMAL STODIES ON ADVERSE EFFECTS ON DEVELOPMENT	120
TABLE A-09. SUMMART TAB		120
TABLE A-90. SUMMART TAB	LE OF OTHER RELEVANT STUDIES FOR DEVELOPMENTAL TOXICITY.	139
TABLE A-91. SUMMART TAB	LE OF ANIMAL STUDIES ON ADVERSE EFFECTS ON OR VIA LACTATION	JN141 141
TABLE A-92. SUMMART TAB	LE OF HUMAN DATA ON ADVERSE EFFECTS ON OR VIA LACTATION	
LACTATION	LE OF OTHER RELEVANT STUDIES FOR ADVERSE EFFECTS ON OR VI	.A 1/1
TABLE Δ -94. SUMMARY TAB		1/12
TABLE A J4. SUMMART TAB		1/2
TABLE A JS. SUMMART TAB		145
TABLE A JO. SUMMART TAB		1/0
TABLE A-97. SUMMART TAB		140
TABLE A-90. SUMMART TAB		140
TABLE A-100. SUMMARY TAB		
NOT ADDITCABLE FOR THE CL	H DEDODT TABLE Λ_101 , SUMMADY TABLE OF ANIMAL DATA ON	
	LIT REPORT TABLE A-101. SUMMART TABLE OF ANIMAL DATA ON	LINDOCKINL 151
TABLE $\Delta - 102$ SUMMARY TA		151
TABLE A 102: SUMMARY TA		151
TABLE A-103. SUMMART TA	NELE OF OTHER EVIDENCE ON ENDOCRINE DISKOPTION	152
TABLE A-105. SUMMARY TA		152
TABLE A-105. SUMMARY TA		
TABLE A-100. SUMMART TA		
TABLE A 109: SUMMART TA		
TABLE A 100: SUMMART TA		
TADLE A-109. JUMMARY TA	NOLL - DIVUEGRAUATION STUDIES (KEAUY/INHEKENT)	
TADLE A-111, SUMMARY TA		
TABLE A-111: SUMMARY TA	NDLE - STF ANAEKUBIU BIUDEGKADATION	
TADLE A-112, SUMMARY TA		
TADLE A-113: SUMMARY TA		
TABLE A-114: SUMMARY IA	ABLE - FRESH WATER/SEDIMENT DEGRADATION	
TABLE A-115: SUMMARY TA	ABLE - SEAWATER AEROBIC BIODEGRADATION	174

Belgium	Dinotefuran	CLH
TABLE A-116: SUMMA	RY TABLE - SEAWATER/SEDIMENT BIODEGRADATION	174
TABLE A-117: SUMMA	RY TABLE - BIODEGRADATION DURING MANURE STORAGE	174
TABLE A-118: SUMMA	RY TABLE - AEROBIC BIODEGRADATION IN SOIL- LABORATORY STUDY	175
TABLE A-119: SUMMA	RY TABLE - ANAEROBIC BIODEGRADATION IN SOIL- LABORATORY STUDY	182
TABLE A-120: SUMMA	RY TABLE - FIELD DISSIPATION	185
TABLE A-121: SUMMA	RY TABLE - ADSORPTION/DESORPTION	186
TABLE A-122: SUMMA	RY TABLE - ADSORPTION/DESORPTION METABOLITE/ DEGRADANT/	
TRANSFORMATION-	OR REACTION PRODUCT	187
TABLE A-123: SUMMA	RY TABLE - MEASURED AQUATIC BIOCONCENTRATION	
TABLE A-124: SUMMA	RY TABLE - ESTIMATED AQUATIC BIOCONCENTRATION *	
TABLE A-125: SUMMA	RY TABLE - MEASURED TERRESTRIAL BIOCONCENTRATION	189
TABLE A-126: SUMMA	RY TABLE - ESTIMATED TERRESTRIAL BIOCONCENTRATION	189
TABLE A-127: SUMMA	RY TABLE - INHIBITION OF MICROBIAL ACTIVITY	190
TABLE A-128: SUMMA	RY TABLE – ACUTE/SHORT-TERM AQUATIC TOXICITY	191
TABLE A-129: SUMMA	RY TABLE - CHRONIC/LONG-TERM AQUATIC TOXICITY	198
TABLE A-130: SUMMA	RY TABLE - ACUTE/SHORT-TERM TOXICITY TO SEDIMENT DWELLING ORG/	ANISMS201
TABLE A-131: SUMMA	RY TABLE - CHRONIC/LONG-TERM TOXICITY TO SEDIMENT DWELLING OR	GANISMS
		202
TABLE A-132: SUMMA	RY TABLE - ACUTE/SHORT-TERM AQUATIC TOXICITY	204
TABLE A-133: SUMMA	RY TABLE - CHRONIC AQUATIC TOXICITY	205
TABLE A-134: SUMMA	RY TABLE - ACUTE/SHORT-TERM TOXICITY TO SEA SEDIMENT DWELLING	
ORGANISMS	,	206
TABLE A-135: SUMMA	RY TABLE - LONG-TERM/ CHRONIC TOXICITY TO SEA SEDIMENT DWELLIN	G
ORGANISMS	,	206
TABLE A-136: SUMMA	RY TABLE – ACUTE/SHORT-TERM TERRESTRIAL TOXICITY	207
TABLE A-137: SUMMA	RY TABLE – CHRONIC/LONG-TERM TERRESTRIAL TOXICITY	207
TABLE A-138: SUMMA	RY TABLE – TOXICITY TO BIRDS AND MAMMALS	207
TABLE A-139: SUMMA	RY TABLE – PRIMARY POISONING	208
TABLE A-140: SUMMA	RY TABLE – SECONDARY POISONING	208
TABLE A-141: SUMMA	RY TABLE OF ECOTOXICOLOGICAL DATA ON ENDOCRINE DISRUPTION	
IABLE A-143: SUMMA	RY OF KEY INFORMATION ON ACUTE/ SHORT-TERM AQUATIC TOXICITY RE	LEVANT
FOR AQUATIC ACUT	E CLASSIFICATION	209
IABLE A-144: SUMMA	RY OF KEY INFORMATION ON CHRONIC/ LONG-TERM AQUATIC TOXICITY R	ELEVANT
FOR AQUATIC CHRO	DNIC CLASSIFICATION	210

Belgium

Dinotefuran

CLH

STATEMENT

This CLH report is the first proposal for an harmonised Classification & labelling for the Active Substance "Dinotefuran" (CAS: 165252-70-0).

However, it is important to note that a large majority of the parameters/endpoints described in this document had already been determined in the context of the Assessment Report of Dinotefuran prepared by the previous evaluating competent authority, United Kingdom, and approved on 1st June 2015. Following the departure of the United Kingdom from the European Union, Belgium has taken over the function of evaluating competent authority for the Dinotefuran dossier and more precisely for the renewal of the assessment report for Dinotefuran for product type 18.

SUMMARY

1 PRESENTATION OF THE ACTIVE SUBSTANCE

1.1 IDENTITY OF THE ACTIVE SUBSTANCE

Table 1-1: Main constituent(s)

Main constituent(s)		
ISO name	Dinotefuran	
IUPAC or EC name	(RS)-1-methyl-2-nitro-3-(tetrahydro-3-	
	furylmethyl)guanidine	
EC number	-	
CAS number	165252-70-0	
Index number in Annex VI of CLP	612-RST-VW-Y	
Minimum purity / content	991 g/kg	
Structural formula	O CH ₂ -NH-C-NH-CH ₃ NNO ₂	

Table 1-2: Relevant impurities and additives

There are no relevant impurities in the active substance Dinotefuran, as per the definition of relevant impurities.

1.2 INTENDED USES AND EFFECTIVENESS

Table 1-3: Use of the active substance

Product type	Product Type 18 : Insecticide

Belgium	Dinotefuran CLH	
Intended use pattern(s)	Insecticide for indoor use only as a spot or crevice and crack treatment at / near locations where target pests gather.	
Users	Professional, trained professional and non-professional	

Table 1-4: Effectiveness of the active substance

Function	PT 18 Insecticide
Organisms to be controlled	Adult and nymph cockroaches: Oriental cockroach (<i>Blatta orientalis</i>) German cockroach (<i>Blattella germanica</i>)
Limitation of efficacy including resistance	None
Mode of action	Contact and ingestion: Nicotinic acetylcholine receptor (nAChR) competitive modulator (IRAC sub-group 4A)

Belgium Dinotefuran CLH

2. PROPOSED HARMONISED CLASSIFICATION AND LABELLING OF THE ACTIVE SUBSTANCE ACCORDING TO THE CLP CRITERIA

2.1 PROPOSED HARMONISED CLASSIFICATION AND LABELLING FOR THE ACTIVE

Table 2-1: Proposed harmonised classification and labelling of the substance

For substance with no current entry in Annex VI of CLP

	Index No	Chemical name	EC No	CAS No	Classifica	ation		Labelling		Specific Conc. Limits, M-	Notes
					Hazard Class and Category	Hazard statement	Pictogram, Signal	Hazard statement	Suppl. Hazard	factors and ATEs	
					Code(s)	Code(s)	Word Code(s)	Code(s)	statement Code(s)		
Current Annex VI entry					Ν	o current Ann	ex VI entry				
Dossier submitter's proposal	TBD	dinotefuran (ISO); (<i>RS</i>)-1-methyl-2-nitro- 3-(tetrahydro-3- furylmethyl)guanidine	-	165252- 70-0	Aquatic Acute 1 Aquatic Chronic 1	H400 H410	GHS09, Warning	H400 H410		Acute: M=10 Chronic: M= 10	
Resulting entry in Annex VI if adopted by RAC and agreed by Commission	TBD	dinotefuran (ISO); (<i>RS</i>)-1-methyl-2-nitro- 3-(tetrahydro-3- furylmethyl)guanidine	-	165252- 70-0	Aquatic Acute 1 Aquatic Chronic 1	H400 H410	GHS09, Warning	H400 H410		Acute: M=10 Chronic: M= 10	

Belgium Dir	notefuran	CLH
-------------	-----------	-----

Table 2-2: Reason for not proposing harmonised classification and labelling and the status under CLH consultation

Hazard class	Reason for not proposing classification and labelling	Within the scope of consultation (please select YES or NO from the drop down list) (yes/no)
Explosives	Data conclusive but not sufficient for classification	Yes
Flammable gases (including chemically unstable gases)	Hazard class not applicable (e.g. physical state or chemical structure)	No
Oxidising gases	Hazard class not applicable (e.g. physical state or chemical structure)	No
Gases under pressure	Hazard class not applicable (e.g. physical state or chemical structure)	No
Flammable liquids	Hazard class not applicable (e.g. physical state or chemical structure)	No
Flammable solids	Data conclusive but not sufficient for classification	Yes
Self-reactive substances and mixtures	Data conclusive but not sufficient for classification	Yes
Pyrophoric liquids	Hazard class not applicable (e.g. physical state or chemical structure)	No
Pyrophoric solids	Data conclusive but not sufficient for classification	Yes
Self-heating substances and mixtures	Data conclusive but not sufficient for classification	Yes
Substances which in contact with water emit flammable gases	Data conclusive but not sufficient for classification	Yes
Oxidising liquids	Hazard class not applicable (e.g. physical state or chemical structure)	No
Oxidising solids	Data conclusive but not sufficient for classification	Yes
Organic peroxides	Hazard class not applicable (e.g. physical state or chemical structure)	No
Corrosive to metals	Hazard class not applicable (e.g. physical state or chemical structure)	No
Desensitised explosives	Hazard class not applicable (e.g. physical state or chemical structure)	No
Acute toxicity via oral route	Data conclusive but not sufficient for classification	Yes
Acute toxicity via dermal route	Data conclusive but not sufficient for classification	Yes
Acute toxicity via inhalation route	Data conclusive but not sufficient for classification	Yes
Skin corrosion/irritation	Data conclusive but not sufficient for classification	Yes

Belgium	Dinotefuran	CLH
Serious eye damage/eye irritation	Data conclusive but not sufficient for classification	Yes
Respiratory sensitisation	Data conclusive but not sufficient for classification	Yes
Skin sensitisation	Data conclusive but not sufficient for classification	Yes
Germ cell mutagenicity	Data conclusive but not sufficient for classification	Yes
Carcinogenicity	Data conclusive but not sufficient for classification	Yes
Reproductive toxicity	Data conclusive but not sufficient for classification	Yes
Specific target organ toxicity-single exposure	Data conclusive but not sufficient for classification	Yes
Specific target organ toxicity-repeated exposure	Data conclusive but not sufficient for classification	Yes
Aspiration hazard	Hazard class not applicable (e.g. physical state or chemic structure)	cal Yes
Hazardous to the aquatic environment	Harmonised classification proposed	Yes
Hazardous to the ozone layer	Data conclusive but not sufficient for classification	Yes

2.1.1 HISTORY OF THE PREVIOUS CLASSIFICATION AND LABELLING

There is no current harmonised classification for the active substance dinotefuran according to Annex VI of Regulation (EC) no 1272/2008. The UK CA, who was the evaluating CA for the approval of dinotefuran, did not submit a CLH report to ECHA and RAC in light of other compounds being of a higher priority for completion ahead of EU exit.

2.2 PROPOSED CLASSIFICATION AND LABELLING AND PACKAGING FOR THE REPRESENTATIVE PRODUCT(S)

Not applicable for the CLH report

Table 2-3: Proposed Classification and Labelling according to Regulation (EC) No 1272/2008

Table 2-4: Packaging of the biocidal product

Belgium Dinotefuran CLH

2.3 DATA SOURCES

See the reference list in the Appendix V of this CLH report and the IUCLID dossier (UUID : 911cc350-f1ca-4503-ab3b-034ffa29c3fa). All the relevant data from REACH dossier have been included.

Belgium Dinotefuran CLH

3. SUMMARY OF THE HUMAN HEALTH RISK ASSESSMENT

Not applicable for the CLH report

3.1 SUMMARY OF THE ASSESSMENT OF EFFECTS ON HUMAN HEALTH

Table 3-1: Summary of the assessment of effects on human health

Not applicable for the CLH report

3.2 REFERENCE VALUES

Table 3-2: Reference values

Not applicable for the CLH report

3.3 RISK CHARACTERISATION

Not applicable for the CLH report Table 3-3: Summary of exposure scenarios Not applicable for the CLH report Table 3-4: Conclusion of risk characterisation for industrial user Not applicable for the CLH report Table 3-5: Conclusion of risk characterisation for professional user Not applicable for the CLH report Table 3-6: Conclusion of risk characterisation for non-professional user Not applicable for the CLH report Table 3-6: Conclusion of risk characterisation for non-professional user Not applicable for the CLH report Table 3-7: Conclusion of risk characterisation for indirect exposure

Not applicable for the CLH report

Belgium	Dinotefuran	CLH
---------	-------------	-----

4. SUMMARY OF THE ENVIRONMENTAL RISK ASSESSMENT

Not applicable for the CLH report

4.1 FATE AND BEHAVIOUR IN THE ENVIRONMENT

Table 4-1: Summary table on compartments exposed and assessed

Not applicable for the CLH report

Table 4-2: Summary table on relevant metabolites/degradants

Not applicable for the CLH report

Table 4-3: Summary table on relevant physico-chemical and fate and behaviour parameter of the active substance

Property	Value	Unit	Remarks	
Molecular weight	202.2	g/mol		
Vapour pressure (25°C)	5E-05	Ра		
Solubility in water (20°C)	39830	mg/L		
Log Octanol/water partition	-0.549	Loa 10	25°C, pH 7 (2000a)	
coefficient (Log Kow)				
Organic carbon/water partition	25.4	l/ka	Geometric mean, according to GBPR	
coefficient (Koc)		.,	(p. 58)	
Henry's Law Constant (20°C)	8.30E-08	Pa/m ³ /mol	ST4.0 default, as the Henry's Law Constant could not be determined due to lack of vanour pressure	
(30°C)	<3.89E-09	, ,	Calculated based on VAP30°c pure water and solubility 30°C	
Biodegradability	Not ready	_		
Diouegradability	biodegradable			
DT50 water-sediment	37.6	d	2020a & ENV/ W/G-V-2019	
(total system – 12 °C)	57.0	u	2020a Q LIVV WG-V-2019	
DT ₅₀ for hydrolysis in surface	365	d	1998	
water				
DT₅₀ for photolysis in surface	0.9	d	2002e	
water				
DT ₅₀ for degradation in soil (12°C)	32.4	d	Geometric mean	
DT_{50} for degradation in air	2.4	h	Calculated, AOPWIN, version 1.92	
Bioconcentration, aquatic	0.068	L/kg (wwt)	Calculated, IUCLID 9.1.7	
Bioconcentration, terrestrial	0.843	L/kg (wwt)	Calculated, IUCLID 9.6	

Belgium	Dinotefuran	CLH
---------	-------------	-----

4.2 EFFECTS ASSESSMENT

Table 4-4: Summary table on calculated PNEC values

Not applicable for the CLH report

4.3 EXPOSURE ASSESSMENT

Table 4-5: Summary table on calculated PEC values

Not applicable for the CLH report

4.4 RISK CHARACTERISATION

Table 4-6: Summary table on calculated PEC/PNEC values

Not applicable for the CLH report

Belgium	Dinotefuran	CLH
---------	-------------	-----

5. ASSESSMENT OF EXCLUSION CRITERIA, SUBSTITUTION CRITERIA AND POP

Not applicable for the CLH report

Table 5-1: Assessment of exclusion criteria, substitution criteria and POP

Not applicable for the CLH report

Belgium Dinotefuran	CLH
---------------------	-----

A Assessment of intrinsic properties and effects of the active substance

A.1 General substance information

A.1.1 Identity of the Substance

Table A-1: Summary table on substance identity

Sun	nmary table on substance identity
Common name (ISO name, synonyms)	Dinotefuran
Chemical name (EC name,	IUPAC name:(RS)-1-methyl-2-nitro-3-(tetrahydro-3-
CA name, IUPAC name)	furylmethyl)guanidine
	CA name:N-methyl-N'-nitro-N"-[(tetrahydro-3-
	furanyl)methyl]guanidine
EC number	-
CAS number	165252-70-0
other CAS numbers (e.g.	CIPAC number: 749
deleted, related, preferred,	
alternate)	
Molecular formula	C7H14N4O3
Molecular weight or	202.2 g/mole
molecular weight range	
Information on optical	Determination of the optical rotation of dinotefuran shows that
activity and typical ratio of	the value of angular rotation (a) is zero. This demonstrates that
(stereo) isomers (if	dinotefuran is not optically active, but it is isolated as racemic
applicable and	mixture; in a 1:1 ratio (IUCLID 2.9).
appropriate)	
Description of the	This information can be found in confidential annex, Table 92.
manufacturing process and	
identity of the source (for	
UVCB substances only)	
Degree of purity (%)*	>=99.1% (w/w)

Table A-2: Structural formula

Table A-3: Origin of the natural active substance or precursor(s) of the active substance Not applicable for the CLH report

Belgium	Dinotefuran	CLH
---------	-------------	-----

Table A-4: Method of manufacture

Not applicable for the CLH report

A.1.2 Composition of the substance (reference specifications)

Table A-5: Main constituent(s)

Constituent (chemical name)	Typical concentratio n (%(w/w))	Concentratio n range (%(w/w))	Curren t CLH in Annex VI Table 3 (CLP)	Current self- classificatio n and labelling (CLP)	Remarks / Discussio n
(RS)-1-methyl-2- nitro-3-(tetrahydro- 3- furylmethyl)guanidin e	≥99.1	≥99.1 ≤100	None	H400 H410	None

Table A-6: Impurities

Constituent (chemical name)	Typical concentration (%(w/w))	Concentration range (%(w/w))	Current CLH in Annex VI Table 3 (CLP)	Current self- classification and labelling (CLP)	Remarks / Discussion
Impurities do not contributes to the classification. Additionnal information can be found in the					

confidential annex, Table 93.

Table A-7: Additives

Constituent (chemical name)	Typical concentration (%(w/w))	Concentration range (%(w/w))	Current CLH in Annex VI Table 3 (CLP)	Current self- classification and labelling (CLP)	Remarks / Discussion			
Dinotofuron co.	ataine ne additivee	Directofunger contains and different						

Dinotefuran contains no additives.

Table A-8: Concentration of constituents (main constituents, impurities, additives) in batches used for (eco)toxicity studies and proposed specification

Not applicable

Table A-9: Concentration of constituents (main constituents, impurities, additives) in batches used for (eco)toxicity studies and proposed specification

Belgium	Dinotefuran	CLH
See Confidential Annex, Table 94	ł	

Belgium Dinotefuran CLH

A.1.3 Physical and chemical properties of the active substance

Table A-10: Physical and chemical properties of the active substance

Property	Result	Test method applied or description in case of deviation	Remarks / Discussion / Justification for waiving	References
Aggregate state at 20°C and 101.3 kPA	Solid (99.6%)	Visual method	none	(1999a)
Physical state (appearance) at 20°C and 101.3 kPA	Solid (crystalline) (99.6%)	Visual method	none	(1999a)
Colour at 20°C and 101.3 kPA	White (99.6%)	Visual method	none	(1999b)
Odour at 20°C and 101.3 kPA	Odourless (99.6%)	Functional method	none	(1999c)
Melting / freezing point	107.5°C (99.7%)	OECD TG 102 (DSC), EU Annex IIA Point #2.1.1, OPPTS 830.7200	none	(2000a) Report no. 011098-1
Boiling point at Granulometry	Does not boil (99.7%)	OECD TG 103 (DSC), EU Annex IIA Point #2.1.2, OPPTS 830.7220	Decomposition before boiling (at 208.3°C, 100.2 kPa)	(2000a) Report no. 011098-1
Vapour pressure	<1.7 x 10 ⁻⁶ Pa at 30 °C (99.7%)	OECD TG 104, EU Annex IIA Point #2.3.1, OPPTS 830.7950	none	(2000a) Report no. 011098-1
	5.0 x 10 ⁻⁵ Pa at 25°C (99.5%)	OECD TG 104, EEC A.4	-	(1996) Report no MTO097/980159
Henry's law constant	-	-	Could not be determined at 20 °C. Extrapolation by linear regression was not possible due to the lack of experimentally determined data points at other temperatures.	

B	elgium	Dinotefuran	CLH	
Surface tension	Dinotefuran is not surface active 72 mN/m at 20.2 °C ± 0.2 °C (99.2 %, 0.1 % solution)	OECD TG 115 (Ring tensiometer), EEC A.5	none	(2001c) Report no. 780208
Water solubility at 20 °C	pH 6.98 = 39.83 g/L (99.7%)	OECD TG 105, EU Annex IIA Point #2.6, OPPTS 830.7840	none	(2000a) Report no. 011098-1
	pH 5 = 52.3 g/L pH 7 = 54.5 g/L pH 9 = 51.2 g/L Purified water: 10°C = 39.0 g/L 20°C = 54.3 g/L 30°C = 89.7 g/L (99.5%)	OECD TG 105, EEC A.6		(1996) Report no. MTO097/ 980159
Partition coefficient (n- octanol/water) and its pH dependency	Log K _{OW} Mean = -0.549 at 25°C (i.e. K _{OW} = 0.283) (99.7%)	OECD TG 107 (shake flask), EU Annex IIA Point #2.8, OPPTS 830.7550	none	(2000a) Report no. 011098-1
Thermal stability and identity of breakdown products	Thermally stable (99.7%)	OECD TG 113, EU Annex IIA Point #2.14.14, OPPTS 830.6313	none	(2000a) Report no. 011098-1
Reactivity towards container material	Stable for at least 12 months at 25°C, 60% relative humidity (98.9%)	OPPTS 830.6317, OPPTS 830.6320, GIFAP No. 17	none	(2003) Report no. 828865
Dissociation constant	pKa:12.6 (pH range 11.6-12.8) (99.7%)	OECD TG 112, EU Annex IIA Point #2.9.4, OPPTS 830.7370	none	(2000a) Report no. 011098-1
	No dissociation (pH range 1.4-12.3) (99.5%)	OECD TG 112		(1996) Report no. MTO097/ 980159
Viscosity	-	-	Not applicable for solids	
Solubility in organic solvents, including effect of temperature on solubility	solubility at 20 °C, (99.7%): Hexane=9.0 μg/L Heptane=10.5 μg/L Xylene=71.85 mg/L Toluene=148.6 mg/L	OECD TG 105, EU Annex IIA Point #2.7, OPPTS 830.7840	none	(2000a) Report no. 011098-1

	Belgium	Dinotefuran	CLH	
	Dichloromethane = 60.86 g/L Acetone = 57.84 g/L Methanol = 57.18 g/L Ethanol = 19.37 g/L Ethyl acetate=5.17 g/L			
Stability in organic solvents used in biocidal products and identity of relevant degradation products	Not required as the active subs	stance as manufactured does no	t include an organic solvent.	

A.1.3.1 Physical hazards and respective characteristics

Table A-11: Physical hazards and respective characteristics

Hazard class / characteristics	Guideline and Method	Parameter(s)	Results / Waiver	Reference
Explosives	EEC A.14,	Thermal sensitivity Mechanical sensitivity (shock) Mechanical sensitivity (friction) (99.2%)	Not explosive. Furthermore, according to the UN-MTC, 7th revised edition Appendix 6 and CLP Annex I, Part 2, paragraphs 2.1.4.2 and 2.1.4.3, "neither a series 1 type (a) propagation of detonation test nor a series 2 type (a) test of sensitivity to detonative shock is required if the exothermic decomposition energy of organic materials is less than 800 J/g" and following screening procedure "the acceptance procedure for explosives need not be	(2001) Report no. 780197

Belgium	Din	otefuran	CLH	
			applied (c) for the	
			organic substance or a	
			homogeneous mixture of	
			organic substances	
			containing chemical group	
			(or groups) associated	
			with explosive properties	
			when the exothermic	
			decomposition energy is	
			less than 500 1/g and the	
			onset of exothermic	
			decomposition is below	
			500 °C"	
			Dinotefuran contains	
			chemical groups	
			associated with explosive	
			properties other than	
			oxygen and both.	
			decomposition energy and	
			decomposition onset	
			temperature are < 500	
			under the conditions of the	
			test conducted according	
			to FU Annex IIA Point	
			#2.1.2. OPPTS 830.7220	
			and OFCD 103, boiling	
			point (report no. 011098-1	
			, 2000a; calculated	
			exothermic decomposition	
			energy 423.6 J/g;	
			extrapolated	
			decomposition onset	
			temperature 208.3°C, is	
			below 500°C). Accordingly,	
			criterion (c) is fulfilled and	
			the acceptance procedure	
			for Class 1 explosives does	
			not need to be applied.	
Flammable gases	-	-	Not applicable for a solid	

Belgium	Dir	notefuran	CLH	
Flammable aerosols	-	-	Not applicable for a solid	
Oxidising gases	-	-	Not applicable for a solid	
Gases under pressure	-	-	Not applicable for a solid	
Flammable liquids	-	-	Not applicable for a solid	
Flammable solids	EEC A.10, equivalent to UN MTC N.1	Ignition (99,2%)	Non-flammable	(2001a) Report no 780175
Self-reactive substances and mixtures			Test method EEC A.16 (autoignition; 2000; report no. 780186) showed no exotherms up to the melting temperature of 107.5 °C; the broad exothermic peak observed above 200°C in test method OECD 103, OPPTS 830.7220, EU Annex IIA Point #2.1.2 (boiling point; 2000a; report no. 011098-1) is assigned to decomposition of the test substance. Test method EEC A.10 equivalent to UN Test N.1 (flammability; 2001a; report no. 780175) indicated no ignition after a two-minute exposure of the test substance to a flame. Test method EEC A.14 (explosive properties; 2001; report no. 780197) indicated no explosive properties. Considering the chemical structure of dinotefuran and the above information on the physicochemical properties, there is no	

	Belgium	Dinotefuran	CLH	
-				
			evidence that dinotefuran is a self-reactive substance. Therefore, the	
			criteria for classification	
Provenske vie lievide			are not met.	
Pyrophoric liquids	-		Not applicable for a solid	
			2.10.4, indicates that the classification procedure need not be applied when the substance is known to be stable at room temperature for prolonged periods of time (days). Furthermore, the classification procedure for pyrophoric solids need not be applied as experience in manufacture and handling of dinotefuran shows that the substance does not ignite spontaneously on	
			air at normal	
Self-heating substand mixtures	res and -		CLP Regulation Annex I indicates substances with melting point <160°C do not need to be considered for classification as self- heating. The melting point of dinotefuran is 107.5°C (this criterion is only applicable if the substance is completely molten up to 160°C as is the case of dinotefuran)	
Substances and mixtu	ires which in -	-	According to the UN -MIC,	

Belgium		Dinotefuran	CLH	
contact with water emit flammable gases			7th revised edition, Appendix 6, Screening procedures, the classification of dinotefuran does not need to be applied as dinotefuran does not contain metals or metalloids in the structure; in production the substance does not react with water (is washed with water) and is soluble in water. In addition, the hydrolysis study (OECD TG 111; 1998; report no. 95/MTO098/1216) conducted with dinotefuran in water at five pH intervals concluded that dinotefuran is hydrolytically stable under acid, neutral and weakly basic conditions, although	
			strongly basic conditions	
Oxidising liquids		-	Not applicable for a solid	
Oxidising solids	UN MTC Test 0.1	Burning times of mixtures or reference substance to cellulose	In both the 4:1 and 1:1 sample-to-cellulose ratio (by mass) tested, exhibited mean burning times greater than that of a 3:7 mixture (by mass) of potassium bromate and cellulose, therefore dinotefuran does not fulfil criteria to be classified as	(2004) No report n°.

	Belgium	Dinotefuran	CLH	
Organic peroxides	-	-	Not applicable based on chemical structure, the substance does not fall under the definition of organic peroxides according to GHS and the relevant UN MTC.	
Corrosive to metals			CLP regulation Annex I, 2.16 indicates that only substances for which the application of UN Test C1 is relevant need to be considered (liquids and solids that may become liquids). Dinotefuran is a solid with a melting point higher than 55°C and that may not become liquid during transport. On the basis of expert judgement, the study does not need to be conducted. The pH is not extreme and dinotefuran does not contain acidic or basic functional groups, it does not contain halogens, and it is not able to form complexes with metals.	
Desensitised explos	ives		Test method EEC A.16 (autoignition; 2000; report no. 780186) showed no exotherms up to the melting temperature of 107.5 °C; the broad exothermic peak observed above 200°C in test method OECD 103, OPPTS	

	Belgium	Din	otefuran	CLH	
				830.7220, EU Annex IIA Point #2.1.2 (boiling point; 2000a; report no. 011098-1) is assigned to decomposition of the test substance. Test method EEC A.10 equivalent to UN Test N.1 (flammability; 2001a; report no. 780175) indicated no ignition after a two-minute exposure of the test substance to a flame. Test method EEC A.14 (explosive properties; 2001; report no. 780197) indicated no explosive properties. Considering the chemical structure of dinotefuran and the above information on the physicochemical properties, there is no evidence that dinotefuran is a self-reactive substance. Therefore, the criteria for classification are not met	
Auto-ignition temper (liquids and gases)	ature	-	-	The study does not need to be conducted because the substance is solid having a melting point <=160 °C.	
B.3.2.1 Relative self-in temperature for solids	gnition	EEC A.16	Exothermic reaction (99.2%)	Not auto-flammable, melting at 107.5 °C and decomposing at 208°C.	(2000) Report no 780186
Dust explosion hazar	d	-	-	Dinotefuran is not an oxidising substance	
Belgium	Dinotefuran	CLH			
---------	-------------	---	--		
		(IUCLID 4.4, Seki (2004)), therefore it is exempt from testing according to BPR Guidance, Vol I, Parts A+B+C, Version 2.0, May 2018. Furthermore, dinotefuran is a solid, does not contain metals or metalloids, experience in production and handling shows that the substance does not react with water (the substance is manufactured with water), and dinotefuran is soluble in water forming a stable mixture.			

A.1.3.2 Assessment of physical hazards according to the CLP criteria

Belgium	Dinotefuran	CLH
---------	-------------	-----

A.1.3.3 Explosives

Table A-12: Summary table of studies on explosive properties

Method	Results	Remarks	Reference
Determination of the explosive properties according to EEC Guideline A.14; Thermal sensitivity test (equivalent to Koenen test), mechanical sensitivity test (shock, equivalent to BAM Fallhammer) and mechanical sensitivity test (friction, equivalent to BAM friction apparatus)	Dinotefuran was not explosive when subjected to thermal or physical shock, nor with respect to friction. Steel tubes were unchanged.	Criterion (c) is fulfilled and the acceptance procedure for Class 1 explosives does not need to be applied. Additionally, the submitted study concluded that dinotefuran is not an explosive item as no explosion occurred during the test series.	(2001) Report no. 780197

A.1.3.3.1 Short summary and overall relevance of the provided information on explosive properties

The test substance did not exhibit any thermal or mechanical (shock and friction) sensitivity under the conditions of the test.

Furthermore, according to the UN-MTC, 7th revised edition Appendix 6 and CLP Annex I, Part 2, paragraphs 2.1.4.2 and 2.1.4.3, "neither a series 1 type (a) propagation of detonation test nor a series 2 type (a) test of sensitivity to detonative shock is required if the exothermic decomposition energy of organic materials is less than 800 J/g" and following screening procedure "A substance or mixture shall not be classified as explosive if:... (c) when the organic substance or a homogeneous mixture of organic substances contains chemical groups associated with explosive properties but the exothermic decomposition energy is below 500 J/g".

Dinotefuran contains chemical groups associated with explosive properties other than oxygen. Decomposition energy and decomposition onset temperature are < 500 under the conditions of the test conducted according to EU Annex IIA Point #2.1.2, OPPTS 830.7220, and OECD TG 103 (boiling point; 2000a; report no. 011098-1; calculated exothermic decomposition energy 423.6 J/g; extrapolated decomposition onset temperature 208.3 °C). Accordingly, criterion I is fulfilled and the acceptance procedure for Class 1 explosives does not need to be applied.

A.1.3.3.2 Comparison with the CLP criteria

A substance is considered for classification as an explosive substance where a positive result is obtained in the test series indicated in Figure 2.1.2 of Annex I of the CLP regulation. Dinotefuran was not found to be sensitive to the effects of heat, shock, or friction.

Furthermore, according to the screening criteria in Annex I of the CLP Regulation, section 2.1.4.2, dinotefuran meets the third criteria i.e. broad pair of exotherms with high enthalpy 2300 J/g.

Consequently, dinotefuran does not meet the criteria for classification as an explosive substance.

Belgium Dinotefuran CLH	
-------------------------	--

A.1.3.3.3 Conclusion on classification and labelling for explosive properties

Dinotefuran is not classified as explosive.

A.1.3.4 Flammable gases (including chemically unstable gases)

Table A-13: Summary table of studies on flammable gases (including chemically unstable gases)

Not applicable, dinotefuran is a solid not a gas.

A.1.3.5 Flammable aerosols and aerosols

Table A-14: Summary table of studies on flammable aerosols and aerosols

Not applicable, dinotefuran is a solid and not provided as an aerosol.

A.1.3.6 Oxidising gases

Table A-15: Summary table of studies on oxidising gases

Not applicable, dinotefuran is a solid not a gas.

A.1.3.7 Gases under pressure

Table A-16: Summary table of studies on gases under pressure

Not applicable, dinotefuran is a solid not a gas.

Table A-17: Summary table of studies on flammable liquids

Not applicable, dinotefuran is a solid not a liquid.

A.1.3.8 Flammable solids

Table A-18: Summary table of studies on flammable solids

Method	Results	Remarks	Reference

Belgium	Dinotefuran		CLH
Conducted according to EEC Guideline A.10. Methodology equivalent to UN Test N.1.	Dinotefuran is not flammable. It could not be ignited during the preliminary test after contact with the ignition source for about 2 minutes. Dinotefuran melted smokeless and a turbid melt remained.	No further test was performed according to the result of the preliminary test.	(2001a) Report no 780175

A.1.3.8.1 Short summary and overall relevance of the provided information on flammable solids

According to UN MTC 7th revised edition Part III section 33, "a preliminary screening test is performed to determine if, on ignition by a gas flame, propagation by burning with flame or smouldering occurs" and follows "If in the screening test, the substance does not ignite and propagate combustion either by burning with flame or smouldering, it is not necessary to perform the complete burning rate test as the substance is not a flammable solid".

During the preliminary test, dinotefuran melted when in contact with the ignition source for two minutes and could not be ignited (flammability; 2001a; Report no. 780175). Consequently, the main test was not performed.

A.1.3.8.2 Comparison with the CLP criteria

A substance (non-metal powders) is classified as a flammable solid when the burning time is < 45 seconds or the burning rate is > 2.2 mm/s. Dinotefuran could not be ignited, therefore the classification criteria are not met.

Dinotefuran could not be ignited during the preliminary screening test after contact with the ignition source for about 2 minutes. In contact with the ignition source, dinotefuran melted smokeless and a turbid melt remained. Therefore, the submitted study fulfils the data requirements, unequivocally demonstrating that dinotefuran is not a flammable solid.

A.1.3.8.3 Conclusion on classification and labelling for flammable solids

Dinotefuran is not a flammable solid.

A.1.3.8.4 Self-reactive substances

Method	Results	Remarks	Reference
ECC A.16	The test methods showed no exotherms up to the melting temperature of 107.5°C.	Given the results of the tests, and the structure of the active substance, it is not expected that	autoignition; 2000; report no. 780186
OECD TG 103	Broad exothermic peak was observed above 200°C.	dinotefuran is a self- reactive substance.	boiling point; 2000a; report no. 011098-1
EEC A.10	no ignition after a two- minute exposure of the test substance to a flame		flammability; 2001a; report no. 780175
EEC A.14	Tests indicate no explosive properties		explosive properties; 2001; report no. 780197

Table A-19: Summary table of studies on self-reactivity

Belgium	Dinotefuran	CLH
---------	-------------	-----

A.1.3.8.5 Short summary and overall relevance of the provided information on self-reactive substances

Test method ECC A.16 (autoignition; 2000; report no. 780186) showed no exotherms up to the melting temperature of 107.5 °C; the broad exothermic peak observed above 200°C in test method OECD 103, EU Annex IIA Point #2.1.2 and OPPTS 830.7220 (boiling point; 2000a; report no. 011098-1) is assigned to decomposition of the test substance. Test method EEC A.10 (flammability; 2001a; report no. 780175) indicated no ignition after a two-minute exposure of the test substance to a flame. Test method EEC A.14 (explosive properties; 2001; report no. 780197) indicated no explosive properties.

Considering the chemical structure of dinotefuran and the above information on the physicochemical properties, there is no evidence that dinotefuran is a self-reactive substance. Therefore, the criteria for classification are not met.

A.1.3.8.6 Comparison with the CLP criteria

Dinotefuran presents none of the characteristic or criteria to be classified as a self-reactive substance. As per the CLP criteria, most self-reactive substance can decompose with a strong exothermic reaction at or below 75°C. However, Dinotefuran can be heated to higher temperatures (including up to and above its melting point) without any issues. Dinotefuran also does not exhibit any behaviour that could be considered as being explosive properties. Even exposed to a flame, Dinotefuran show thermal stability, and therefore demonstrate clearly that he does not meet the criteria to be considered as being a self-reactive substance.

A.1.3.8.7 Conclusion on classification and labelling for self-reactive substances

Dinotefuran is not a self-reactive substance.

A.1.3.9 Pyrophoric liquids

Not applicable, dinotefuran is a solid not a liquid.

A.1.3.10 Pyrophoric solids

Table A-20: Summary table of studies on pyrophoric solids

Method	Results	Remarks	Reference
Conducted according to EEC Guideline A.10. Methodology equivalent to UN Test N.1.	Dinotefuran is not flammable. It could not be ignited during the preliminary test after contact with the ignition source for about 2 minutes. Dinotefuran melted smokeless and a turbid melt remained. It therefore also can't be considered as being pyrophoric.	No further test was performed according to the result of the preliminary test.	(2001a) Report no 780175

Belgium Dinotefuran CLH

A.1.3.10.1 Short summary and overall relevance of the provided information on pyrophoric solids

CLP Regulation Annex I, 2.10.4, indicates that the classification procedure need not be applied when the substance is known to be stable at room temperature for prolonged periods of time (days); as is the case for dinotefuran.

Furthermore, the classification procedure for pyrophoric solids need not be applied as experience in manufacture and handling of dinotefuran shows that the substance does not ignite spontaneously on coming into contact with air at normal temperatures.

It is also important to take into account the fact that most pyrophoric solids are either metals or organo-metallic compounds, which is not the case for dinotefuran, who does not exhibit any specific function that would lead to such a classification. Furthermore, as dinotefuran does not meet the criteria to be classified as a flammable solid, he certainly does not meet the criteria for being a pyrophoric solid.

A.1.3.10.2 Comparison with the CLP criteria

A solid substance that spontaneously ignites in contact with air (in five minutes or less) is considered to be pyrophoric. This is not the case for dinotefuran.

A.1.3.10.3 Conclusion on classification and labelling for pyrophoric solids

Dinotefuran is not a pyrophoric solid.

A.1.3.11 Self-heating substances

Table A-21: Summary table of studies on self-heating substances

Method	Results	Remarks	Reference
Conducted according to EEC Guideline A16	Substance is not self heating. Dinotefuran is melting at 107.5 °C and decomposing at 208°C.	Substance melted before completion of the experiment	(2000)

A.1.3.11.1 Short summary and overall relevance of the provided information on self-heating substances

No self-ignition was detected at < 400 °C in a standard EEC A.16 (self-ignition; (2000); study no. 780186), Dinotefuran has a melting point of 107.5 °C and melted before the end of the experiment. Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) further indicate that the substance decomposes at approximately 208 °C.

A.1.3.11.2 Comparison with the CLP criteria

According to CLP Guidance, substances or mixtures with a low melting point (< 160 °C) should not be considered for classification in this class being this criterion only applicable if the substance or mixture is completely molten up to this temperature. According to UN-MTC, 7th revised edition Appendix 6, Screening Procedures "the classification procedure for self-heating substances need not to be applied if the results of a screening test can be adequately correlated with the classification test and an appropriate safety margin is applied".

A substance is classified as self-heating when a positive result is obtained in the test method outlined in subsection 33.3.1.6 of the UN RTDG Manual of Tests and Criteria. No data are available using this method, but in an A.16 study, no self-ignition was detected at temperatures below 400 °C.

Belgium	Dinotefuran	CLH
---------	-------------	-----

Dinotefuran is not self-igniting, melts at 107.5 °C and decomposes at 208°C.

A.1.3.11.3 Conclusion on classification and labelling for self-heating substances

Dinotefuran is not a self-heating substance.

A.1.3.12 Substances which in contact with water emit flammable gases

According to the UN -MTC, 7th revised edition, Appendix 6, Screening procedures, the classification of "substance which in contact with water emit flammable gases" does not need to be applied as dinotefuran does not contain metals or metalloids in the structure; in production the substance does not react with water (is washed with water) and is soluble in water. In addition, the hydrolysis study (OECD TG 111; 1998; report no. 95/MTO098/1216) conducted with dinotefuran in water at five pH intervals concluded that dinotefuran is hydrolytically stable under acid, neutral and weakly basic conditions, although unstable under more strongly basic conditions.

A.1.3.13 Oxidising liquids

Not applicable, Dinotefuran is not a liquid.

A.1.3.14 Oxidising solids

Table A-22: Summary table of studies on oxidising solids

Method	Results	Remarks	Reference
Equivalent to 0.1, Part III, 34.4.1 UN Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria	The test substance does not display oxidising properties.	In both the 4:1 and 1:1 sample-to-cellulose ratio (by mass) tested, exhibited mean burning times greater than that of a 3:7 mixture (by mass) of potassium bromate and cellulose, therefore dinotefuran does not fulfil criteria to be classified as a oxidising substance-	No report no

A.1.3.14.1 Short summary and overall relevance of the provided information on oxidising solids

In the study performed by (2004), conducted according to the method specified in Annex I of the CLP Regulation, conical piles are ignited, and potassium bromate is used as the reference substance. Whilst the study was not to GLP, it was well reported and sufficient information was provided in the study report to determine that it was conducted in accordance with the test guidelines and it is therefore considered to be reliable and relevant in the consideration of classification. The results of this study show that none of the tested samples, nor their averages, burned faster than the potassium bromate-to-cellulose reference mixture. The substance is not considered to be an oxidising solid in the context of this study.

Results of the oxidising solids study (2004)

Belgium	Dinotefuran	CLH
	Burnin	g time
Run Number	1:1	4:1
	(Dinotefuran:Cellulose)	(Dinotefuran:Cellulose)
1	10 min. 55 sec.	10 min. 34 sec
2	11 min. 51 sec.	9 min. 36 sec.
3	10 min. 54 sec.	9 min. 22 sec.
4	9 min. 30 sec.	9 min. 33 sec.
5	9 min. 18 sec.	10 min. 16 sec.
Average	10 min. 30 sec.	9 min. 52 sec.
Minimum	9 min.	52 sec.
Run Number	2:3	3:7
	(Potassium Bromate:Cellulose)	(Potassium Bromate:Cellulose)
1	1 min. 7 sec.	3 min. 15 sec.
2	1 min. 5 sec.	3 min. 8 sec.
3	1 min. 8 sec.	3 min. 28 sec.
4	1 min. 9 sec.	3 min. 10 sec.
5	1 min. 4 sec.	3 min. 4 sec.
Average	1 min. 7 sec.	3 min. 13 sec.

A.1.3.14.2 Comparison with the CLP criteria

A substance is classified as an oxidising solid when the burning time of a 1:1 or 4:1 ratio of sampleto-cellulose mixture is less than or equal to the burning time of the appropriate reference sample. In the study, the burning time of 1:1 and 4:1 mixtures of dinotefuran-to-cellulose were greater than the burning time of 2:3 and 3:7 mixtures of potassium bromate-to-cellulose. Therefore, dinotefuran is a non-oxidising.

A.1.3.14.3 Conclusion on classification and labelling for oxidising solids

Dinotefuran is not an oxidising solid.

A.1.3.15 Organic peroxides

Not applicable as the chemical structure of the active substance does not exhibit a peroxide moiety.

A.1.3.16 Corrosive to metals

CLP Regulation Annex I, 2.16 indicates that only substances for which the application of UN Test C.1 is relevant need to be considered (liquids and solids that may become liquids). Dinotefuran is a solid with a melting point higher than 55°C and that may not become liquid during transport. On the basis of expert judgement, the study does not need to be conducted. The pH is not extreme and dinotefuran does not contain acidic or basic functional groups, it does not contain halogens, and it is not able to form complexes with metals.

A.1.3.17 Desensitised explosives

Table A-23: Summary table of studies on the hazard class desensitised explosives

Method	Results	Remarks	Reference
Determination of the	Dinotefuran was not	Criterion (c) is fulfilled	(2001)
explosive properties	explosive when	and the acceptance	Report no. 780197
according to EEC	subjected to thermal or	procedure for Class 1	

Belgium	Dinotefu	ran	CLH
Guideline A.14; Thermal sensitivity test (equivalent to Koenen test), mechanical sensitivity test (shock, equivalent to BAM Fallhammer) and mechanical sensitivity test (friction equivalent to	physical shock, nor with respect to friction. Steel tubes were unchanged. As Dinotefuran is not classified as explosive, the classification of desensitised explosive cannot be applied to it.	explosives does not need to be applied. Additionally, the submitted study concluded that dinotefuran is not an explosive item as no explosion occurred during the test series.	
BAM friction apparatus)			

A.1.3.17.1 Short summary and overall relevance of the provided information on the hazard class desensitised explosives

The test substance did not exhibit any thermal or mechanical (shock and friction) sensitivity under the conditions of the test.

Furthermore, according to the UN-MTC, 7th revised edition Appendix 6 and CLP Annex I, Part 2, paragraphs 2.1.4.2 and 2.1.4.3, "neither a series 1 type (a) propagation of detonation test nor a series 2 type (a) test of sensitivity to detonative shock is required if the exothermic decomposition energy of organic materials is less than 800 J/g" and following screening procedure "A substance or mixture shall not be classified as explosive if:... (c) when the organic substance or a homogeneous mixture of organic substances contains chemical groups associated with explosive properties but the exothermic decomposition energy is below 500 J/g".

Dinotefuran contains chemical groups associated with explosive properties other than oxygen. Decomposition energy and decomposition onset temperature are < 500 under the conditions of the test conducted according to EU Annex IIA Point #2.1.2, OPPTS 830.7220, and OECD TG 103 (boiling point; 2000a; report no. 011098-1; calculated exothermic decomposition energy 423.6 J/g; extrapolated decomposition onset temperature 208.3 °C). Accordingly, criterion I is fulfilled and the acceptance procedure for Class 1 explosives does not need to be applied.

A.1.3.17.2 Comparison with the CLP criteria

A substance is considered for classification as an explosive substance where a positive result is obtained in the test series indicated in Figure 2.1.2 of Annex I of the CLP regulation. Dinotefuran was not found to be sensitive to the effects of heat, shock, or friction.

Furthermore, according to the screening criteria in Annex I of the CLP Regulation, section 2.1.4.2, dinotefuran meets the third criteria i.e. broad pair of exotherms with high enthalpy 2300 J/g.

Consequently, dinotefuran does not meet the criteria for classification as an explosive substance.

A.1.3.17.3 Conclusion on classification and labelling for desensitised explosives

As dinotefuran does not fit the classification for being an explosive substance, it is also not a desensitised explosive.

A.1.4 Analytical methods for detection and identification

Belgium	Dinotefuran	CLH

Table A-24: Analytical methods

Belgium	Dinotefuran	CLH

A.2 Effects against target organisms

Not applicable for the CLH report

A.2.1 Intended uses

Not applicable for the CLH report

Table A-25: Summary table of intended uses

Not applicable for the CLH report

A.2.2 Summary on efficacy

Not applicable for the CLH report

A.2.2.1 Efficacy

Table A-26: Experimental data on the efficacy of the active substance against target organism(s) Not applicable for the CLH report

A.2.2.2 Mode of action

Not applicable for the CLH report

A.2.2.3 Resistance

Not applicable for the CLH report

A.2.2.4 Conclusion on efficacy

Belgium	Dinotefuran	CLH
---------	-------------	-----

A.3 Assessment of effects on Human Health

There are no concerns regarding the technical equivalence of the batches of material used in the mammalian toxicology studies to material that matches the technical specification. This is because all of the named impurities in the proposed technical specification have maximum limits of 1 g/kg (i.e. none are considered to be 'significant impurities') and none are of known toxicological concern (i.e. none are 'relevant impurities'). Material matching the technical specification is relatively clean, such that there are no concerns that impurities could be present in the technical material that have not been adequately covered by the mammalian toxicity testing. Thus, the mammalian toxicology testing fully supports the material that will be placed on the market.

A.3.1 Toxicokinetics

The toxicokinetics of dinotefuran have been investigated in two in vivo absorption, distribution, metabolism and excretion studies, one in adult rats, the other in neonates and in an in vivo dermal absorption study. An additional oral study investigating the transfer of dinotefuran to the milk of lactating rats is also available.

Method, Duration of study, Guideline, GLP status, Reliability, Key/supportive study	Species, Strain, Sex, No/Group	Test substance (including purity), Vehicle, Dose levels, Duration of exposure	Results	Remarks (e.g. major deviations)	Reference
Biokinetics and metabolism, EPA-FIFRA, Subdivision F, § 85- 1 JMAFF 59 NohSan no. 4200, GLP, Reliability 1, Key study	Rat, CD(SD) BR (male and female), (SD)CVF (male and female bile duct- cannulated rats), no. of animals per group is group dependent	<pre>dinotefuran ([F-¹⁴C]), >98% purity. dinotefuran ([G-¹⁴C]), >99% purity. 0.5% carboxymethyl cellulose (0.5% CMC) for oral administration, or 0.9% saline for intravenous administration. 0, 50, 1000 mg/kg bw.</pre>	Radioactivity derived from orally administered [¹⁴ C]-dinotefuran is rapidly and almost completely absorbed from the GI tract into the general circulation, and is widely distributed throughout the tissues and fluids of the body. Elimination is rapid, predominantly by urinary excretion and almost complete within 7 days after	None	Report no. 6648-136 , 2000a IUCLID no. 8.8.1 Amendment 1 Amendment 2 , 2001

Table A-27: Summary table of toxicokinetic studies

	Belgium	Dinotefu	ran	CLH	
	Belgium	Dinotefu Up to 15 days exposure	administration. [¹⁴ C]-dinotefuran is rapidly transferred to the foetus <i>in utero</i> and to maternal milk <i>post-partum</i> , but is rapidly eliminated from them. More than 90% of orally and intravenously administered dinotefuran is eliminated as unchanged parent molecule, which is also the major radioactive component in plasma, milk, bile and most tissues. Unchanged dinotefuran accounted for 92.5 – 97.2% of total urine radioactivity. The major route of metabolism appeared to be via initial hydroxylation of the furan ring to form isomers of PHP. Further oxidation, reduction, and acetylation of PHP produced additional metabolites. Other routes of metabolism involved desmethylation, nitro reduction, and deamination at various	CLH	
Metabolism in neonatal rats, EPA- FIFRA, Subdivision F, § 85-1 JMAFF 59 NohSan no. 4200, GLP,	Rat, CD(SD) BR, males and females, 25 pups/sex/group and 3 pups/sex/group for whole-body autoradiographic	dinotefuran ([G- ¹⁴ C]), >99% purity, 0.5% carboxymethyl cellulose (0.5% CMC), 50 mg/kg bw by gavage, single exposure.	and deamination at various stages, producing numerous additional metabolites. A small degree of cleavage at the C-N bond also appeared to occur. Absorption of [G ⁻¹⁴ C]- dinotefuran from the neonatal gastrointestinal tract is rapid and extensive. It undergoes a wide distribution within the body tissues and is eliminated predominantly in the urine. [G-	None	Report no. 6648-141 , 2000c IUCLID no. 8.8.1 Amendment 1 , 2000d
Reliability 1, Key study	analysis (WBA)		¹⁴ C]-dinotefuran undergoes minimal metabolism in the neonatal rat. The absorption.		

	Belgium	Dinotefu	ran	CLH	
			distribution, metabolism and elimination is not affected by the sex of the neonate. The absorption, distribution, metabolism and elimination of [G ⁻¹⁴ C]-dinotefuran are similar in neonatal and young adult rats. However, absorption and elimination in the neonate proceed at a slower rate than in young adults, and although metabolite profiles are similar, fewer metabolites are formed in		
Dermal absorption in the rat, EPA OPPTS 870.7600 (1998), GLP, Reliability 1, Key study	Rat, Sprague Dawley, 24 males/6 subgroups/group	dinotefuran ([G- ¹⁴ C]), 98.5% purity, applied as solution, 3.2, 30 and 302 µg/cm ² , 24 hours exposure	A large proportion of the dermally applied dinotefuran (60.7 – 93.3%) remained on the surface of the skin and could be dislodged by washing and was not available for absorption into the skin or systemic circulation. Therefore, systemic absorption of dinotefuran was very low at all time points for all dose levels.	No	Report no. A25975, 2006b, IUCLID no. 8.8.2
Oral Milk transfer Non-Guideline GLP	Rat SD 6 lactating females / test group	dinotefuran ([G- ¹⁴ C]) Single oral dose: 50 & 500 mg/kg bw	The concentrations of radiolabel in blood/plasma and milk (% applied dose data not available) 0.5 hours after administration of 50 mg/kg bw G-14C-dinotefuran were 30.1 – 35.2 ppm and 55.2 - 62.9 ppm dinotefuran equivalents respectively across all sampling times from day 2 to day 12 of lactation. Within 1.5 hours after administration, the concentrations in blood and	no	, 2006a, Report no. A29136, August 9, 2006. IUCLID no. 8.13.2-03

 Belgium	Dinotefuran	CLH	
Belgium	Dinotefuranplasma had declined to about half the levels determined aft 0.5 hours, and were within the range 13.9 - 17.5 ppm 	t ter ne files fr tely hours e fileo- 12	
	administration, the concentrations in blood and plasma had declined to 70 – ppm dinotefuran equivalents Milk concentrations had decli to 114 – 196 ppm on all sampling occasions from day to day 12 of lactation.	96 ined [,] 2	

Belgium	Dinotefuran	CLH
---------	-------------	-----

A.3.1.1 Short summary and overall relevance of the provided toxicokinetic information

A comprehensive evaluation of the absorption, distribution, metabolism and excretion of $[^{14}C]$ -dinotefuran has been performed in young adult male and female rats using an approximate 1:1 mixture of tetrahydrofuran- (F) and guanidine-labelled (G) material at dose levels of 50 and 1000 mg/kg bw. The placental transfer at approximately day 18 of gestation, the transfer to maternal milk at approximately 12 days *post-partum* and the absorption, distribution, metabolism and excretion in 12-day old neonatal rats have also been investigated using a single dose of 50 mg/kg bw [^{14}C]- dinotefuran.

(2000a) demonstrated in young adult rats that the distribution of radioactivity between urine, faeces and carcass was similar for both F- and G-radiolabelled forms of dinotefuran, and that radioactivity in expired air is \leq 0.05% administered dose. Therefore, the main study in young adult rats was performed using a 1:1 mixture of the radiolabelled forms. Expired air was not collected. (2000c) used G-radiolabelled dinotefuran to investigate the absorption, distribution, metabolism and excretion in 12-day old neonatal rats.

Radioactivity derived from orally administered [¹⁴C]-dinotefuran is rapidly and almost completely absorbed into the general circulation of young adult rats. Calculated T_{max} values are 0.25 - 0.63 hours for single and multiple doses of 50 mg/kg bw and 2.00 - 2.10 hours for a single dose of 1000 mg/kg bw. The recovery of radioactivity 168 hours after single doses of 50 or 1000 mg/kg bw and multiple doses of 50 mg/kg bw range from 87.7 to 99.8% of administered dose in urine and 1.06 to 3.16% in faeces. Intravenous administration of a single dose of 50 mg/kg bw results in the recovery of 96.6 to 96.7% administered dose in urine and 1.06 to 1.26% administered dose in faeces. Elimination is rapid, predominantly by urinary excretion and almost complete within 7 days of administration. The elimination half-life (T_{1/2}) ranged from 3.64 to 16.1 hours for single and multiple oral doses of 50 mg/kg. A single oral dose of 1000 mg/kg bw gives T_{1/2} values of 13.8 - 15.2 hours. Comparison of calculated AUC values for a single oral dose of 50 mg/kg bw (83.3 / 110 ppm.hour, males / females) and 1000 mg/kg bw (2660 / 2370 ppm.hour, males / females) indicate an approximate linear relationship between administered oral dose and systemic availability.

In young adult rats, radioactivity is widely distributed in all tissues 0.5 hours after a single oral dose of 50 mg/kg bw. At this time, only the concentrations in the kidneys (79.4 ppm), stomach (67.3 ppm) and urinary bladder (45.8 ppm) are higher than in plasma (40.6 ppm). Tissue concentrations decline quickly and at 168 hours after dosing, all tissues with the exception of male skin (0.05 ppm), kidneys (0.01 ppm) and mammary gland (0.02 ppm), are below the limits of detection (0.001 ppm). With the exceptions of male and female skin (0.007 and 0.014 ppm), female bone (0.004 ppm), female intestinal tract (0.003 ppm) and female mammary gland (0.018 ppm), all tissues are below the limit of detection 168 hours after 15 oral doses of 50 mg/kg bw/day. Tissue distribution is similar after a single oral dose of 1000 mg/kg. Whole body autoradiographic results after single oral doses of 50 or 1000 mg/kg bw are consistent with the results obtained for the tissue distribution groups. Tissue radioactivity derived from [¹⁴C]-dinotefuran is widely distributed and highest at the first sampling interval, 0.5 hours and 1.5 hours, for 50 and 1000 mg/kg bw, respectively. Thereafter, levels of radioactivity decline 1.5 hours after administration of 1000 mg/kg bw. Elimination is almost complete after 24 hours (50 mg/kg bw), and 72 hours after 1000 mg/kg bw no detectable radioactivity is apparent in either sex.

Belgium	Dinotefuran	CLH
---------	-------------	-----

Radioactivity is rapidly transferred to foetuses and rapidly distributed to the foetal tissues. Maximum foetal concentrations occur in all tissues examined within 0.5 hours of maternal treatment but decline rapidly to low levels within 4 hours. Similar concentrations occur in maternal and foetal blood suggesting a rapid equilibration and similar tissue distribution in maternal and foetal tissues. Radioactivity is rapidly transferred from maternal blood to the milk of lactating animals at day 12 *post-partum*. C_{max} values for maternal plasma and milk are 29.3 and 34.8 μ g equivalents/g, respectively, 0.5 hours after treatment. Concentrations in milk decline rapidly within 4 hours. The elimination T_{1/2} is 1.39 hours in milk, indicating that within 14 hours of administration the expected concentration of radioactivity would be lower than the limit of detection.

More than 90% of orally and intravenously administered dinotefuran is eliminated as unchanged parent molecule, which is also the major radioactive component in plasma, milk, bile and most tissues of young adult rats. No individual metabolite accounts for 10% or more of the administered dose. Initially, enzymatic hydroxylation on the tetrahydrofuran ring occurs to form PHP isomers, followed by further oxidation, reduction and acetylation of PHP to produce 446-DO and its isomers, 446-CO, 446-DO-Ac, 446-OH-Ac and 446-OH+COOH. Other routes of metabolism involve demethylation to FNG, nitro-reduction to 446-NH2 and further hydrolysis to DN and UF.

(2000a) concludes that, with the exception of the linear relationship between applied dose and AUC, the absorption, distribution, metabolism and elimination of [¹⁴C]-dinotefuran are unaffected by sex, dose level and treatment regimen in young adult rats. Absorption of G-radiolabelled dinotefuran from the neonatal gastrointestinal tract is also rapid and extensive. It undergoes a wide distribution within neonatal body tissues and is eliminated predominantly in the urine. G-radiolabelled dinotefuran undergoes minimal metabolism in the neonatal rat. The absorption, distribution, metabolism and elimination is not affected by the sex of the neonate.

(2000c) concludes that the absorption, distribution, metabolism and elimination of G-radiolabelled dinotefuran are similar in neonatal and young adult rats. However, absorption and elimination in the neonate proceed at a slower rate than in young adults, and although metabolite profiles are similar, fewer metabolites are formed in the neonate.

Belgium Dinotefuran	CLH
---------------------	-----

Figure A-3-1: Proposed metabolic pathway for dinotefuran in the rat

Belgium	Dinotefuran	CLH
---------	-------------	-----

An *in vivo* dermal absorption study of [¹⁴C]-dinotefuran has been performed in the rat according to the EPA-OPPTS guideline (14C]-dinotefuran has been performed in the rat according to 12C, 2006b; Section 8.8.2). Nominal dose levels of 3.2, 30 and 302 μ g/cm² were applied for up to 24 hours. The high dose reflected the maximum solubility of dinotefuran in water.

A large proportion of the dermally applied dinotefuran (60.7 – 93.3%) is not available for absorption into the skin or systemic circulation. Therefore, systemic absorption of dinotefuran is very low at all time points from 0.5 – 24 hours for all dose levels and was less than or equal to 2.1% of the applied dose. The calculated rates of dermal penetration into the systemic circulation increased with dose level from 0.0011 μ g.cm⁻².hr⁻¹ at the lowest dose through 0.0060 μ g.cm⁻².hr⁻¹ (middle dose) to 0.1309 μ g.cm⁻².hr⁻¹ at the highest dose.

The extent of indirect absorption (into the stratum corneum) increases with increasing dose dilution, up to 35% for the low dose, 26% for the middle dose and 9% for the high dose, within 24 hours. However, only a very small fraction is found in the deeper skin layers indicating most material in the stratum corneum is not available for systemic absorption during the first 24 hours of exposure.

A.3.1.2 Values and conclusions used for the risk assessment

Belgium	Dinotefuran	CLH
---------	-------------	-----

A.3.2 Acute toxicity / STOT SE

A.3.2.1 Acute oral toxicity

Table A-28: Summary table of animal studies on acute oral toxicity

Method, Guideline, GLP status, Reliability, Key/supportive study	Species, Strain, Sex, No/Group	Test substance (including purity), Vehicle, Dose levels, Type of administration (gavage, in diet, other)	Signs of toxicity (nature, onset, duration, severity, reversibility, include concentrations)	Value LD50	Remarks (e.g. major deviations)	Reference
Oral gavage, OECD TG 401 (1982), EPA 81-1 (1987), JMAFF 59 Nohsan 4200 (1985) GLP, Reliability 1, Key study	Rat (SPF) Males and females 5/sex/group	Dinotefuran, 99.1% purity, in water, gavage administration, 1000, 2000, 3000, 4000 and 5000 mg/kg bw; single dose; 14-days post exposure period	Deaths occurred in females treated at ≥2000 mg/kg bw and in males treated at ≥3000 mg/kg bw. Treatment-related clinical signs were apparent at dose levels of ≥2000 mg/kg bw and included hypoactivity, staggering gait, hunched posture, prostration, red- stained face, miosis, lacrimation, salivation, tachypnea, dyspnea, soft feces, yellow staining of the uro- genital area, tonic or clonic convulsions and tremors.	LD50: 2450 mg/kg bw (2804 mg/kg bw males; 2000 mg/kg bw females; 2450 mg/kg bw sexes combined)	none	Report no. CHW 6648-118 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Oral gavage, OECD TG 401 (1982), EPA 81-1 (1987), JMAFF 59 Nohsan 4200 (1985) GLP, Reliability	Mouse CD1[ICR]BR (SPF) Males and females 5/sex/group	Dinotefuran, 99.1% purity, in water, gavage administration, 1000, 2000 and 3000 mg/kg bw; single dose; 14-days	Deaths occurred at dose levels of ≥2000 mg/kg bw but not at 1000 mg/kg bw. Transient clinical signs of toxicity, on the day of treatment only, were apparent at dose levels of ≥2000 mg/kg bw and included hypoactivity, staggering gait, dyspnea, tonic convulsions and tremors.	LD50: 2371 mg/kg bw 2450 mg/kg bw males; 2275 mg/kg bw females; 2371 mg/kg bw sexes combined)	none	Report no. CHW 6648-119 IUCLID 8.7.1 Amendment 1

	Belgium	Γ	Dinotefuran	(
1,		post exposure			
Key study		period			

Belgium Dinotefuran	CLH

Table A-29: Summary table of human data on acute oral toxicity

No data is available.

Table A-30: Summary table of other studies relevant for acute oral toxicity

No data is available.

A.3.2.1.1 Short summary and overall relevance of the provided information on acute oral toxicity

In an OECD-compliant study, groups of 5 male and 5 female rats were exposed to dinotefuran by 1997a). Doses were based on the results gavage followed by a 14-day observation period (of a range-finding study in which one male and one female were exposed to 500, 1000, 3000 and 5000 mg/kg bw dinotefuran. In Phase I of the main study, males were exposed to 5000 mg/kg bw and females to 1000, 3000 and 5000 mg/kg bw dinotefuran. In Phase II, males and females were exposed to 1000, 2000 and 3000 mg/kg bw dinotefuran with an additional group of males exposed to 5000 mg/kg bw dinotefuran and an additional group of females exposed to 4000 mg/kg bw dinotefuran. Deaths occurred in both females exposed to 3000 and 5000 mg/kg bw dinotefuran in the range finding study and following exposure to 2000 (3/5 deaths), 3000 (4/5 deaths) and 4000 (5/5 deaths) mg/kg bw dinotefuran in Phase II of the main study. Males exposed to 3000 (3/5) and 5000 (5/5) mg/kg bw dinotefuran in Phase II also died. Most deaths occurred on the day of treatment or on day 1. No deaths were recorded in the Phase I study. This difference between the results from Phase I and II, given the doses were the same or higher in Phase I, may be associated with the lower treatment volume used in Phase I. LD₅₀ values of 2804, 2000 and 2450 mg/kg bw dinotefuran were identified for males, females and for the sexes combined respectively. Clinical signs were generally transient and included red staining of the face from 1000 mg/kg bw dinotefuran and hypoactivity, staggering gait, hunched posture, prostration miosis, lacrimation, salivation, tachypnoea, dyspnoea, soft faeces, convulsions and tremors at dose levels \geq 2000 mg/kg bw dinotefuran. All survivors, except 1 female exposed to 5000 mg/kg bw in Phase I, gained weight during the observation period. No treatment-related gross lesions were observed at necropsy in any animal.

In a second OECD-compliant study, groups of 5 male and 5 female mice were exposed to dinotefuran by gavage followed by a 14-day observation period (**1997b**, 2000). Doses were based on the results of a range-finding study in which one male and one female were exposed to 500, 1000, 3000 and 5000 mg/kg bw dinotefuran. In the main study, males and females were exposed to 1000, 2000 and 3000 mg/kg bw dinotefuran. Deaths occurred in males and females exposed to \geq 2000 mg/kg bw dinotefuran; in the range finding study 1/1 male died following exposure to 3000 mg/kg bw and both male (1/1) and female (1/1) mice exposed to 5000 mg/kg bw dinotefuran died. In the main study, male and female mice died following exposure to 2000 (1/5 males, 2/5 females) and 3000 (4/5 males and females) mg/kg bw dinotefuran. All deaths occurred on the day of treatment. LD₅₀ values of 2450, 2275 and 2371 mg/kg bw dinotefuran were identified for males, females and for the sexes combined respectively. Clinical signs were apparent on the day of treatment only and included hypoactivity, staggering gait, dyspnoea, convulsions and tremors at dose levels \geq 2000 mg/kg bw dinotefuran. Slight weight loss was recorded in 4 females exposed to 1000 mg/kg bw but all other survivors gained weight during the observation period. No treatment-related gross lesions were

Belgium	Dinotefuran	CLH
---------	-------------	-----

observed at necropsy in any animal.

Addition information on acute oral toxicity in the rat is available in a standard acute neurotoxicity study in rats summarised in Section A.3.12 (2010), 2001a). A single gavage dose of 0 (0.5 % CMC vehicle only), 325, 750 or 1500 mg/kg bw was administered. The only treatment related change reported was a reduction in motor activity score at the highest dose level in the assessments conducted 3 hours after dosing. Based on this observation, a study NOAEL of 750 mg/kg bw is identified for acute toxicity in the rat.

Standard rabbit developmental toxicity studies summarised in Section A.3.10.2 provide information on acute oral toxicity in the rabbit. In the first study, gavage dose levels of 0 (0.5 % CMC vehicle), 52, 125 and 300 mg/kg bw/day were administered to NZW rabbits (1998e). Clinical signs were obseved at 300 mg/kg bw/day from the first day of dosing, which included hypoactivity, prone position, panting, flushed nose and ears, and tremors. In a second study, gavage dose levels of 0 (0.5 % CMC vehicle), 60, 175 and 500 mg/kg bw/day were administered to Kbl:JW strain rabbits (1000) 2013). Clinical signs of tachypnoea were observed at 500 mg/kg bw/day on the first day of dosing. Based on these clinical signs, a NOAEL of 175 mg/kg bw/day is identified for acute toxicity in NZW rabbits.

A.3.2.1.2 Comparison with the CLP criteria

Dinotefuran does not fulfil the CLP classification criteria as the LD50 is >2000 mg/kg bw.

A.3.2.1.3 Conclusion on classification and labelling for acute oral toxicity

The acute toxicity estimate (ATE) of dinotefuran via the oral exposure route is 2371 mg/kg bw, therefore dinotefuran is not classified for acute oral toxicity.

A.3.2.1.4 Conclusion on acute oral toxicity related to risk assessment

Belgium Dinotefuran CLH

A.3.2.2 Acute dermal toxicity

Table A-31: Summary table of animal studies on acute dermal toxicity

Method, Guideline, GLP status, Reliability, Key/supportive study	Species, Strain, Sex, No/Group	Test substance (including purity), Vehicle, Dose levels, Surface area	Signs of toxicity (nature, onset, duration, severity, reversibility, include concentrations)	Value LD50	Remarks (e.g. major deviations)	Reference
Dermal toxicity, OECD TG 402 (1987), EPA 81-2 (1982), JMAFF 59 Nohsan 4200 (1985) GLP, Reliability 1, Key study	Rat (SPF) Males and females 5/sex/group	Dinotefuran, 99.1% purity, 0.5% (w/v) solution of carboxymethylcellulose in distilled water, 2000 mg/kg bw, 16 cm ² , 24 h exposure, 14-days post- exposure period.	All animals survived to the end of the study. No treatment-related clinical signs of toxicity. All male animals gained weight throughout the study, but 4 females during the first week and 2 females during the second week showed minor weight losses of up to 9 g. Transient slight to moderate erythema, associated with slight edema in one animal, occurred in 8 of the 10 animals on the day of patch removal. Slight erythema persisted in 2 animals until day 7.	LD50: > 2000 mg/kg bw (both sexes combined)	None	Report no. CHW 6648-120 IUCLID 8.7.3

Belgium	Dinotefuran	CLH

Table A-32: Summary table of human data on acute dermal toxicity

No data is available.

Table A-33: Summary table of other studies relevant for acute dermal toxicity

No data is available.

A.3.2.2.1 Short summary and overall relevance of the provided information on acute dermal toxicity

In an OECD-compliant study, 5 male and 5 female rats were exposed to the limit dose of 2000 mg/kg bw dinotefuran via the dermal route for 24 h followed by a 14-day observation period (1997c). No deaths were observed during or post-exposure, and therefore the dermal LD₅₀ was estimated to be > 2000 mg/kg bw in both male and female rats. There were no treatment-related clinical signs of systemic toxicity although 2 females did exhibit red-stained faces on the day of treatment. All males gained weight during the study but minor weight losses were observed in 4 females during week 1 and 2 females during week 2. In terms of local toxicity, slight to moderate erythema was observed in all males and 3/5 females on day 1 post-exposure with slight erythema persisting in all 5 males and 1 female up to day 3 and in 2 males up to day 7 post-exposure. In addition, slight oedema was observed in 1/5 males on day 1 and 2/5 males on day 3. No other effects were observed and there was no evidence of macroscopic changes at necropsy.

A.3.2.2.2 Comparison with the CLP criteria

Dinotefuran does not fulfil the CLP classification criteria as the LD50 is >2000 mg/kg bw.

A.3.2.2.3 Conclusion on classification and labelling for acute dermal toxicity

The acute toxicity estimate (ATE) of dinotefuran via the oral exposure route is >2000 mg/kg bw, therefore dinotefuran is not classified for acute dermal toxicity.

A.3.2.2.4 Conclusion on acute dermal toxicity related to risk assessment

Belgium	Dinotefuran	CLH
---------	-------------	-----

A.3.2.3 Acute inhalation toxicity Table A-34: Summary table of animal studies on acute inhalation toxicity

Method, Guideline, GLP status, Reliability, Key/supportive study	Species, Strain, Sex, No/Group	Test substance (including purity), form (gas, vapour, dust, mist) and particle size (MMAD) Actual and nominal concentration, Type of administration (nose only / whole body/ head only)	Signs of toxicity (nature, onset, duration, severity, reversibility, include concentrations)	Value LC50	Remarks (e.g. major deviations)	Reference
Inhalation (nose-only), OECD TG 403 (1981), EEC B.2. (1992), OPPTS 870.1300 (1998), JMAFF 59 Nohsan 4200 (1985) GLP, Reliability 1 Key study	Rat :WI[Glx/BRL/Han]BR (SPF) Males and females 5/sex/group	Dinotefuran, 99.1% purity, MMAD 4.74 µm + GSD 2.79. Nominal concentration 29.1 mg/L, analytical concentration 4.09 mg/L, nose only, 4 h exposure, 14-days post exposure period.	No deaths occurred during the exposure or observation periods, and no treatment-related clinical signs of an adverse reaction to treatment were apparent. Body weight gains were not affected by exposure to dinotefuran. Necropsy and <i>post</i> <i>mortem</i> examination did not reveal any treatment-related lesions in either sex. The group mean absolute and relative lung weights were considered to be unaffected by treatment.	LC50: >4.09 mg/L (both sexes combined)	None	Report no. 1300/3-D6154 , 1999 IUCLID 8.7.2 Amendment 1 Amendment 2 , 2000b

Belgium Dinotefuran	CLH
---------------------	-----

Belgium	Dinotefuran	CLH
---------	-------------	-----

Table A-35: Summary table of human data on acute inhalation toxicity

No data is available.

Table A-36: Summary table of other studies relevant for acute inhalation toxicity

No data is available.

A.3.2.3.1 Short summary and overall relevance of the provided information on acute inhalation toxicity

In an OECD-compliant study, groups of 5 male and 5 female rats were exposed to 0 or 4.09 mg/L dinotefuran via the inhalation route (nose only) for 4 h followed by a 14-day observation period (1999, 2000a, b). The analytical concentration of 4.09 mg/L dinotefuran was reported to be the maximum attainable concentration. The MMAD of dinotefuran in the test atmosphere was reported to be 4.74 μ m ± 2.79 μ m as the GSD, which is above the optimal respirable size range of 1-4 μ m; the study authors stated that this was the minimum attainable MMAD. [It is noted that a smaller MMAD of 2 μ m was produced in the sub-acute inhalation study but at a concentration of 2.1 mg/L or below]. No deaths were observed during or post-exposure, therefore an inhalation LC₅₀ value was not identified from this study but it was estimated to be > 4.09 mg/L in both male and female rats. No treatment-related clinical signs of toxicity were observed and body weight gains were not affected by treatment. There was no evidence of any treatment-related lesions in either sex at necropsy.

A.3.2.3.2 Comparison with the CLP criteria

Although the 4-hour LC₅₀ value falls within the classification category of Category 4, higher aerosol concentrations of dinotefuran in the respirable range are not technically feasible. Therefore, dinotefuran does not require hazard classification for acute inhalation toxicity.

A.3.2.3.3 Conclusion on classification and labelling for 250 acute inhalation toxicity

Dinotefuran does not fulfil the CLP classification criteria as higher concentrations in the respirable range are not technically feasible.

A.3.2.3.4 Conclusion on acute inhalation toxicity related to risk assessment

Belgium	Dinotefuran	CLH

Belgium	Dinotefuran	CLH
---------	-------------	-----

A.3.2.4 Specific target organ toxicity – single exposure Category 1 and 2 (STOT SE 1 and 2)

Table A-37: Summary table of animal studies on Specific Target Organ Toxicity STOT SE 1 and 2

Method, Duration of study, Route of exposure, Guideline, GLP status, Reliability, Key/supportive study	Species, Strain, Sex, No/Group	Test substance (including purity), Vehicle, Dose levels, Duration of exposure	Results (including target organ and the effect levels)	Remarks (e.g. major deviations)	Reference
Oral gavage, OECD TG 401 (1982), EPA 81-1 (1987), JMAFF 59 Nohsan 4200 (1985) GLP, Reliability 1, Key study	Rat CD[SD]BR (SPF) Males and females 5/sex/group	Dinotefuran, 99.1% purity, in water, gavage administration, 1000, 2000, 3000, 4000 and 5000 mg/kg bw; single dose; 14- days post exposure period	Sprague-Dawley rats were treated via oral gavage at 1000, 2000, 3000, 4000 and 5000 mg/kg bw with a single dose (Glaza, 1997a). Treatment-related clinical signs were apparent at dose levels of ≥2000mg/kg bw and included hypoactivity, staggering gait, hunched posture, prostration, red- stained face, miosis, lacrimation, salivation, tachypnea, dyspnea, soft feces, yellow staining of the uro- genital area, tonic or	LD50: 2450 mg/kg bw (2804 mg/kg bw males; 2000 mg/kg bw females; 2450 mg/kg bw sexes combined)	Report no. CHW 6648- 118 IUCLID 8.7.1

	Belgium	Dinotefuran		CLH	
Oral gavage, OECD TG 401 (1982), EPA 81-1 (1987), JMAFF 59 Nohsan 4200 (1985) GLP, Reliability 1, Key study	Mouse CD1[ICR]BR (SPF) Males and females 5/sex/group	Dinotefuran, 99.1% purity, in water, gavage administration, 1000, 2000 and 3000 mg/kg bw; single dose; 14-days post exposure period	clonic convulsions and tremors. Clinical signs were generally transient but occasionally persisted for up to 3 days after treatment. Transient clinical signs of toxicity (on the day of treatment only) were apparent at dose levels of ≥2000 mg/kg bw and included hypoactivity, staggering gait,	LD50: 2371 mg/kg bw 2450 mg/kg bw males; 2275 mg/kg bw females; 2371 mg/kg bw sexes combined)	Report no. CHW 6648- 119 IUCLID 8.7.1 Amendment 1 Glaza, 2000
Acute neurotoxicity, 14 days exposure, oral dietary, OECD TG 424, OPPTS 870.6200, GLP, Reliability 1, Key study	Rat, :CD®(SD) IGS BR, males/females, 10/sex/group	Dinotefuran, 98.9%, 0.5% CMC vehicle, single administration of 0, 325, 750, 1500 mg/kg bw	dyspnea, tonic convulsions and tremors. The only treatment related change reported was a reduction in motor activity score at the highest dose level in the assessments conducted 3 hours after dosing. Based on this observation, a study NOAEL of 750 mg/kg bw is identified. However, this transient minor change is considered to be a manifestation of general toxicity, and because no neuropathological	Males and females at 1500 mg/kg bw had statistically significantly lower motor activity on day 1, transient and not other correlating changes therefore not adverse nor treatment related.	Report no. 6648-147 (2001a) IUCLID 8.13.2

	Belgium	Dinotefuran		CLH	
Dermal toxicity, OECD TG 402 (1987), EPA 81-2 (1982), JMAFF 59 Nohsan 4200 (1985) GLP, Reliability 1, Key study	Rat CD[SD]BR (SPF) Males and females 5/sex/group	Dinotefuran, 99.1% purity, 0.5% (w/v) solution of carboxymethylcellulose in distilled water, 2000 mg/kg bw, 16 cm ² , 24 h exposure, 14-days post-exposure period.	changes were detected it can be concluded that dinotefuran is not acutely neurotoxic. There were no treatment-related clinical signs of toxicity although 2 females did exhibit red-stained faeces on the day of treatment. Slight to moderate erythema and slight oedema were noted in some treated animals	LD50: > 2000 mg/kg bw (both sexes combined)	Report no. CHW 6648- 120 1997c IUCLID 8.7.3
Inhalation (nose- only), OECD TG 403 (1981), EEC B.2. (1992), OPPTS 870.1300 (1998), JMAFF 59 Nohsan 4200 (1985) GLP, Reliability 1 Key study	Rat (SPF) Males and females 5/sex/group	Dinotefuran, 99.1% purity, MMAD 4.74 µm + GSD 2.79. Nominal concentration 29.1 mg/L, analytical concentration 4.09 mg/L, nose only, 4 h exposure, 14-days post exposure period.	No treatment-related clinical signs of toxicity were observed. There was no evidence of any treatment-related lesions in either sex at necropsy.	LC50: >4.09 mg/L (both sexes combined)	Report no. 1300/3- D6154 IUCLID 8.7.2 Amendment 1 Amendment 2 Amendment 2 Jack 2000b

Table A-38: Summary table of human data on Specific Target Organ Toxicity STOT SE 1 or 2

No data is available.

Belgium	Dinotefuran	CLH
---------	-------------	-----

Table A-39: Summary table of other studies relevant for Specific Target Organ Toxicity STOT SE 1 and 2

No data is available.

Belgium Dinotefuran CLH

A.3.2.4.1 Short summary and overall relevance of the provided information on STOT SE 1 and 2

The single dose toxicity of dinotefuran has been thoroughly investigated in a series of standard studies. Acute studies via the oral route were performed in rats and mice, while studies via the inhalation and dermal routes were performed in rats. Additionally, an oral neurotoxicity study in rats is available. No target organ toxicity has been observed in these studies.

A.3.2.4.2 Comparison with the CLP criteria

As dinotefuran did not induce target organ toxicity in animal studies after single exposure and no relevant human evidence is available, classification in Category 1 or Category 2 is not justified.

A.3.2.4.3 Conclusion on classification and labelling for STOT SE 1 and 2

Not classified.

A.3.2.5 Specific target organ toxicity – single exposure Category 3 (STOT SE 3)

Table A-40: Summary table of animal studies on STOT SE 3

No data is available.

Table A-41: Summary table of human data on STOT SE 3

No data is available.

Table A-42: Summary table of other studies relevant for STOT SE 3

_	Belgium	Dinotefuran	CLH
No data is available	·.		

A.3.2.5.1 Short summary and overall relevance of the provided information on STOT SE 3

Category 3 classification is required for substances that induce transient target organ effects, specifically narcotic effects and respiratory tract irritation.

Since no relevant human evidence is available, the results from animal acute toxicity studies and animal developmental toxicity studies are used.

Method, Duration of study, Route of exposure, Guideline, GLP status, Reliability, Key/supportiv e study	Species, Strain, Sex, No/Group	Test substance (including purity), Vehicle, Dose levels, Duration of exposure	Results (including target organ and the effect levels)	Remarks (e.g. major deviations)	Reference
Oral gavage, OECD TG 401 (1982), EPA 81-1 (1987), JMAFF 59 Nohsan 4200 (1985) GLP, Reliability 1, Key study	Rat CD[SD]BR (SPF) Males and females 5/sex/group	Dinotefuran, 99.1% purity, in water, gavage administration, 1000, 2000, 3000, 4000 and 5000 mg/kg bw; single dose; 14-days post exposure period	Sprague-Dawley rats were treated via oral gavage at 1000, 2000, 3000, 4000 and 5000 mg/kg bw with a single dose (Glaza, 1997a). Treatment-related clinical signs were apparent at dose levels of ≥2000mg/kg bw and included hypoactivity, staggering gait, hunched posture, prostration, red-stained face, miosis, lacrimation, salivation, tachypnea, dyspnea, soft feces, yellow staining of the uro-genital area, tonic or clonic convulsions and tremors. Clinical signs were generally transient but occasionally persisted for up to 3 days after treatment. All these effects are considered to be a manifestation of general toxicity.	LD50: 2450 mg/kg bw (2804 mg/kg bw males; 2000 mg/kg bw females; 2450 mg/kg bw sexes combined)	Report no. CHW 6648- 118 1997a IUCLID 8.7.1
	Belgium	Dinotefuran		H	
--	---	---	---	---	---
Oral gavage, OECD TG 401 (1982), EPA 81-1 (1987), JMAFF 59 Nohsan 4200 (1985) GLP, Reliability 1, Key study	Mouse CD1[ICR]BR (SPF) Males and females 5/sex/group	Dinotefuran, 99.1% purity, in water, gavage administration, 1000, 2000 and 3000 mg/kg bw; single dose; 14- days post exposure period	Transient clinical signs of toxicity (on the day of treatment only) were apparent at dose levels of ≥2000 mg/kg bw and included hypoactivity, staggering gait, dyspnea, tonic convulsions and tremors. All these effects are considered to be a manifestation of general toxicity.	LD50: 2371 mg/kg bw 2450 mg/kg bw males; 2275 mg/kg bw females; 2371 mg/kg bw sexes combined)	Report no. CHW 6648- 119 1997b IUCLID 8.7.1 Amendmen t 1 Glaza, 2000
Acute neurotoxicity, 14 days exposure, oral dietary, OECD TG 424, OPPTS 870.6200, GLP, Reliability 1, Key study	Rat, CD®(SD) IGS BR, males/females, 10/sex/group	Dinotefuran, 98.9%, 0.5% CMC vehicle, single administration of 0, 325, 750, 1500 mg/kg bw	The only treatment related change reported was a reduction in motor activity score at the highest dose level, in the assessments conducted 3 hours after dosing. This effect was reported only during the first 10 minutes after administration. Beyond 10 minutes, no change was observed regarding the motor activity. Based on this observation, a study NOAEL of 750 mg/kg bw is identified. However, this transient minor change is considered to be a manifestation of general toxicity.	Males and females at 1500 mg/kg bw had statistically significantly lower motor activity on day 1, transient and not other correlating changes therefore not adverse nor treatment related.	Report no. 6648-147 (2001a) IUCLID 8.13.2
Dermal toxicity, OECD TG 402 (1987), EPA 81-2 (1982), JMAFF 59 Nohsan 4200 (1985) GLP, Reliability 1,	Rat CD[SD]BR (SPF) Males and females 5/sex/group	Dinotefuran, 99.1% purity, 0.5% (w/v) solution of carboxymethylcellulos e in distilled water, 2000 mg/kg bw, 16 cm ² , 24 h exposure, 14-days post- exposure period.	No relevant effect for STOT SE 3	LD50: > 2000 mg/kg bw (both sexes combined)	Report no. CHW 6648- 120 1997c IUCLID 8.7.3

	Belgium	Dinotefuran CLH											
Key study													
Inhalation (nose-only), OECD TG 403 (1981), EEC B.2. (1992), OPPTS 870.1300 (1998), JMAFF 59 Nohsan 4200 (1985) GLP, Reliability 1 Key study	Rat WI[Glx/BRL/Han]B R (SPF) Males and females 5/sex/group	Dinotefuran, 99.1% purity, MMAD 4.74 µm + GSD 2.79. Nominal concentration 29.1 mg/L, analytical concentration 4.09 mg/L, nose only, 4 h exposure, 14-days post exposure period.				mg/L (both se combine			LC50: >4.09 mg/L (both sexes combined)	Report no. 1300/3- D6154 1999 IUCLID 8.7.2 Amendmen t 1 2000a Amendmen t 2 2000b			
Developmental toxicity, oral gavage, OECD TG 414, GLP, reliability 1, Key study	Rabbit, NSW, 22 mated females per group	Dinotefuran purity 99.1%, 0.5% CMC vehicle, nominal concentrations 52, 125, 300 mg/kg bw/d, daily exposure for gd 6-18, 10-day post-exposure period	Nature and in dose 300 mg, Day of administration n Hypoactivity Prone position Panting Tremor The clinical sig of administrati	ncid /kg 1 1 9 1 7 7 ns c on.	ence (21	e of rabl 3 1 9 1 8 1 5 2 pear	clin bits) 4 1 5 1 2 1 0 3 ed ir	ical 5 5 6 5 0 0	6 3 1 1 2 5-	7 1 1 0 0 9 d	9 0 0 0 0 ays	NOAEL (maternal toxicity) 300 mg/kg bw/d NOAEL (developmenta I toxicity) 1000 mg/kg/d	Report no. H-97166 (1998e) IUCLID 8.10.1

	Belgium	Dinotefuran		CLH		
		-				
			Since there is no lack of coordination observed, the lethargy alone c imputable to a narcotic effect.	n or ataxia annot be		
Developmental toxicity, oral gavage, OECD TG 414 (2001), OPPTS 870.3700 (1998), JMAFF 59 Nohsan 4200 (2000, 2011), GLP, reliability 1, Key study	Rabbit, Kbl:JW, 25 mated females per group	Dinotefuran purity 99.6%, 0.5% CMC vehicle, nominal concentrations 60, 175, 500 mg/kg bw/d, daily exposure for gd 6-27, 10-day post-exposure period	No relevant effect for STOT SE 3		NOAEL (maternal toxicity) 175 mg/kg bw/d NOAEL (developmenta I toxicity) 500 mg/kg bw/d	Report no. SR12005 (2013) IUCLID 8.10.1
Developmental toxicity, oral gavage, OECD TG 414, GLP, reliability 1, Key study	Rat, CD(SD) IGS (SPF), 24 mated females per group	Dinotefuran purity 99.1%, 0.5% CMC vehicle, nominal doses 100, 300, 1000 mg/kg bw/d, daily exposure for gd 6-15, 5-day post-exposure period	No relevant effect for STOT SE 3		NOAEL (maternal toxicity) 300 mg/kg bw/d NOAEL (developmenta l toxicity) 1000 mg/kg/d	Report no. H-97163 (1998b) IUCLID 8.10.1
Developmental neurotoxicity, Oral, dietary OECD TG 426, OPPTS 870.6300, GLP Reliability 1, Key study	Rat, CD(SD), 25 mated females F0/sex/group	Dinotefuran purity 99.5%, no vehicle, nominal doses 0, 1000, 3000, 10000 ppm, (equivalent to 0, 79, 237, 784 mg/kg bw/day) daily exposure on Day 6 of gestation until Day 21 of lactation	No relevant effect for STOT SE 3		NOAEL (maternal): 237 mg/kg bw/day NOAEL (neonatal toxicity and developmental neurotoxicity): 784 mg/kg bw/day	Report no. SRY00002 (2010) IUCLID 8.13.2

Belgium Dinotefuran CLH

A.3.2.5.2 Comparison with the CLP criteria

As dinotefuran did not induce transient target organ effects (such as narcotic effects or respiratory tract irritation) after single exposure and no relevant human evidence is available, classification in Category 3 is not justified.

A.3.2.5.3 Conclusion on classification and labelling for STOT SE 3

Not classified.

A.3.2.5.4 Overall conclusion on acute toxicity related to risk assessment

Not applicable for the CLH report

Belgium Dinotefuran CLH

A.3.3 Skin corrosion and irritation

Table A-43: Summary table of in vitro studies on skin corrosion/irritation

No in vitro data is available.

Table A-44: Summary table of animal studies on skin corrosion/irritation

Method, Duration of study, Guideline, GLP status, Reliability, Key/supportive study	Species, Strain, Sex, No/Group	Test substance (including purity), Vehicle, Dose levels, Duration of exposure	Results Average score for erythema/eschar and oedema (24, 48, 72 h) per animal, observations and time point of onset, reversibility, other adverse local/systemic effects, histopathological findings	Remarks (e.g. major deviations)	Reference
Skin irritation, OECD TG 404 (1992), EPA 81-5 (1982), JMAFF 59 Nohsan 4200 (1985), GLP, Reliability 1, Key study	Rabbit, New Zealand White (MZW)SPF), 5 males and 1 female	Dinotefuran, 99.1% purity, 0.5 g in 0.3 mL distilled water applied to shaved intact dorsal and/or flank skin (2.5 x 2.5 cm), 4h exposure, semi-occlusive dressing	No dermal response in 5/6 rabbits at 24, and 6/6 rabbits at 48 and 72 hours, 1/6 showed erythema score of 1 at 24h which had reversed by 48 hours. Mean erythema score of 0.17 at 24 hours.	None	Report no. 6648-121,

Belgium Dinotefuran CLH

Table A-45: Summary table of human data on skin corrosion/irritation

No human data is available.

A.3.3.1 Short summary and overall relevance of the provided information on skin corrosion/irritation

An OECD-comparable skin irritation study is available (**1998a**). Dinotefuran (0.5 g in 0.3 ml water) was applied to the skin (6.25 cm²) of 5 male and 1 female rabbit for 4 hours. Very slight erythema was observed on the treated skin of 3/6 rabbits 30 minutes post-exposure. At 24 hours post-exposure very slight erythema was observed in 1 male rabbit only. Erythema was not observed in any animal at 48 hours or 72 hours post-exposure. Oedema was not observed in any animal at any time point.

Animal	Individual eryt	EU index		
	24 hours	24 hours 48 hours 72 hours		score**
1	0/0	0/0	0/0	0.0
2	0/0	0/0	0/0	0.0
3	0/0	0/0	0/0	0.0
4	0/0	0/0	0/0	0.0
5	0/0	0/0	0/0	0.0
6	1/0	0/0	0/0	0.33

** EU index score = total erythema & edema score at the 24, 48 and 72hr intervals / no. of observation intervals

A.3.3.2 Comparison with the CLP criteria

The mean erythema score at 24 hours was 0.17, which is <2.3. Together with reversibility of effect, and no persistent inflammation, dinotefuran does not fulfil the classification criteria for a skin irritant.

A.3.3.3 Conclusion on classification and labelling for skin corrosion/irritation

Dinotefuran is not classified as a skin irritant.

A.3.3.4 Overall conclusion on skin irritation and corrosivity related to risk assessment

Not applicable for the CLH report

Belgium Dinotefuran CLH

A.3.4 Serious eye damage and Eye irritation

Table A-46: Summary table of in vitro studies on serious eye damage and eye irritation

No in vitro data is available.

Table A-47: Summary table of animal studies on serious eye damage and eye irritation

Method, Duration of study, Guideline, GLP status, Reliability, Key/supportive study	Species, Strain, Sex, No/Group	Test substance (including purity), Vehicle, Dose levels, Duration of exposure	Results Average score for corneal opacity, iritis, conjunctival redness and conjunctival oedema (24, 48, 72 h) per animal, observations and time point of opset	Remarks (e.g. major deviations)	Reference
			reversibility		
Eye irritation, OECD TG 405 (1987), EPA 81-4 (1982), JMAFF 59 Nohsan 4200 (1985) GLP, Reliability 1, Key study	Rabbit New Zealand White (NZW)SPF), 6 males and 3 females, 3 rabbits per washed group, 6 rabbits per unwashed group	Dinotefuran, 99.1% purity, applied neat, single application of 0.1 g, Group 1 animal eyes remained unflushed after treatment, Group 2 animal eyes were flushed with water for one minute after 30 sections of test material instillation.	Mean scores; corneal opacity 0.7 at 24h, 0.2 at 48 and 72h; iris lesion 0.3 at 24h, 0.2 at 48h and 0.0 at 72h; Erythema 2.0 at 24h, 1.3 at 48h, 0.8 at 72h; oedema 1.5 at 24h, 1.2 at 48h, 0.3 at 72h All effects fully reversibly at day 14.	None	Report no. 6648-122, 1998b, IUCLID no. 8.1.2
Acute eye irritation	Rabbit	Dinotefuran, 98.9%	Mean scores; corneal	None	Report no. 8394-04,

	Belgium		furan	CLH	
study in rabbits,	New Zealand White,	purity, 0.1mL by	opacity 0 at 24h, 0 at		, 2004 IUCLID
OPPTS 870.2400	1 male and 2 females	volume (37.8mg) dry	48 and 72h; iris lesion		no. 8.1.2
(1998), GLP,		dinotefuran solid, No	0 at 24h, 0 at 48h		
Reliability 1,		unwashed group	and 0 at 72h;		
Key study		5.	Erythema 0 at 24h, 0		
			at 48h, 0 at 72h;		
			oedema 0 at 24h, 0 at		
			48h, 0 at 72h		
			All effects fully		
			reversibly at 24h.		

Belgium Dinotefuran	CLH
---------------------	-----

Table A-48: Summary table of human data on serious eye damage and eye irritation

No human data is available.

A.3.4.1 Short summary and overall relevance of the provided information on serious eye damage/eye irritation

An eye irritation study that is comparable to OECD guideline 405 is available (**1998b**). Dinotefuran (0.1 g) was instilled directly into one eye of 9 rabbits. The eyes of 3 of these rabbits were washed for 1 minute with water 30 seconds after exposure. The eyes of the remaining 6 animals were not washed. The animals were observed for 14 days and eye irritation scores recorded at 1, 24, 48, 72 and 96 hours and on days 7 and 14. Sodium fluorescein examinations were performed to assist the visualisation of possible corneal lesions at 24, 48, 72 and 96 hours or until a negative response was evident. Dinotefuran was slightly irritating to the eyes of all rabbits tested. The average scores for effects on the cornea, iris and conjunctiva for each animal over 24, 48 and 72 hours are presented in Table below. The irritant effects observed in both the unwashed and washed groups were no longer apparent on day 14.

Animal	1h	24h	48h	72h	96h	Day 7	Day 14	Score
numbe								(24, 48, 72h)
r								
1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0
3	0	1 ^a	0	0	0	0	0	0.3
4	1	1 ^a	0	0	0	0	0	0.3
5	0	1 ^a	0	0	0	0	0	0.3
6	0	1 ^a	1 ^a	1ª	1	1	0	1

Individual eye irritation scores - Group 1 (unwashed) - Corneal opacity

^a corneal epithelial peeling

A second eye irritation study following guideline OPPTS 870.2400 (2004) is available. This study was conducted on three albino rabbits. The test substance, 0.1 mL by volume (37.8 mg), was placed into the conjunctival sac of the right eye of each animal selected for testing. All treated eyes were washed with room temperature deionized water for one minute immediately after recording the 24 hour observation.

A.3.4.2 Comparison with the CLP criteria

The mean scores for corneal opacity did not exceed ≥ 1 , iritis did not exceed ≥ 1 , conjunctival redness did not exceed ≥ 2 and conjunctival oedema did not exceed ≥ 2 at 24, 48 and 72 hours after instillation

Belgium	Dinotefuran	CLH

of dinotefuran. The effects seen fully reversed within an observation period of <21 days (14 days).

In the second study, the mean scores for corneal opacity, iris lesion, erythema and oedem were 0 at 24h, 0 at 48h, 0 at 72h. All effects were fully reversibly at 24h.

A.3.4.3 Conclusion on classification and labelling for serious eye damage/eye irritation

Dinotefuran does not fulfil the classification criteria for eye irritation.

A.3.4.4 Overall conclusion on eye irritation and corrosivity related to risk assessment

Not applicable for the CLH report

Belgium	Dinotefuran	CLH
---------	-------------	-----

A.3.5 Skin sensitisation

Table A-49: Summary table of animal studies on skin sensitisation

Method, Duration of study, Route of exposure (e.g. topical/intradermal, induction/challenge if relevant), Guideline, GLP status, Reliability, Key/supportive study	Species, Strain, Sex, No/Group	Test substance (including purity), Vehicle, Dose levels, Duration of exposure	Results (e.g. EC3- value or amount of sensitised animals at induction dose)	Remarks (e.g. major deviations)	Reference
Guinea pig maximisation test, intradermal inductions and topical challenge, OECD TG 406 (1992), EPA 81-6 (1982), Magnusson & Kligman (1970), JMAFF 59 Nohsan 4200 (1985), GLP, Reliability 1, Key study	Albino guinea pig, [HA]BR, 20 male animals per group	 Dinotefuran, 99.1% purity, a) for induction: A series of 3 preparations for dinotefuran for <u>intradermal induction</u> was prepared as follows: 1:1 dilution of FCA in sterile water, without dinotefuran 2. 5% suspension of dinotefuran in 0.5% CMC/distilled water 3. 1:1 dilution of 10% suspension of dinotefuran in 0.5% CMC/distilled water and FCA 4. topical application was performed with 25% w/w mixture of test substance in petrolatum. b) <u>for challenge</u>: A 25% (w/w) mixture of dinotefuran in petrolatum 	Not sensitising No skin reactions in any of the test animals or negative controls. Positive controls demonstrated the sensitivity of the test system.	None	Report no. 6648-123,

Belgium Dinotefuran	CLH
---------------------	-----

Belgium Dinotefuran	CLH
---------------------	-----

Table A-50: Summary table of human data on skin sensitisation

No human data is available.

Table A-51: Summary table of other studies relevant for skin sensitisation

No other studies are available.

A.3.5.1 Short summary and overall relevance of the provided information on skin sensitisation

A skin sensitisation study of dinotefuran is available in guinea pigs (**1997d**). A preliminary irritation test was performed on 2 groups of 4 guinea pigs in which intradermal injections of 1, 5, 10 and 15 % dinotefuran were applied to one group and topical applications of 5, 10, 15 and 25 % dinotefuran for 24 hours were administered to the other group. Dermal reactions were evaluated after 24 and 48 hours post-exposure. Dermal irritation was observed 24 and 48 hours after all intradermal applications; Intradermal injection of 1 % dinotefuran caused mild erythema, 5 % resulted in mild-moderate diffuse erythema and 10 and 15 % dinotefuran caused moderate-diffuse to intense erythema. No dermal reactions were observed following topical exposure to \leq 25 % dinotefuran.

In the main study, the induction phase for the test group of 20 guinea pigs included intradermal injections with 5 % dinotefuran (with and without FCA) and a 48 h topical application of 25 % dinotefuran. A group of 20 control animals were not exposed to dinotefuran at this stage. A single 24 h challenge application of 25 % dinotefuran was applied to both groups on day 22 and dermal reactions assessed 24 and 48 hours later. Dinotefuran did not induce skin sensitisation in any of the animals tested as dermal reactions were not observed in any of the test or control animals. A positive control study performed within 6 months of the dinotefuran study produced the appropriate response.

As the preliminary study did not identify the irritation threshold for topical application of dinotefuran, the challenge concentration of 25 % dinotefuran may not be the highest non-irritant concentration (as recommended in the OECD guideline). This raises concern that the full sensitisation potential of dinotefuran has not been assessed. However, the company owning the data has stated that the original Magnusson and Kligman procedure includes an approach to incorporate the pulverized solid test item into petrolatum at a concentration not exceeding 25 % w/w, based on the rationale that solid test item concentrations greater than 25 % w/w in petrolatum are generally not homogeneous and do not allow for good contact of the test item with animal skin under the conditions of the test. Good contact of the test item with animal skin is necessary to ensure potential absorption into the skin. Additionally, the company owning the data states that dinotefuran in petrolatum is the maximum technically achievable concentration possible to prepare as a homogeneous mixture. Taking account of the company statement, the RMS concludes that the skin sensitisation potential of dinotefuran has been adequately tested.

A.3.5.2 Comparison with the CLP criteria

In an adjuvant type skin sensitisation study, $a \ge 30\%$ response in tested animals is considered to

Belgium	Dinotefuran	CLH

be a positive result. As no adverse skin reactions were observed in any of the tested animals in the GPMT, the criteria for classification are note met.

A.3.5.3 Conclusion on classification and labelling for skin sensitisation

Dinotefuran does not fulfil the classification criteria for skin sensitisation.

A.3.5.4 Overall conclusion on skin sensitisation related to risk assessment

Not applicable for the CLH report

A.3.6 Respiratory sensitisation

Table A-52: Summary table of animal data on respiratory sensitisation

No animal data is available.

Table A-53: Summary table of human data on respiratory sensitisation

No human data is available.

Table A-54: Summary table of other studies relevant for respiratory sensitisation

No other studies are available.

A.3.6.1 Short summary and overall relevance of the provided information on respiratory sensitisation

No data.

A.3.6.2 Comparison with the CLP criteria

No data.

A.3.6.3 Conclusion on classification and labelling for respiratory sensitisation

No data.

A.3.6.4 Overall conclusion on respiratory sensitisation related to risk assessment

Not applicable for the CLH report

Belgium	Dinotefuran	CLH
---------	-------------	-----

A.3.7 Repeated dose toxicity/STOT RE

A.3.7.1 Short term repeated dose toxicity

A.3.7.1.1 Short-term oral toxicity

Table A-55: Summary table of oral short-term animal studies (usually 28-day studies)

Method, Duration of study, Route of exposure (gavage, in diet, other), Guideline, GLP status, Reliability, Key/support ive study	Species, Strain, Sex, No/Group	Test substanc e (includin g purity), Vehicle, Dose levels, Duration of exposure	NOAEL, LOAEL	Results (magnitud	all dose de of all	Remarks (e.g. major deviations)	Referen ce			
OECD TG 407 (1995), equivalent to EU B.7, 4- week oral dietary administrati on, GLP, Reliability 1, Key study	Rat, CD® [SD]BR VAF/Plus®, males and females, 5 animals per sex per dose	Dinotefura n, 99.1% purity, no vehicle, 0, 5000, 25000, 50000 ppm administer ed continuou sly for 4 weeks	NOAEL 50000 ppm equivalen t to 3720 and 4222 mg/kg bw/d, M/F respectiv ely	Summary Sex Male Female * p < 0.00 group me Treatmen	of bodyv Dose level (ppm) 0 5000 25000 50000 50000 50000 5; a stati an data t related	veight gain au Gverall group mean weight gain (g) 177 173 139* 94* 67 53 50 34* stical analysis effects on set	nd food consul Group mean terminal body weight (g) 404.0 403.1 378.6 335.5* 199.2 197.6 188.2 172.6 s not performe	mption Overall mean food consumption (g/wk) 193 193 173 159 119 120 111 99 ed on overall emistry - Week 5	The applicant would have liked to review the NOAEL from 5000 ppm to 50000 ppm attributing the reduced BW gain at dose 25 000 and 50 000 to the unpalatabili ty. (Report	Report no. CHW 6648- 125, 1997a IUCLID no. 8.9.5.1

	Belgium			Dino	Dinotefuran CLH									
				Sex	Dos leve (ppi	e el m)	Group serum concen (mg/dL	mean glucose tration .)		Group choles concer (mg/d	mean s terol ntration L)	serum	LKC-10, Gale and Ishikawa, 2022,	
				Male	0	0	118			56			IUCLID no.	
					250	00	119			<u>52</u> 70*			6:15:0):	
					500	00	101*			80*			unpalatabili	
				Female	0	-	105			85			ty of	
					500	0	105			70			Dinotefura	
					250	00	103			83			n was	
				* n < 0 (<u> 500</u>)5	00	100			80			proved at	
				* p < 0.0	JS t orga	n toxi	city was	observe	ed				dose 20 000 & 50 000 ppm in the provided study (Report no. MCW0059, Arrowsmith , 2015, IUCLID no. 8.13.6), BE eCA agrees to consider a NOAEL of 50 000	
	Mouse	Dipotefura	NOAEI	Treatmor	nt rola	ated of	ffects on	aroup	moan	body	voight a	nd	The	Peport
407 (1995), equivalent to EU B.7, 4- week oral	Right Research Resear	punoterura n, 99.1% purity, no vehicle, 0, 5000.	5000 ppm equivalen t to 901	overall weight gain Week Males treated at (ppm): of (ppm): study 0 500 5000 0								applicant would have liked to review the	керогт no. CHW 6648- 124,	
dietary administrati on,	animals per sex per dose	25000, 50000 ppm	and 1043 mg/kg bw/d,	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						NOAEL from 5000 ppm to	1997b IUCLID no.			

	Belgium		Dinotefuran C							Cl	_H			
GLP, Reliability 1, Key study	Belgium	administer ed continuou sly for 4 weeks	M/F respectiv ely	Dino	33. 1 34. 9 35. 4 36. 2 5.5 05	an 33. 7 35. 3 35. 7 37. 0 4.9	32.9 34.0 34.1 35.4 2.8	30.9 32.0 * 33.3 33.6 0.8	27. 0 28. 4 28. 9 29. 4 3.9	27. 5 29. 0 29. 0 30. 4 4.3	Cl 27.0 27.9 28.3 28.6 2.1	H 24.9 * 26.0 * 27.0 27.8 1.8	50000 ppm attributing the reduced BW gain at dose 25 000 and 50 000 to the unpalatabili ty. (Report no. 15- LKC-10, Gale and Jabikawa	8.9.5.1
				Treatmer Sex Male Female * p < 0.0 No target	nt rela Dos leve (pp 500 250 500 500 250 500 500 500 500 500	ated se se el om) 00 000 000 000 000 000 000 000	erum cli Mean prote (g/dL 4.7 ± 4.8 ± 5.0 ± 5.1 * 4.8 ± 5.0 ± 5.1 ± 4.9 ±	nical chi serum in ± SD 0.23 0.26 0.25 ± 0.18 0.15 0.22 0.14 0.20	emistr total	y findii Mear albui (g/dl 3.2 ± 3.3 ± 3.6 * 3.5 ± 3.7 ± 3.5 ±	ngs – w n serum min ± Si 2 0.13 2 0.13 2 0.18 ± 0.23 2 0.13 2 0.26 2 0.09 2 0.13	eek 5 D	Ishikawa, 2022, IUCLID no. 8.13.6). However, in this study there is no decrease of FC in the 2 highest doses; thus the BWG decrease cannot be imputable to the	
													unpalatabili ty. Therefore, BE eCA is the opinion	

	Belgium			Dinotefu	CLH									
OPPTS 870.4100, 7-day oral capsule administrati on, Not GLP, Reliability 2,	Belgium Dog, Marshall beagle, males and females, one animal per sex per dose	Dinotefura n, 99.1% purity, no vehicle, 0, 30, 100, 300 mg/kg bw/d,	NOAEL 100 mg/kg bw/d	Dinotefu Sele Orga Testes Testes ((r Prostate	ran ected a an weig (g) (m (g/10ki males)	ibsoluti iht ales) g bw)	e and	relativ Tre 0 6.869 6.604 2.999	re organ eatment 30 4.325 4.081	n weigh rate (/day): 100 5.08 5.08	CLr nts mg/k	(g 300 3.290 3.163 1.795	that the NOAEL should remain 5000 ppm. None	Report no. H-97326 , 1998a IUCLID no.
Supportive study		administer ed daily for 7 days		Prostate Prostate (r Uterus (Uterus (C Diarrhoea an Fluctuations organs were the subjects. No target org	(g/10k nales) g) (fen (g/10k males) d/or vo in the consid	nales) (g bw) g bw)) omiting weight ered at	J were of bo ttribut	2.884 0.894 1.118 e obser oth malitable to oserved	1.937 0.788 1.037 ved 30 e and fe o sexua	1.28 1.28 1.29 0 mg/k emale g l imma	32 3 38 (90 (90 (10 g bw genita turity	1.726 0.488 0.567 i/day. al y of		8.9.5.1
OPPTS 870.4100, 7-day oral dietary administrati on, Not GLP, Reliability 2, Supportive study	Dog, beagle, males and females, one animal per sex per dose	Dinotefura n, 99.1% purity, no vehicle, 0, 1250, 5000, 20000, 30000, 40000 ppm, administer ed continuou sly for 7 days	NOAEL 770 and 924 mg/kg bw/d, M/F respectiv ely	Body Body weight (kg) - day 0 - day 2 - day 2 - day 4 - day 7 - day 10 - day 14 Food consumptio n (g/d):	weight: Males 0/ 4000 0 9.2 9.2 9.4 9.0 9.4 8.8	s and c treated 1250/ 3000 0 9.0 9.0 9.0 8.8 9.0 9.0	veral d at (500 9.6 9.8 10.0 - -	l mean ppm): 2000 0 9.4 9.4 9.8 9.8 - -	food c Fem 0/ 4000 0 8.8 9.0 9.2 9.0 9.0 9.0 8.8	onsum hales tr (ppm 1250/ 3000 0 8.4 8.4 8.4 8.4 8.6 8.6 8.6 8.2	ption eated 1): 500 0 9.2 9.4 9.4 9.4 - -	d at 2000 0 8.6 8.6 8.8 8.4 - -	None	Report no. H 97327, 1998b IUCLID no. 8.9.5.1

Belgium			Dinotefuran										
			- week 1	400	357	400	400	339	400	400	265		
			- week 2	181	257	-	-	208	231	-	-		

Table A-56: Summary table of human data on short-term oral toxicity

No human data is available.

Belgium	Dinotefuran	CLH
---------	-------------	-----

A.3.7.1.2 Short-term dermal toxicity

Table A-57: Summary table of dermal short-term animal studies (usually 28-day studies)

Method, Duration of study, Guideline, GLP status, Reliability, Key/supportiv e study	Species, Strain, Sex, No/Group	Test substance (including purity), Vehicle, Dose levels, Surface area, Duration of exposure	NOAEL , LOAEL	Results (all dose levels including severity and magnitude of all effects, including target organs)								Remarks (e.g. major deviations)	Referenc e	
(1981), equivalent to EU B.9, OPPTS 870.3200 (1998), 4-week dermal toxicity, GLP, Reliability 1, Key study	S BR, males and females, 10 animals per sex per dose	98.9% purity, no vehicle, 0, 40, 200, 1000 mg/kg bw/d administere d daily for 6-7 hours per day for 4 weeks	>1000 mg/kg bw/d, M/F	alterations Organ: finding Treated skin: - no. examined - inflammation -acanthosis/ hyperkeratosi s Untreated skin: - no. examined - inflammation - fibrosis - ulceration - acanthosis/ hyperkeratosi s No target org	Inci Male (mg 0 1 0 2 1 0 2 1 0 8 0 0 0 0 0 0 0 0 0	dence es trea //kg b 4 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0	e of lesi ated at w/day) 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	on in: 100 10 2 10 10 4 0 0 0 s obse	Fem (mg 0 1 0 3 2 1 0 8 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0	rreated w/day) 20 0 0 0 0 1 1 1 1 0 1	at : 100 0 10 2 8 10 7 0 1 0	None	6648-149, 2001b IUCLID no. 8.9.5.3

Belgium Dinotefuran CLH

Table A-58: Summary table of human data on short-term dermal toxicity

No human data is available.

A.3.7.1.3 Short-term inhalation toxicity

Table A-59: Summary table of inhalation short-term animal studies (usually 28-day studies)

Method, Duration of study, Guideline, GLP status, Reliability, Key/supportive study	Species, Strain, Sex, No/Group	Test substance (including purity), Form (gas, vapour, dust, mist) and particle size (MMAD), Actual and nominal concentration, Type of administration (nose only / whole body/ head only), Duration of exposure	NOAEL, LOAEL	Results (all dose levels including severity and magnitude of all effects, including target organs)	Remarks (e.g. major deviations)	Reference
OECD TG 412, equivalent to EU B.8, OPPTS 870.3465, JMAFF 59 Nohsan 4200 4-week inhalation	Rat, WI(Glx/BRL/Han)BR , males and females, 10 animals per sex per dose	Dinotefuran, 99.1% purity, air used as vehicle, 0, 0.22, 0.66, 2.08 mg/L air administered daily for 6 hours per	For males: LOAEC of 0.22 mg/L For females : NOAEC is 2.08 mg/L	0.22 mg/L: ↓ bodyweight gain (M 36 %) & food cons (M 6 %) week 1 only 0.66 mg/L: ↓ bodyweight gain	The applicant proposed to not consider the LOAEL of 0.22 mg/L for males and to set a NOAEC at 2.08	Report no. 719/16, IUCLID no. 8.9.5.2

	Belgium	Dinotefuran		CLH					
toxicity, GLP, Reliability 1, Key study		day for 29 or 30 days	(M 40 %) & food cons (M 5 %) week 1 only 2.08 mg/L: ↓ bodyweight gain (M 46 %) & food cons (M 11 %) week 1 only	mg/L for both sexes. Since this value was already discussed in WG and since there is no new data, eCA decided to refuse this proposal.					

Table A-60: Summary table of human data on short-term inhalation toxicity

No human data is available.

A.3.7.1.4 Overall conclusion on short-term repeated dose toxicity related risk assessment

Not applicable for the CLH report

Belgium Dinotefuran CLH

A.3.7.2 Sub-chronic repeated dose toxicity

A.3.7.2.1 Sub-chronic oral toxicity

Table A-61: Summary table of oral sub-chronic animal studies (usually 90-day studies)

Method, Duration of study, Route of exposure (gavage, in diet, other), Guideline, GLP status, Reliability, Key/supporti ve study	Species, Strain, Sex, No/Group	Test substance (including purity), Vehicle, Dose levels, Duration of exposure	NOAEL, LOAEL	Results magnit	(all dose ude of all (Remarks (e.g. major deviations)	Referenc e			
OECD TG 408 (1981), equivalent to EU B.26, EPA 82-1, Japan MAFF (1985), 13-week oral dietary administration GLP, Reliability 1, Key study	Rat, (CD) (R) [SD]BR VAF/Plus(R) males and females, 10 animals per sex per dose	Dinotefura n, 99.1% purity, no vehicle, 0, 500, 5000, 25000, 50000 ppm administer ed continuousl y for 90 days	NOAEL 50000 ppm equivalent to 3156 mg/kg bw/d for males and 3616 mg/kg bw/d for females	Summa Sex Male Female * p < 0. group m	ry of body v Dose level (ppm) 0 500 5000 25000 5000 0 5000 25000 25000 5000 0 5000 25000 5000 0 5000 25000 5000 25000 5000 25000 5000 25000 5000 25000 5000 25000 5000 25000 50000 5000000	veight gain and Overall group mean weight gain (g) 315 316 295 257* 190* 141 131 118* 96* 67* stical analysis r	d food consum Group mean terminal body weight (g) 531 528 512 478* 412* 314 298 290* 263* 238* not performed	ption Overall mean food consumption (g/wk)a 208 204 201 184 157 160 146 131 121 on overall	The NOAEL has been reviewed from 500 ppm to 50 000 ppm attributing the reduced BW gain at dose 5000, 25 000 & 50 000 to the unpalatabili ty (Report no. 15-LKC- 10, Gale and	Report no. CHW 6648-127, 1997c IUCLID no. 8.9.5.1 Amendme nt 1, 2000a

Belgium		Dino								
	Ті –	reatment	related	effec	ts on hemato	ology ar	id serum ch	emistry	2022, IUCLID po	
	Γ		Dose level	Grou cher	up mean hem nistry values	atology :	and serum		8.13.6).	
		Sex	(ppm)	APTT (sec	TUN (mg/dL)	Glu (mg/d)	Prot L (g/dL)	Glob (g/dL)	information below this	
		Male	0	14.4	14	102	7.9	3.1	table.	
			500	13.8	13	111	7.7	2.9		
			5000	14.8	8 14	104	7.8	2.9		
			2500 0	13.7	15	98	7.6	2.8		
			5000 0	13.1 *	17*	85*	7.5*	2.7*		
		Femal e	0	13.2	16	102	8.3	2.6		
			500	12.6	16	107	8.3	2.7		
			5000	12.8	15	105	8.2	2.5		
			2500 0	12.6	16	98	8.1	2.6		
			5000 0	12.2	19	104	8.0	2.7		
	T	reatment	related	histo	pathological	alteratio	ons in the a	drenal		
		ortex	5	<u> </u>	T : 1 (0)		T . 1			
		Sex	Dose		incluence (%	o) or	increased	≫0) OT		
			(nnm)		vacuolation i	n	vacuolation	n in		
			(ppiii)		zona glomeri	ulosa	zona fascio	ulata		
		Male	0		0		10			
			500		0		0			
			5000		30		20			
			25000)	20		30			
			50000) ,	40		50			
		Female	0		0		0			
			500		0		0			
			5000		U		0			

	Belgium			Dinotefuran						CLH					
OECD TG 408 (1981), EU B.26, EPA 82-1, JMAFF 59	Belgi Mouse, CD1 ® (ICR)BR VAF/Plus® males and	UM Dinotefura n, 99.1% purity, no vehicle, 0, 500, 5000.	NOAEL 25000 ppm equivalent to 4442	Dino No target o Animal assi Group number	25000 50000 rgans gnme Dose dinot (ppm 0	n 0 were nt and e level cefura 1)	60 100 identit d treat of n	fied ment Nu Ma	umbe ale	r of a)) anima Fe	(ls emale		None	Report no. CHW 6648-126, 1997d
Nohsan 4200 (1985), 13- week oral dietary administration, GLP, Reliability 1, Key study	females, 10 animals per sex per dose	500, 5000, 25000, and 5414 50000 ppm administer ed respective continuousl y for 90 days	and 5414 2 500 10 1 mg/kg 3 5000 10 1 bw/d, M/F 4 25000 10 1 5 50000 10 1 Summary of body weights, weight gains and food 1 Interv Males treated at (ppm): Females treated treat	10 10 10 10 food treate	0 0 0 0 0 consur d at (p 2500	mption ppm): 5000		IUCLID no. 8.9.5.1 Amendme nt 1,							
				al 0 Gro Week 31. 1 0 Week 32. 2 7 Week 34. 3 4 Week 34. 4 6 Week 37. 8 9 Week 41. 14 7	500 500 31. 6 33. 2 35. 0 34. 9 38. 1 41. 9 500	0 ean b 30.2 32.0 33.7 34.2 37.0 40.3	0 ody we 30.1 31.2 32.9 32.8 36.1 39.1	0 31.1 30.2 30.4* 30.9* 33.2* 35.3*	0 26. 0 27. 3 28. 9 29. 1 31. 5 36. 5	26. 1 27. 2 28. 5 28. 5 30. 7 34. 1	25.3 26.5 27.6 27.8 30.0 32.5	0 26.1 26.8 28.0 28.1 30.2 33.3	0 25.6 24.0 24.7* 25.1* 26.6* 28.5*		2000Б
				Overall 10. gain 7 Gro Gro Weeks 45. 1 - 4 1 Weeks 45. 5 - 8 6	10. 3 0up me 43. 6 44. 4	10.1 ean fo 43.6 45.1	9.0 ood cor 43.7 45.8	4.2* nsump 49.6 51.4	10. 5 41. 4 45. 0	8.0 (g/we 43. 2 46. 1	7.2 eek)* [;] 43.6 45.1	7.2 * 44.5 45.9	2.9* 46.1 42.3		

	Belgiu	um		Din	otefuran						
				Weeks 40 9 - 13 5 * p < 0.01 ** food cospillageTreatmenweek 14	0. 40. 40. 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5						
				Sex	Dose level (ppm)	Mean so albumir concent (g/dL)	erum า tration ± SD	Mean ur (range)	ine pH		
				Male	0 500 5000 25000 50000	$\begin{array}{c} 2.9 \pm 0.\\ 3.1 \pm 0.\\ 3.2 \pm 0.\\ 3.3 \pm 0.\\ 3.4 \pm 0.\\ \end{array}$.14 .31 .21 .18 .26*	7.3 (6.5 7.5 (7.0 7.5 (7.0 7.6 (7.0 6.9 (6.0	- 8.5) - 8.0) - 8.0) - 8.5) - 8.0)		
				Female	0 500 5000 25000 50000	3.4 ± 0.0 3.4 ± 0.0 3.4 ± 0.0 3.5 ± 0.0 3.6 ± 0.0	.09 .25 .11 .38 .29	7.2 (6.5 7.2 (6.5 7.2 (6.5 6.8 (6.5 6.6* (6.	- 8.0) - 7.5) - 8.0) - 7.5) 0 - 7.0)		
				* p < 0.0	5						
	_		NOAE	No target	organs wer	<u>e identifi</u>	ed				
OECD TG 409 (1981), EPA OPP 82-1,	Dog , Beagle, males and	Dinotefura n, 98.9% purity, no	NOAEL 8000 ppm equivalent	Animal as Group number	signment a Dose leve dinotefura	<u>nd treatn</u> I of an	nent Number of a	animals		None 	Report no. CHW 6648-128,
NohSan no.	animals per	1600,	and 323	1	(ppm) 0		Male 4	Fem 4	aie	41	, 1999a
4200 (1985),	sex per	8000,	mg/kg	2	1600		4	4		11	IUCLID
13-week oral	dose	24000 ppm	bw/d, M/F	3	8000		4	4]	no.
aletary		administer	respective	4	24000*		4	4	40000]]	8.9.5.1
GLP, Reliability 1, Key study		continuousl y for 90 days	'y	* Group 4 on day 1 t the diet co 30000 pp containing	animals we through 4; ontaining 40 m on day 5 a 30000 pp	ere offere because 0000 ppn . The ani m on day	ed the diet co animals did n n, the high do mals were off 5 through 1	ntaining 4 ot readily ose was lo fered the L. On day	40000 ppm consume owered to diet 12, the		Amendme nt 1,

Belgiu	ım	Din	otefuran					CLH		
 		doco lovel		loweres	1 to 2400	0 0 0 0		20	-	10006
			i was agali	liowered		o ppm b	ecause ti			19990
		animais d	id not read	ally const	ime the	alet cont	aining 30	000		
		ppm.								
				ام ما	ما ماما	4-a				
		Selected g	Jroup mea	n body w						
		Sex / do	se <u>Mean</u>	body we	eight (kg) at week				
		level	1	2	3	4	8	14		
		(ppm)			-	_	-			
		Males:			0.5		10.0			
		0	8.1	8.9	9.5	9.9	10.8	11./		
		1600	8.0	9.1	9.4	9.9	11.0	11.8		
		8000	8.2	8.9	9.2	9.6	10.6	11.5		
		24000	8.3	/.9*	8.6*	9.1*	10.0*	10./*		
		Females	:					10.0		
		0	/.1	7.9	8.3	8.7	9.8	10.6		
		1600	7.0	/./	8.0	8.2*	8.8*	9.3*		
		8000	7.2	/.8	8.2	8.4	9.0*	9.6*		
		24000	/.0	6.8*	7.3*	7.8*	8.6*	9.4*		
		* p < 0.0	5							
		Represent	tative grou	ip mean i	rood and	water co	nsumpti	on data		
		Sex	Dose	Mean fo	od consi	umption	(g/week)	in		
			level	week:	-		-			
			(ppm)	1	2	4	8	13		
		Male	0	2951	2919	2875	2958	2990		
			1600	2913	2671	2645	2528	2722		
			8000	2555	2603	2686	2708	2896		
			24000	1394*	2381	2570	2391*	2411*		
		Female	0	2712	2863	2773	2722	2657		
			1600	2406	2311*	2212*	2203*	2102*		
			8000	2588	2557	2392*	2350	2631		
			24000	869*	2240*	2295*	2207*	2402		
				Mean w	ater con	sumption	(g/week	<) on		
				day:						
				2	10	24	52	86		
		Male	0	915	1455	1423	1550	1505		
			1600	780	958*	1090	980*	1095		
			8000	743	1260	1295	1270	1313		

Belgium	Dinote	efuran	CLH				
	24	4000 1	38* 7	798* 11	65 963*	1000*	
	Female 0	5	73	1030 94	5 977	980	
	16	600 5	03 9	903 79	0 658	833	
	80	000 3	90 8	318 73	5 683	747	
	24	4000 3	8* 2	748 10	35 940	1103	
	* p < 0.05		•		•		
	Treatment re	elated seri	ım clinic	al chemist	rv findinas		
		Mean seru	n Al T		ry mange		
	Sex dose ac	ctivity (IU/	L) ± SD	Mean u	rine pH (ra		
	level	in:				- /	
	(ppm) We	eek Week	Week	Wook -1	Week 5	Week 14	
	-	-1 5	14	Week -1	Week J	WEEK 14	
	Males:						
	0 25	5 ± 27 ±	32 ±	7.0	8.1	7.9	
	2	2.9 3.3	1.0	(7.0 - 7.0) (7.5-8.5)	(7.0-8.5)	
	1600 30	0 ± 24 ±	27 ±	6.9	7.5	7.6	
		7.3 0.5	1.9	(6.5 - 7.5) (6.5-8.5)	(7.5-8.0)	
	8000 28	8 ± 22 ±	27 ±	6.9	6.8	7.8	
	5	6.8	4.8	(6.5 - 7.0) (6.0-7.5)	(7.0-8.5)	
	24000 29	9 ± 18* ±	19* ±	7.0	6.5	6.8	
	5	5.5 1.6	4.3	(6.5 - 7.5) (6.0-7.0)	(6.0-7.5)	
	Females:		20	6.0	6.0		
			29 ±	6.8	6.9	6.6	
		2.7 3.5	6.7	(6.5 - 7.5	(6.5-7.0)	(6.5-7.0)	
	1600		26 ±			/.3	
			0.0	נס.ע - 7.5 ד ד		(0.5-8.0)	
	8000 5	$0 \pm 24 \pm 54$		/.1 (70-75	0.5 (6 0-7 0)	/.1 (7 0-7 5)	
	2	5 + 14* +	20* +	6.6	6.5	6.6	
	24000	2 - 1.5	2.1	(6.5 - 7.0)	(6.0-7.0)	(6.0-7.0)	
	* p < 0.05			1,3.0 710	/ (0.0 / 10)	(3.0 / .0)	
	No target or	gans were	identifie	ed			

Belgium Dinotefuran CLH	ł
-------------------------	---

 Table A-62: Summary table of human data on sub-chronic oral toxicity

No human data is available.

Setting of the NOAEL for the 13-week oral dietary administration in rat (, 1997)

The vacuolation of the adrenal cortex comprised slightly increased cytoplasmic vacuolation, which within the context of this study, was considered by the authors as non-adverse since there were no correlating clinical pathology findings indicating functional deficit. There was no increase in adrenal weight.

According to scientific literature, effects on the adrenal gland can arise as a secondary effect of stress rather than as a direct effect. In this 13-week study the stress related response is probably due to the food consumption and body weight gain differences.

Moreover, there was no indication of an effect on the adrenal in other toxicological studies in the rat (4-week oral study, 4-week inhalation study, or in the two-year, long term rat oral study). Also, there was no effect in the mouse (13-week and long term) or dog (13-week and 52-week) oral studies.

Since there is no other change in adrenal gland, a possible stress is identified and no indication in other studies, the vacuolation of the adrenal cortex is considered as non-adverse.

Although the unpalatability of Dinotefuran was not proved at dose 5 000 ppm in **Leven** report (IUCLID no. 8.13.6), since the BWG decrease at 25 000 & 50 000 ppm is linked to the unpalatability of the AS, and that there is no adverse effects, the BWG decrease in females at dose 5000 can also be imputable to this unpalatability.

A.3.7.2.2 Sub-chronic dermal toxicity

Table A-63: Summary table of dermal sub-chronic animal studies (usually 90-day studies)

No animal data is available.

Table A-64: Summary table of human data on sub-chronic dermal toxicity

No human data is available.

A.3.7.2.3 Sub-chronic inhalation toxicity

Table A-65: Summary table of inhalatory sub-chronic animal studies (usually 90-day studies)

Belgium	Dinotefuran	CLH
No animal data is avail	able.	
Table A-66: Summary tabl	e of human data on sub-chronic inhalation	toxicity

No human data is available.

A.3.7.2.4 Overall conclusion on sub-chronic repeated dose toxicity related risk assessment

Not applicable for the CLH report

Belgium Dinotefuran CLH

A.3.7.3 Long-term repeated dose toxicity

A.3.7.3.1 Long-term oral toxicity

Table A-67: Summary table of oral long-term animal studies

Method, Duration of study, Route of exposure (gavage, in diet, other), Guideline, GLP status, Reliability, Key/supporti ve study	Species, Strain, Sex, No/Group	Test substanc e (includin g purity), Vehicle, Dose levels, Duration of exposure	NOAEL, LOAEL	Results (al magnitude	ll dos of a	se leve II effe	els inc cts, in	luding Icluding	severit g targe	y and t organs	;)	Remarks (e.g. major deviations)	Referen ce
OECD TG 452, EPA OPP 83-1, JMAFF 59 NohSan no. 4200 (1985), 52-week oral	Dog, Beagle, males and females, 4 animals per sex per dose	Dinotefura n, 98.9% purity, no vehicle, 0, 640, 3200, 16000 ppm	NOAEL 16000 ppm equivalen t to 559 and 512 mg/kg	Treatment r consumptio Treatme nt (ppm)	relate n Gro in w	up mea veek:	an bod	y weigh	t (kg)	in and fo Overa II weigh t gain	od Mean food intak	The applicant would have liked to review the NOAEL from 640	Report no. 6648- 129, 1999c IUCLID
dietary administratio n, GLP, Reliability 1, Key study		administer ed continuous ly for 90 days	mg/kg bw/d, M/F respectiv ely	Males: 0 640 3200 16000 Females:	8. 7 8. 7 8. 9 8. 5	14 11. 4 11. 4 11. 1 10. 9	11. 6 11. 7 11. 5 10. 7	11.7 11.9 12.1 11.1	11.7 11.6 11.9 10.6	(kg) 3.0 2.9 3.0 2.1	(g/d) 349 330 368 363	ppm to 16000 ppm attributing the reduced BW gain at dose 3200 & 16 000 ppm to the unpalatabili ty. (Report no. 15-LKC-	no. 8.9.5.1

Belgium	Dinotefu	ıran						CLH	
			T	1	ı	1	1	,	
	640	0 7. 9	8 10. 2	3 10. 6	11.1	11.4	3.6	348	Gale and Ishikawa, 2022
	3200	7. 9	9.9 *	10. 3	10.4 *	10.1 *	2.3*	322	IUCLID no. 8.13.6).
	16000	7. 9	9.7 *	10. 2	10.2 *	10.2 *	2.3*	307	However
	* p < 0.05 No target o	rgans	were	identifi	ed				unpalatabili ty of Dinotefuran was only proved at dose 20 000 & 50 000 ppm in the provided study (Report no. MCW0059, Arrowsmith , 2015, IUCI ID no.
									8.13.6). Therefore, eCA agrees
									that at dose 16000, the BWG decrease is due do the unpalatabili ty of Dinotefuran
									there is no

	Belgium			Dinotefuran CLH		
					_	
					adverse effect at this dose, the BWG at dose 3200 is most likely also due to the unpalatabili ty of the AS, even if it was not proved.	
					Moreover, in the conclusion of this study, the NOAEL was set at 16 000 ppm because BWG decrease was not consider as adverse effect.	
					To conclude, eCA agrees to change the NOAEL from 640 ppm to 16 000 ppm.	
Chronic	Rat,	Dinotefura	NOAEL	Treatment related effects on body weight, body weight gain	The	Report

	Belgium	Dinotefuran						CLH								
toxicity and	:CD®(SD	n, 98.9%	20000	and for	od con	sump	otion								applicant	no.
carcinogenici)BR VAF/Plus®,	purity, no	ppm	ppm Week Group mean body v					dy we	eight (g) of:	would have	6648-				
ty, OECD TG	males and	vehicle, 0,	equivalen	of	Male	es tre	ated	at (p	pm):	Fema	les tr	eated	l at (p	pm):	liked to	131,
453 (1981),	females, 100	60, 200,	t to 991	study	0	60	200	2000	2000	0	60	200	2000	2000	review the	,
EPA OPP 83-	animals per sex	2000,	and 1332	Study	Ŭ	00	200	2000	0	Ŭ	00	200	2000	0	NOAEL	2000c
2, JMAFF 59	per dose (control	20000	mg/kg	1	228	232	229	231	228	178	177	174	175	176	from 2000	IUCLID
NONSAN NO. 4200 (1095)	and high dose),	ppm	DW/U, M/F	26	685	694	692	702	638*	344	352	362*	350	314*	20000 ppm	110. 9051
4200 (1965), 104-wook	sex per dose for	od	alv	50	794	802	815	822	722*	411	418	439*	418	347*	20000 ppm	0.9.3.1
oral dietary	other doses, 10	continuous	Ciy	/8	836	841	865	867	///*	482	490	529*	497	3//*	the	
administratio	animals per sex	lv for 104		105	/58	/92	808	800	729	553	608	565	545	41/*	reduced BW	
n,	per dose were	weeks		weight											gain at	
GLP,	sacrificed after	Intake 0,		yann (woold	521	565	505	574	504	376	133	205	370	242*	dose 20	
Reliability 1,	26, 52, 78	3/4,		1 -	551	202	505	5/4	504	570	755	595	570	272	000 to the	
Key study	weeks	10/13,		104)											unpalatabili	
		100/127,		Interv		-					. ,	,			ty. (Report	
		991/1332		al	(Group	o mea	an foo	d con	sump	tion (g/wee	ek) of:		no. 15-LKC-	
		mg/kg/day		(weeks	Male		atad	at (a)	· · · ·	Fama		a a t a d	l = + (=		10, Cale and	
		(1*1/୮))	Male	es tre	ateu	at (p	pm):	гета	lies tr	eateu	i at (p	pm):	Gale allu Ichikawa	
					0	60	200	2000	2000	0	60	200	2000	2000	2022	
					Ŭ	00	200	2000	0	Ŭ	00	200	2000	0	IUCLID no.	
				1 - 25	201.	197.	199.	198.	182.4	141.	210.	139.	138.	128.9	8.13.6).	
					3	7	1	1	a	9	8	6	0	a	Circo the	
				29 -	202.	201.	203.	209.	186.7	152.	151.	156.	153.	143.3	Since the	
				49	8	3	5	5	1027		5	2	/	a 1 4 0 0		
				53 -	205.	202.	207.	209.	193./ a	164.	166. 2	165.	168.	148.U a	Dinotefuran	
				<u> </u>	9	/	106	4	-	4	160	160	167	-	was proved	
				101	7	8	150.	2	186.0	7	205.	3	5	150.5	at dose 20	
				* p < 0	.05:	0	0	-		,	~	5	5		000 & 50	
				^a p < 0	.05 fo	r mos	st we	eklv v	/alues						000 ppm in	
				F -				- /							the	
															provided	
															study	
															(Report no.	
															MCW0059,	
															Arrowsmith	
															, 2015,	

Belgium				Dinotefuran CLH		
Carcinogenici ty, OECD TG 451 (1981), EPA OPP 83- 2, JMAFF 59 NohSan no. 4200 (1985), 78-week oral dietary administratio n, GLP, Reliability 1, Key study	Mouse, CD-1®(ICR)BR VAF/Plus®, males and females, 70 animals per sex per dose, 10 animals per sex per dose were sacrificed after 52 weeks	Dinotefura n, 98.9% purity, no vehicle, 0, 25, 250, 2500, 25000 ppm administer ed continuous ly 78 weeks exposure Intake 0, 0, 3/4, 34/45, 345/441, 3694/4728 mg/kg/day	NOEL 2500 ppm equivalen t to 345 and 441 mg/kg bw/d, M/F respectiv ely	Treatment related effects in life Paramete Males treated at (ppm): Females treated at (ppm): 0 25 250 250 0 25 250 250 250 250 250 250 0	IUCLID no. 8.13.6), BE eCA agrees to consider a NOAEL of 20 000 ppm. None 00 .4* 35	Report no. 6648- 130, 2000d IUCLID no. 8.9.5.1

Table A-68: Summary table of human data on long-term oral toxicity

No human data is available.

Belgium Dinotefuran	CLH
---------------------	-----

A.3.7.3.2 Long-term dermal toxicity

 Table A-69: Summary table of dermal long-term animal studies

No animal data is available.

Table A-70: Summary table of human data on long-term dermal toxicity

No human data is available.

A.3.7.3.3 Long-term inhalation toxicity

Table A-71: Summary table of inhalation long-term animal studies

No animal data is available.

 Table A-72: Summary table of human data on long-term inhalation toxicity

No human data is available.

A.3.7.3.4 Overall conclusion on long-term repeated dose toxicity related risk assessment

Not applicable for the CLH report

A.3.7.4 Specific target organ toxicity – repeated exposure (STOT RE)

A.3.7.4.1 Short summary and overall relevance of the provided information on STOT RE

The repeated dose toxicity of dinotefuran has been thoroughly investigated in a series of standard studies. By the oral route, sub-acute studies in rats and mice, sub-chronic studies in rats, mice and dogs and chronic studies in rats and mice are available. Additionally, a sub-acute inhalation study in rats and a sub-acute dermal study in rats are available.
Belgium Dinotefuran CLH

ORAL SUBACUTE

In a standard 28 day oral dietary study in Sprague-Dawley rats, dietary levels 0, 5000, 25000 and 50000 ppm were administered (**1997**c). There were no treatment related mortalities or clinical signs. Bodyweight gain and food consumption were reduced in a dose related manner in both sexes at 25000 and 50000 ppm. These changes were accompanied minor clinical chemistry changes which may have been secondary to the reduced bodyweight gain, namely increased serum cholesterol at 2500 and 50000 ppm and reduced serum glucose at 50000 ppm. There were no treatment related haematology, ophthalmoscopy, urinalysis, organ weight, macroscopic pathology or histopathology findings or macroscopic pathology findings.

Since diet concentrations of 20000 and 50000 ppm in the pair-feeding/palatability investigative study elicited a decrease of 10 and 38/29%, respectively, in overall mean food consumption due to unpalatability, and because mean food consumption at 25000 ppm in the 4-week oral study was reduced by 7 – 11% and by 17% at 50000 ppm, reduced food consumption is considered not to be an expression of non-specific toxicity. Similarly, because reduced body weight gain in the investigative study (**1000**, 2015) was shown to be due entirely to reduced food consumption, reduced body weight gain in the 4-week study can also be ascribed to reduced food consumption alone because the effect at 50000 ppm was less than that seen in the investigative study, and the effect at 25000 ppm was comparable to the effect at 20000 ppm in the investigative study. Moreover, other than during week 1 when food consumption was very low, there was no effect on food conversion efficiency at 50000 ppm. On this basis and in the absence of evidence for functional or anatomical organ toxicity at all dose levels, the NOAEL for the 4-week study should be set at 50000 ppm (3720 / 4222 mg/kg bw/day, M/F).

Supplementary information on repeated dose subacute toxicity in rats is available from a dietary immunotoxicity study, summarised in Section 3.10 (2012). Dietary dose levels 0, 2240, 5600, 14000 ppm were administered for 28 days. A study NOAEL of 5600 ppm (intake 425 mg/kg bw/day in males and 430 mg/kg bw/day in females) for general toxicity was identified, based on the observation of reduced bodyweight gain and food consumption at 14000 ppm.

In a standard 28 day oral dietary study in CD-1 mice, dietary levels of 0, 5000, 25000 and 50000 ppm were administered (**1997b**). There were no treatment related mortalities or clinical signs. Bodyweight gain was markedly reduced at 25000 and 50000 ppm in both sexes. Excessive food spillage in the 25000 and 50000 ppm groups precluded the measurement of food consumption in these groups, providing evidence that the palatability of the test diets may have been reduced. There was no effect on food consumption at 5000 ppm. The only clinical chemistry difference considered to be treatment related was increased serum protein and albumin concentrations in males at 50000 ppm. There were no treatment related haematology, organ weight, macroscopic pathology or histopathology findings.

On this basis and in the absence of evidence for any other general or specific organ toxicity at all dose levels, the NOAEL for the 28-day study should be set at 50000 ppm for both sexes (10303 / 12289 mg/kg bw/day, M/F).

The developmental toxicity investigations in the rat and rabbit summarised in Section 3.8.1 provide some information on the subacute oral toxicity of dinotefuran following gavage administration. In rats (dose levels 0, 100, 300, 1000 mg/kg bw/day, gd 6-15), dinotefuran elicited maternal toxicity only at 1000 mg/kg/day, observed as reduced bodyweight gain and food consumption during the early part of the dosing period and increased water consumption towards the end of the dosing period. The effects on bodyweight and food consumption are consistent with the findings in the oral dietary studies. A study NOAEL for maternal toxicity of 300 mg/kg bw/day was identified. However, in rabbits the pattern of adverse effects was different from that observed in the dietary studies in rats, mice and dogs. In one rabbit study (dose levels 0, 52, 125, 300 mg/kg bw/day, gd 6-18) reduced bodyweight gain, food consumption and water consumption occurred, accompanied by

Belgium	Dinotefuran	CLH
---------	-------------	-----

clinical signs including hypoactivity, prone position, panting, flushed nose and ears, and tremors were observed at the highest dose level. The clinical signs had resolved by gd 14 and bodyweight effects were reversed after treatment was terminated. Less marked maternal toxicity was present at 125 mg/kg bw/day, observed as reduced bodyweight during the early part of the dosing period. Macroscopic necropsy findings of pale brown discolouration of liver and gray-white plaque in fundus of stomach were noted in a number of mothers at 125 and 300 mg/kg bw/day. However, these tissues were unremarkable on histological examination, and consequently the toxicological significance of the macroscopic necropsy findings is uncertain. A study NOAEL for maternal toxicity of 52 mg/kg bw/day was identified. In a second rabbit developmental toxicity study (dose levels 0, 60, 175, 500 mg/kg bw/day, gd 6-27) clinical signs of tachypnoea in the first two days of dosing, reduced food consumption and reduced bodyweights were observed, but only at the highest dose level tested.

In a 7-day oral capsule administration study in beagle dogs, concentrations of 0, 30, 100, 300 mg/kg bw/day were administered to males and females (1998a). Clinical signs of diarrhoea or vomiting were observed in the 300 mg/kg bw/d group at the beginning of the test period. There were no treatment related mortalities. There were no adverse effects on bodyweight gain or food consumption. There were no treatment related haematology, urinalysis, organ weight changes, macroscopic pathology or histopathology findings. On this basis and in the absence of evidence for any other general or specific organ toxicity at all dose levels, the NOEL for the 7-day capsule administration study should be set at 100 mg/kg bw/day, M/F).

In a 7-day oral dietary study in beagle dogs, dietary levels of 0, 1250, 5000, 20000, 30000, 40000 ppm were administered (, 1998b). There were no treatment related mortalities. Clinical signs included sporadic observations of loose stool, diarrhoea and vomiting. Loose stool was observed in the control group with similar frequency, diarrhoea and vomiting were transient and considered not to be treatment related. There was a slight reduction in body weight gain and reduced food consumption in the 40000 and the 30000 ppm dose group, suggestive of reduced palatability of the test diets. There were no treatment related haematology, urinalysis, organ weight changes, macroscopic pathology or histopathology findings. 40000 ppm was estimated to be equivalent to 770/924 mg/kg bw/day (M/F) respectively.

On this basis and in the absence of evidence for any other general or specific organ toxicity at all dose levels, the NOAEL for the 7-day oral dietary study should be set at 770/924 mg/kg bw/day, M/F).

Please refer to section A.3.13 for Immunotoxicity studies (2012 & 2011)

ORAL SUBCHRONIC

In a standard 13 week oral dietary study in Sprague-Dawley rats, dietary levels 0, 500, 5000, 25000 and 50000 ppm were administered (1997c). There were no treatment related mortalities or clinical signs. Bodyweight gain during the study was reduced in a dose related manner in both sexes at 25000 and 50000 ppm and in females at 5000 ppm. Food consumption was reduced for much of the study in both sexes at the two highest dose levels. There were no treatment related haematology, clinical chemistry, ophthalmoscopy, urinalysis, organ weight or macroscopic pathology findings. Treatment related histopathological finding were limited to the observation of increased cytoplasmic vacuolation of the adrenal cortex in both sexes treated at 25000 and 50000 ppm and in males at 5000 ppm. In most cases the lesion was graded as minimal or slight. The vacuolation was seen in both the zona glomerulosa and zona fasciculata in males but was confined to the zona glomerulosa in females.

According to scientific literature, effects on the adrenal gland can arise as a secondary effect of stress rather than as a direct effect. In this 13-week study the stress related response is probably due to

Belgium	Dinotefuran	CLH
---------	-------------	-----

the food consumption and body weight gain differences.

Moreover, this histopathological alteration did not occur at dose levels in excess of 3000 mg/kg bw/day for 4 weeks or after 26, 52, 78 and 104 weeks treatment in an oncogenicity study with interim kills at mean dose levels of at least 991 mg/kg bw/day. Therefore, the adrenal changes were transient and considered not to represent an adverse effect of treatment with dinotefuran.

At 25000 and 50000 ppm, food consumption during the first 4 weeks of the 13- week study was reduced by up to 16 and 29%, respectively, and body weight gain was reduced by up to 37 and 61%, respectively, which at 50000 ppm included initial body weight loss. However, in the investigative study food consumption was reduced by up to 10 and 38% at 20000 and 50000 ppm, respectively with concomitant decreases in body weight gain of up to 32 and 60%, respectively, including initial body weight loss at 50000 ppm. Since these effects have been shown in the investigative study to be due to unpalatability of the test diets, the effects on food consumption and body weight gain in the 13-week study are also considered to be due to diet palatability and do not therefore represent adverse effects of treatment.

The NOAEL established by the study authors was 25000 ppm (1623 and 1871 mg/kg bw/day in males and females, respectively). However, on the basis of the subsequent pair-feeding/palatability investigative study and in the absence of evidence for any other general or specific organ toxicity at all dose levels, the NOAEL for the 13-week study should be set (1990), 2022) at 50000 ppm (3156 / 3616 mg/kg bw/day, males / females, respectively).

Supplementary information on repeated dose subchronic toxicity in rats is available from a dietary neurotoxicity study in rats, summarised in Section 3.9.1 (2001b). Dietary levels of 0, 500, 5000 and 50000 ppm were administered for 13 weeks. At 50000 ppm only, reduced bodyweight gain and food consumption in both sexes were reported. Thus, a study NOAEL of 5000 ppm (intake 327 mg/kg bw/day for males and 400 mg/kg bw/day for females) is identified for general toxicity.

Supplementary information on repeated dose subchronic toxicity in rats is also available from a dietary 2-generation reproduction study, summarised in Section 3.8.2 (**1999**, 2002). Dietary dose levels 0, 300, 1000, 3000, 10000 ppm were administered. A study NOAEL for general parental toxicity of 3000 ppm (intake of at least 241 and 268 mg/kg bw/day in parental males and females, respectively), was identified, based on the presence of bodyweight and food consumption reductions at 10000 ppm.

In a standard 13 week oral dietary study in CD-1 mice, dietary levels of 0, 500, 5000, 25000 and 50000 ppm were administered (1997b). There were no treatment related mortalities or clinical signs. Bodyweight gain was significantly reduced at 50000 ppm in both sexes. Bodyweight gain for females at 500, 5000 and 25000 ppm was also lower than controls, but the differences did not achieve statistical significance and a strong dose response relationship was not present so this observation was not considered to be treatment-related. Excessive food spillage occurred in the 25000 and 50000 ppm groups in the 1st week and at 50000 ppm for the rest of the study, and provided evidence of reduced palatability of the test diets. There were no treatment related haematology, clinical chemistry, ophthalmoscopy, urinalysis, organ weight, macroscopic pathology or histopathology changes. Thus, based on the bodyweight differences at 50000 ppm, a study NOAEL of 25000 ppm (intake of 4442 mg/kg bw/day in males and 5414 mg/kg bw/day in females) is identified.

On this basis and in the absence of evidence for any other general or specific organ toxicity at all dose levels, the NOAEL for the 13-week study should be set at 25000 ppm for both sexes (4442 / 5414 mg/kg bw/day, M/F).

Belgium Dinotefuran CLH

In a standard 13 week oral dietary study in beagle dogs, dietary levels 0, 1600, 8000 and 40000 ppm were administered (1997c). The highest dose level was progressively reduced to 30000 ppm on day 5 and to 24000 ppm on day 12 following the observation of severe reductions in food consumption and bodyweight loss in both sexes in the early part of the study. There were no treatment related mortalities. Treatment related clinical signs, present only at the highest dose level when receiving 30000 or 40000 ppm, included black, liquid/mucoid, few or no faeces, thinness, slightly reduced activity, pale gums. Bodyweights for both sexes in highest dose recovered after the dose level reductions, though these remained lower that controls for the remainder of the study. Bodyweights were also significantly lower for females at 1600 and 8000 ppm during the second half of the study; although a dose-response relationship was not apparent, similar bodyweight changes were present in females at dietary dose levels of 3200 and 16000 ppm in the 52 week dog study , 1999c), and therefore these lower bodyweights were considered to treatment related. After the initial severe effects on food consumption, the amount consumed by the high dose group animals increased when the dietary concentration was changed to 24000 ppm, though consumption remained slightly lower than controls for the rest of the study. There were no treatment related haematology, clinical chemistry, ophthalmoscopy, urinalysis, organ weight, macroscopic pathology or histopathology changes. Based on the bodyweight and food consumption reductions in the high dose group, a study NOAEL for males of 8000 ppm (intake of 307 mg/kg bw/day) was identified. Based on the bodyweight reductions at all dose levels, a study NOAEL in females cannot be identified and an LOAEL 1600 ppm (intake of 58 mg/kg bw/day) is assigned for females.

In the absence of evidence for any other general or specific organ toxicity at all dose levels and on a conservative basis, the NOAEL for the 13-week study was set at 8000 ppm for both sexes (307 / 323 mg/kg bw/day, M/F).

ORAL CHRONIC

In a standard 104 week oral dietary chronic/carcinogenicity study, with interim kills at 26, 52 and 78 weeks, in Sprague-Dawley rats, dietary levels 0, 60, 200, 2000 and 20000 ppm were administered (2000). There were no treatment related clinical signs or adverse effects on survival. Bodyweight gain during the study was reduced in both sexes at 20000 ppm. Food consumption was also reduced in both sexes at 20000 ppm, notably during the first 77 weeks of the study. There were no treatment related haematology, clinical chemistry, ophthalmoscopy, urinalysis, macroscopic pathology or non-neoplastic histopathology changes. The organ weight analysis revealed a treatment related reduction in liver weight in females at 20000 ppm at the interim week 78 kill, which can be regarded as secondary to the reduced bodyweight gain.

On this basis and in the absence of evidence for any other general or specific organ toxicity at all dose levels, the NOAEL for the 104-week study should be set at 20000 ppm for both sexes (991 / 1332 mg/kg bw/day, M/F).

Belgium	Dinotefuran	CLH
---------	-------------	-----

In a standard 78 week oral dietary carcinogenicity study in CD-1 mice, some relevant information on chronic toxicity was generated (2000, 2000,

In a standard 52 week oral dietary study in beagle dogs, dietary levels 0, 640, 3200 and 16000 ppm were administered (1999c). There were no treatment related mortalities or clinical signs. A treatment related reduction in mean bodyweight gain was observed in both sexes at 16000 ppm and in females at 3200 ppm throughout the study, though only the changes in females achieved statistical significance. In females the bodyweight changes were accompanied by reduced cumulative food consumption. There were no treatment related haematology, clinical chemistry, ophthalmoscopy, urinalysis, organ weight, macroscopic pathology or histopathology changes. Thymus weights were reduced in males in all the treated groups; however these changes were not thought to be treatment related based on an analysis of historical control data showing that only one low dose and one high animal had thymus weights outside the historical range and that thymus weights in dogs are highly variable (1990).

On this basis and in the absence of evidence for any other general or specific organ toxicity at all dose levels, the NOAEL for the 52-week study should be set at 16000 ppm for both sexes (559 / 512 mg/kg bw/day, M/F).

DERMAL

In a standard 28 day dermal study in Sprague-Dawley rats, dose levels of 0 (CMC vehicle control), 40, 200 and 1000 mg/kg bw/day were administered (**1997**, 2001b). No evidence of systemic or local toxicity was observed and hence a study NOAEL of 1000 mg/kg bw/day is identified.

INHALATION

In a standard 28 day inhalation study, Wistar rats were exposed nose only to dinotefuran dust atmospheres of 0, 0.22, 0.66, 2.08 mg/L, for 6 h/day (2002). The concentration of 2.08 mg/L was regarded as the highest concentration that could be practically achieved. The MMAD was 2 μ m or less for all concentrations. The only treatment-related effect was a reduction in bodyweight gain and food consumption in males only during the 1st week in all the dinotefuran groups (though only the bodyweight differences achieved statistical significance). However, bodyweight gain for weeks 2 to 4 in all treated groups was similar to controls. For males a study NOAEC is not identified, and a LOAEC of 0.22 mg/L can be assigned; for females the study NOAEC is 2.08 mg/L

Neurotoxicity

Please refer to section A.3.12 for neurotoxicity studies.

Table A-73: Effects and corresponding guidance values to assist classification for STOT RE

Adverse target organ effects arising from a repeated exposure to the substance.

Belgium Dinotefuran CLH

A.3.7.4.2 Comparison with the CLP criteria

For the oral (dietary) route, the main effects reported in all species tested (rats, mice and dogs) are minor reductions in bodyweight gain and food consumption for sub-acute, sub-chronic and chronic exposures. A bespoke pair-feeding /palatability study in the rat demonstrated lower food consumption was due to unpalatability. There was no evidence of target organ toxicity at doses relevant for classification.

By the dermal and inhalation routes of exposure, dinotefuran did not cause systemic or local toxicity sufficient to support classification.

Classification for repeated dose toxicity is not appropriate because severe, irreversible, toxicity was not observed below the relevant guidance values for oral, inhalation or dermal exposure.

A.3.7.4.3 Conclusion on classification and labelling for STOT RE

Not classified.

Belgium	Dinotefuran	CLH
---------	-------------	-----

A.3.8 Genotoxicity / Germ cell mutagenicity

A.3.8.1 In vitro

Table A-74: Summary table of in vitro genotoxicity studies

Method, Guideline, GLP status, Reliability, Key/supportive study	Test substance (including purity), Vehicle, Doses	Relevant information about the study (e.g. organism (e.g. bacteria), cell type, strains)	Results (including cytotoxicity and +/-S9 mix)	Remarks (e.g. major deviations)	Reference
Bacterial reverse mutation assay OECD TG 471 (1994), OECD TG 472 (1994), EU B.14, OPPTS 875.5100, OPPTS 870.5265 GLP, Reliability 1, Key study	Dinotefuran, batch no. 2200110, purity 99.1%. Concentrations (range finder) 0 (solvent DMSO control), 1.2, 4.9, 20, 78, 313, 1250 and 5000 µg/plate, concentrations (definitive test) 0 (solvent DMSO control), 313, 625, 1250, 2500 and 5000 µg/plate with and without metabolic activation.	<i>S. typhimurium:</i> TA 98, TA 100, TA 1535, TA 1537 <i>E.</i> <i>coli</i> WP2uvrA 1.2 – 5000 μg/plate	 -ve +/- S9 An appropriate response was seen in positive control plates. Cytotoxicity or precipitation of test substance in the medium were not observed, but the highest conc. tested was the limit conc. for this type of assay. 	None	Report no. CRC3133, 1996, IUCLID no. 8.5.1
Bacterial DNA repair assay Japan MAFF (1985), GLP, Reliability 1, Key study	Dinotefuran, batch no. 2200110, purity 99.1%. Concentrations 0 (solvent DMSO control), 62.5, 250, 1000, 4000 and 16000 µg/plate, concentrations (definitive test) 0 (solvent DMSO control), 1000, 2000,	Bacillus subtilis: M45 Rec- & H17 Rec+ 62.5 – 16000 μg/disc	-ve +/- S9 An appropriate response was seen in positive control discs.	None	Report no. 4731, 1999, IUCLID no. 8.5.2

	Belgium	Dinotefuran		CLH	
	4000, 8000 and 16000 µg/plate with and without metabolic activation.				
Chromosomal aberration assay OECD TG 473, EU B.10, OPPTS 870.5375, JMAFF 59 Nohsan 4200 (1985), GLP, Reliability 1, Key study	Dinotefuran, batch no. 2200110, purity 99.1%. Concentrations 0 (vehicle saline control), 500, 1000 and 2000 µg/mL with and without metabolic activation.	Chinese hamster lung cells 500 – 2000 µg/mL (up to ~0.01M)	-ve +/- S9 An appropriate response was seen in positive control cultures. Cytotoxicity or precipitation of test substance in the culture medium were not observed, but the highest concentration tested was the limit concentration for this type of assay.	None	Report no. CRC0076, 1996 IUCLID no. 8.5.3
Gene mutation in mammalian cells OECD TG 476, OPPTS 870.5300, GLP, Reliability 1, Key study	Dinotefuran, batch no. 5400610, purity 99.1%. Concentrations 0 (vehicle saline control), 400, 800, 1200, 1600, and 2022 µg/plate with and without metabolic activation.	Mouse lymphoma L5178Y cells 7.81 (preliminary study) and 400 (main study)- 2022 µg/mL (up to ~0.01M)	-ve +/- S9 An appropriate response was seen in positive control cultures. Cytotoxicity or precipitation of test substance in the culture medium were not observed, but the highest concentration tested was the limit concentration for this type of assay	None	Report no. 719/15- D6173, D002, IUCLID 8.5.4

Belgium Dinotefuran CLH

A.3.8.2 In vivo

Table A-75: Summary table of in vivo genotoxicity studies

Method, duration of study, Guideline, GLP status, Reliability, Key/supportive study	Test substance (including purity), Vehicle, Doses	Relevant information about the study (e.g. species and strain, sex, no per group, route, frequency of application, sampling times, duration of exposure)	Main effects, Observations (specify regarding dose and sampling time)	Remarks (e.g. major deviations)	Reference
Erythrocyte micronucleus test OECD TG 474 (1997), EU B.12, JMAFF 59 Nohsan 4200 (1985), GLP, Reliability 1, Key study	Dinotefuran, batch no. OFU-1207, purity >=99%. Concentrations 0 (vehicle, 0.5% aqueous carboxymethyl cellulose solution), 270, 540 and 1080 mg/kg/day on 2 consecutive days, 24 hours apart (total doses: 540, 1080 or 2160 mg/kg)	Mouse (BDF1 strain). Daily, gavage, for 2 days, 270 – 1080 mg/kg/day. Sampling times; 24 h after last dose, sampled from bone marrow	-ve No general toxicity observed in main study, but deaths occurred at 1800 mg/kg/day in a pilot study. An appropriate response was seen in the positive control group. Study not compliant with OECD 474 because only 1000 polychromatic erythrocytes/animal (the guideline recommends 2000/animal) were assessed for the presence of micronuclei.	Only 1000 polychromatic erythrocytes/animal were assessed for the presence of micronuclei, rather than the 2000 polychromatic erythrocytes/animal recommended in the test guideline.	Report no. 2498, 1995, IUCLID no. 8.6.1

_	Belgium	Dinotefuran		CLH	_
Erythrocyte micronucleus test OECD TG 474 (2016), GLP, Reliability 1, Key study	Dinotefuran, batch no. RD0518033, purity 99.21%. Single exposure concentrations 0 (vehicle, corn oil), 500, 1000 and 2000 mg/kg bw.	Mouse (Swiss albino mouse). Single exposure, gavage. 5 animals per sex per dose. 48 hour post exposure period.	-ve No deaths and no signs of general toxicity observed. There were no biologically relevant or statistically significant increases in the number of micronuclei detected in any treatment group when compared to the negative control. An appropriate response was seen in the positive control group	This study addressed the aneugenicity endpoint and demonstrated exposure in plasma.	Report no. 8721, 2019, IUCLID no. 8.5.5

Table A-76: Summary table of human data on genotoxicity

No human data is available.

Belgium Dinotefuran CLH

A.3.8.2.1 Short summary and overall relevance of the provided information on germ cell mutagenicity

Dinotefuran tested negative in a bacterial reverse mutation assay (Takeda 1996), an in vitro chromosome aberration assay (XXXXX 1996) and an in vitro mammalian cell gene mutation assay (XXXXX 2002). Each of these assays was conducted in compliance with the relevant OECD TG. Dinotefuran also tested negative in a non-standard bacterial DNA repair assay (B. subtilis). Dinotefuran tested negative in a bone marrow micronucleus test conducted in mice (XXXXX 1995). There was no evidence of general toxicity or a reduction of the PCE/NCE ratio. However, the dose levels were considered adequate because mortality was observed in a pilot study at 1800 mg/kg, relatively close to the highest level employed in the main study. This study was not compliant with the OECD TG (TG. 474, 1997) because only 1000 polychromatic erythrocytes/animal were assessed for the presence of micronuclei, rather than the 2000 polychromatic erythrocytes/animal recommended in the TG. Although a deficiency is identified (reduced statistical power), this study is considered acceptable as providing supporting information given the negative profile of dinotefuran in well conducted standard in vitro genotoxicity assays.

Dinotefuran tested negative in a second bone marrow micronucleus test conducted in mice (XXXX 2019). There was no evidence of general toxicity or a reduction of the PCE/NCE ratio. The study contains no deficiencies and is compliant with the OECD TG (TG. 474, 2016). The study showed no test item related increase in bone marrow micronuclei up to the top dose of 2000 mg/kg bw in the mouse. The study demonstrated the presence of dinotefuran in plasma and therefore exposure of the bone marrow to the test material. Furthermore, this is supported by the available kinetic data in the rat. Overall, based on the negative results of this study, it can be concluded that dinotefuran is neither aneugenic nor clastogenic. These findings are consistent with the results of an earlier bone marrow micronucleus mouse study (XXXXX, 1995) and other studies showing absence of a clastogenic effect. Additionally, this study (XXXXX, 2019) addressed the aneugenicity endpoint.

A.3.8.2.2 Comparison with the CLP criteria

Dinotefuran tested negative in a bacterial reverse mutation assay, an in vitro mammalian cell gene mutation assay and in an in vitro chromosome aberration assay. Therefore, it can be concluded that dinotefuran is not genotoxic in vitro. Dinotefuran also tested negative in two in vivo bone marrow micronucleus tests in mice. Therefore, classification for germ cell mutagenicity is not justified, no classification is proposed.

A.3.8.2.3 Conclusion on classification and labelling for germ cell mutagenicity

Data available. Conclusive, not sufficient for classification.

A.3.8.2.4 Overall conclusion on genotoxicity related to risk assessment

Not applicable for the CLH report

Belgium Dinotefuran CLH

A.3.9 Carcinogenicity

Table A-77: Summary table of carcinogenicity studies in animals

Method, Duration of study, Route of exposure, Guideline, GLP status, Reliability, Key/supportive study	Species, Strain, Sex, No/Group	Test substance (including purity), Vehicle, Dose levels, Duration of exposure	NOAEL, LOAEL	Results (Ple might sugg as other to:	ease ind est card kic effe	dicate a cinogen cts, for	ny resu ic effec all dos	ults th cts, as e leve	at : well Is)	Remarks (e.g. major deviations)	Reference
104-week combined chronic toxicity and carcinogenicity Oral, dietary administration OECD TG 453 (1981), EPA OPP 83-2 (1985), JMAFF 59 NohSan 4200 (1985) GLP, Reliability 1, Key study	Rat, (Sprague Dawley), M/F. 100 animals per sex per dose (control and high dose), 90 animals per sex per dose for other doses, 10 animals per sex per dose were sacrificed after 26, 52, 78 weeks	Dinotefuran batch no. 2200210, purity 98.9% No vehicle, admixture to diet. Dose levels 0, 60, 200, 2000, 2000, 2000, 20000 ppm Intake 0, 3/4, 10/13, 100/127, 991/1332 mg/kg bw/day (M/F) 104 weeks exposure	NOAEL 20000 ppm equivalent to 991 and 1332 mg/kg bw/d, M/F respectively	Relevant to c 60 and 200 p 20000 ppm: at terminatic weeks 1-77) Relevant to c Terminal sac carcinogenic Finding Thyroid - No. examined - C-cell adenoma(b) Historical control % range Finding	peneral ppm: na ↓ bodyv n); ↓ fo carcinog rifice ar ty grou Ma 59 7 11.9%) carcino Fen 0	toxicity: o adverse weight ga od cons. enicity: nd decede ps ales: do 60 10 17.2%) 8.0 - 26. ogenicity Jun 199 nales: do	e effects ain (M 5 (M&F u ents fro se leve 200 60 17.5%) 7 % [fr studies 8-April 2 ose lev 200	s .5 %, ip to 10 m 2000 58 12 21%) om 13 s, com 2002] rel (pp 2000	F 36 % 0 % 1 20000 60 15 (26%) pleted m) 20000	None	Report no. 6648-131 2000c, IUCLID no. 8.11

Belgium Dinotefuran CLH	
Thyroid - 58 59 53 56 58	
No.	
examined	
- C-cell 12 9 10 4 12	
adenoma(b)(20.6%)(15.2%)(18.8%)7.1%(20.6%)	
Finding Males: dose level (ppm)	
Testes - 60 60 59 59	
examined	
interstitial (3%) (0%) (3%) (0%) (8.4%)	
Historical 0 - 4.6 %**	
control %	
range	
Females: dose level (nnm)	
Mammary 60 60 58 60	
examined	
$- \operatorname{carcinoma} 10 13 13 18 17$	
(m) $(16.7%)(21.7%)(21.7%)(31%)(28%)$	
Historical $10-42.7\%$	
control %	
range	
(carcinoma)	
* significantly different from controls $n < 0.05$	
h = henign	
m – malignant	
** Historical control % ranges are based on	
vehicle control groups from 15 oral	
carcinogenicity studies in Sprague-Dawley rate	
conducted by the testing facility completed	
December 1996 to April 2002 (the current study	
was completed lung 1990) with group sizes of 60	

Belgium Dinotefuran CLI	
78-week carcinogenicity Oral, dietary administration OECD TG 451 (1981), EPA OPP 83-2 (1985), JMAFF, 59 NohSan no. 4200 (1985) GLP, Reliability 1, Key study Mouse, (IICR)BR VAF/Plus®), M/F. 70 animals per sex per dose were sacrificed after 52 weeks Dinotefuran batch no. 2200210, purity 98.9% No vehicle, 2500 ppm only: 1 bodyweight gain (M 18 %, F 25000 ppm only: 1 bodyweight gain (M 18 %, F 25000 ppm only: 1 bodyweight gain (M 18 %, F 25000 ppm only: 1 bodyweight gain (M 18 %, F 25 % at termination), 1 platelet counts at termination (M 20 %, F 17 %) No treatment-related increases in tumour incidence observed None	Report no. 6648-130 2000d,e IUCLID no. 8.11

Table A-78: Summary table of human carcinogenicity data

No human data is available.

Table A-79: Summary table of other relevant studies for carcinogenicity

_	Belgium	Dinotefuran	CLH
No other studies ar	e available.		

Belgium	Dinotefuran	CLH
---------	-------------	-----

A.3.9.1 Short summary and overall relevance of the provided information on carcinogenicity

The carcinogenic potential of dinotefuran has been well investigated in standard lifetime chronic/carcinogenicity dietary studies, conducted in rats and mice.

Rats

In a standard 104-week oral dietary chronic/carcinogenicity study in Sprague-Dawley rats, dietary levels 0, 60, 200, 2000 and 20000 ppm were administered (**1999**, 2000c). Survival was not affected by treatment.

Week	Group mean body weight (g) of:									
of		Males tr	reated at	(ppm):		Females treated at (ppm):				
study	0	60	200	2000	20000	0	60	200	2000	20000
1	228	232	229	231	228	178	177	174	175	176
26	685	694	692	702	638*	344	352	362*	350	314*
50	794	802	815	822	722*	411	418	439*	418	347*
78	836	841	865	867	777*	482	490	529*	497	377*
105	758	792	808	800	729	553	608	565	545	417*
Weight										
gain	531	565	585	574	504	376	433	395	370	242*
(wks 1 -										
104)										
Interval			Grou	ip mean	food cons	sumption	(g/week	() of:		
(weeks)		Males tr	reated at	(ppm):	-		Females	treated a	t (ppm):	-
	0	60	200	2000	20000	0	60	200	2000	20000
1 - 25	201.3	197.7	199.1	198.1	182.4ª	141.9	210.8	139.6	138.0	128.9ª
29 - 49	202.8	201.3	203.5	209.5	186.7ª	152.7	151.5	156.2	153.7	143.3ª
53 - 77	205.9	202.7	207.1	209.4	193.7ª	164.4	166.3	165.6	168.3	148.0ª
81 - 101	192.7	199.8	196.0	195.2	186.0	162.7	169.2	160.3	167.5	150.5

Treatment related	effects on	bodyweight	. bodyweight	gain and food	1 consumption
in eatiment related	enects on	bouyweight	, bouyweight	gain and 1000	Consumption

* p < 0.05;

^a p < 0.05 for most weekly values

- Body weight: The body weight gains of both sexes were reduced by treatment at 20000ppm from week 2 but the effect was more severe in the females with overall (week 1 104) body weight gains reduced by 5.1 and 35.6% in males and females, respectively. The effect in males is considered not to be adverse. Body weight gain was unaffected by treatment at lower dose levels.
- Food consumption: The mean weekly food consumption of animals treated at 20000ppm was reduced by up to 10.0% during the first 77 weeks of treatment. Food consumption was not affected by treatment at dose levels up to 2000ppm.

Belgium	Dino	otefuran	CLH		
Treatment related, non-adve	rse, non-nee	oplastic histo	pathologica	l findings	
Finding		d at (ppm):			
	0	60	200	2000	20000
No. examined (kidneys)	100	90	89	89	100
- lymphohistiocytic infiltrate	42	51*	39	49*	65**
- tubular epithelial basophilia	42	47	37	51*	57*
 thickening of basement membrane 	30	35	32	44**	44*
- pelvic mineralisation	5	5	4	7	27**
 chronic progressive nephropathy 	35	26	36	24	14**
No. examined (thymus)	96	39	38	40	99
 lymphocytic depletion 	5	3	3	3	13*
No. examined (prostate)	100	90	89	89	100
- chronic active inflammation	23	46**	53**	51**	36*
		Incidence in	females treat	ed at (ppm):	
	0	60	200	2000	20000
No. examined (kidneys)	100	90	89	90	100
 lymphohistiocytic infiltrate 	43	43	35	41	40
- tubular epithelial basophilia	48	42	34	40	26**
 thickening of basement membrane 	23	24	19	19	15
 pelvic mineralisation 	42	42	42	44	47
 chronic progressive nephropathy 	5	8	12*	8	0*
No. examined (thymus)	100	42	44	41	98
- lymphocytic depletion	9	4	2	2	11

* p < 0.05 ; ** p < 0.01

There were no treatment-related effects on the nature and incidence of adverse non-neoplastic histopathlogical findings at any dose level. However, males treated at 20000ppm showed higher incidences of the renal changes pelvic mineralisation, lymphohistiocytic infiltrate, tubular epithelial basophilia and thickening of the basement membrane. None of the renal changes is considered to be an adverse effect since they are either common findings in rats or can be correlated with the lower incidence of chronic progressive nephropathy in males at 20000ppm. Similarly, increased incidences of thymic lymphocyte depletion and prostatic chronic active inflammation in males at 20000ppm are considered not to be adverse effects since they occur commonly in the rat.

On the basis of a pair-feeding/palatability study and in the absence of other non-neoplastic effects, the NOAEL was re-defined on review as 20000 ppm.

Belgium	Dinote	furan		CLH			
Incidences of neoplastic finding	js at 20000	ppm higher	than control	s			
Finding		Incidence in	males treated	ed at (ppm):			
	0	60	200	2000	20000		
No. examined (thyroid)	99	89	90	88	100		
- C-cell adenoma (b)	8	12	10	12	17*		
- C-cell carcinoma (m)	1	0	0	0	0		
- total (adenoma + carcinoma)	9	12	10	12	17		
No. examined (testes)	100	89	90	89	99		
- benign interstitial cell tumor	2	1	3	1	5		
		Incidence in f	emales treate	ed at (ppm):			
	0	60	200	2000	20000		
No. examined (thyroid)	100	90	90	89	100		
- C-cell adenoma (b)	12	11	12	5	13		
- C-cell carcinoma (m)	0	0	1	1	1		
- total (adenoma + carcinoma)	12	11	13	6	14		
No. examined (uterus)	100	90	90	90	100		
 benign endometrial stromal polyps 	1	0	3	3	6		
No. examined (cervix)	100	40	43	40	100		
 benign endometrial stromal polyps 	1	1	1	1	1		
No. examined (vagina)	100	89	90	90	100		
 benign endometrial stromal polyps 	0	0	1	1	0		
Total (uterus, vagina and cervix)	2	1	5	5	7*		
No. examined (mammary gland)	100	90	89	89	100		
- adenoma (b)	11	11	7	9	9		
- carcinoma (m)	13	15	17	18	22		
- total (adenoma + carcinoma)	24	26	24	27	31		

* p < 0.05; b benign; m malignant

This table presents neoplastic findings that require further discussion: animals treated at 20000 ppm showed slightly higher incidences of thyroid C-cell adenomas and benign testicular interstitial cell (Leydig cell) tumours in males, and mammary gland carcinomas in females.

Compared to controls; the incidence of thyroid C-cell adenoma in males was statistically significantly increased at the top dose only (26% at 20000 ppm and 11.9% in concurrent controls). In females, the incidence of C-cell adenoma in treated groups was comparable to controls. The background rate for this tumour type from the same testing facility is 8-26.7%. There were no changes in thyroid follicular cell tumour incidence.

The incidence of mammary gland carcinoma was increased in females at the top dose only (28% at 20000 ppm and 16.7% in concurrent controls). This change did not achieve statistical significance. The background rate for this tumour type, from the same testing facility is 10-42.7%. The incidence of mammary gland adenomas was not affected by treatment, at any dose level tested.

For the thyroid C-cell adenoma and mammary gland carcinoma; the observed incidences were within, or very close to, the laboratory historical control ranges for the same strain of rat, there was no evidence of pre-neoplastic lesions such as hypertrophy or hyperplasia and no evidence of mutagenicity. It can be concluded that the marginally higher incidences of thyroid C-cell adenoma and mammary gland carcinoma are incidental observations and not treatment-related. Therefore, thyroid C-cell adenoma and mammary gland carcinomas are not relevant for classification.

The incidence of interstitial cell adenoma (Leydig cell adenomas) was increased at the top dose only (8.4% at 20000 ppm compared to 3% in concurrent controls). This increase was outside the historical

Belgium	Dinotefuran	CLH
---------	-------------	-----

control range for the same testing facility (0-4.6%) but did not achieve statistical significance. There were no Leydig cell carcinomas.

Leydig cell adenomas arising via a non-genotoxic MoA usually occur against a background of Leydig cell hyperplasia. In the rat carcinogenicity study; there was no evidence of Leydig cell hyperplasia in any interim sacrifice (weeks 26, 52 or 78), unscheduled sacrifice or terminal sacrifice group. The complete absence of this pre-neoplastic lesion reduces concern that the Leydig cell adenomas are treatment related. Furthermore, in the available repeated dose and reproductive toxicity studies, there were no changes indicative of an adverse effect on the testis or other reproductive organs/tissues. Providing some evidence that dinotefuran does not have any significant endocrine activity which could have caused the Leydig cell adenomas.

The slight increase in benign Leydig cell adenoma seen at the top dose in the rat carcinogenicity study is not considered to be treatment-related or biologically significant; as there was no dose response, a lack of statistical significance, no increase in Leydig cell hyperplasia and no evidence for endocrine activity. Overall, the increase in Leydig cell adenomas is not considered relevant for classification.

Mice

In a standard 78-week oral dietary carcinogenicity study in CD-1 mice, dietary levels 0, 25, 250, 2500 and 25000 ppm were administered (2000d,c). Survival was not affected by treatment. The only non-neoplastic effects were reduced bodyweight gains and reduced platelet counts at 25000 ppm.

Parameter	Males treated at (ppm):						Females treated at (ppm):			
	0	0 25 250 2500 25000					25	250	2500	25000
Mean BW gain (g) ^a	13.4	14.6	13.5	12.6	11.0*	13.9	14.8	13.4	13.6	10.4*

Mean body weight gain of both sexes

^a Group mean body weight gain weeks 1 - 78;

^b Group mean platelet count;

* p < 0.05

Platelets counts in both sexes

Parameter		Males treated at (ppm):					Females treated at (ppm):			
	0	25	250	2500	25000	0	25	250	2500	25000
Plt (103/µl) ^b - week 53	1125	1138	1241	1329	1147	1028	1139	988	1063	1035
Plt (103/µl) ^b - week 79	1405	1309	1545	1245	1125*	1038	1011	1021	966	857

There were no differences in the incidence of neoplastic findings in treated groups as compared to the controls.

Incidence of neoplastic lesions achieving the criteria for statistical analysis

Belgium		Dinotefuran								CLH		
										<u>,</u>		
Organ and lesion		Males tr	eated a	t (ppm)	:	F	emales	treated	at (ppm	1):		
	0	25	250	2500	25000	0	25	250	2500	25000		
No. examined	70	70	70	70	70	70	70	70	70	70		
Lung:												
adenoma (b)	4	5	6	3	6	5	4	5	5	3		
carcinoma (m)	3	0	0	1	0	0	0	0	1	0		
total (b + m)	7	5	6	4	6	5	4	5	6	3		
Liver:												
adenoma (b)	9	13	8	6	5	-	-	-	-	-		
carcinoma (m)	4	3	1	1	2	-	-	-	-	-		
total (b + m)	13	16	9	7	7	-	-	-	-	-		
Multiple organs:												
haemangioma (b)	0	NE	NE	NE	1	1	NE	NE	NE	3		
haemangiosarcoma	2	NE	NE	NE	0	1	NE	NE	NE	1		
(m)	2	-	-	-	1	2	-	-	-	4		
total (b + m)												
Multiple organs:												
stromal polyp (b)	-	-	-	-	-	3	NE	NE	NE	1		
stromal sarcoma	-	-	-	-	-	2	NE	NE	NE	3		
(m)	-	-	-	-	-	5	-	-	-	4		
total (b + m)						-						
Multiple organs:												
leiomyoma (b)	-	-	-	-	_	1	NF	NF	NF	3		
leiomyosarcoma	-	-	-	-	-	1	NE	NE	NE	2		
(m)	-	-	-	-	-	2	-	-	-	5		
total (b + m)										-		
Ovary:												
granulosa/theca												
cell tumour (h)	-	_	_	_	_	2	NF	NF	NF	1		
aranulosa/theca						~				-		
cell tumour (m)	-	_	_	_	_	1	NF	NF	NF	0		
total ($h + m$)	-	_	-	-	_	3	-	-	-	1		
						5				1		

NE = not evaluated;

b = benign;

m = malignant

Thus, it is concluded that dinotefuran is not carcinogenic in the mouse.

Table A-80: Compilation of some factors that may be taken into consideration in classification and labelling

See Above.

A.3.9.2 Comparison with the CLP criteria

There is no information on carcinogenic potential in humans; therefore, category 1A can be excluded. Dinotefuran tested negative in standard *in vitro* and *in vivo* mutagenicity studies, therefore there is no concern for tumour induction via a genotoxic MoA.

Belgium	Dinotefuran	CLH
---------	-------------	-----

In rats, slightly higher incidences of benign Leydig cell tumours were observed at the top dose of 20000 ppm only. The slight increase in benign Leydig cell adenoma is not considered to be treatmentrelated or biologically significant; as there was no dose response, a lack of statistical significance, no increase in Leydig cell hyperplasia and no evidence for endocrine activity.

There were no increases in tumour incidence in a standard lifetime study, conducted in mice at doses of up to 3694-4728 mg/kg bw/day via the diet. Overall, it is concluded that dinotefuran is not carcinogenic. No classification is proposed.

A.3.9.3 Conclusion on classification and labelling for carcinogenicity

Data available. Conclusive, not sufficient for classification.

A.3.9.4 Overall conclusion on carcinogenicity related to risk assessment

Not applicable for the CLH report

Belgium	Dinotefuran	CLH
---------	-------------	-----

A.3.10 Reproductive toxicity

A.3.10.1 Sexual function and fertility

Table A-81: Summary table of animal studies on adverse effects on sexual function and fertility

Method, Duration of study, Route of exposure, Guideline, GLP status, Reliability, Key/supportive study	Species, Strain, Sex, No/Group	Test substance (including purity), Vehicle, Dose levels, Duration of exposure	NOAELs, LOAELs (e.g. maternal/parental toxicity, effects on sexual function and fertility)	Results (for all dose levels, specify critical effects on sexual function and fertility for parental animals (and offspring if relevant), report e.g. incidences and severity of the effects for all dose levels)	Remarks (e.g. major deviations)	Reference
Oral, dietary	Rat, Wistar F0: 6/sex/group	0, 10000, 20000 ppm Intake 0, 700/779, 1340/1507 mg/kg bw/day (M/F)	NOEL (general toxicity) <10000 ppm NOEL (neonatal toxicity) <10000 ppm NOEL (reproduction toxicity) 10000 ppm	General parental toxicity: 10000 ppm: \downarrow bodyweight gain (F, by 31 % wk 1- 2); \downarrow food cons. (F, up to 17 % wk 1-2) 20000 ppm: \downarrow bodyweight gain (M, 61 % wk 1-2, F, 62 % wk 1-2); \downarrow food cons. (M 17 %, wk 1, F, up to 22 % wk 1-2); \uparrow incidence small thymus (F) Neonatal:	Pilot Study	2001

2-generation, oral dictary, OECD TG 416 (1999), JMAFF 59 Nohsan 4200 (1985), GLP, reliability 1, key study Rat, Hanlbm:: Dinotefuran purity 98.9%, incorporated into diet, normal does 300, 1000, ppm; 4000 ppm; 100, implantation sites (21.9%), 1000 ppm; 100, 1000 ppm; 1000 ppm; 100, 1000 ppm; 100, 1000 ppm; 100, 10000 ppm; 100, 1000 ppm; 100, 1000 ppm; 1000 ppm; 1000 ppm; 1000 ppm;		Belgium		Dinotefuran		CLH	
2-generation, oral dietary, OECD TG 11993), DPFT \$70.3800 (1998), DPFT \$70.3800 (1998)							
	2-generation, oral dietary, OECD TG 416 (1999), OPPTS 870.3800 (1998), JMAFF 59 Nohsan 4200 (1985), GLP, reliability 1, Key study	Rat, Hanlbm: WIST (SPF), 25 animals per sex per group	Dinotefuran purity 98.9%, incorporated into diet, nominal doses 300, 1000, 3000, 10000 ppm, daily for 10 weeks prior to mating and through to weaning of F1 offspring, F1 generation offspring similarly treated.	NOEL (general toxicity) 3000 ppm, equivalent to 241 (M) and 267.9 (F) mg/kg bw/day NOEL (neonatal toxicity) 3000 ppm, equivalent to 241 (M) and 267.9 (F) mg/kg bw/day NOEL (reproduction toxicity) 10000 ppm, equivalent to 822 (M) and 907 (F) mg/kg bw/day	10000 ppm: \downarrow pup bodyweights (25 % at weaning), \downarrow food cons. post weaning (up to 54 %) 20000 ppm: \downarrow pup bodyweights (38 % at weaning), \downarrow food cons. post weaning (up to 64 %) Reproduction: 10000 ppm: no adverse effects 20000 ppm: \downarrow no. implantation sites (21 %); \downarrow birth index (16 %) General parental toxicity: 300, 1000 ppm: no adverse effects 3000 ppm: very slight \downarrow food cons. during lactation (F0&F1 F), not considered an adverse effect of treatment 10000 ppm: One death, possibly treatment related (F0 F); soft faeces during lactation (F0 F); \downarrow bodyweight (F0&F1 M&F up to	none	Report no. 775192 (2002) IUCLID 8.10.2

Belgium	Dinotefuran		CLH	
		dosing); transient		
		\downarrow food cons. early		
		in dosing period		
		(F0&F1 M, up to		
		16 %; F0&F1 F, up		
		to 12 %); ↓		
		absolute spleen		
		weight (F0 M, 10		
		% F0 F, 15 %)		
		Neonatal:		
		300, 1000, 3000		
		ppm: no adverse		
		effects		
		10000 ppm: ↓ pup		
		bodyweights		
		(F1&F2 M&F, by		
		12-15 % at		
		weaning), ↓		
		relative spleen		
		weight at weaning		
		(F1&F2 M&F, 9-15		
		%)		
		Reproduction:		
		300, 1000, 3000,		
		10000 ppm: no		
		adverse effects		

Belgium	Dinotefuran	CLH
---------	-------------	-----

Table A-82: Summary table of human data on adverse effects on sexual function and fertility

No human data is available.

Table A-83: Summary table of other relevant studies for sexual function and fertility

No other studies are available.

A.3.10.1.1 Short summary and overall relevance of the provided information on adverse effects on sexual function and fertility

In a pilot study for a rat 2-generation study, dietary dose levels 0, 10000 and 20000 ppm were administered (2001). Males and females were mated after a two week dosing period. Dosing continued during preganancy and lactation, and was terminated for selected F_1 animals two weeks after weaning. There were no treatment related F_0 mortalities or clinical signs. F_0 parental bodyweight gain and food consumption were reduced in a dose related manner at both 10000 and 20000 ppm. Treatment related necropsy findings were limited to the observation of small thymus in F_0 females. There were no effects on fertility or mating performance, although the numbers of implantation sites and live births was reduced at 20000 ppm. F_1 pup bodyweights during lactation and food consumption post weaning were reduced; pup viability was unaffected. A study NOAEL for general parental and neonatal toxicity could not be identified; the LOAEL for these endpoints is 10000 ppm. A study NOAEL for reproductive parameters is 1000 ppm. The parental intake at 10000 ppm is at least 700 and 779 mg/kg bw/day for males and females, respectively.

In a standard rat two-generation study, dietary dose levels 0, 300, 1000, 3000, 10000 ppm were administered (2002). One F0 high dose female died during the study on PND 21. Parental clinical signs of toxicity were limited to the observation of soft faeces during the lactation period in F0 females at 10000 ppm. For both sexes at 10000 ppm, F0 and F1 bodyweight gain was reduced, and there were transient reductions in food consumption at the start of the respective F0 and F1 dosing periods. Treatment related necropsy/pathology findings in the F0 and F1 parental generations were limited to reduced spleen weight. F0 and F1 fertility and mating performance, semen parameters and ovarian follicle counts were not affected by treatment. Sexual maturation of the F1, based on timings of preputial separation and vaginal opening, and F2 anogenital distance, were not affected.

A.3.10.1.2 Comparison with the CLP criteria

The potential adverse effects on sexual function and fertility have been investigated in a standard oral (dietary) rat 2-generation study and administration of dinotefuran did not cause specific adverse effects. Therefore, no classification for adverse effects on sexual function and fertility is proposed.

A.3.10.1.3 Overall conclusion on sexual function and fertility related to risk assessment

The potential adverse effects on sexual function and fertility have been investigated in a standard oral (dietary) rat 2-generation study and administration of dinotefuran did not cause specific adverse

Belgium	Dinotefuran	CLH

effects. Therefore, no risk assessment value is proposed.

Conclusion used in Risk Assessment – Effects on fertility				
Value/conclusion	Not value for risk assessment			
Justification for				
the	Not classified			
value/conclusion				

Belgium	Dinotefuran	CLH
---------	-------------	-----

A.3.10.2 Developmental toxicity

Table A-84: Summary table of animal studies on adverse effects on development

Method, Duration of study, Route of exposure, Guideline, GLP status, Reliability, Key/supportive study	Species, Strain, Sex, No/Group	Test substance (including purity), Vehicle, Dose levels	NOAELs, LOAELs (e.g. maternal, teratogenicity, embryotoxicity, offspring, parental, reproductive toxicity)	Results, maternal/parental (e.g. corrected body weight gain, for all dose levels)	Results, developmental (e.g. pup survival, structural abnormalities, altered growth, functional deficiencies, incidences and severity of the effects for all dose levels)	Remarks (e.g. major deviations)	Reference
Studies in rats	Dat	Dipotofuran	NOAEL (maternal	Matornali	Dovelopmental:	The desing	Boport no. H
toxicity, oral	CD(SD)	purity 99.1%	toxicity) 300	100, 300 ma/ka	100, 300, 1000	period was	ясерогі по. п- 97163
gavage, OECD	IGS (SPF), 24	0.5% CMC	mg/kg bw/d	bw/d: no adverse	mg/kg bw/d: no	shorter than	(1998b)
TG 414, GLP,	mated females	vehicle,	NOAEL	effects	adverse effects	required for	IUCLID 8.10.1
reliability 1,	per group	nominal doses	(developmental	1000 mg/kg bw/d: ↓		the guideline.	
key study		100, 300, 1000 ma/ka	toxicity) 1000 ma/ka/d	body wt gain (by 21 % ad 6-11) \downarrow food		However, this	
		bw/d, daily	iiig/kg/u	consumption (~ 10		considered to	
		exposure for		% gd 6-9), ↑ water		have	
		gd 6-15, 5-		consumption ~20 %		compromised	
		day post-		gd 10-15)		the validity of	
		period				the study.	
Fertility and	Rat,	Dinotefuran	NOAEL (general	General parental	Neonatal:	none	Report no.
early	Crj:CD(SD)IGS,	purity 99.1%,	toxicity) 1000	toxicity: 300, mg/kg	1000 mg/kg		MA02198
embryonic	20 animals per	nominal doses	mg/kg bw/d	bw/d \downarrow body wt gain	bw/d ↓in pre-		(2003)
development,	sex per group	100, 300,	NOAEL	(day 8, males),	implantation		IUCLID 8.10.1

	Belgium		Dinotef	uran		CLH	
oral gavage OECD Guidance 150 (level 4 study), JMOHW, 1997,2000, GLP, reliability 1, Key study		1000 mg/kg bw/d, daily for 14 days prior to mating until 1 day prior to necropsy for males, daily for 14 days prior to mating, during the 14 day mating period and until day 7 gestation for females.	(reproductive function M/F) 1000 mg/kg bw/d NOAEL (early embryonic development) 1000 mg/kg bw/d		loss Reproduction: 100 mg/kg/d one female did not become pregnant		
Pre- and post- natal development, oral gavage, OECD Guidance 150 (level 4 study), JMOHW, 1997,2000, GLP, reliability 1, Key study	Rat, Crj:CD(SD)IGS, 24 females per group	Dinotefuran purity 99.1%, 0.5% CMC-Na vehicle, nominal doses 100, 300, 1000 mg/kg bw/d, daily exposure from Day 7 of gestation until Day 20 of lactation	NOAEL (general toxicity) 300 mg/kg bw/d NOAEL (F1 development) 300 mg/kg bw/d NOAEL (reproductive function) 1000 mg/kg bw/d	General toxicity: 1000 mg/kg bw/d ↓ bodywt gain Day 8- Day 20 gestation and ↓ fc Day 8-Day 15 gestation	F1 development: 1000 mg/kg bw/d↓ bodywt gain birth to 70 days old Reproductive function: 100, 300, 1000 mg/kg bw/d: no adverse effects	none	Report no. MA02200 IUCLID 8.10.1
Developmental neurotoxicity & immunotoxicity dose range- finding study, non-guideline, Oral dietary	Rat SD 10 mated F ₀ /sex/group	Dinotefuran (MTI 446) 0, 1000, 3000, 10000 ppm Intake (gestation) 0, 70, 212, 670 mg/kg bw/day	NOAEL 10000 ppm for maternal and developmental immunotoxicity, 670 mg/kg/day NOAEL 3000 ppm for neonatal toxicity, maternal intake	Maternal toxicity: 1000, 3000 ppm, 10000 ppm: no adverse effects Immunotoxicity: 1000, 3000 ppm, 10000 ppm: no adverse effects on innate and humoral components of	Neonatal general toxicity: 1000, 3000 ppm: no adverse effects 10000 ppm: ↓ bodyweights from PND 13 to termination (by		Report no. SRY00001 2009 IUCLID, 8.13.2- 05

	Belgium	Dinotefuran		(CLH		
			212 mg/kg bw/day	immune system	~20 % on PND 21) Developmental neurotoxicity: not assessed		
Developmental neurotoxicity, Oral, dietary OECD TG 426, OPPTS 870.6300, GLP Reliability 1, Key study	Rat, 25 mated females F0/sex/group	Dinotefuran purity 99.5%, no vehicle, nominal doses 0, 1000, 3000, 10000 ppm, (equivalent to 0, 79, 237, 784 mg/kg bw/day) daily exposure on Day 6 of gestation until Day 21 of lactation	NOAEL (maternal): 237 mg/kg bw/day NOAEL (neonatal toxicity and developmental neurotoxicity): 784 mg/kg bw/day	Maternal toxicity: 1000, 3000 ppm: no adverse effects 10000 ppm: ↓ bodyweight gain during gestation (11 % GD 6-20)	Neonatal general toxicity: 1000, 3000 ppm, 10000 ppm: no adverse effects Developmental neurotoxicity: 1000, 3000 ppm, 10000 ppm: no adverse effects	none	Report no. SRY00002 (2010) IUCLID 8.13.2
Studies in rabbit	s	-					r
Developmental toxicity, oral gavage, OECD TG 414, GLP, reliability 1, Key study	Rabbit, NSW, 22 mated females per group	Dinotefuran purity 99.1%, 0.5% CMC vehicle, nominal concentrations 52, 125, 300 mg/kg bw/d, daily exposure for gd 6-18, 10-day post- exposure period	NOEL (maternal toxicity) 52 mg/kg bw/d NOEL (developmental toxicity) 300 mg/kg bw/d	Maternal: 52 mg/kg bw/d: no adverse effects 125 mg/kg bw/d: ↓ bodywt gain (gd 6- 11); macroscopic necropsy findings: pale brown discolouration of liver (8/22 animals), gray-white plaque in fundus of stomach (15/22) 300 mg/kg bw/day: clinical signs gd 6- 14 (hypoactivity,	Developmental: 52, 125, 300 mg/kg bw /day: no adverse effects	The dosing period was shorter than required for the guideline. However, this is not considered to have compromised the validity of the study.	Report no. H- 97166 IUCLID (1998e) IUCLID 8.10.1

	Belgium		Dinotef	uran		CLH	
	1	1	1		r	1	1
				profile position, panting, flushed nose & ears, tremors); ↓ bodywt gain (gd 6-18, 50 %); ↓ food consumption (gd 6- 18, 23 %); ↓ water consumption (gd 13-15, ~25 %); macroscopic necropsy findings: pale brown discolouration of liver (19/22), gray- white plaque in fundus of stomach (20/22), thickening of gastric mucosa (2/22)			
Developmental toxicity, oral gavage, OECD TG 414 (2001), OPPTS 870.3700 (1998), JMAFF 59 Nohsan 4200 (2000, 2011), GLP, reliability 1, Key study	Rabbit, Kbl:JW, 25 mated females per group	Dinotefuran purity 99.6%, 0.5% CMC vehicle, nominal concentrations 60, 175, 500 mg/kg bw/d, daily exposure for gd 6-27, 10-day post- exposure period	NOAEL (maternal toxicity) 175 mg/kg bw/d NOAEL (developmental toxicity) 500 mg/kg bw/d	Maternal: 60, 175 mg/kg bw/day: no adverse effects 500 mg/kg bw/day: one mortality (gd 27); clinical signs (tachypnoea gd 6 & 7), \downarrow amount of faeces from gd 15; \downarrow bodywt (from gd 6, by 7% gd 24), \downarrow food consumption (22-54%)	Developmental: 60, 175, 500 mg/kg bw/day: no adverse effects	The dosing period was shorter than required for the guideline. However, this is not considered to have compromised the validity of the study.	Report no. SR12005 (2013) IUCLID 8.10.1

Belgium	Dinotefuran	CLH
---------	-------------	-----

 Table A-85: Summary table of human data on adverse effects on development

No human data is available.

 Table A-86: Summary table of other relevant studies for developmental toxicity

No other studies are available.

A.3.10.2.1 Short summary and overall relevance of the provided information on adverse effects on development

Rats

In a standard rat developmental toxicity study, gavage dose levels of 0 (0.5 % CMC vehicle), 100, 300 and 1000 mg/kg bw/day were administered (1998b). The dose levels were selected on the basis of the results of a pilot study in which slight maternal toxicity, but no developmental toxicity, was seen at 1000 mg/kg bw/day only, the highest dose level tested. In the main study, maternal toxicity was present only at 1000 mg/kg bw/day, observed as reduced bodyweight gain and food consumption during the early part of the dosing period and increased water consumption towards the end of the dosing period. Mean pre-implantation loss was noticeably higher at 1000 mg/kg/day than controls (24 % vs .9 %), but because implantation will have been completed by the commencement of dosing on gd 6 this was considered to be a chance finding and unrelated to dinotefuran treatment. No foetotoxicity/post-implantation loss, or skeletal or visceral malformations were observed at doses of up to 1,000 mg/kg bw/day. Overall it can be concluded that dinotefuran is not a developmental toxicant in rats.

In a study investigating the effects of dinotefuran on fertility and early embryonic development to implantation in rats, gavage dose levels of 0 (0.5% CMC-Na vehicle), 100, 300 and 1000 mg/kg bw/day were administered daily for 14 days (2003). There were no adverse effects on parental toxicity at any dose level; the decrease in body weight gain for males in the 300 mg/kg group was transient and not treatment related. There were no treatment-related effects on genital organ weights of males, the oestrous cycles or number of corpora lutea of females, the copulation index of males or female, or the fertility index. A statistically significant decrease was noted in the pre-implantation loss in the 1000 mg/kg bw group; this is due to the non-significant increase of the number of implantation at dose 1000 mg/kg bw compared with the control group. Therefore, this increase should not be considered as adverse. There were no further effects; it can thus be concluded that dinotefuran is not a developmental toxicant in rats.

In a study investigating the effects of dinotefuran on pre- and post-natal development, including maternal function, in rats, gavage dose levels of 0 (0.5% CMC-Na vehicle), 100, 300 and 1000 mg/kg bw/day were administered daily from Day 7 of gestation to Day 20 of lactation (2004). In dams (F0), suppressed body weight gain and decreased food consumption were noted in the 1000 mg/kg bw group as treatment-related effects. One dam in this group died during delivery, but the relationship between the death and treatment with the test article was unclear. Changes suggestive of treatment-related effects were not noted in the physical condition or gross pathology in any treated group. In addition, no treatment-related effects were noted on the reproductive functions of dams, such as maintenance of pregnancy, duration of gestation, delivery and nursing. In offspring

Belgium	Dinotefuran	CLH

(F1), suppressed body weight gain was noted in the 1000 mg/kg group, though the degree was slight. Changes suggestive of treatment-related effects were not noted in the viability, physical condition, physical development, behavioural development, sensory functions, emotionality, spontaneous motility, learning ability, reproductive function or gross pathology in any treated group. In embryos (F2), no treatment-related effects were noted on the number of implantations or live embryos or pre- or post-implantation loss (%).

In a standard developmental neurotoxicity study, dietary dose levels 0, 1000, 3000 or 10000 ppm were administered (2010). The test diets were fed to groups of mated F0 females from GD6, through gestation and lactation, with exposure of the F1 generation offspring continuing until completion of the post-weaning developmental neurotoxicity evaluations (conducted PND 21-69). Developmental parameters assessed included preputial separation/vaginal opening, motor activity, acoustic startle inhibition response, learning and memory, neurohistopathology, brain weight and brain morphometry. Evidence of maternal toxicity was limited to the observation of reduced bodyweight gain during gestation (GD 6-21) at 10000 ppm only. For the F1 offspring, there was no evidence of general neonatal toxicity, because litter size, clinical condition, pup viability and bodyweights were comparable for all groups. There were no treatment related changes in the developmental neurotoxicity parameters.

Refer to section "Developmental neurotoxicity" for more details on developmental neurotoxicity and immunotoxicity study (Hoberman, 2009)

Rabbits

In the first standard rabbit developmental toxicity study, gavage dose levels of 0 (0.5 % CMC vehicle), 52, 125 and 300 mg/kg bw/day were administered (1998e). The dose levels were selected on the basis of the results of a pilot study in which marked maternal toxicity and abortions were observed at 1000 mg/kg bw/day. In the main study, marked maternal toxicity was present at 300 mg/kg/day, observed as reduced bodyweight gain, food consumption and water consumption and clinical signs from the first day of dosing, including hypoactivity, prone position, panting, flushed nose and ears, and tremors. The clinical signs had resolved by gd 14 and bodyweight gain from gd 19 was greater that controls. Less marked maternal toxicity was present at 125 mg/kg bw/day, observed as reduced bodyweight during the early part of the dosing period. Macroscopic necropsy findings of pale brown discolouration of liver and grey-white plaque in the fundus of stomach were noted in a number of mothers at 125 and 300 mg/kg bw/day. However, these tissues were unremarkable on histological examination, and consequently the toxicological significance of the macroscopic necropsy findings is uncertain. No evidence of developmental toxicity or abortions was seen in the main study.

In a second standard rabbit developmental toxicity study, gavage dose levels of 0 (0.5 % CMC vehicle), 60, 175 and 500 mg/kg bw/day were administered (2013). The dose levels were selected on the basis of the results of a pilot study in which clinical signs of toxicity (tachypnoea, flushed appearance for up to 2.5 hours after dosing on first few days of dosing), reduced maternal bodyweight and reduced food consumption were observed at 600 and 1000 mg/kg bw/day. In the main study, maternal toxicity was present at 500 mg/kg bw/day, observed as clinical signs (tachypnoea) on gd 6 and 7, reduced bodyweights and reduced food consumption, and the death of one mother on gd 27 after a prolonged period of very low food consumption and bodyweight loss. There were no macroscopic necropsy changes in the maternal organs that were considered to be related to treatment. Three out of the 24 pregnant mothers at 500 mg/kg bw/day aborted, between gd 25 and 28, each after a prolonged period of very low food consumption; these abortions are considered to be treatment-related though likely to be secondary to the reduced maternal food consumption. At 175 mg/kg bw/day abortion occurred in 2/25 mothers, but these were regarded as not being related to dinotefuran treatment because abortion was also seen in 1/23 control mothers. There was no evidence of developmental toxicity; post implantation loss, litter size, foetal weights

Belgium Dinotefuran CLH

and sex ratios, and numbers of foetal malformations and variants were not affected by treatment.

A.3.10.2.2 Comparison with the CLP criteria

The developmental toxicity of dinotefuran has been investigated in standard oral (gavage) studies in rats and rabbits. These studies show that dinotefuran does not have the capacity to cause specific adverse effects on development and is not a developmental toxicant.

A.3.10.2.3 Overall conclusion on effects on development related to risk assessment

Not applicable for the CLH report

A.3.10.3 Effects on or via lactation

Table A-87: Summary table of animal studies on adverse effects on or via lactation

No animal data is available.

Table A-88: Summary table of human data on adverse effects on or via lactation

No human data is available.

Table A-89: Summary table of other relevant studies for adverse effects on or via lactation

No other studies are available.

A.3.10.3.1 Short summary and overall relevance of the provided information on effects on or via lactation

In the two-generation study, the neonates, F1 and F2 bodyweights during lactation were reduced by 12-15% at 10000 ppm. At this dose level, general toxicity was observed in the dams; including one death (for which a treatment related aetiology could not be dismissed), soft faeces during lactation (F0 F1); decreased bodyweight (up to 8 % at the end of dosing), decreased food consumption and decreased absolute spleen weight. Given the high dose level and clinical signs of toxicity in dams, it is considered that classification for lactational effects is not required.

Belgium	Dinotefuran	CLH
---------	-------------	-----

A.3.10.3.2 Comparison with the CLP criteria

There is no evidence that dinotefuran caused a specific adverse effect on pups via lactation, therefore classification for lactational effects is not proposed.

A.3.10.3.3 Overall conclusion on effects on or via lactation related to risk assessment

Not applicable for the CLH report

A.3.10.4 Conclusion on classification and labelling for reproductive toxicity

Dinotefuran is not a reprotoxicant base on the extensive database.

A.3.10.5 Overall conclusion on reproductive toxicity related to risk assessment

Not applicable for the CLH report

A.3.11 Aspiration hazard

According to CLP regulation, section 3.10.1.6.2a, Aspiration Hazard is intended to apply to liquid substances and mixtures only. Since Dinotefuran is a solid, further consideration of this endpoint is therefore not required.

Table A-90: Summary table of evidence for aspiration hazard

No data is available.

A.3.11.1 Short summary and overall relevance of the provided information on aspiration hazard

- Aspiration hazard Hazard class not applicable (e.g. physical state or chemical structure)

A.3.11.2 Comparison with the CLP criteria

/

A.3.11.3 Conclusion on classification and labelling for aspiration hazard

Aspiration hazard Hazard class not applicable (e.g. physical state or chemical structure)

Belgium Dinotefuran	CLH
---------------------	-----

A.3.12 Neurotoxicity

Table A-91: Summary table of animal studies on neurotoxicity

Method, Duration of exposure, Route of exposure, Guideline, GLP status, Reliability, Key/supportive study	Species, Strain, Sex, No/Group	Test substance (including purity), Vehicle, Dose levels	NOAEL, LOAEL	Results	Remarks (e.g. major deviations)	Reference
Acute neurotoxicity, 14 days exposure, oral dietary, OECD TG 424, OPPTS 870.6200, GLP, Reliability 1, Key study	Rat, IGS BR, males/females, 10/sex/group	Dinotefuran, 98.9%, 0.5% CMC vehicle, single administration of 0, 325, 750, 1500 mg/kg bw/d	NOAEL (both sexes) >1500 mg/kg	Males and females at 1500 mg/kg bw had statistically significantly lower motor activity on day 1, transient and not other correlating changes therefore not adverse nor treatment related.	None	Report no. 6648-147 (2001a) IUCLID 8.13.2
Subchronic neurotoxicity, 13-weeks exposure, oral dietary, OECD TG 424 (1998), OPPTS 870.6200 (1998), GLP, Reliability 1, Key study	Rat, IGS BR, males/females, 10/sex/group	Dinotefuran, 98.9%, no vehicle, daily administration of 0, 500, 5000, 50000 ppm	NOAEL for all effects 5000 ppm (equivalent to 327 (M) and 400 (F) mg/kg bw/day) NOEL for neurotoxicity effects 50000 ppm (equivalent to 3413 (M) and 3806 (F) mg/kg bw/d)	Reduction in body weight gain and food consumption observed at 50000 ppm. Absence of neurobehavioural and neuropathological effects at 50000 ppm	None	Report no. 6648-148 (2001b) IUCLID 8.13.2
Developmental neurotoxicity &	Rat SD 10 mated	Dinotefuran (MTI 446)	NOAEL 10000 ppm for	Maternal toxicity:		Report no. SRY00001

	Belgium		Dinotefura	n	C	LH
immunotoxicity dose range- finding study, non-guideline, Oral dietary	F ₀ /sex/group	0, 1000, 3000, 10000 ppm Intake (gestation) 0, 70, 212, 670 mg/kg bw/day	maternal and developmental immunotoxicity, 670 mg/kg/day NOAEL 3000 ppm for neonatal toxicity, maternal intake 212 mg/kg bw/day	1000, 3000 ppm, 10000 ppm: no adverse effects Neonatal general toxicity: 1000, 3000 ppm: no adverse effects 10000 ppm: ↓ bodyweights from PND 13 to termination (by ~20 % on PND 21) Developmental neurotoxicity: not assessed Immunotoxicity: 1000, 3000 ppm, 10000 ppm: no adverse effects on innate and humoral components of immune system		2009 IUCLID, 8.13.2-05
Developmental neurotoxicity, Oral, dietary OECD TG 426, OPPTS 870.6300, GLP Reliability 1, Key study	Rat, 25 mated females F0/sex/group	Dinotefuran purity 99.5%, no vehicle, nominal doses 0, 1000, 3000, 10000 ppm, (equivalent to 0, 79, 237, 784 mg/kg bw/day) daily exposure on Day 6 of gestation until Day 21 of lactation	NOAEL (maternal): 237 mg/kg bw/day NOAEL (neonatal toxicity and developmental neurotoxicity): 784 mg/kg bw/day	Maternal toxicity: 1000, 3000 ppm: no adverse effects 10000 ppm: ↓ bodyweight gain during gestation (11 % GD 6-20) Neonatal general toxicity: 1000, 3000 ppm, 10000 ppm: no adverse effects Developmental neurotoxicity:	None	Report no. SRY00002 (2010) IUCLID 8.13.2
Belgium	Dinotefuran	CLH				
---------	---	----------------------	--			
	1000, 3000 10000 ppm adverse effe	ppm, : no ects				

_	Belgium	Dinotefuran	CLH
Tab	le A-92: Summary table of human da	ata on neurotoxicity	

No human data is available.

A.3.12.1 Short summary and overall relevance of the provided information on neurotoxicity

Acute and subchronic neurotoxicity

In a standard acute oral neurotoxicity study in Sprague-Dawley rats, a single gavage dose of 0 (0.5 % CMC vehicle only), 325, 750 or 1500 mg/kg bw was administered (2001), 2001a). The only treatment related change reported was a reduction in motor activity score at the highest dose level in the assessments conducted 3 hours after dosing. Based on this observation, a study NOAEL of 750 mg/kg bw is identified. However, this transient minor change is considered to be a manifestation of general toxicity, and because no neuropathological changes were detected it can be concluded that dinotefuran is not acutely neurotoxic.

In a standard 13 week oral dietary neurotoxicity study in Sprague-Dawley rats, dietary levels of 0, 500, 5000 and 50000 ppm were administered (2011), 2001b). The only treatment related changes reported were, at 50000 ppm only, reduced bodyweight gain and food consumption in both sexes and a reduction in motor activity score in females at the assessments conducted during week 2. Based on these observations, a study NOAEL of 5000 ppm (intake 327 mg/kg bw/day for males and 400 mg/kg bw/day for females) is identified. These changes are considered to be manifestations of general toxicity and because no neuropathological changes were detected. Therefore it can be concluded that dinotefuran is not neurotoxic.

Developmental neurotoxicty

In a dose range-finding study for main developmental neurotoxicity and immunotoxicity investigations, groups of 10 mated females were exposed to dietary levels of 0, 1000, 3000 or 10000 ppm from GD 6 through to the termination of selected F_1 generation pups on post weaning days 36-49 (Hoberman, 2009). Two F_1 pups/sex/Litter were selected for each of the two immunological assays, an antibody-forming cell (AFC) assay and splenocyte phenotyping with a natural killer (NK) cell assay. The following parameters were evaluated: viability, clinical observations, body weights, behaviour, food consumption, spleen weights, immunological evaluations (spleen IgM AFC response, spleen cell phenotyping, NK cell activity) and necropsy observations. There was no evidence of maternal toxicity. However, in the F_1 offspring, bodyweights were reduced at the highest dose level from PND 13 to termination. No adverse effects on innate and humoral components of the immune system of the F_1 pups were observed.

Belgium	Dinotefuran	CLH
---------	-------------	-----

developmental neurotoxicity parameters. Thus, the study NOAELs are 3000 ppm (intake during gestation 237 mg/kg bw/day) and for maternal toxicity and 10000 ppm (maternal intake during gestation 784 mg/kg bw/day) for general neonatal and developmental neurotoxicity.

A.3.12.2 Comparison with the CLP criteria

Dinotefuran is not a neuro toxicant base on the extensive database.

A.3.12.3 Conclusion on neurotoxicity related to risk assessment

Not applicable for the CLH report

Belgium Dinotefuran CLH

A.3.13 Immunotoxicity

Table A-93: Summary table of in vitro immunotoxicity studies

No in vitro data is available.

Table A-94: Summary table of animal studies on immunotoxicity

Method, Duration of exposure, Route of exposure, Guideline, GLP status, Reliability, Key/supportive study	Species, Strain, Sex, No/Group	Test substance (including purity), Vehicle, Dose levels	NOAEL, LOAEL	Results	Remarks (e.g. major deviations)	Reference
Immuntoxicity, 28 days exposure, oral dietary, OPPTS 870.7800, GLP, Reliability 1, Key study	Rat, (SD), males/females, 10/sex/dose (control and treatment) 8/sex/dose (positive control)	Dinotefuran, 97.9%, no vehicle, 0, 2240, 5600, 14000 ppm	NOAEL for all effects 5600 ppm (equivalent to 425 (M) and 430 (F) mg/kg bw/d) NOEL immunotoxicity 14000 ppm (equivalent to 992 (M) and 1018 (F) mg/kg bw/d)	There was no immuno- toxicologically relevant effect of dinotefuran on the humoral T- lymphocyte- dependent response against antigen on sheep red blood cells. There were no statistically significant differences in the	None	Report no. MCW0018 (2011) And amended report (2012) IUCLID 8.13.4

	Belgium		Dinotefuran		0	
Immuntoxicity, 28 days exposure, oral dietary, OPPTS 870.7800, GLP, Reliability 1, Key study	Mouse, CD1 (ICR), males/females, 10/sex/dose (control and treatment) 8/sex/dose (positive control)	Dinotefuran, 97.9%, no vehicle, 0, 1120, 2800, 7000 ppm	NOAEL for all effects 7000 ppm (equivalent to 1053 (M) and 1438 (F) mg/kg bw/d) NOEL for immunotoxicity 7000 ppm (equivalent to 1053 (M) and 1438 (F) mg/kg bw/d)	number of cells/spleen, PFC/10 ⁶ viable cells or PFC/spleen, when compared to the control, for all the treatment groups. The magnitude of the effect on body weight in males demonstrated that 14000 ppm was the maximum tolerated dose for this study type and duration. Based on no effect in the PFC assay at the highest dose level employed. Dinotefuran was well tolerated at the highest dose level employed.	None	Report no. MCW0019 (2011) IUCLID 8.13.4

Table A-95: Summary table of human data on immunotoxicity

No human data is available.

Belgium Dinotefuran	CLH
---------------------	-----

Belgium

Dinotefuran

CLH

A.3.13.1 Short summary and overall relevance of the provided information on immunotoxicity

In a standard immunotoxicity study in rats, dietary dose levels 0, 2240, 5600, 14000 ppm were administered for 28 days (2012). Following immunisation by intravenous injection of sheep red blood cells (SRBC), the spleen of each animal was retained at termination and used as the source of splenocytes for conducting a plaque forming cell (PFC) assay using a modification of the Jerne PFC assay. General toxicity was evident at 14000 ppm, observed as reduced bodyweight gain and food consumption. There were no significant differences in the number of cells/spleen, PFC/10⁶ viable cells or PFC/spleen in the PFC assay in the treated groups, demonstrating that dinotefuran has no effect on the humoral T-lymphocyte-dependent response against antigen on SRBC. Study NOAELs of 5600 ppm (intake 425 mg/kg bw/day in males and 430 mg/kg bw/day in females) for general toxicity and 14000 ppm (the highest dose level tested, intake 992 mg/kg bw/day in males and 1018 mg/kg bw/day in females) for immunotoxicity are identified.

A similar immunotoxicity study was conducted in mice, using dietary dose levels of 0, 1120, 2800 and 7000 ppm (2011). There was no evidence of general toxicity and there were no effects on the humoral T-lymphocyte-dependent response against antigen on SRBC in the dinotefuran groups. A study NOAEL of 7000 ppm (the highest dose level tested, intake 1053 mg/kg bw/day in males and 1438 mg/kg bw/day in females) for general toxicity and immunotoxicity are identified.

Additionally, a pilot investigation into developmental immunotoxicity was conducted using 10 male and 10 female F1 progeny/group per immunological endpoint as part of a rat oral (dietary) study summarised in Section 3.9 (**1999**). No adverse effects on innate and humoral components of the immune system of F₁ pups were reported.

A.3.13.2 Comparison with the CLP criteria

Dinotefuran is not an immuno-toxicant base on the extensive database.

A.3.13.3 Conclusion on immunotoxicity related to risk assessment

Not applicable for the CLH report

A.3.14 Endocrine disruption

Not applicable for the CLH report

Table A-96: Summary table of in vitro studies on endocrine disruption

Not applicable for the CLH report

Table A-97: Summary table of animal data on endocrine disruption

Not applicable for the CLH report

Table A-98: Summary table of human data on endocrine disruption

Not applicable for the CLH report

Table A-99: Summary table of other evidence on endocrine disruption

Belgium	Dinotefuran	CLH
Not applicable for the CLH r	eport	
A.3.15 Further Human	data	

Please refer to the confidential annex (table 96).

Table A-100: Summary table of further human data

See confidential annex

Belgium	Dinotefuran	CLH
---------	-------------	-----

A.3.16 Other data

Table A-101: Summary table of other data

Type of data/report, Reliability, Key/supportive study	Test substance (including purity), Vehicle	Relevant information about the study	Main effects, Observations	Reference
Pair-feeding/ palatability investigative study No OECD Guideline, GLP, Reliability 1, Key study	Dinotefuran, 98.86%, Pair matched phase 20000 and 50000 ppm; palatability phase 4000 and 20000 ppm	Rat, CrI:CD®(SD) IGS BR, males/females, 10/sex/group Controls group-matched and ad libitum controls included.	Effects on weight gain at 20000 and 50000 ppm attributable to unpalatability of treated diet.	Report no. MCW0059 1000000000000000000000000000000000000

SUMMARY OF PAIR-FEEDING/ PALATABILITY INVESTIGATIVE STUDY IN RAT

This study was performed to investigate if reduced food consumption and body weight gain, reported in previous toxicity studies performed on dinotefuran were due to unpalatability of the test diets and/or to non-specific toxicity. Moreover, the use of a group-matched feeding design also enabled the delineation of alterations in food consumption and body weight gain which may have been due to a combination of both reduced diet palatability and non-specific toxicity. For this purpose, groups of individually-caged rats treated with dinotefuran were group-matched with groups of untreated animals fed an amount of control diet equal to the group mean food consumption (less dinotefuran content) of the matched treated group on the previous day. The study was also designed to investigate if a preference existed for rats to consume untreated diet, or diets containing dinotefuran, and in this phase of the study the animals were fed *ad libitum* and were given two feed-pots, one containing control diet and the other containing treated diet), with the position of the feed pots within the cage being switched daily.

In the group-feeding phase of the study, the incorporation of dinotefuran in the diet at concentrations of 20000 or 50000 ppm produced an immediate (from Day 1) decrease in the food consumption of both sexes which persisted throughout the four-week treatment period. The effect on Day 1 was very marked as consumption was reduced by 40 and 50% (males and females respectively) at 20000 ppm and by 80 and 68% (males and females respectively) at 50000 ppm. The overall pattern of food consumption in dinotefuran-treated animals

Belgium	Dinotefuran	CLH
---------	-------------	-----

comprised a marked decrease in Week 1, followed by a progressive increase in consumption during the subsequent three weeks. Nevertheless, the overall food consumption at both 20000 and 50000 ppm remained significantly lower than the *ad libitum*-fed control group.

Since reduced food consumption occurred from the start of treatment, the etiology of the effect may be inferred from a consideration of the food consumption and ingested dose data for Day 1 of the study because a concentration-dependency would strongly suggest a diet palatability issue rather than non-specific toxicity. Males treated at 20000 ppm ingested a higher dose on Day 1 (1434 mg/kg bw) than the males treated at 50000 ppm (1195 mg/kg bw), but the effect on food consumption was much greater at 50000 ppm than at 20000 ppm. In females the effect was less clear because the dose ingested at 50000 ppm (1750 mg/kg bw) was slightly higher than the dose ingested at 20000 ppm (1078 mg/kg bw). Nevertheless, these data strongly suggest reduced palatability as the cause of the observed reduction in food consumption. Moreover, as food consumption, and therefore ingested dose, increased progressively during the study, reduced food consumption cannot be attributed to a nonspecific toxic effect on food consumption, the magnitude of which would be expected to increase with increasing dose. Therefore, the extent of the effect on food consumption was clearly concentration-dependent and strongly suggestive of an effect mediated exclusively by diet unpalatability.

There was a clear preference for untreated diet in the palatability groups (where the animals were given free choice), which demonstrated persistent and almost complete rejection of the diet containing 20000 ppm dinotefuran, and a less marked and more transient rejection of diet containing 4000 ppm. These data support further the contention that diets containing dinotefuran at 4000 ppm or more are unpalatable to rats. These data, together with the food consumption data from the group-matched phase, indicate that the degree of unpalatability is concentration-dependent in the range 4000 – 50000 ppm.

In the group-matched phase, body weight change in the groups treated with 20000 or 50000 ppm dinotefuran, and their group-matched controls, reflected the observed pattern of food consumption (*viz.* an immediate and marked reduction in weight gain, or frank body weight loss, followed by increasing body weight gain as the study progressed). Nevertheless, overall body weight gain at both 20000 and 50000 ppm, and their group-matched controls, remained significantly lower than the *ad libitum*-fed control group. In both sexes, at both diet concentrations, body weight gains of the dinotefuran-treated groups were similar, or superior, to the weight gains of their group-matched controls. Therefore, there was no evidence to support a non-specific toxicity etiology, and it can be inferred with a high degree of confidence that reduced body weight gain in dinotefuran-treated groups was due entirely to reduced food consumption.

Belgium	Dinotefuran	CLH

A.4 Environmental effects assessment

A.4.1 Fate and distribution in the environment

A.4.1.1 Degradation

A.4.1.1.1 Abiotic degradation

<u>Hydrolysis</u>

Table A-102:	Summary	table-	Hydrolysis
--------------	---------	--------	------------

Method, Guideline, GLP status, Reliability, Key/supportiv e study	рН	Temp . [°C]	Initial TS concentration , C0[g/l]	Half-life, DT50 [d]	Coefficient of correlation, r2	Reference
OECD TG 111	4		1.85	n.c.	n.a.	(1998)
EU C.7 (EEC)	7		1.91	n.c.	n.a.	IUCLID no. 10.1.1.1.a
GLP	9		2.05	n.c.	n.a.	
Reliability 1 Key study	11 *	50	2.10	45	not given	
	13 *		2.05	4.2	not given	

n.a. = not applicable; n.c. = not calculated as no significant degradation reported in study. Less than 10 % hydrolysis observed after 5 days, equivalent to an environmental half-life of greater that 1 year at each pH value investigated.

* pH 11 and pH 13 are not environmentally relevant, however included in the study as additional pH.

The hydrolytic stability of Dinotefuran (with reported purity of 99.5 %) at nominal concentration of 2 g.L⁻¹ was studied using sterile phosphate and acetate buffer solutions at pH 4 (3.99), 7 (7.00) and 9 (9.03) plus glycine / sodium chloride buffer solutions at pH 11 (11.04) and 13 (12.99). These were maintained at 50°C in the dark in accordance with OECD Guideline 111 and Method C7 of Commission Directive 92/69/EEC (

After approximately 7 d (170 h), the hydrolytic degradation was found to be 1.1% at pH 4, 3.7% at pH 7 and 10.2% at pH 9. However, at pH 11, only 15.2% of dinotefuran remained after 120 h and, at pH 13, only 2.0% remained after 24 h. Under extreme alkaline conditions, dinotefuran was found to undergo degradation to form UF.

Conclusion

As there was <11% hydrolysis observed following 7 d incubation in buffer solutions of pH 4, 7 and 9 at 50°C, Dinotefuran is considered to be hydrolytically stable and therefore no additional testing is considered necessary. Based upon results obtained at elevated temperature (50°C), the hydrolytic half-life (DT₅₀) for the compound can be considered to be in excess of 1 year when converted to average EU outdoor temperature (12°C).

Although significant hydrolysis was evident under extreme alkaline conditions, this has not been considered relevant due to the high pH values which were tested. Whilst levels of breakdown product, UF, were not quantified in the study as it focussed specifically on measuring dinotefuran, it is stated that UF was the "expected major hydrolysate". A DT₅₀ value for a.s. normalised to 12°C was

Belgium	Dinotefuran	CLH

calculated as 39.2 d (pH 11) and 3.66 d (pH 13) so if products containing dinotefuran were to be exposed to alkaline cleaning solutions, any discharges to drains would quickly reduce in pH by dilution with wastewater and so significant formation of UF (metabolite) is unlikely to occur.

Hydrolysis is therefore not expected to be a major degradation pathway for this compound in the environment.

Phototransformation in water

Table A-103:	Summary	table-	Photolysis	in	water
--------------	---------	--------	------------	----	-------

Method, Guideline, GLP status, Reliability, Key/supportiv e study	Initial molar TS concentratio n	Total recovery of test substanc e [% of appl. AS]	Photolysi s rate constant (kcp)	Direct photolysi s sunlight rate constant (kpE)	Reactio n quantu m yield (φcE)	Half- life (t1/2E)	Referenc e
OPPTS 835.2210 Directives 95/36/EEC and 94/37/EEC SETAC (1995) GLP Reliability 1 Key study	1:1 mixture of G- and F-label Dinotefuran, 0.720 mg/L	95.5 - 105.0	0.7391 d ⁻¹	-	1.57E-04	0.9 days	(2002e) IUCLID no. 10.1.1.1.b

Photolysis of dinotefuran in water was investigated in a study (2002e) performed in line with Directive 95/36/EEC, Directive 94/37/EEC, SETAC guidance plus US-EPA OPPTS 835.2210 guidelines and in accordance with the principles of GLP.

Sterile aqueous solutions of 0.72 mg l⁻¹ of ¹⁴C-labelled Dinotefuran (achieved by mixing equal aliquots of guanidine labelled and furanyl labelled compound) were prepared and buffered to pH 7. Samples were then irradiated continuously for 13.8 d at a controlled temperature between 23–24°C using a xenon arc lamp and all light with a wavelength of <290 nm was filtered out. Samples were assayed at 0, 0.1, 0.2, 0.4, 0.9, 1.8, 4.9, 6.9, 11.0 and 13.8 d for radiochemical balance and degradation pattern. Dark controls were run under the same conditions but only assayed at 0, 6.9 and 13.8 d.

In this study, total recovery of test samples was reported as 95.5-105.0% AR whilst values of 101.8-103.8% AR were obtained for dark controls. From an initial mean measured concentration of 0.725 mg.L⁻¹, dinotefuran degraded rapidly such that only 0.016 mg.L⁻¹ was considered to remain after 6.9 d, giving rise to an experimental half-life of 0.9 d (21.6 h) following first order kinetics. Under non-irradiated control conditions, the test compound was shown to be stable based upon results from radio-chromatography as >97 % of AR was recovered as dinotefuran at each sampling point.

Photolytic degradation led to formation of up to 18 photoproducts, although only 6 were characterised by co-chromatography with reference compounds: DN (maximum of 7.4% AR at 11.0 d), UF (maximum of 10.6 % AR at 13.8 d), MG (maximum of 10.2% AR at 1.8 d), BCDN (maximum of 16.1% AR at 1.8 d) plus combined DN-2-OH & DN-3-OH (maximum of 28.1% AR at 13.8 d). One transformation product, coded as M2, could not be identified although maximum levels reached 16.6% AR at 11 d but, based upon chromatographic behaviour, was considered to be a multi-component fraction (with individual levels of components all <10%). Many unknown metabolites (specifically M6, M7, M8, M9, M10, M11, M12, M16 and M18) were present at maximum levels \leq 3.9%

Belgium	Dinotefuran	CLH
---------	-------------	-----

of AR and could not be detected at several sampling points so were considered as minor. The remaining unknown metabolites (M3, M4 and M5) all reached maximum levels between 6.46-9.1% AR during the study which were below the level considered to identify them as "major". Only those metabolites with levels >10% AR and predicted breakdown products (such as DN) were characterised.

The quantum yield of direct photodegradation of dinotefuran at 23-24°C in pure water was then used to estimate its environmental half-life in natural waters by means of the GC-Solar simulation model. Depending upon season, theoretical half-lives were considered to range between 1.70–4.34 d (30°N), 1.80–7.76 d (40°N) and 1.97–18.60 d (50°N). Conditions in the GC-Solar program assumed pure water close to the surface (0-5 mm) of the water body, 10° of longitude, terrestrial atmosphere

type with typical ephemerides and ozone values.

Conclusion

Photolytic breakdown of dinotefuran gave rise to 18 photoproducts with the major metabolites (present at \geq 10 %) being UF, MG, DN-2-OH & DN-3-OH, BCDN plus an unidentified mixture of at least two components coded as M2. Although an experimental degradation DT₅₀ of 0.9 d was derived from first order kinetic modelling of study results, this was derived from continuous exposure to light.

Results of the photolysis study with dinotefuran indicate that direct photodegradation in water could contribute to the overall elimination of the compound in the aquatic compartment. However, it must be noted that incident solar radiation will vary between different locations and at different times of the year. Furthermore, where natural surface waters are turbid, aqueous photolysis reactions would only likely occur very close to the surface of a water body and, in general, partitioning to water and sediment might act as a contributing factor to removal from the water phase. Therefore, it is difficult to accurately predict the influence of photolysis in such systems on an EU-wide basis. In Northern European scenarios similar to UK conditions, it is likely that photolysis will only have a relatively minor impact on dissipation (turbidity reducing light transmission and energy thus limiting photolytic potential). However, where water bodies are considered to be slow moving (e.g. ponds and lakes), they could potentially be less turbid than rivers / streams so photolysis could be more relevant. The metabolites that were considered major (i.e. >10 % formation) were noted to be formed at levels that only just exceeded 10% under test conditions that are designed to maximise their formation (e.g. small optically dilute sterile aqueous solutions under constant irradiation). Taking into account the additional factors highlighted above and the fact that the indoor use pattern proposed for the representative product will not result in any direct exposure to surface waters, the UK CA considers that the formation of aqueous photolytic metabolites does not need to be considered as part of the EU environmental exposure assessment. However, this route of degradation should be considered on a case-by-case basis by individual Member States depending upon local conditions, especially if use patterns were to be extended / changed and could potentially lead to direct exposure of surface water

Belgium	Dinotefuran	CLH
---------	-------------	-----

Estimated photo-oxidation in air

Table A-104: Summary table- Photo-oxidation in air

Model	Light protection (yes/no)	Estimated daily (24h) OH concentration [OH/cm ³]	Overall OH rate constant [cm ³ /molecule ec]	Half-life [hr]	Reference
Estimation (Atkinson) US-EPA AOPWIN, version 1.70 (1995)	-	-	160.596 E-12	0.067 d (12 h day; 1.5E6) 0.033 d (24 h day; 1.5E6)	(2000)
Estimation (Atkinson) US-EPA AOPWIN, version 1.92 (2010)	-	-	156.0666 E-12	0.10 d or 2.4 h (24-h day; 5.0E5)	QSAR output92 IUCLID no. 10.3

The half-life of Dinotefuran in air due to indirect photodegradation, i.e. oxidation with photochemically produced hydroxyl radicals, was calculated using the software programme AOPWIN, v1.70, 1995 by US-EPA based upon QSAR methods developed by Dr. Roger Atkinson and co-workers. AOPWIN requires only a chemical structure to make these predictions, with structures entered into AOPWIN by SMILES (Simplified Molecular Input Line Entry System) notations.

Guidance provided to support this particular model recommends use of 12h atmospheric hydroxyl radical concentrations ($1.5 \times 10^6 \text{ OH}^-$ molecules cm⁻³) during sunlight hours to take account of airborne pollution. As a consequence, the half-life of Dinotefuran in the troposphere was calculated to be 0.033 d based upon a degradation rate of 160.596 x 10⁻¹² cm³ molecule⁻¹ s⁻¹ (**1000**, 2000).

However, the UK CA had undertaken additional calculations to revise half-life using average 24-h OH^{-} radical concentrations (5 x 10⁵ molecules cm⁻³) reportedly to account for relatively unpolluted air in the EU, as outlined within section 2.3.6.3 of the former TGD for risk assessment, based upon the formula that:

$$T_{\frac{1}{2}} = \frac{\ln 2}{[K_{OH} \bullet [OH rad]]}$$

where K_{OH} is estimated hydroxyl radical reaction rate, predicted as 156.0666 x 10⁻¹² cm³ molecule⁻¹ s⁻¹ when modelled using the latest Version 1.92 of AOPWIN and SMILES notations for a.s. of [C1(CCOC1)CNC(=NN(=O)(=O))NC] and [C(NC)(=NN(=O)(=O))NCC1(CCOC1)]

When taking account of criteria specified within the TGD, revised results presented in Table A-108 indicate that estimated atmospheric half-life of dinotefuran was found to be 0.1 d.

Conclusion

The estimated half-life for dinotefuran in air was found to be 0.1 d (or 2.4 h), indicating that after evaporation or exposure to the air, the substance is rapidly degraded in the atmosphere and the

Belgium Dinotefuran	CLH
---------------------	-----

transport over longer distances or accumulation in air is negligible.

CLH Belgium Dinotefuran

A.4.1.1.2 Biotic degradation, initial studies

Biodegradability (ready/inherent)

Table A-105: Summary table - biodegradation studies (ready/inherent)

Method, Guideline, GLP status, Reliability, Key/supportive study	Test type ¹	Test parameter		Inoculum		Additional substrate	Test sub- stance concentr	Degradat	ion	Remarks [positive control]	Reference
			Туре	Concentration	Adaptation			Incubation period	Degree [%]		
OECD TG 301F EU C.4-D GLP Reliability 1 Key study	Yes	BOD	Aerobic activated sludge	1.5 g/L dry matter (final conc. 29 g/L)	Yes*	Sodium benzoate	103	28 days	0	10-day window criteria not passed	(2012b) IUCLID no. 10.1.1.2

Test on inherent or ready biodegradability according to OECD criteria

* The solid material of sludge is reported as being centrifuged, re-suspended (3 times) in test water and aerated overnight

Dinotefuran (of 99.4% purity) was investigated for its ready biodegradability in a GLP compliant study (2012b) comparable to OECD Guideline 301 F (1992; "Manometric Respirometry Test") and Commission Regulation 440/2008/EC : Method C.4-D. It was performed using an initial mean concentration of 103 mg a.s. L⁻¹ for 28 days under aerobic conditions in the dark. Incubation was carried out at 21-22°C with bacteria collected from activated sludge of a wastewater plant treating predominantly domestic sewage (Rossdorf in Germany) and pH was reported to vary from 6.8–7.6 over the test period. The reference control was performed with 100 mg.L⁻¹ of sodium benzoate. Degradation was followed by determination of oxygen uptake (consumption of oxygen (BOD)). Mean biodegradation of dinotefuran over 28 days was determined as 0%.

Belgium Dinotefuran CLH

Conclusion

Based on the results of a Manometric Respiratory Test (OECD 301 F), Dinotefuran can be classified as "not readily biodegradable" according to the definitions given by the OECD guidelines for assessing ready biodegradability. An inherent biodegradation study was not performed but a more realistic water/sediment degradation study (outlined in Section 4.1.1.2.2) has been provided.

A.4.1.1.3 Rate and route of degradation including identification of metabolites and degradation products

A.4.1.1.3.1 Biological sewage treatment

Not applicable for the CLH report

Aerobic biodegradation

Table A-106: Summary table - STP aerobic biodegradation

Not applicable for the CLH report

Anaerobic biodegradation

Table A-107: Summary table - STP anaerobic biodegradation

Not applicable for the CLH report

STP simulation test

Table A-108: Summary table - STP simulation test

Not applicable for the CLH report

A.4.1.1.3.2 Biodegradation in freshwater

Aerobic aquatic degradation

Belgium Dinotefuran CLH

Table A-109: Summary table - Freshwater aerobic biodegradation

Data waiving.

The representative biocidal product is not intended for direct emission to water. Therefore, provision of this study is not required. Estimation of dinotefuran's degradation in water can be extracted from the water/sediment degradation test if required.

Water/sediment degradation test

Table A-110: Summary table - fresh water/sediment degradation

Method, Guideline, GLP status,	Test		Test system		Test substance	Incubation	Degradation	Remarks	Deferrer
Reliability, Key/supportive study	type ¹	pei Exposure water Sediment concentration (mg/L) period (days)		Water Sediment (1		(DT ₅₀ , days)*		Reference	
					AEROBIC				
EPA 162-4, SETAC Guideline 8.2, Commission Directive 95/36/EC of 14 July 1995	Yes	20±1°C, in the dark,	River (Mumpf, Switzerland)	River (Mumpf, Switzerland)	0.0507	320	56.7	Metabolite DN reached a maximum of 23.1% AR in total river system	(2000l) IUCLID no. 10.1.3
Equivalent to OECD TG 308 GLP Reliability 1 Key study		aerobic	Pond (Judenweiher, Switzerland)	Pond (Judenweiher, Switzerland)	0.0507		44.5	Metabolite DN reached a maximum of 32.6% in total pond system	

		Belgium		Dinot	tefuran		CLH		
OPPTS 835.4300, OPPTS			Lake (Calwich Abbey, UK)	Lake (Calwich Abbey LIK)	0.204		24.2	Metabolite DN reached max. occurrence of	(2011c) IUCLID no.
835.4400, equivalent to OECD TG 308, GLP Reliability 1 Key study	Yes	20±2°C, in the dark, aerobic	Lake (Swiss Lake, UK)	Lake (Swiss Lake, UK)	0.199	100	64.0	69.6% AR Metabolite DN reached max. occurrence of 47.4% AR	10.1.3
OECD TG 308, OPPTS 835.4300, GLP	Vac	20-25°C, in natural	Lake (Calwich Abbey, UK)	Lake (Calwich Abbey, UK)	0.0692	14	2.19	Unknown polar metabolite reached max. occurrence of 15.8% AR	(2020a) IUCLID no. 10.1.3
Reliability 1 Key study	res	Yes light, aerobic	Lake (Emperor Lake)	Lake (Emperor Lake, UK)	0.0618	14	3.07	Unknown polar metabolite reached max. occurrence of 12.3% AR	
				A	NAEROBIC				
OECD TG 308, OPPTS 835.4300, OPPTS		20+2°C in	Lake (Calwich Abbey, UK)	Lake (Calwich Abbey, UK)	0.204		26.0	Metabolite DN reached max. occurrence of 74.4% AR	(2011c) IUCLID no. 10.1.3
835.4400, equivalent to OECD 308, GLP Reliability 1 Key study	Yes	the dark, anaerobic	Lake (Swiss Lake, UK)	Lake (Swiss Lake, UK)	0.199	100	48.3	Metabolite DN reached max. occurrence of 66.3% AR	
1 Test according t * Values are the s	o/equiv	alent to OECD those provide	criteria d in the study r	eports; prior to	kinetics re-ev	aluation and n	ormalisation to	12° C.	

Belgium	Dinotefuran	CLH
---------	-------------	-----

Summary table - metabolite DN formed in fresh water/sediment aerobic degradation of the dinotefuran study

Method, Guideline, GLP status, Te	Test	Evenenue	Test sy	vstem	Test substance	ce Incubation	Degradation	Remarks	Poforonco
Reliability, Key/supportive study	type ¹	Exposure	Water	Sediment	concentration (mg/L)	(days)	(DT ₅₀ , days)*		Kererence
					AEROBIC				
EPA 162-4, SETAC Guideline 8.2, Commission Directive 95/36/EC of 14		20±1°C, in	River (Mumpf, Switzerland)	River (Mumpf, Switzerland)	0.0507		114		(2000l) IUCLID no. 10.1.3
July 1995YesEquivalent toOECD TG 308GLPReliability 1Key study	the dark, aerobic	Pond (Judenweiher, Switzerland)	Pond (Judenweiher, Switzerland)	0.0507	320	80			
OPPTS 835.4300, OPPTS 835.4400,		20±2°C, in	Lake (Calwich Abbey, UK)	Lake (Calwich Abbey, UK)	0.204	100	n.c.	DT ₅₀ cannot be derived due to insufficient number of data points	(2011c) IUCLID no. 10.1.3
equivalent to OECD TG 308, GLP Reliability 1 Key study	Yes	the dark, aerobic	Lake (Swiss Lake, UK)	Lake (Swiss Lake, UK)	0.199		n.c.	DT_{50} cannot be derived due to insufficient number of data points	
1 Test according to/equivalent to OECD criteria									

* Values are the same as those provided in the study reports; prior to kinetics re-evaluation and normalisation to 12° C.

n.c. = not calculated.

Due to the absence of ready biodegradability and potential for limited indirect exposure of surface waters, the fate of Dinotefuran in water/sediment systems was investigated under laboratory conditions.

The applicant provided three degradation tests in the water-sediment system : two studies under dark laboratory conditions at 20°C and

Belgium	Dinotefuran	CLH
---------	-------------	-----

one study under outdoor natural light, at 20-25°C. Moreover one study was also performed under dark anaerobic laboratory conditions at 20°C. The degradation of the metabolite DN was also studies in the two studies under dark laboratory conditions.

In the study of (20001), aerobic degradation of ¹⁴C-labelled Dinotefuran was investigated in pond and river systems. Samples of each sediment and its associated surface water at an approximate ratio of 1:3 (taken from River Rhine near Mumpf in Switzerland and a freshwater pond near Judenweiher in Switzerland) were treated with [¹⁴C]-dinotefuran at a rate of 0.05 mg.L⁻¹ which was applied to the surface of the water phase. Treated samples were incubated in the dark under aerobic conditions at a temperature of 20±1°C for 320 days, with volatile radioactivity trapped in NaOH traps (for ¹⁴CO₂) and ethylene glycol (for organic volatiles).

Total recoveries of radioactivity (mass balance) were generally $96.6 \pm 3.7\%$ of AR (applied radioactivity) for the pond system (ranging between 90.9-102.2% AR) and $95.2\pm5.9\%$ of AR for the river system (ranging between 80.6-101.3% AR). However, it should be noted the recovery in the river system exceeded 90% AR at every sampling point up to and including 258 d (90.1-101.3%) and only dropped to 80.6% at study completion (320 d) so has not been considered to reduce overall reliability of the study.

Levels of radioactivity associated with the surface water samples quickly declined as the incubation progressed, accounting for 48.8% AR in the river system and 23.4% AR in the pond system after 56 d. Over the same period (56 d), radioactivity extracted from freshwater sediment had increased to 24.7% AR in the river system and 36.8% AR in the pond system. At study completion, only 8.3 % AR was detected in the water phase of the river system whilst only 2.6% AR remained in the water phase of the pond system. Non-extractable residues increased steadily and significantly in both systems over the duration of incubation (320 d), with 62.9% AR in the pond system and 28.2% AR in the river system at study termination. Significant levels of mineralisation was observed in both systems, reaching maximum levels of 19.9% AR as ¹⁴CO₂ (pond system) on day 258 and 34.9% AR as ¹⁴CO₂ (river system) on day 320. Other organic volatiles could not be detected.

In terms of the test material, ¹⁴C-dinotefuran was shown to degrade in aerobic aquatic systems, with "total system" degradation (DT_{50}) half-lives of 56.7 d (river) and 44.5 d (pond) determined by first order kinetic modelling at 20°C. As the study demonstrated significant relocation of test material to the sediment phase, dissipation half-lives at 20°C for dinotefuran of 49.2 d (river) and 23.0 d (pond) from the water phase were also derived by first order kinetic modelling. When normalised to 12°C, dissipation DT_{50} values would be equivalent to 93.3 d (river) and 43.6 d (pond).

Although up to 6 degradation products were detected (including UF, MNG and NG at <4.0 % AR), only one main transformation product was characterised – DN. There is evidence to show that this major metabolite underwent further degradation in both systems as levels of DN reached a maximum of 23.1% AR after 180 d (river system) and a maximum of 32.6% AR after 103 d (pond system) before falling to 9.0% AR and 7.8% AR respectively by study completion.

Based upon the study results, it is evident that emissions of dinotefuran reaching surface waters will first dissipate from the water phase to the sediment phase and then undergo steady degradation in both river and pond systems, predominantly to DN. Although degradation would not likely be rapid, significant levels of mineralisation can be predicted thus supporting removal from the aquatic compartment.

Belgium Dinotefuran	CLH
---------------------	-----

Table 4.4 Aquatic degradation of Dinotefuran and major metabolite DN at 20°C (2000, 2000)

Water-Sediment system	Component	Compound	DT ₅₀ (d)	DT ₉₀ (d)
	Surface Water (dissipation)	Dinotefuran	49.2	163.3
River	Total System	Dinotefuran (individual)	56.7	188.5
(Rhine near Mumpf)	(degradation)	Dinotefuran (sequential)	59.0	n.c.
	Total System	DN (individual)	114	378.0
	(degradation)	DN (sequential)	105	n.c.
	Surface Water (dissipation)	Dinotefuran	23.0	76.3
Pond	Total System	Dinotefuran (individual)	44.5	147.8
(near Judenweiher)	(degradation)	Dinotefuran (sequential)	46.6	n.c.
	Total System	DN (individual)	80.0	267.0
	(degradation)	DN (sequential)	86.8	n.c.

n.c. – not calculated

DT₅₀ values predicted by the Applicant in **Table 4.4** have been derived from several kinetic models (including one seeking "best fit to data") and all half-lives were calculated individually (i.e. parent and metabolite degradation were not considered sequentially). As a consequence, the UK CA as RMS for the first inclusion had has considered it necessary to run additional sequential "parent and metabolite" models using SFO kinetics at 20°C and has determined similar but not identical half-lives than those reported in the study. Therefore, it is considered more relevant to use sequential degradation DT₅₀ values in risk assessment. Appropriate total river system DT₅₀ values at 20°C for dinotefuran and DN would therefore be 59.0 d and 105 d respectively whilst appropriate DT₅₀ values for total pond system at 20°C would be 46.6 d (dinotefuran) and 86.8 d (DN).

The total system degradation DT₅₀ values calculated by UK CA for each substance at 20°C and then normalise to 12°C (average EU outdoor temperature), are 112 days (k value: 0.0062 d⁻¹) for river system and 88.3 days (k value: 0.0079 d⁻¹) for pond system for the active substance Dinotefuran and 199d for river system and 165 days for pond system for its metabolite DN, respectively.

In the study of (2011c), the aerobic and anaerobic degradation of ¹⁴C-labelled Dinotefuran was investigated in the two watersediment systems Swiss Lake and Calwich Abbey Lake. Samples of each sediment and its associated surface water at an approximate ratio of 1:3, taken from Swiss Lake and Calwich Abbey Lake. The sediment from Swiss Lake was a sand with a slightly acidic pH and low organic carbon while that from Calwich Abbey Lake was a slightly basic silt loam with a higher organic carbon content. Samples were treated with [¹⁴C]-dinotefuran at a rate of 0.2 mg.L⁻¹ which was applied to the surface of the water phase. Treated samples were incubated were

Belgium	Dinotefuran	CLH
---------	-------------	-----

incubated under aerobic or anaerobic conditions at 20±2°C in darkness for periods of up to 100 days, with volatile radioactivity trapped in KOH traps with phenolphthalein (for ¹⁴CO₂) and ethylene digol (for organic volatiles).

For the aerobic experiment, total recoveries of radioactivity (mass balances) were 94.4-100.8% AR for both aquatic sediments and radiolabels. Total radioactivity declined in water with time, representing means of 16.3% AR and 29.9% AR after 100 days in Calwich Abbey Lake and Swiss Lake samples, respectively. There were corresponding increases with time in sediment radioactivity (58.3 -77.5% at day 100). Non-extractable residues in the sediment accounted for means of 9.2% AR for Calwich Abbey Lake and 3.2% AR for Swiss Lake after 100 days. Volatile radioactivity, all associated with ¹⁴CO₂, represented 3.1% AR after 100 days in the Calwich Abbey Lake samples and 7.5% AR after 100 days in the Swiss Lake samples.

For the anaerobic experiment, total recoveries of radioactivity (mass balances) were 91.2-99.4% AR for both aquatic sediments and radiolabels. Total radioactivity declined in water with time, representing means of 15.7% AR and 24.5% AR after 100 days in Calwich Abbey Lake and Swiss Lake samples, respectively. There were corresponding increases with time in sediment radioactivity (69.9 - 79.3% at day 100). Non-extractable residues in the sediment accounted for means of 10.4% AR for Calwich Abbey Lake and 5.8% AR for Swiss Lake after 100 days. Volatile radioactivity, all associated with ¹⁴CO₂, represented approximately 1 % AR after 100 days in both sediments.

Chromatographic profiles were qualitatively similar between radiolabels and aquatic sediments. A significant metabolite in both the aerobic and anaerobic experiments was DN, formed by loss of the 2-nitro group. This degradation product accounted for up to 74.4% AR in the total system. A number of minor degradation products were found, each accounting for 9.6% AR in any system.

DT₅₀ and DT₉₀ values (in days) for the decline of dinotefuran from the water, sediment and total aquatic sediment system are shown in **Table 4.5** below.

Water-Sediment system	Component	DT ₅₀ (d)	DT ₉₀ (d)		
Aerobic experiment					
	Surface Water	18.8	62.3		
Calwich Abbey	Sediment	14.6	48.6		
	Total System	24.2	80.3		
	Surface Water	47.1	156		
Swiss lake	Sediment	128	425		
	Total System	64.0	213		

Table 4.5 Aquatic degradation of dinotefuran an	d major metabolite DN at 20°C (, 2011c
---	---------------------------------	---------

~ . . .

Belgium	Dinotefuran	L	LH
	Anaerobic experime	ent	
	Surface Water	19.8	65.9
Calwich Abbey	Sediment	36.4	121
	Total System	26.0	86.5
	Surface Water	36.6	122
Swiss lake	Sediment	32.1	107
	Total System	48.3	160

In the study of (2020a), the aerobic degradation of ¹⁴C-labelled Dinotefuran was investigated in two natural water-sediment systems outdoors under natural sunlight. The sediments and overlying natural waters were collected from Calwich Abbey, Staffordshire, UK and Emperor Lake, Chatsworth, Derbyshire, UK.

Samples of each sediment and its associated surface water at an approximate ratio of 1:3 to 1:3.5 (with a sediment layer of 2.0 cm) were treated with [¹⁴C]-dinotefuran at a rate of 69.2 μ g a.i./L for Calwich Abbey samples and 61.8 μ g a.i./L for Emperor Lake samples, respectively, applied to the surface of the water phase. Treated samples were incubated outdoor under natural sunlight aerobic conditions at a temperature of 20-25°C for 14 days, with volatile radioactivity trapped in NaOH traps (for ¹⁴CO₂) and ethylene glycol (for organic volatiles). Samples were analysed immediately following test item application and after the following periods of aerobic incubation: 3, 6, 18, 24 hours, 3, 7 and 14 days.

Total recoveries of radioactivity (mass balance) were 95.0 \pm 6.0% of AR (ranging between 90.4–106.9% AR) for Calwich Abbey test system and 100.4 \pm 5.4 % of AR (ranging between 90.9–110.8% AR) for Emperor Lake test system.

Dinotefuran degraded rapidly in both test systems during the incubation period. It accounted for a mean of 1.2% AR in the total Calwich Abbey test system and 12.1% AR in the total Emperor Lake test system, by 14 DAT. Only low levels of dinotefuran were observed in sediment extracts, reaching a maximum of 3.4% AR at 0.125 DAT and 1.6% AR at 7 DAT for Calwich Abbey and Emperor Lake, respectively. A significant level of radioactivity was attributed to polar material for both test systems. This reached a maximum level of 53.3% AR in Calwich Abbey Day 14 Replicate 2 and 35.7% AR in Emperor Lake Day 7 Replicate 1 for the total test system. A structure was postulated for a radiolabelled component (component A).

The degradation rate (DT₅₀ and DT₉₀) of dinotefuran was determined using non-linear regression and a single first order kinetic model (SFO, CAKE, Version 3.3). The degradation rates are summarised in **Table 4.6** below:

Table 4.6 Aquatic degradation of dinotefuran and major metabolite DN at 20°C (2020a)

Water-Sediment system	Component	DT ₅₀ (d)	DT ₉₀ (d)
Calwich Abbey	Surface Water	2.15	7.14

	Belgium	Dinotefuran	CL	_H
				Γ
		Total System	2.19	7.27
Emperor Lake		Surface Water	2.88	9.58
		Total System	3.07	10.2

¹⁴CO₂ (max. 34.9%) + bound residues (max. river: 29.5%, pond: 62.9%) + minor unknown degradates (max. 3.3%)

Conclusion

Belgium	Dinotefuran	CLH
---------	-------------	-----

The study of (2011c) has been re-evaluated by eCA NL in the frame of a product authorization. The degradation kinetics were recalculated using Computer Assisted Kinetic Evaluation (CAKE version 3.3) software and following the guidance : OECD 308, RIVM manual, OPPTS 835 3100 and OPPTS 835 3180. This re-evaluation has been the subject of a discussion during ENV WG-V-2019 to determine whether Dinotefuran meet the (very) persistence criteria. The WG agreed with the DT₅₀ calculations performed by the eCA.

The study of **COUCE** (2020b) presents a re-evaluation of the water sediment degradation kinetics studies conducted with Dinotefuran (i.e. of (**COUCE**, 2000), **COUCE**, 2011c and **COUCE**, 2020a) in order to estimate degradation half-lives (DT₅₀) for ¹⁴C-Dinotefuran using Computer Assisted Kinetic Evaluation (CAKE version 3.3) software and following the FOCUS Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies (2006). The choice of the selected model took into consideration the visual assessment (good, acceptable, poor), estimation of the χ^2 (the best-fit model should be <15) and t-test (i.e. 5% significance level) to assess significance of the degradation parameters.

In the study conducted under aerobic conditions by (2000) and in the study conducted under aerobic and anaerobic conditions by (2011c), degradation of the parent compound and the formation and decline of metabolite DN were considered simultaneously, since DN was observed at 10 % of applied radioactivity (%AR) and therefore considered as a major metabolite. With respect to the sediment phase, due to its physico-chemical properties (i.e. high water solubility and low sorption corresponding respectively to >39 g/L and 25.4 L/kg) dinotefuran is not expected to sorb to the sediment. Due to these properties, residues in sediment should be interpreted as dinotefuran in solution of the interstitial water present in the sediment phase and not as dinotefuran directly sorbed to the sediment phase particles. Therefore, no calculation of DT₅₀ in the sediment compartment was performed as it was not expected to be reliable. The kinetic simulation of (2020a), considered simple degradation of the parent to sink for the whole system and water phase.

The DT₅₀ were normalised to reference temperature conditions of 12°C, following equation 28 of the GBPR (2017). In the studies from (2011c) and (2000) the experimental temperature corresponded to 20 °C, whereas in the study from (2020a) temperatures corresponded to 21.9°C and 22.9°C for Emperor Lake and Calwich Abbey Lake, respectively. Temperature-normalised DT₅₀ values for the aerobic and anaerobic degradation in studies are reported in **Table 4-7**.

The whole system DT50 of dinotefuran is available from >3 systems. Therefore according to the GBPR (2017), a geometric mean of 36.2 days is proposed by the Applicant. However taking into account the calculation agreed at ENV WG-V-2019, a geometric mean of 37.6 days is proposed to be used for risk assessment of the parent compound in the water-sediment compartment. For classification purposes, it was agreed at ENV WG-V-2019 the most stringent result should be used according to REACH R11 criteria. Consequently it is appropriate to use of the value of 145.40 days (Swiss lake, normalised to 12°C).

Belgium	Dinotefuran	CLH
---------	-------------	-----

Table 4.7 Aquatic degradation of Dinotefuran under aerobic and anaerobic conditions after normalisation to referencetemperature of 12°C

Aerobic conditions						
Water-Sediment system	Phase	DT ₅₀ (d) (1990) , 2020b)	Normalised DT₅₀ (d) (, 2020b)	Normalised $DT_{50}(d)$		
River (, 2000l)	Surface Water	50.8	96.3	-		
Pond (2000I)	Surface Water	50.8	96.3	-		
Calwich Lake	Surface Water	20.1	38	42.98 ¹		
Swiss Lake	Surface Water	50.4	95.5	107.80 ¹		
Calwich Abbey Lake	Surface Water	2.15	5.14	-		
Calwich Abbey Lake	Surface Water	2.88	6.36	-		
2		1				
River (, 2000l)	Total System	59.1	112	112		
Pond (2000I)	Total System	46.5	88.2	88.2		
Calwich Lake (, 2011c)	Total System	26.1	49.4	55.81 ¹		
Swiss Lake	Total System	68	129	145.4 ¹		
Calwich Abbey Lake	Total System	2.19	5.24	5.24		
Calwich Abbey Lake	Total System	3.07	6.78	6.78		
GEOMETRIC MEAN	WHOLE SYSTEM	-	36.2	37.6		

Belgium	Dinotefuran	CLH
---------	-------------	-----

Anaerobic conditions					
Water-Sediment system	Phase	DT₅₀ (d) (1111) , 2020b)	Normalised DT₅₀ (d) (1999) , 2020b)		
Calwich Lake	Surface Water	21.0	39.8		
(, 2011c)	Total System	27.5	52.2		
Swiss Lake (, 2011c)	Surface Water	38.7	73.4		
	Total System	52.4	99.4		

¹ Values calculated by eCA NL and agreed at ENV WG-V-2019

Information on the metabolite DN is available from the studies conducted in the dark (2000) and 2011c). The study conducted by (2011c) does not allow for the selection of a reliable DT₅₀, considering that towards the end of the study, the concentration of the metabolite DN increases and a decline phase is not clearly observed during the whole incubation time (100 days). Nevertheless, in the study conducted by (2000), a decline phase is observed after 100 days, until the end of the study (i.e. 320 days of incubation). Therefore, the assessment of the decline phase for the metabolite DN, requires an incubation period longer than 100 days in order to observe the decline phase required to calculate a reliable and realistic DT50. Consequently, only the DT₅₀ values derived from (2000) should be taken into account.

Under exclusively anaerobic conditions, metabolite DN is formed as the major metabolite both in a soil degradation study (2000), and in a water/sediment study (2011c); therefore, DN is expected to be formed mainly under anaerobic conditions. In the studies conducted under aerobic conditions by 2000) and 2000 (2011c), DN is observed in concentrations which consider this metabolite to be a major metabolite in aerobic systems. However, in aerobic studies, the sediment layers immediately below the superficial layer are expected to be anaerobic because the oxygen pumped to the water/sediment system stays only in the superficial layer of the sediment. Therefore, degradation in aerobic systems also includes anaerobic processes, which are responsible for the formation of DN in aerobic studies. Diffusion processes are subsequently involved in the distribution of DN also in the water layer. Hence, a risk assessment for DN in the water and sediment compartment under aerobic conditions should not be performed.

Belgium	Dinotefuran	CLH
---------	-------------	-----

Belgium	Dinotefuran	CLH

A.4.1.1.3.3 Biodegradation in seawater

Seawater degradation study

 Table A-111: Summary table - Seawater aerobic biodegradation

No data is available.

Seawater/sediment degradation study

 Table A-112: Summary table - seawater/sediment biodegradation

Data waiving.

If a substance is to be used or released in marine environments in considerable amounts (e.g. it is known to be repeatedly used or continuously released in marine environments), then a seawater biodegradation test according to OECD Test Guideline 306 (Biodegradability in Seawater) will be required. The representative biocidal product is not intended for use where release in the marine environment would occur. Therefore, provision of this study is not required. For CLH purposed, the information provided in the fresh water section is considered enough to lead to a classification.

A.4.1.1.3.4 Higher tier degradation studies in water or sediment

Data waiving.

As a refinement for risk assessment, higher tier studies may be required. Based upon the use of the representative biocidal product, higher tier studies for refinement of risk assessment are not required.

A.4.1.1.3.5 Biodegradation during manure storage

 Table A-113: Summary table - Biodegradation during manure storage

Not applicable for the CLH report

A.4.1.1.3.6 Biotic degradation in soil

A.4.1.1.3.6.1 Laboratory soil degradation studies

Belgium Dinotefuran CLH

Aerobic biodegradation

Table A-114: Summary table - Aerobic biodegradation in soil- laboratory study

Method, Guideline, GLP	Test	Exposure	Τε	est syste	m		Test substance conc.	Incubation period	Degradation	Remarks	Reference
Reliability, Key	type		Soil origin	Soil type	рН	OC %	(mg a.s./ kg dsw)	(days)			
Commission Directive 95/36/EC of 14		20±2°C, in the dark							10.2	Metabolite MNG and NG were formed as major	(2003b), IUCLID no.
July 1995, SETAC 1995 Part 1, OECD Aerobic/anaero bic transformation in soil (draft, August 2000) GLP Reliability 1 Key study	Yes	10±2°C, in the dark	Gartenacker, Switzerland	Silt Ioam	7.2	1.8	0.3	120	21.1	degradation 10 products MNG reached a maximum of 15.6% AR at 20°C. NG accounted a maximum of 5.4% AR.	10.2.1
SETAC 1995 Part 1, 1.1			Ringenwald, Germany	Sand	6.25	1.19			16.4#	Dinotefuran mineralised to	(2001e),
Aerobic degradation,			Stolpe, Germany	Sandy Ioam	6.14	1.22			13.9#	¹⁴ CO ₂ ranging from 36.2% to	IUCLID no. 10.2.1
GLP Reliability 1		201200	Zwingenber, Germany	Loam	7.39	1.27			15.5#	70.2% AR for eleven soils. The	
Key study	Yes	in the	Karolinenhof Germany	Loamy sand	7.11	2.18	0.4	28 [#] and 49 ^{&}	10.7#	rate of degradation of	
		uark	Otzberg, Germany	Silt Ioam	7.31	1.46			9.4#	dinotefuran in soils was faster	
			Borstel, Germany	Loamy sand	5.60	1.77			23.0 ^{&}	mineralisation	
			Velten, Germany	Sand	4.22	1.42			65.5 ^{&}		

Ве	Belgium			Dinotefuran				
	Walluf,	Silt	7.20	1.60		26.1 ^{&}		
	Rossdorf, Germany	Loam	7.35	0.68		22.3 ^{&}		
	Phoeben, Germany	Sand	6.81	0.77		20.8 ^{&}		
	Mechthildsha usen, Germany	Loam	7.27	1.22		16.7 ^{&}		
¹ Test according to/equivalent to OECD criteria								
* Values are the same as those provided in the study reports; prior to kinetics re-evaluation and normalisation to 12°C. #Samples extracted on 28 day								
"Samples extracted on 28 day & Samples extracted on 28 day and additionally on 49 day of incubation								

Summary table - Metabolite MNG formed in aerobic biodegradation in soil of the active substance- laboratory study

Method, Guideline, GLP Test		Exposure	Test system			Test substance conc.	Incubation period	Degradation	Remarks	Reference	
Reliability, Key	суре		Soil origin	Soil type	pН	OC %	(mg a.s./ kg dsw)	(days)	D150 (uays)		
Commission Directive 95/36/EC of 14		20±2°C, in the dark							87.7		(2003b), IUCLID no.
July 1995, SETAC 1995 Part 1, OECD Aerobic/anaero bic transformation in soil (draft, August 2000) GLP Reliability 1 Key study	Yes	10±2°C, in the dark	Gartenacker, Switzerland	Silt Ioam	7.2	1.8	0.3	120	Not calculated		10.2.1
¹ Test according	¹ Test according to OECD criteria										
* values are the	* Values are the same as those provided in the study reports; prior to kinetics re-evaluation and normalisation to 12°C.										

Belgium	Dinotefuran	CLH
---------	-------------	-----

Belgium	Dinotefuran	CLH
---------	-------------	-----

Due to the restricted use pattern of the reference product – Dinotefuran 2% bait – with professional indoor application of gel bait to areas not prone to frequent wet cleaning for the control of cockroaches, the Applicant does not consider that data investigating the aerobic degradation of dinotefuran in soil should be required.

However, for completeness, an aerobic degradation study in one European soil at two different temperatures was provided. In the study by (2003b), the route and rate of aerobic degradation of ¹⁴C-labelled dinotefuran (achieved by mixing equal aliquots of guanidine labelled and furanyl labelled compound) in a single soil (silt loam) was investigated in the laboratory performed in line with Directive 95/36/EEC : Annex II – 7.1.1.2, SETAC : Part 1 guidance plus draft OECD guidelines and in accordance with the principles of GLP. Soil samples were treated with 0.31 mg.kg⁻¹ dwt of radio-labelled a.s. and were then incubated aerobically in the dark at both $10\pm2^{\circ}$ C and $20\pm2^{\circ}$ C for 120 days. Immediately after application (day 0) and 3, 7, 10, 14, 21, 28, 62 and 120 d, one sample of each system (10°C and 20°C) was taken for quantification by LSC and analysis by HPLC or TLC. In addition, duplicate samples were analysed on days 0 and 28 from the 20°C test system.

Characteristic	Test soil
Origin	Gartenacker, Switzerland
Soil classification (USDA)	Silt loam
Clay [%]	10.3
Silt [%]	52.3
Sand [%]	37.4
pH (0.01M CaCl ₂)	7.2
Organic carbon [g / 100 g soil]	1.8

13.1

67.5

27.0

CEC [meq / 100 g soil]

40 % MWC (g / 100 g wet soil)

Maximum WHC at pF1 (g / 100 g wet soil)

Table 4.8 Characteristics of test soil (aerobic degradation study)

¹⁴C-dinotefuran was shown to degrade quickly in aerated soil, with half-lives of 10.2 days (20°C) and 21.1 days (10°C) determined by first order kinetic modelling. Total recoveries of radioactivity (mass balance) were generally $93.5\pm1.8\%$ of AR for the 20°C test system (ranging between 91.0-95.9%AR) and $93.5\pm2.4\%$ of AR for the 10°C test system (ranging between 90.1-95.9% AR). Mineralisation to ¹⁴CO₂ was high at both temperatures, reaching maximum levels of 52.1% (20°C) and 43.7% (10°C) of AR by study completion (120 days). Bound residues in soil increased steadily during the study until they reached 25.7% AR (20°C test system) and 19.9% AR (10°C test system) at termination on day 120.

Although up to 9 degradation products were detected, only two main transformation products were characterised – MNG and NG (all others namely UF, FNG and 5 unidentified compounds were detected at \leq 1% in both test systems). Only MNG can be considered as a major metabolite with levels >10% AR reported during the study but NG (reported levels <6%) has also been monitored as it is considered to be a degradation product of MNG. There is evidence to show that neither of these metabolites of dinotefuran accumulated in either soil system but likely underwent further degradation. Levels of MNG reached a maximum of 15.6% AR after 28 days (20°C test system) and a maximum of 16.0% AR after 62 days (10°C test system), falling to 7.3% AR and 14.9% AR respectively by study completion.

Belgium	Dinotefuran	CLH
---------	-------------	-----

NG only reached a maximum of 5.2% AR on day 62 in the 20°C test system and a maximum of 5.4% AR on day 120 in the 10°C test system.

A new aerobic degradation study on 12 German soils, incubated at 20°C, was submitted in the frame of the renewal of the approval. In the study by (2001e), the route and rate of aerobic degradation of 14C-labelled Dinotefuran (achieved by mixing equal aliquots of guanidine labelled and furanyl labelled compound) was measured.

The kinetic of both studies was re-evaluated by (2020b) and (2020c), leading to a Dinotefuran geometric mean DT₅₀ of 32.4 days at 12°C (n=13). However some discrepancies were noted between the DT₅₀ values reported in the report of (2020b) and the report of (2020b) and the report of (2001e).

Therefore, the soil aerobic biodegradation was recalculated taking into account the half-lives values of the original report of (2001e). The DT₅₀ were normalised to reference temperature conditions of 12°C, following equation 28 of the GBPR (2017). Temperature-normalised DT₅₀ values are reported in **Table 4-8**.

The DT_{50} of Dinotefuran being available from 12 soil, a geometric mean of 32.4 days was derived according to the GBPR (2017), for risk assessment. For classification purposes, it was reminded at ENV WG-V-2019 the most stringent result should be used according to REACH R11 criteria. Consequently it is appropriate to use of the value of 190.9 days (Stolpe, Germany, normalised to 12°C).

Aerobic conditions										
Soil	Incubation temperature (°C)	Compound	DT ₅₀ (d) (1997), 2020b)	Normalised DT ₅₀ (d) (2020b)	DT₅₀ (d) (original study)	Normalised DT ₅₀ (d) (original study)				
Gartenacker, Switzerland (2003b)	20	Dinotefuran	9.79	18.6	10.2	19.3				
Gartenacker, Switzerland (2003b)	10	Dinotefuran	75.1	142	75.1	142.4				
Ringenwald, Germany (2001e)	20	Dinotefuran	20.3	17.3	21.1	18.0				
Stolpe, Germany (2001e)	20	Dinotefuran	224	191	224	190.9				
Zwingenber, Germany (2001e)	20	Dinotefuran	15.3	29	16.4	31.1				
Karolinenhof Germany (2001e)	20	Dinotefuran	11.4	21.6	13.9	26.4				
Otzberg, Germany (2001e)	20	Dinotefuran	13.3	25.2	15.5	29.4				
Borstel, Germany (2001e)	20	Dinotefuran	10.8	20.5	10.7	20.3				
Velten, Germany (2001e)	20	Dinotefuran	9.5	18	9.4	17.8				

Table 4.9 Soil degradation of Dinotefuran under aerobic conditions after normalisation toreference temperature of 12°C

Belgium		Dinote	CLH			
Walluf, Germany (2001e)	20	Dinotefuran	21.5	40.8	23	43.6
Rossdorf, Germany (2001e)	20	Dinotefuran	65.3	124	65.5	124.2
Phoeben, Germany (2001e)	20	Dinotefuran	26.1	49.5	26.1	49.5
Mechthildshausen, Germany (2001e)	20	Dinotefuran	22.3	42.3	22.3	42.3
GEOMETRIC MEAN				31.0		32.4

Conclusion

Based upon the results of the two degradation studies in soil, it is evident that Dinotefuran will quickly degrade in soil under aerobic conditions, with a calculated geometric mean half-life (DT_{50}) of 32.4 days, normalized to 12°C. In addition, geometric mean DT_{90} values of 107.6 days (normalised to 12°C) was determined by first order kinetic modelling. Half-life modelling of the major metabolite MNG could only be performed using data obtained in the 20°C test system, giving rise a predicted DT_{50} of 87.7 days using first order kinetics.

When parent and metabolite are sequentially modelled together using SFO kinetics at 20°C, the UK CA as RMS for the first inclusion of the active had determined slightly faster half-lives than those reported in the study, with DT_{50} values 72.4 d (MNG). Therefore, as this value represent more appropriate determination of degradation half-lives, it is proposed to use these sequential DT_{50} values derived at 20°C and then normalise to 12°C (average EU outdoor temperature) for risk assessment purposes. As a consequence, corrected DT_{50} value in line with equation 28 of the of the GBPR (2017) would be 137 days (MNG).

Taking account of results obtained in this aerobic degradation study, the Applicant has proposed a route for metabolism of dinotefuran (coded as MTI-446) in the (aerobic) soil compartment.

Belgium	Dinotefuran	CLH

conditions)

Belgium	Dinotefuran	CLH
---------	-------------	-----

Anaerobic biodegradation

Table A-115: Summary table - Anaerobic biodegradation in soil- laboratory study

Method, Guideline, GLP status, Reliability, Key/suppor tive study	Tes t typ e ¹	Exposu re	Test system				Test sub- stance concen tr.	Incubati on period	Degradat ion DT50	Remark s	Referen ce
			Soil origin	Soil typ e	pН	OC %					
Commission Directive 95/36/EC of 14 July 1995, SETAC 1995 Part 1-2 Anaerobic degradation , EPA 162-2 (1982), JMAFF 12 Nohsan 8147, GLP, Reliability 1, Key study	Yes	20±2°C , in the dark	Gartenac ker, Switzerla nd	Silt Ioa m	7.2	1.7 8	0.31	120	Water phase: 22.0 Total system: 77.0	Metabolit e DN reached a max. of 33.1% in total system, additiona l 8.7% extracte d by harsh extractio ns. Metabolit e UF reached a max. of 7.7% in total system	(2003c). IUCLID no. 10.2.1

* Values are the same as those provided in the study reports; prior to kinetics re-evaluation and

normalisation to 12°C.

Due to the restricted use pattern of the reference product – Dinotefuran 2 % bait – with professional indoor application of gel bait to areas not prone to frequent wet cleaning for the control of cockroaches, the Applicant does not consider that data investigating the anaerobic degradation of dinotefuran in soil should be required.

However, for completeness, an anaerobic degradation study in one European soil at 20°C was provided. In the study by (2003c), the route and rate of anaerobic degradation of ¹⁴C-labelled dinotefuran (achieved by mixing equal aliquots of guanidine labelled and furanyl labelled compound) in a single soil (silt loam) was investigated in the laboratory performed in line with Directive 95/36/EEC : Annex II – 7.1.1.2, SETAC : Part 1 guidance plus US-EPA N-162-2 guidelines and in accordance with the principles of GLP. Soil samples were treated with 0.31 mg.kg⁻¹ dwt of radio-labelled a.s. and stored anaerobically (by flooding with water followed by incubation under a stream of nitrogen) in the dark at 20±2°C for 120 d. Immediately after application (day 0) and 3, 7, 14, 28, 59 and 120 d, one sample was taken for quantification by LSC and analysis by HPLC or TLC (duplicate samples were only analysed on days 0 and 120).

Belgium	Dinotefuran	CLH
---------	-------------	-----

Table	4.10	Characteristics	s of test soil ((anaerobio	degradation	study)

Characteristic	Test soil
Origin	Gartenacker, Switzerland
Soil classification (USDA)	Silt loam
Clay [%]	10.3
Silt [%]	52.3
Sand [%]	37.4
pH (0.01M CaCl ₂)	7.22
Organic carbon [g / 100 g soil]	1.78
CEC [meq / 100 g soil]	13.11
Maximum WHC at pF1 (g / 100 g wet soil)	67.5

Although the same Swiss sample (with identical batch number) was used in the aerobic and anaerobic soil degradation studies, slight variations in characteristics were noted in respective test reports

¹⁴C-dinotefuran was shown to degrade slowly under anaerobic conditions in soil, with a half-life for total system of 77.0 d (and DT_{90} of 256 d) at 20°C determined by first order kinetic modelling. Total recoveries of radioactivity (mass balance) were 96.0±2.5% of AR (ranging between 92.1–98.4% AR). Only limited mineralisation to ¹⁴CO₂ could be detected, reaching a maximum level of only 4.2% of AR by study completion (120 d). Bound residues in soil increased steadily during the study until they reached a maximum of 10.7% AR on day 59 and then dropped to 9.1% AR at termination on day 120.

The Applicant did investigate anaerobic degradation specifically within the water phase and predicted a DT_{50} of 22.0 d and DT_{90} of 183 d based upon biphasic modelling. However, this is not a true reflection of anaerobic degradation as it is clear from study results that dinotefuran dissipates from the water phase into the soil (solid) phase. Although a "water phase" DT_{50} of 22.0 d has been determined, the total system still contains 82.2% of applied dinotefuran at 28 d. As a result, these values have been disregarded for risk assessment purposes.

Although several minor degradation products were detected, only two main transformation products were characterised – DN and UF. Levels of both major metabolites increased over the study, with DN reaching a maximum of 33.1% AR after 120 d and UF reaching a maximum of 7.7% AR after 120 d. Harsh extraction of soil samples at 120 days gave rise to total DN levels of 41.8% AR at study completion.

It should be noted that whilst significant levels of DN were detected in the anaerobic soil degradation study when negligible amounts were detected in the aerobic degradation study (0.2% DN was detected only after harsh extraction of soil sample at 120 days in the 20°C test system), formation may not be as a result of unique reactions occurring under anaerobic conditions. Levels of DN are comparable to those observed in the aerobic degradation study (see 4.1.1.2.2) but, whilst soil samples in the anaerobic degradation study were flooded with water prior to incubation under nitrogen, dinotefuran was not added until anaerobic conditions were established. It has been suggested that in water-sediment studies, the overlying water is aerated but in a manner to avoid disturbance to the sediment layer and so only the sediment surface may be considered as aerobic. If

Belgium	Dinotefuran	CLH
---------	-------------	-----

underlying sediment can therefore be considered anaerobic, then DN would most likely form in anoxic conditions and not be considered as a significant aerobic degradate.

Conclusion

Based upon the study results, it is evident that dinotefuran will slowly degrade in soil under anaerobic conditions, with an estimated "total system" half-life (DT_{50}) of 77.0 d plus DT_{90} of 256 d at 20°C using first order kinetic modelling. Half-life modelling of its major metabolites, DN and UF, could not be performed due to a lack of reported degradation. For risk assessment purposes, it is proposed to use the "total system" DT_{50} value presented in the study summary for dinotefuran at 20°C and normalise to 12°C (average EU outdoor temperature). Therefore, the corrected DT_{50} value in line with equation 25 of the TGD would be 146 d (for dinotefuran).

Based upon results obtained in the anaerobic degradation study, the Applicant has proposed a route for metabolism of dinotefuran (coded as MTI-446) in the (anaerobic) soil compartment.

non-extractables, minor amounts of carbon dioxide

Figure A-4-3 Proposed metabolic pathway for dinotefuran in soil (under anaerobic conditions)

Photodegradation on soil

Table : Summary table – Photodegradation on soil- laboratory study

Method, Guideline, GLP status	Exposure		Test syst	tem		Test	Incubation period	Incubation	Incubation	Test substance		e Incubation	Degradation	Remarks	Peference
Reliability, supportive study	Exposure	Soil origin	Soil type	pН	OC %	concentr.		(DT50, days)*		Reference					
EPA 161- 3, SETAC 1995, Section 2.0,	20±1°C, 12 h light/ 12 h dark	Ohio, USA	Loamy sand	6.9	1.1	0.56	32	46	Minor metabolites were detected at levels of	(2001g), IUCLID no. 10.2.1					

-	Belgi	Belgium Dinotefuran CLH									
GLP Relia 1 Supp stud	bility portive y									3.4%AR or less.	
* Va 12° (lues are C.	the same a	is those	provide	d in t	he stı	ıdy reports;	prior to kineti	cs re-evaluatio	on and norma	lisation to

A.4.1.1.3.6.2 Higher tier degradation studies in soil

Field dissipation studies (field studies, two soil types)

Table A-116: Summary table - Field dissipation

Data waiving.

As a refinement, higher tier field studies (soil and/or water-sediment compartment) may be required to identify secondary ecological effects when a habitat such as a water body, wetland, forest or field is treated. The representative biocidal product is not intended to treat natural habitats. Therefore, provision of this study is not required.

A.4.1.1.3.7 Short summary and overall relevance of the provided information on degradation and conclusion on rapid degradation for classification and labelling purposes

The abiotic degradation of dinotefuran studies include hydrolysis, photolysis in water and on soil as well as photo-oxidation in air. Dinotefuran was found to be hydrolytically stable at environmentally relevant pH (4 to 9). The active substance underwent rapid photolysis in water under artificial light with a DT₅₀ of 0.9 days under the experimental conditions. According to laboratory and literature data, photolysis in water may be a major and rapid pathway for the disappearance of dinotefuran from the aquatic environment. The photo-oxidation of Dinotefuran in air was calculated to be rapid, with a DT₅₀ of 2.4 h predicted by the software program AOPWIN.

Dinotefuran failed to pass the 10 days window criteria in ready-biodegradability test. However, it underwent significant biodegradation in aerobic water-sediment studies: the degradation was investigated in four water-sediment systems under dark laboratory conditions at 20°C and two systems under outdoor natural light representing more realistic conditions (Table 69). Under anaerobic conditions, Dinotefuran degraded with a DT₅₀ ranging between 26.0 days (Calwich Abbey) and 48.3 days (Swiss Lake) at 20°C. A total system geometric mean DT₅₀ of 37.6 days (normalised to 12°C) was derived from the DT₅₀ values available for six aerobic water-sediment systems. The geometric mean DT₅₀ will be used for the risk assessment. For classification purposes, the most stringent result should be used according to REACH R11 criteria. Consequently it is appropriate to use of the value of 145.40 days (Swiss lake, normalised to 12°C).

DN is the major metabolite in all dark water-sediment degradation studies : it reached a maximum level of 69.9% AR under aerobic conditions and a maximum of 74.4% AR in the anaerobic conditions in the lake system (Calwich Abbey). In the degradation study under aerobic and sunlight conditions, an unknown metabolite (component A), which was not observed in the studies conducted in the dark, reached a maximum of 15.8% AR in the Calwich Abbey Lake water phase while metabolite DN was not found.

Degradation of dinotefuran in soil was performed in 12 soils under aerobic conditions in the laboratory. Dinotefuran degraded in soil to form MNG as a major metabolite. The normalised geometric mean DT_{50} of 32.4 days at 12 °C, derived from 12 soils, will be used for risk assessment while the most

Belgium	Dinotefuran	CLH

stringent half-life of 190.9 days (Stolpe, Germany, normalised to 12°C) should be used for classification according to REACH R11 criteria.

It is noted that the photolysis on soil was slower than the degradation by microorganisms, with an estimated DT_{50} of 46 days. Moreover under anaerobic conditions, Dinotefuran degraded to form the major metabolite DN reaching a maximum of 33.1% in total system.

According to the above results Dinotefuran is **not** considered **rapidly degradable** in natural environment

A.4.1.2 Distribution

A.4.1.2.1 Adsorption onto/desorption from soils

Method, Guideline, GLP status, Reliability, Key/supporti ve study	Soil	Adsorbe d AS [%]**	Ка	KaO C	Kd, KdOC Ka/K d	R²	1/n	Remarks	Referenc e																																			
OECD TG 106 (2000), Commission Directive 95/36/EC,	Soil 1: (Speyer 2.2, Germany)	13.1%#	0.11 9	6	1.429 ; 66; 0.083	0.984 1	0.84 7	Adsorption- desorption (2001e) isotherms IUCLID were no. determined 10.1.2 in an advanced test on five soils at five concentratio ns covering two orders of magnitude. The soil/solution ratio was 1:1 and an equilibrium time of 48 hours was used. According to McCall Classification , dinotefuran was found to have very high mobility in soils.	Adsorption- desorption isotherms were determined in an advanced test on five	(2001e). IUCLID no. 10.1.2																																		
EPA 163-1 (1989), Annex	Soil 2: Senozan, France	20.1%#	0.21 5	22	1.778 ; 178; 0.121	0.994 7	0.87 7			in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five	in an advanced test on five
Revision 3 by FAO (draft 1993), GLP, Reliability 1,	Soil 3: North Dakota, USA	63.1%	1.00 9	42	9.524 ; 397; 0.106	0.997 6	0.84 7																																					
Key study	Soil 4: North Dakota, USA	47.2%	0.71 3	45	3.405 ; 213; 0.209	0.998 3	0.87 7																																					
	Soil 5: Minnesot a, USA	61.6%	1.22	42	8.680 ; 299; 0.141	0.997 8	0.89 2		soil/solution ratio was 1:1 and an equilibrium time of 48 hours was used. According to McCall Classification , dinotefuran was found to have very bigh mobility	and an equilibrium time of 48 hours was used. According to McCall Classification , dinotefuran was found to have very high mobility	ratio was 1:1 and an equilibrium time of 48 hours was used. According to McCall Classification , dinotefuran was found to have very high mobility																																	

Table A-117: Summary table - Adsorption/desorption

Ka = Adsorption coefficient

KaOC = Adsorption coefficient based on organic carbon content

Kd = Desorption coefficient

KdOC = Desorption coefficient based on organic carbon content

Ka/ Kd = Adsorption / Desorption distribution coefficient

** % of applied amount adsorbed after 48 hours in screening test

% of applied amount adsorbed after 48 hours in preliminary test

Belgium	Dinotefuran	CLH
---------	-------------	-----

Table A-118: Summary table - Adsorption/desorption metabolite/ degradant/ transformation- or reaction product

Adsorption / desorption of dinotefuran in soil was investigated by means of a preliminary, screening and advanced study performed to OECD Guideline 106, Commission Directive 95/36/EC plus US-EPA OPP Guideline N-163-1 and in accordance with the principles of GLP (1990), 2001e).

In the preliminary study, aqueous test solutions of guanidine side chain ¹⁴C-labelled dinotefuran were prepared in 0.01M CaCl₂ at a concentration of 0.259 mg mL⁻¹ and applied to 20 g, 4 g and 1 g samples of two different soil types (loamy sand and silt loam). Samples were then incubated on a shaker at 20°C in the dark, with aliquots removed and analysed after 2, 4, 24 and 48 h (by LSC at all sampling points and HPLC only at 48 h) to study adsorption behaviour of the test compound.

In the screening study, aqueous test solutions of guanidine side chain ¹⁴C-labelled dinotefuran were prepared in 0.01M CaCl₂ at a concentration of either 0.463 mg.L⁻¹ or 0.519 mg.mL⁻¹ and applied to 10 g samples of six different soil types (loamy sand, silt loam, loam, sandy loam, clay loam and sand). Samples were then incubated on a shaker at 20°C in the dark, with aliquots removed and analysed after 2, 4, 24 and 48 h (by LSC at all sampling points and HPLC only at 48 h) to determine adsorption and distribution coefficients kd and KOC. Values were found to range between 9.0 L.kg⁻¹ (loamy sand)–71.0 L.kg⁻¹ (loam), giving rise to an arithmetic mean KOC of 41.5 L.kg⁻¹ (n=6) in the screening study.

In the advanced study, aqueous test solutions of guanidine side chain ¹⁴C-labelled dinotefuran were prepared in 0.01M CaCl₂ at five concentrations (0.964, 0.243, 0.049, 0.024 and 0.010 mg l-1) and applied to 10 g samples of five different soil types (loamy sand, silt loam, loam, sandy loam and clay loam). Samples were then incubated on a shaker at 20 °C in the dark, with aliquots removed and analysed after 2, 4, 24 and 48 h (by LSC at all sampling points and HPLC only at 48 h) to determine adsorption isotherms and analysis after 4, 24 and 47 h for desorption isotherms.

During each phase of the study (preliminary, screening and advanced), the test material ¹⁴C-dinotefuran was shown to be stable in both aqueous solution and soil/solution mixture, with mass balance indicating no loss of radioactivity. Based upon test results presented in Table 4.13, sorption appeared to correlate reasonably well with soil organic carbon content.

Conclusion

Based on the results from the advanced study, dinotefuran has the potential for high mobility in a variety of soil types as K_{OC} values in the five soil types ranged from 6.0–45.0 L.kg⁻¹ (with an arithmetic mean K_{OC} of 31.4 L.kg⁻¹ where n = 5). This mean value compares favourably with the mean value derived in the screening study (K_{OC} of 41.5 L.kg⁻¹ where n=6).

It is proposed to use the geometric mean Ka_{OC} of 25.4 L.kg⁻¹ derived from the advanced study for risk assessment purposes under PT 18, in accordance with the BPR Guidance, Vol IV, Parts B+C, Version 2.0, October 2017).

A.4.1.2.2 Higher tier soil adsorption studies

No higher tier soil adsorption studies were performed for dinotefuran.

A.4.1.2.3 Volatilisation

Regarding volatilisation, please see Part A, section 1.3 Physical and chemical properties of the active

Belgium Dinotefuran	CLH
---------------------	-----

substance.

A.4.1.3 Bioaccumulation

Measured aquatic bioconcentration

Table A-119: Summary table - Measured aquatic bioconcentration

Data waiving.

The experimental determination may not need to be carried out if it can be demonstrated on the basis of physicochemical properties (e.g. log K_{OW} <3) or other evidence that the substance has a low potential for bioconcentration. The aquatic bioconcentration factor has been estimated as the log K_{OW} of Dinotefuran is -0.549. Therefore, provision of this study is not required.

Estimated aquatic bioconcentration

Basis for estimation	Log Kow (measured)	Estimated BCF for fish (freshwater)	Estimated BCF for fish eating bird/predator	Remarks	Reference
BCF for fish is derived from	0.549at 25 °C (, 2000a)	0.014 (1 982) ¹ ;			IUCLID 9.1.7
properties of dinotefuran		0.068 (., 1979) ²			

Table A-120: Summary table - Estimated aquatic bioconcentration

, 1982. Correlation of bioconcentration factors. Env. Sci.Technol. 16: 274 – 278
1979, Measuring and estimating the bioconcentration factor of chemicals on fish. J.Fish.Res. Board Can. 36: 1040-1048

Therefore no studies were submitted to address the bioconcentration potential of dinotefuran in the aquatic compartment on the basis that bioconcentration testing with aquatic organisms is unnecessary as the log K_{ow} is -0.549at pH 7 (and 25°C). The lack of potential for bioconcentration can be further supported using the available QSAR equation developed by Veith *et al.*, (1979), according to the BPR guidance, Vol IV, Part A, Version 1.2, May 2018 and the equation 93 of BPR Guidance, Vol IV, Parts B+C, Version 2.0, October 2017):

Log BCF_{fish} = $(0.85 * \log K_{ow}) - 0.70 = -1.166$

Although the model is considered most appropriate for substances with log K_{ow} values between 2–6, the BCF_{fish} value for dinotefuran of only 0.068 is indicative that this substance would not trigger a concern for bioconcentration or bioaccumulation. Furthermore, the Applicant has submitted additional BCF modelling performed to the Mackay BCF regression model (Mackay, 1982) which indicates a potential bioaccumulation factor of only 0.014.

Considering the potential persistency of the major metabolite DN in aquatic systems based upon

Belgium	Dinotefuran	CLH
---------	-------------	-----

reported (normalised) DT_{50} values of 165–199 d from water-sediment studies, some assessment of aquatic bioaccumulation should also be performed. Although no partition coefficient data are currently available, US-EPA EPISuite v4.11 (KOWWIN) predicts a log K_{ow} value for DN of -0.18 using a SMILES notation of N=C(NC)NCC1CCOC1. This converts to a log BCF_{fish} of -0.853 and BCF_{fish} value of 0.14, indicating that this aquatic metabolite would not trigger a concern for bioconcentration or bioaccumulation.

Measured terrestrial bioconcentration

Not applicable for the CLH report

Table A-121: Summary table - Measured terrestrial bioconcentration

Not applicable for the CLH report

Estimated terrestrial bioconcentration

Not applicable for the CLH report

Table A-122: Summary table - Estimated terrestrial bioconcentration

Not applicable for the CLH report

A.4.1.3.1 Short summary and overall relevance of the provided information on bioaccumulation and conclusion on bioaccumulation potential for classification and labelling purposes

The log K_{ow} of dinotefuran is -0.549at 25°C and the estimated BCF value for fish. As the log K_{ow} of dinotefuran is <4, dinotefuran has a very low potential for bioaccumulation and consequently thus not meet the classification criteria for bioaccumulation.

A.4.1.4 Monitoring data

Not monitoring data is available

Belgium	Dinotefuran	CLH

A.4.2 Effects on environmental organisms

A.4.2.1 Atmosphere

Not applicable for the CLH report

A.4.2.2 Toxicity to sewage treatment plant (STP) microorganisms

Inhibition of microbial activity (aquatic)

Table A-123: Summary table - Inhibition of microbial activity

Method, Guideline, GLP status, Reliability, Key/support ive study	Species/ Inoculu m	Endpoint	Exposure		Results			Referenc e
			Design	Duration	NOEC	EC10	EC50	
Respiration inhibition test OECD TG 209 (2010) GLP Reliability: 1 Key study	Activated sludge microorga nisms	Respiration rate	3 concentrations	3 h	1000 mg/L (nominal)	-	>1000 mg/L (nomi nal)	, 2012a IUCLID 9.1.5

An activated sludge respiration inhibition test was performed with dinotefuran technical (99.4%) to investigate the effects on microbial activity. The study was performed in accordance with the OECD Guideline 209 (2010).

A range-finding test was performed which also served as a limit test with test item concentrations of 10, 100 and 1000 mg/L. The test parameters examined were total inhibition, inhibition of the heterotrophic organisms and inhibition of nitrifying bacteria.

The study was well conducted and both the NOEC of 1000 mg/L and the 3 h EC_{50} value of >1000 mg/L are considered reliable and appropriate for use in risk assessment.

Belgium	Dinotefuran	CLH
---------	-------------	-----

A.4.2.3 Aquatic compartment

A.4.2.3.1 Freshwater compartment

Acute/short-term toxicity (freshwater)

Table A-124: Summary table – acute/short-term aquatic toxicity

Method, Guideline, GLP status, Reliability,	Species	Endpoint/	Test material	Exposure		Results	Remarks	Reference
Key/supportive study		Type of test	(purity)	Design	Duration	LC/EC ₅₀ /ErC ₅₀		
Fish					-			
Acute toxicity OPPTS 850.1075 EEC C.1 OECD TG 203 (1992) GLP Reliability: 1 Key study	Rainbow trout (<i>Oncorhyncus</i> <i>mykiss</i>)	Mortality Sublethal effects	dinotefuran (97.26%)	Limit test	96 h	> 100 mg/L (nominal)		, 1999 1st amendment Author, 2000 IUCLID 9.1.1
Acute toxicity OPPTS 850.1075 EEC C.1 OECD TG 203 (1992) GLP Reliability: 1 Supportive study	Sheepshead minnow (Cyprinodon variegatus)	Mortality Sublethal effects	dinotefuran (99.2%)	Limit test	96 h	> 109 mg/L (mean measured)		, 2001a IUCLID 9.1.1
Acute toxicity OPPTS 850.1075 EEC C.1 OECD TG 203	Bluegill sunfish (<i>Lepomis</i> <i>macrochirus</i>)	Mortality Sublethal effects	dinotefuran (97.26%)	Limit test	96 h	> 100 mg/L (nominal)		, 2000a 1st amendment 2000a IUCLID 9.1.1

	Belgium		Dinotef	furan		CLH	_	
		-				-	-	
(1992)								
GLP Reliability: 1								
Supportive study								
Acute toxicity	common carp	Mortality	dinotefuran	Limit test	96 h	> 100 mg/L		, 2000b
OPPTS 850.1075	(Cyprinus carpio)	Sublethal	(97.26%)			(nominal)		IUCLID 9.1.1
EEC C.1		effects						
OECD TG 203								
(1992)								
GLP Poliability: 1								
Supportive study								
Acute toxicity	Rainbow trout	Mortality	DN	Extended limit test,	96 h	> 100 mg/L		, 2002a
OPPTS 850.1075	(Oncorhyncus	Sublethal	phosphate	3 concentrations		(nominal)		IUCLID 9.1.1
EEC C.1	mykiss)	effects	(99.95%)					
OECD TG 203								
(1992) CLP								
Reliability: 2								
Key study								
Acute toxicity	Bluegill sunfish	Mortality	DN	Extended limit test,	96 h	> 100 mg/L		, 2002b
OPPTS 850.1075	(Lepomis	Sublethal	phosphate	3 concentrations		(nominal)		IUCLID 9.1.1
EEC C.1	macrochirus)	effects	(n.r.)					
OECD 1G 203								
(1992) GLP								
Reliability: 2-3								
Supportive study								
Invertebrates								
Acute toxicity	Daphnia magna	Immobilisation	dinotefuran	Limit test	48 h	> 1000 mg/L		, 2000b,
OPPTS 850.1010			(97.26%)			(nominal)		1st amendment
(1984)								10CLID 3.1.2
GLP								
Reliability: 1								
Key study								
Acute toxicity	Daphnia magna	Immobilisation	DN	Extended limit test,	48 h	>100 mg/L		, 2001b

	Belgium		Dinotef	uran		CLH	
OPPTS 850.1010 EEC C.2 OECD TG 202 (1992) GLP Reliability: 1 Key study			phosphate (99.5%)	3 concentrations		(nominal)	IUCLID 9.1.2
Algae (growth inhib	ition)		1				
Acute toxicity OECD TG 201(1984) EEC C.3 (1992) OPPTS 850.5400 GLP Reliability: 1 Key study	<i>Pseudokirchneriel la subcapitata</i>	Growth inhibition	dinotefuran (97.26%)	Dose response, 3 concentrations	96 h	>100 mg/L (nominal)	amendment Author, 2000 IUCLID 9.1.3
Acute toxicity OECD TG 201(1984) OPPTS 850.5400 GLP Reliability: 2 Key study	<i>Selenastrum capricornutum</i>	Growth inhibition	DN phosphate (99.5%)	Dose response, 3 concentrations	96 h	>100 mg/L (nominal)	, 2002c IUCLID 9.1.3
Other aquatic plants	5				I		
Acute toxicity OPPTS 850.4400 OECD TG 221 (draft 2000) GLP Reliability: 1 Key study	Lemna gibba	Growth inhibition	dinotefuran (99.2%)	dose response	7 d	>110 mg/L (nominal)	IUCLID 9.1.10

Description of the available acute toxicity studies

Acute (short-term) toxicity to fish - Dinotefuran

Belgium	Dinotefuran	CLH
---------	-------------	-----

Four studies were performed in different species to investigate the acute toxicity of dinotefuran (as MTI-446) to fish : bluegill sunfish (*Lepomis macrochirus*), common carp (*Cyprinus carpia*), sheepshead minnow (*Cyprinodon variegatus*) and rainbow trout (*Oncorhynchus mykiss*). Endpoints (LC₅₀) for these studies were >100, >100, >109 and >100 mg/L respectively. Since only one acute fish study is required by the Technical Guidance Document, a Robust Study Summary was only submitted for the rainbow trout and the results presented here. The rainbow trout is the species most commonly used in ecotoxicity tests and is known to be a suitable and sensitive representative species.

An acute 96-hour static study (limit test) was performed to determine the toxicity of dinotefuran (MTI-446) to rainbow trout (*Oncorhynchus mykiss*). The study was performed in accordance with the following guidelines: US EPA OPPTS 850.1075, Commission Directive 92/69/EEC (C.1) and OECD Guideline No.203.

The LC₅₀ (>100 mg/L) of dinotefuran to rainbow trout was determined directly from the raw data as there was no mortality or any sign of toxicity in the test item group. The results from additional studies (based in either nominal or measured values) support this endpoint with similar LC₅₀ values reported for freshwater and marine species (100 – 109 mg/L). Indeed, no mortality or any sign of toxicity were reported at the test concentrations.

The study was well conducted using an appropriate species and it is considered that the endpoint from this study can be used to address the acute toxicity to fish. Therefore, the 96-hour LC_{50} of 100 mg/L is considered suitable for use in the risk assessment.

Belgium Dinotefuran CLH

Acute (short-term) toxicity to fish - DN phosphate

Two acute 96-hour semi-static studies (extended limit test) were performed to determine the toxicity of DN Phosphate to rainbow trout (*Oncorhynchus mykiss*) and bluegill sunfish (*Lepomis macrochirus*).

An acute 96-hour static study (limit test) was performed to determine the toxicity of DN Phosphate to rainbow trout (*Oncorhynchus mykiss*). The study was performed in accordance with the following guidelines: US EPA OPPTS 850.1075 and OECD Guideline No.203.

The concentration of the test item in the control and the highest dose used (100 mg/L) was measured at 0, 24, 72 and 96 h (prior to any medium change) and the endpoints determined using the nominal concentration. The LC₅₀ (>100 mg/L) of DN Phosphate to rainbow trout was determined directly from the raw data as there was no mortality or any sign of toxicity in the test item group. The results from an additional study in bluegill sunfish support this endpoint with an identical LC₅₀ value reported (based on nominal values). Indeed, no mortality or any sign of toxicity were reported at the test concentrations.

The study was well conducted using an appropriate species and it is considered that the endpoint from this study can be used to address the acute toxicity to fish. Therefore, the 96-hour LC_{50} of 100 mg/L is considered suitable for use in the risk assessment.

Acute (short-term) toxicity to aquatic invertebrates – Dinotefuran

A static 48-hour limit test was performed to assess the acute toxicity of dinotefuran (MTI-446) to *Daphnia magna*. The study was performed in accordance with the following guidelines: OECD Guideline No.202 (Part 1), Directive 92/69/EEC (Part C.2) and US EPA OPPTS 850.1010.

The test was performed at a nominal concentration of 1000 mg/L. The concentration of the test item was measured at the beginning and end of the test and found to be within acceptable limits. Immobility was the endpoint assessed.

The study was well conducted using an appropriate species and it is considered that the endpoint from this study could be used to address the toxicity of dinotefuran to aquatic invertebrates. The 48-hour EC₅₀ of >1000 mg/L is considered suitable for use in risk assessment. No mortality was recorded in the test item group. However, an additional acute study performed with the saltwater mysid (*Mysidopsis bahia*) demonstrated far greater sensitivity to dinotefuran (LC₅₀ 0.79 mg/L) as does the chironomid acute study (see Section 4.2.1.3.1) with an LC₅₀ of 72.1 µg/L. Consequently, given the apparent insensitivity of daphnids and the intended use of the product, it is believed that the sensitivity of these alternative species should be considered when performing the risk assessment.

Acute (short-term) toxicity to aquatic invertebrates – DN phosphate

A static 48-hour extended limit test was performed to assess the toxicity of DN Phosphate to *Daphnia magna*. The study was performed in accordance with the following guidelines: OECD Guideline No.202 (Part 1), Directive 92/69/EEC (Part C.2) and US EPA OPPTS 850.1010.

The test was performed at nominal concentrations of 1, 10 and 100 mg/L. Concentrations of test item were measured at the beginning and end of the test in the highest dose group used. The endpoint was determined using the nominal concentrations.

The study was well conducted using an appropriate species and it is considered that the endpoint

Belgium	Dinotefuran	CLH
---------	-------------	-----

from this study can be used to address the toxicity of DN Phosphate to aquatic invertebrates. The 48-hour EC_{50} of >100 mg/L is considered suitable for use in risk assessment. No mortality was recorded at test concentrations.

Acute (short-term) toxicity to algae – Dinotefuran

A 96 h static algal growth inhibition study was performed to determine the effect of dinotefuran (MTI-446) on the growth of *Pseudokirchneriella subcapitata*. The study was performed in accordance with the following guidelines : US EPA OPPTS 850.5400, OECD Guideline No.201 1984 and Directive 92/69/EEC (C.3).

The test was performed at nominal concentrations of 6.25, 12.5, 25, 50, and 100 mg/L. Concentration of the test item was measured at the highest dose level prior to test initiation and after 96 hours.

Test parameters examined were biomass and growth rate with samples taken at 24, 48, 72 and 96 hours to determine cell density.

This study was well conducted using an appropriate species and it is considered that the endpoint from this study can be used to address the acute toxicity to algae. The 96 h E_rC_{50} was considered to be 100 mg/L and is appropriate for use in risk assessment. No significant effect on growth rate or biomass was recorded at test concentrations (p < 0.05).

Acute (short-term) toxicity to algae – DN phosphate

A 96 h static algal growth inhibition study (extended limit test) was performed to determine the effect of DN Phosphate on the growth of *Selenastrum capricornutum* (now known as *Pseudokirchneriella subcapitata*). The study was performed in accordance with the following guidelines: US EPA OPPTS 850.5400 and OECD Guideline No.201 (1984).

The test was performed at nominal concentrations of 1, 10 and 100 mg/L. Concentrations of the test item were determined the highest dose concentration and the control at 0 and 96 hours. Test parameters examined were cell concentrations and growth rate. Samples were taken at 24, 48, 72 and 96 hours to determine cell densities.

This study was well conducted using an appropriate species and it is considered that the endpoint from this study can be used to address the acute toxicity to algae. The 96 h E_rC_{50} was considered to be 100 mg/L and is appropriate for use in risk assessment. No significant effect on growth rate or biomass was recorded at test concentrations (p < 0.05).

Acute (short-term) toxicity to other aquatic plants – Dinotefuran

A semi-static, 7 day growth inhibition test was conducted to investigate the effect of dinotefuran (MTI-446) on the aquatic higher plant *Lemna gibba*. The study was performed in accordance with OPPTS 850.4400 and under the consideration of OECD TG 221 (draft October 2000).

The test was performed at nominal concentrations of 11, 20, 35, 62 and 110 mg/L. Samples for analysis of test item concentration were taken on days 0, 2, 4 and 7. Only the samples for the highest dose concentration (and the control) were analysed since all other concentrations were < the 7-day NOEC.

The study was well conducted using an appropriate species and it is considered that the endpoint from this study can be used to address the toxicity to aquatic higher plants. The 7-day NOEC was found to be 110 mg/L and is considered to be suitable for use in risk assessment. No significant

Belgium	Dinotefuran	CLH

effect on growth rate or biomass was recorded at test concentrations (p < 0.05).

Chronic/long-term toxicity (freshwater)

Belgium Dinotefuran CLH

Table A-125: Summary table - chronic/long-term aquatic toxicity

Method, Guideline, GLP status,	Species	Endpoint/	Test material	Test Exposu material		Results	Remarks	Reference
Kellability, Key/supportive study		Type of test	(purity)	Design	Duration	LOEC/NOEC/EC10		
Fish								
Early life stage (ELS) OECD TG 210 OPPTS 850.1400 GLP Reliability 2 Key study	Rainbow trout (Onchorhynchus mykiss)	Development, growth, survival	Dinotefuran (98.9%)	Limit test	94 d	Overall NOEC 10.1 mg/L (mean measured)		2001d IUCLID 9.1.6.1
Invertebrates								
Chronic toxicity OPPTS 850.1300 OECD TG 211 GLP Reliability 1 Key study	Daphnia magna	Survival Reproduction Growth	Dinotefuran (97.26%)	Dose - response, 5 concentrations	21 d	Overall NOEC 100 mg/L (nominal)		2000e IUCLID 9.1.6.2
Algae								
Please refer to Acute/short-term toxicity (freshwater) above								

Belgium	Dinotefuran	CLH
---------	-------------	-----

Description of the available chronic toxicity studies

Chronic toxicity to fish - Dinotefuran

An early-life stage toxicity study (limit test) was performed to determine the chronic toxicity of dinotefuran (MTI-446) to the rainbow trout (*Oncorhynchus mykiss*). The study was performed in accordance with the following guidelines : OECD Guideline No.210 and US EPA OPPTS 850.1400.

The concentration of the test item in the control and only dose level used (10 mg/L) was measured on days 0, 6, 13, 20, 27, 31, 35, 41, 48, 52, 55, 62, 69, 76, 84, and 94. Measured values were outside the acceptable ranges for part of the exposure period; however, the geometric mean measured dose over the exposure period was calculated to be 10.1 mg/L.

The biological endpoints measured during the study were: egg development, hatching, larvae survival, time to swim up, survival and development of juvenile fish. Fish length and weight were determined at the end of the exposure phase.

The results for 10.1 mg/L (mean measured) were similar for all responses assessed with no parameter being more sensitive than any other. Values were nearly identical to control values, consequently the NOEC was determined directly from the raw data.

The study was well conducted using an appropriate species and it is considered that the endpoint from this study can be used to address the chronic toxicity to fish. The 94 d NOEC for dinotefuran to rainbow trout was considered by the RMS to be 10.1 mg/L (mean measured). This value is considered to be acceptable for use in risk assessment.

Chronic toxicity to aquatic invertebrates - Dinotefuran

A 21-day semi-static dose response test was performed to assess the chronic toxicity to *Daphnia magna*. The study was performed in accordance with the following guidelines : OECD No.211 and OPPTS 850.1300.

The test was performed at nominal concentrations of 6.25, 12.5, 25, 50 and 100 mg/L. Analysis of test item concentration was carried out at 100 mg/L. Test parameters examined included survival, reproduction and growth.

The NOEC was determined to be 10.0 mg/L (no significant differences compared to the control according to a Williams-test, one-sided smaller, p = 0.05)

The study was well conducted using an appropriate species and it is considered that the endpoint could be used to address the chronic toxicity of dinotefuran to aquatic invertebrates. However, an additional chronic toxicity study was performed using the saltwater mysid (*Mysidopsis bahia*) that demonstrated increased sensitivity (NOEC 0.089 mg/L). Given the apparent insensitivity of daphnids to the product it is considered that studies using other aquatic species may be more relevant to use in the risk assessment (such as the chronic chironomid test using spiked water). Information on endpoints for other neonicotinoids (e.g. imidacloprid, clothianidin) that demonstrate the relative insensitivity of daphnids is available in the EFSA conclusions/Review Reports ¹.

Chronic toxicity to algae or other aquatic plants

Please refer to the studies detailed in the section Acute/short-term toxicity (freshwater) above.

¹ EFSA conclusions/Review Reports that can be accessed via

http://www.efsa.europa.eu/en/publications/efsajournal.htm#Conclusion and

https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/active-substances/?event=search.as.

Belgium	Dinotefuran	CLH

Belgium Dinotefuran CLH

A.4.2.3.2 Sediment compartment (freshwater)

<u>Acute/short-term toxicity (freshwater sediment)</u>

Table A-126: Summary table - acute/short-term toxicity to sediment dwelling organisms

Method, Guideline, GLP status, Reliability, Key (supportive	Species	Endpoint/ Type of	Test material	Exposur	e	Results	Remarks	Reference
study		test	(purity)	Design	Duration	LC/EC50		
Acute toxicity Based on OECD TG 202 EEC C.2 GLP Reliability 1 Key study	Chironomus riparius	Mortality	Dinotefuran (97.26%)	Dose response, 6 concentrations	48 h	72.1 μg/L (nominal)		, 2000f IUCLID 9.1.9

The acute toxicity of dinotefuran (MTI-446) to sediment dwelling aquatic invertebrates was investigated with a 48-hour study using *Chironomus riparius*. Since no actual guidelines exist for this type of test the test item administration was based on OECD TG 202 and Directive 92/69/EEC, C2 and the species and age were based on the proposal for a BBA guideline, 1995 "Effect of plant protection products on the development of sediment-dwelling larvae of *Chironomus riparius* in a water sediment system" and the OECD 219, draft document February 2000, adopted 13 April 2004. It must be noted that the test system did not contain any sediment : test organisms were only exposed through the water column.

First instar larvae were exposed to the test item at concentrations of 2.2, 4.6, 10, 22, 46 and 100 µg/L in water and observed after 24 and 48 hours. Survival and symptoms of toxicity were monitored. Test item concentrations were monitored at 0 and 48 hours.

The LC₅₀ was determined to be 72.1 μ g/L and the NOEC was determined to be 22 μ g/L (directly determined from raw data).

As the study was conducted according to the OECD TG 219 document (now adopted), it is considered that this study has been well conducted. The study also demonstrates that chironomids are more sensitive to dinotefuran than other aquatic invertebrates (such as

Belgium	Dinotefuran	CLH
---------	-------------	-----

daphnids) and given that this study was performed without sediment it would be appropriate to use the result in risk assessment for aquatic species.

Chronic/long-term toxicity (freshwater sediment)

Table A-127: Summary table - chronic/long-term toxicity to sediment dwelling organisms

Method, Guideline, GLP status,	Species	Endpoint/	Test	Exposu	re	Results	Remarks	Peference
Reliability, Key/supportive study	opecies	test	(purity)	Design	Duration	LOEC/NOEC/EC10		Kererence
Chronic toxicity OECD TG 219 (draft 2001) BBA-Guideline (draft 1995) GLP Reliability 1 Key study	<i>Chironomus</i> <i>riparius</i>	Larval development	Dinotefuran (97.26%)	Dose response, 5 concentrations	27 d	NOEC : 2.54 μg/L	Effects based on the geometric mean of the lowest initial recoveries of dinotefuran (72% and 56%) of NOEC at nominal concentration, i.e. geomean of 0.72 x 4 µg/L and 0.56 x 4 µg/L	, 2003a IUCLID 9.1.9
Chronic toxicity OECD TG 218 (draft 2001) GLP Reliability 1 Key study	Chironomus riparius	Larval development	DN phosphate (97.27%)	Dose response, 5 concentrations	27 d	NOEC : 5.0 mg/kg dry sediment	Effects based on initial sediment concentrations	, 2007 IUCLID 9.1.9

Chronic toxicity (freshwater sediment) – Dinotefuran

A 27-day chronic test was performed with dinotefuran (MTI-446) to assess the toxicity to *Chironomus riparius* in a sediment-water system using spiked water. The guideline followed was the OECD TG 219 (draft February 2001, adopted 13 April 2004).

Belgium	Dinotefuran	CLH
---------	-------------	-----

The test item was added to the water column to give nominal concentrations of 2, 4, 8, 16 and 32 μ g/L. Concentrations of the test item in the water column, pore water and sediment were measured on days 0, 7 and 27 at 8 and 32 μ g/L. Endpoints included the emergence ratio and development time and rate.

The overall NOEC was determined to be 4 μ g/L (nominal) by the applicant, based on a Williams-test (a = 0.05, one-sided smaller) and the EC₅₀ for emergence was determined to be 14.5 μ g/L (nominal).

The study was well conducted and performed using a suitable species. However, the NOEC and EC_{50} were determined using nominal concentrations as opposed to measured concentrations after one hour as recommended by the guideline. Given that this study provides useful data on a sensitive species it was considered that, rather than reject the data, it would be appropriate to calculate the NOEC based on analysed concentrations: lowest percentage of test item present in analysed concentrations at the start and end of the test (72 and 56 % respectively) multiplied by the nominal NOEC and the geomean taken of the two resulting values. This results in a value of 2.54 µg/L. This revised NOEC is considered acceptable for use in risk assessment and suitable for classification and labelling of the active substance, as already discussed during the first approval of Dinotefuran. Indeed the test item was added to the water column, before naturally partitioning to sediment. The test system therefore represents a realistic exposure of test organisms through water, especially as concentrations of Dinotefuran measured in the water column at the end of the test still represented 56 to 61% of the nominal concentrations.

Chronic toxicity (freshwater sediment) – DN phosphate

A 27-day chronic test was performed with DN Phosphate to assess the toxicity to *Chironomus riparius* in a water-sediment system using spiked sediment. The guideline followed was the OECD 218 (draft February 2001).

The test item was added to the sediment 7 days prior to introduction of the larvae. Nominal concentrations of 0.32, 0.63, 1.25, 2.5, 5.0 mg/kg dry sediment were used. Concentrations of the test item in the water column, pore water and sediment were measured on days 0, 7 and 27 at 1.25 and 5.0 mg/kg. Endpoints included the emergence ratio and development time and rate.

The overall NOEC was determined to be 5 mg/kg dwt, based on a Dunnett's test (a = 0.05, one-sided smaller) and the EC₅₀ for emergence and development were both determined to be > 5 mg/kg dwt. The study was well conducted and performed using a suitable species. It is considered that the endpoint from this study can be used to assess the chronic toxicity of DN Phosphate to sediment dwelling invertebrates. The NOEC 5 mg/kg is suitable for use in risk assessment.

Belgium Dinotefuran CLH

A.4.2.3.3 Marine compartment

Acute/short-term toxicity (seawater)

Table A-128: Summary table - acute/short-term aquatic toxicity

Method, Guideline, GLP status, Reliability,	Species	Endpoint/	Test material	Exposu	ire	Res	sults	Reference
Key/supportive study		Type of test	(purity)	Design	Duration	NOEC	LC/EC50	
Acute toxicity OPPTS 850.1035 EPA Subdivision E, Series 72-3 GLP Reliability: 2 Key study	Saltwater mysid (<i>Americamysis</i> bahia)	Mortality	Dinotefuran (99.2%)	Dose-response, 6 concentrations	96 h	0.49 mg/L (mean measured)	0.79 mg/L (mean measured)	, 2001e IUCLID 9.1.2

A flow-through 96-hour toxicity test was performed to assess the toxicity of dinotefuran (MTI-446) to the saltwater mysid *Americamysis bahia*. The study was performed in accordance with the guideline US EPA OPPTS 850.1035.

The test was performed at nominal concentrations of 0.063, 0.13, 0.25, 0.5, 1.0 and 2.0 mg/L. Concentrations of test item were measured at t = 0h, 48h and 96h in each dose group. The endpoints were determined using the mean measured concentrations.

The overall NOEC was determined to be 0.49 mg/L (directly from raw data) and the LC₅₀ was determined to be 0.79 mg/L.

The study was quite well conducted using an appropriate species and it is considered that the endpoint from this study can be used to address the toxicity dinotefuran to seawater invertebrates. The 96-hour EC_{50} of 0.79 mg/L is considered suitable for use in classification.

This study, which was part of the data package submitted for the first PT18 Assessment Report (17 June 2014), is provided for the completion of the CLH report.

Belgium Dinotefuran CLH

Chronic/long-term toxicity (seawater)

Table A-129: Summary table - chronic aquatic toxicity

Method, Guideline, GLP status,	Species	Endpoint/	Test	Test Exposure Results		Remarks	Peference	
Reliability, Key/supportive study	Species	test	(purity)	Design	Duration	NOEC		Kererence
Chronic toxicity OPPTS 850.1350 GLP Reliability: 2-3 Key study	Saltwater mysid (<i>Americamysis</i> bahia)	Survival Reproduction Growth	Dinotefuran (97.9%)	5 concentrations dose response	35 d	89 μg/L (mean measured)		, 2011b IUCLID 9.1.9

A 35-day chronic test was performed with dinotefuran to assess the toxicity to the saltwater mysid *Americamysis bahia* in flow-through conditions. The guideline followed was the OPPTS 850.1350 (1996).

The test was performed at nominal concentrations of 0.044, 0.088, 0.18, 0.35 and 0.70 mg/L. Endpoints included the survival of parent, the number of young produced by female and their sex ratio as well as the total body length and dry weight of parents and offspring.

The overall NOEC was determined to be 89 μ g/L based on a statistically significant decreases in reproduction (Dunnett's test, p \leq 0.05).

The study was quite well conducted and performed using a suitable species and it is considered that the endpoint from this study can be used to address the toxicity dinotefuran to seawater invertebrates. The NOEC of 89 μ g/L is considered suitable for use in classification.

This study, which was part of the data package submitted for the first PT18 Assessment Report (17 June 2014), is provided for the completion of the CLH report.

Belgium Dinotefuran CLH

A.4.2.3.4 Seawater sediment compartment

Acute/short-term toxicity (seawater sediment)

Table A-130: Summary table - acute/short-term toxicity to sea sediment dwelling organisms

Not applicable Chronic/long-term toxicity (sea sediment)

Table A-131: Summary table - long-term/ chronic toxicity to sea sediment dwelling organisms

Data waiving.

Information is required when there is a likelihood that the sea sediment compartment will become exposed to the active substance. It is not likely that the sea sediment compartment will become exposed from the use of dinotefuran. Therefore, provision of this study is not required.

A.4.2.3.5 Higher tier studies on aquatic organisms

No higher tier studies on aquatic organisms are available or required.

Belgium	Dinotefuran	CLH
---------	-------------	-----

A.4.2.4 Terrestrial compartment

Not applicable for the CLH report

Toxicity to terrestrial organisms, acute/short-term tests

Table A-132: Summary table – acute/short-term terrestrial toxicity Not applicable for the CLH report

Toxicity to terrestrial organisms, chronic/long-term tests

Table A-133: Summary table – chronic/long-term terrestrial toxicity Not applicable for the CLH report

A.4.2.5 Groundwater

Not applicable for the CLH report

A.4.2.6 Birds and mammals

Not applicable for the CLH report

Table A-134: Summary table – toxicity to birds and mammals Not applicable for the CLH report

	Belgium	Dinotefuran	CLH
A.4.2.7 Prima	ry and secondary poisor	ning	
Not applicable fo	r the CLH report		
Primary poison	ing		
Table A-135: Sur	nmary table – Primary poisor	ning	
Not applicable fo	r the CLH report		
Secondary pois	oning		
Table A-136: Sur	nmary table – Secondary poi	soning	
Not applicable fo	r the CLH report		
A.4.3 Endocrii	ne disruption		
Not applicable fo	r the CLH report		
Table A-137: Sur	mmary table of ecotoxicologic	al data on endocrine disruption	
Not applicable fo	r the CLH report		
A.4.4 Derivati	on of PNECs		
Not applicable fo	r the CLH report		

Belgium	Dinotefuran	CLH
---------	-------------	-----

A.4.5 Overall summary of acute and chronic aquatic toxicity data and Comparison with the CLP criteria

A.4.5.1 Acute aquatic hazard

Table A-138: Summary of key information on acute/ short-term aquatic toxicity relevant for aquatic acute classification

Method	Species	Test material	Results	Remarks	Reference			
Fish								
Acute toxicity OPPTS 850.1075 EEC C.1 OECD TG 203 (1992) GLP Reliability: 1 Key study	Rainbow trout (<i>Oncorhyncus mykiss</i>)	Dinotefuran	LC ₅₀ > 100 mg/L (nominal)	Same endpoint for the metabolite DN phosphate.	, 1999 1st amendment , 2000 IUCLID 9.1.1			
Invertebrates								
Acute toxicity OPPTS 850.1035 EPA Subdivision E, Series 72-3 GLP Reliability: 2 Key study	Saltwater mysid (<i>Americamysis bahia</i>)	Dinotefuran	LC ₅₀ = 0.79 mg/L (mean measured)	Endpoint for the metabolite DN phosphate with <i>D.</i> magna much higher $(LC_{50} > 100 \text{ mg/L}).$, 2001f IUCLID 9.1.2			
Algae		•	•	•				
Acute toxicity OECD TG 201(1984) EEC C.3 (1992) OPPTS 850.5400 GLP Reliability: 1 Key study	Pseudokirchneriella subcapitata	Dinotefuran	ErC ₅₀ > 100 mg/L (nominal)	Same endpoint for the metabolite DN phosphate.	, 2000d 1st and 2nd amendment , 2000d IUCLID 9.1.3			
Other aquatic plants								

	Belgium	Dinotefu	uran	CLH	
Acute toxicity OPPTS 850.4400 OECD TG 221 (draft 2000) GLP Reliability: 1 Key study	Lemna gibba	Dinotefuran	NOEC > 110 mg/L (nominal)		, 2002d IUCLID 9.1.10
Other					
Acute toxicity Based on OECD TG 202 EEC C.2 GLP Reliability 1 Key study	Chironomus riparius	Dinotefuran	LC ₅₀ = 72.1 μg/L (nominal)	Study relevant for aquatic species as performed without sediment	, 2000f IUCLID 9.1.9

The Applicant has submitted a new study with the saltwater mysid *Americamysis bahia* for classification purpose ($LC_{50} = 0.79 \text{ mg/L}$). However according to the available data, the most sensitive acute endpoint is that derived for the *Chironomus riparius* 48h study ($LC_{50} = 0.0721 \text{ mg/L}$). In the first PT18 Assessment Report (17 June 2014), it was agreed that the chronic test with the same species is considered to be relevant for aquatic species as it has been performed without sediments. The acute toxicity study with *Chironomus riparius* was also performed without sediment, making this test relevant for classification of the aquatic species. Moreover using the endpoint derived from *Americamysis* study would result in an underestimation of the true toxicity of Dinotefuran as this species shows a ten times lower sensitivity to the active substance than *Chironomus*.

The trigger of \leq 1 mg/L given in the Table 4.10 in Annex I of the Guidance on the Application of the CLP Criteria (Version 4.1, 2015) being exceeded, Dinotefuran can thus be considered to have fulfilled the criterion for category **Aquatic Acute 1 (H400: Very toxic to aquatic life)**. The relevant associated **M-factor is 10** according to Table 4.1.3 for CLP guidance.

A.4.5.2 Long-term aquatic hazard (including information on bioaccumulation and degradation)

Table A-139: Summary of key information on chronic/ long-term aquatic toxicity relevant for aquatic chronic classification

Method	Species	Test material	Results	Remarks	Reference
--------	---------	---------------	---------	---------	-----------

-	Belgium	Dinotefu	ıran	CLH	
Fish					
Early life stage (ELS) OECD TG 210 OPPTS 850.1400 GLP Reliability 2 Key study	Rainbow trout (Onchorhynchus mykiss)	Dinotefuran	NOEC = 10.1 mg/L (mean measured)		, 2001c IUCLID 9.1.6.1
Invertebrates					
Chronic toxicity OPPTS 850.1350 GLP Reliability: 2-3 Key study	Saltwater mysid (<i>Americamysis bahia</i>)	Dinotefuran	NOEC = 89 µg/L (mean measured)		, 2011b IUCLID 9.1.9
Other					
Chronic toxicity OECD TG 219 (draft 2001) BBA-Guideline (draft 1995) GLP Reliability 1 Key study	Chironomus riparius	Dinotefuran	NOEC = 2.54 μg/L (initial)	Endpoint for the metabolite DN phosphate much higher (NOEC = 5.0 mg/kg dwt).	, 2003a IUCLID 9.1.9

Dinotefuran has a low potential for bioaccumulation in aquatic organisms as its predicted log Kow value is -0.549, which is below the trigger of log Kow \geq 3. Its major metabolites DN (aquatic compartment) has predicted log Kow values of -0.18 and is also not expected to bioaccumulate. Confirmatory QSAR modelling give rise to predicted BCF values for fish of 0.068 (EUSES 2.1.2), which is <0.1 and, therefore, the bioaccumulation criterion is not fulfilled.

Belgium	Dinotefuran	CLH

Dinotefuran is not biodegradable according to OECD 301F ready-biodegradability test (0% degradation after 28d; 22°C). Three equivalent aerobic water-sediment studies were performed to investigate biodegradation in more realistic conditions : two studies under dark laboratory conditions at 20°C and one study under outdoor natural light, at 20-25°C. Moreover one water-sediment study was also performed under dark anaerobic laboratory conditions at 20°C.

However as it was discussed during ENV WG-V-2019, the worst-case DegT₅₀ should be used to determine whether the P-criterion is met according to the BPR guidance, which refers to the REACH R11 criteria. Indeed the REACH guidance states: "*For the same environmental compartment, when four or less results are available, the most stringent result should be used with respect to the PBT assessment.*"

Hence, it was concluded that the whole system $DegT_{50}$ is used to determine the persistence trigger of both water and sediment. Using the DT_{50} values of each compartment for the (v)P criterion would result in an overestimation of the true degradation.

Hence, the highest whole system DegT_{50} to be considered is **145.4 days**. This would indicate vP for the water compartment and P for the sediment (criteria: P in water when DT50 > 40 d; vP in water when DT50 > 60 d; P in sediment when DT50 > 120 d; vP in sediment when DT50 > 180 d).

The Applicant has submitted a new study with the saltwater mysid *Americamysis bahia* for classification purpose (NOEC = 0.089 mg/L). However according to the available data, the most sensitive chronic endpoint is that derived for the *Chironomus riparius* 27-day study (NOEC = 0.00254 mg/L). In the first PT18 Assessment Report (17 June 2014), it was agreed that this test is considered to be relevant for aquatic species as it has been performed without sediments. Moreover using the endpoint derived from *Americamysis* study would result in an underestimation of the true toxicity of Dinotefuran as this species shows a thirty-five times lower sensitivity to the active substance than *Chironomus*.

The substance is considered non-rapidly degradable and the trigger of ≤ 0.1 mg/L given in the Table 4.10 in Annex I of the CLP Guidance being exceeded, Dinotefuran can thus be considered to have fulfilled the criterion for category **Aquatic Chronic 1 (H410: Very toxic to aquatic life with long lasting effects)**. The relevant associated **M-factor is 10** according to Table 4.1.3 for CLP guidance.

A.4.5.3 Conclusion on classification and labelling for environmental hazards and comparison with the CLP criteria

Aquatic acute classification according to CLP criteria

The lowest LC_{50} value is 0.0721 mg/L, which is below the trigger value of 1 mg/L. Dinotefuran therefore fulfils the criteria for classification as Aquatic Acute 1 (H400). As the lowest LC_{50} value is between 0.01 and 0.1, this leads to an M-factor 10.

Aquatic chronic classification according to CLP criteria

Dinotefuran is not rapidly degradable and chronic data are available for all trophic levels. The lowest NOEC is 0.00254 mg/L, which is below the trigger value of 0.1 mg/L. Dinotefuran therefore fulfils the criteria for classification as Aquatic Chronic 1 (H410). As the lowest NOEC value is between 0.001 and 0.01, this leads to an M-factor 10.

Belgium	Dinotefuran	CLH
---------	-------------	-----

A.5 Assessment of additional hazards

A.5.1 Hazardous to the ozone layer

Data waiving					
Information requirement	There is no requirement under the BPR to provide information on hazards to the ozone layer.				
Justification	The overall OH rate constant of dinotefuran is 156.066E-12 cm ³ per molecule s ⁻¹ which equals a 24-hour day half-life of 0.1 day. Moreover there is no absorption bands in the atmospheric window, and no Cl, F, N or S functional group in the molecule No hazard to the ozone layer is thus expected.				

A.5.1.1 Short summary and overall relevance of the provided information on ozone layer hazard

A.5.1.2 Dinotefuran is not listed in Annex I to Regulation (EC) No 1005/2009 of the European Parliament and of the Council of 16 September 2009. Moreover on the basis of the structure and on the physico-chemical properties of the active substances (absence of absorption bands in the atmospheric window, short atmospheric lifetime, absence of Cl, F, N or S functional group in the molecule), Dinotefuran is not expected to present a potential danger to the structure and /or functioning of the stratospheric ozone layer. **Comparison with the CLP criteria**

Dinotefuran is not expected to present a potential danger to the structure and /or functioning of the stratospheric ozone layer.

Conclusion on classification and labelling for hazardous to the ozone layer

Dinotefuran does not present a potential danger to the structure and /or functioning of the stratospheric ozone layer.

A.6 Additional Labelling

No additional labelling under the CLP Regulation is proposed.

A.7 Assessment of exclusion criteria, substitution criteria and POP

Not applicable for the CLH report

A.7.1 Exclusion criteria

A.7.1.1 Assessment of CMR properties

Not applicable for the CLH report

A.7.1.2 Assessment of endocrine disrupting properties

Not applicable for the CLH report

Belgium Dinotefuran	CLH
---------------------	-----

A.7.1.3 PBT Assessment (following Annex XIII to Regulation (EC) No 1907/2006)

Not applicable for the CLH report

A.7.2 Substitution criteria

Not applicable for the CLH report

A.7.3 Assessment of long-range environmental transportation and impact on environmental compartments

Not applicable for the CLH report

D.Appendices

Appendix I: List of endpoints

Not applicable for the CLH report.

Appendix II: Human exposure calculations

Not applicable for the CLH report.

Appendix III: Environmental emission (and exposure) calculations

Not applicable for the CLH report.

Appendix IV: List of terms and abbreviations

See document.

Appendix V: Overall reference list (including data owner and confidentiality claim)

Physical-Chemical properties part:

Author(s)	Year	Section No / Referenc e No	Title. Source (where different from company) Company, Report No. GLP (where relevant) / (Un)Published	Data Protectio n Claimed (Yes/No)	Owner	Data Identifie d as `relevan t' by the eCA ² (Yes/No)	Applicabi	ility
							CAR/RA R	CL H
	2001		Determination of the explosive properties MTI- 446 according to EC Council Directive 92/69/EEC, Part. A.14, RCC Ltd., report no. 780197, GLP, unpublished	Y	Mitsui Chemica Is Agro, Inc.	Yes	Y	Y
	2006		Dinotefuran technical description of starting materials and manufacturing process; Dinotefuran	Y	Mitsui Chemica Is Agro, Inc.	Yes	Y	Y

² Only relevant for the renewal of an active substance. Remove column for active substance approval and CLH process. For the identification of the relevant data, please see <u>CA-Sept20-Doc.7.1.b</u> - <u>Relevant Renewal Data under Article 95 FINAL</u>

		technical discussion of formation of impurities, NA Contract Laboratories, no report no., non- GLP, unpublished					
2013 (a)		Analysis of 10 Nitrosamines in six batches of dinotefuran technical. AgChem Product Development, Ricerca Biosciences, LLC. Report no. 030901-1, GLP, unpublished	Y	Mitsui Chemica Is Agro, Inc.	Yes	Y	Y
2013 (b)		Analysis of 10 Nitrosamines in six batches of dinotefuran technical. AgChem Product Development, Ricerca Biosciences, LLC. Report no. 030901-1, GLP, unpublished	Y	Mitsui Chemica Is Agro, Inc.	Yes	Y	Y
2005		Analysis of active ingredient and impurities in dinotefuran technical, Japan Analytical Chemistry Consultants Co., Ltd., report no. GT0504, GLP, unpublished	Y	Mitsui Chemica Is Agro, Inc.	Yes	Y	Y
	2012	Expert statement. Dinotefuran: calculation of Henry's Law Constant, LKC Switzerland Ltd., report no. 11-LKC-04, non-GLP, unpublished	Ŷ	Mitsui Chemica Is Agro, Inc.	Yes	Y	Y
2002		Independent laboratory validation of methods for the	Y	Mitsui Chemica Is Agro, Inc.	Yes	Y	Y
					0		
-----------	-------	--	---	---------------------------------------	-----	---	---
		analysis of MTI- 446 and its metabolite MNG in soil, Wildlife International, Ltd., report no. 236C-106, GLP, unpublished					
	2000a	MTI-446 Product chemistry, Ricerca, LLC, report no. 011098-1, GLP, unpublished	Y	Mitsui Chemica Is Agro, Inc.	Yes	Y	Y
	2000b	Report amendment: MTI-446 Product chemistry, Ricerca, LLC, report no. 011098-1-1, GLP, unpublished	Y	Mitsui Chemica Is Agro, Inc.	Yes	Y	Y
1999 a		Physical state of dinotefuran (MTI-446), Mitsui Chemicals, Inc. Life Science Laboratory, no report no., non- GLP, unpublished	Y	Mitsui Chemica Is Agro, Inc.	Yes	Y	Υ
1999 b		Colour of dinotefuran (MTI-446), Mitsui Chemicals, Inc. Life Science Laboratory, no report no., non- GLP, unpublished	Y	Mitsui Chemica Is Agro, Inc.	Yes	Y	Y
1999 c		Odour of dinotefuran (MTI-446), Mitsui Chemicals, Inc. Life Science Laboratory, no report no., non- GLP, unpublished	Y	Mitsui Chemica Is Agro, Inc.	Yes	Y	Y
1996		MTI-446: Determination of the physico- chemical properties, Huntington Life Sciences, report no.	Y	Mitsui Chemica Is Agro, Inc.	Yes	Y	Y

	MTO097/98015 9, GLP, unpublished					
1998 & 2000	MTI-446 : Determination of hydrolysis as a function of pH, Huntingdon Life Sciences, , report no. 95/MTO098/12 16 (MRID 45640101). (GLP, unpublished) & Report amendment 1 : Determination of hydrolysis as a function of pH, Huntingdon Life Sciences, , report no. 95/MTO098/12 16. (Unpublished)	Y	Mitsui Chemica Is Agro, Inc.	Yes	Υ	Y
2001 a	Determination of the flammability of MTI-446, RCC Ltd., report no. 780175, GLP, unpublished	Y	Mitsui Chemica Is Agro, Inc.	Yes	Y	Y
2000	Determination of the relative self-ignition temperature of MTI-446, RCC Ltd., report no. 780186, GLP, unpublished	Y	Mitsui Chemica Is Agro, Inc.	Yes	Y	Y
2001 c	Determination of the surface tension of an aqueous solution of MTI- 446, RCC Ltd., report no. 780208, GLP, unpublished	Y	Mitsui Chemica Is Agro, Inc.	Yes	Y	Y
2001 b	Determination of the oxidizing properties (solids) of MTI- 446, RCC Ltd., report no. 780210, GLP, unpublished	Y	Mitsui Chemica Is Agro, Inc.	Yes	Y	Y
2003	Determination of the storage stability and corrosion	Y	Mitsui Chemica Is Agro, Inc.	Yes	Y	Y

	stability of MTI- 446 technical material (shelf life at room temperature), RCC Ltd., report no. 828865, GLP, unpublished					
2001	Validation of the residue analytical method for MTI-446 in soil, RCC Ltd., report no. 739923, GLP, unpublished	Y	Mitsui Chemica Is Agro, Inc.	Yes	Y	Y
2012	Determination of optical rotation of dinotefuran Omuto Analysis Dept. Mitsui Chemical Analysis & Consulting Service Inc., report no. M112010042 non-GLP, unpublished	Y	Mitsui Chemica Is Agro, Inc.	Yes	Y	Y
2020 a	Content analysis of dinotefuran technical CERI Japan, report no. 86393 GLP, unpublished	Y	Mitsui Chemica Is Agro, Inc.	Yes	Y	Y
2020 b	Validation of analytical methods for dinotefuran technical, CERI Japan, report no. 86392 GLP, unpublished	Y	Mitsui Chemica Is Agro, Inc.	Yes	Y	Y

Human Health part:

Data protection from the first approval - 01/06/2015 - 31/11/2024

Not confidential (as per article 66):

Confidential (as per article 66) :

Author(s Yea) r	Yea r	Yea Section r No / Referenc e No	Title. Source (where different from	Data Protectio n Claimed (Yes/No)	Owner	Data Identifie d as `relevant' by the	Applicability		
				Company) Company, Report No. GLP (where relevant) / (Un)Publishe d			eCA ¹ (Yes/No)	CAR/RA R	CL H
				ACTIVE SUBST	ANCE				
		199 6	A.3.8.1.	MTI-446: Microbial reverse mutation assay, Chromosome Chromosome no. CRC3133, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
		199 9	A.3.8.1.	A DNA repair assay of Bacillus subtilison MTI- 446, , , October 2, 1996, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
		199 6	A.3.8.1.	MTI-446: In vitro mammalian cytogenetics test, Chromosome no. CRC0076, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
		200 2	A.3.8.1.	MTI-446 technical material: mutation at the thymidine kinase (tk) locus of mouse lymphoma L5178Y cells (MLA) using the microtitre fluctuation technique, model and a second technique, model a secon	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y

Dinotefuran

Author(s	Year	Section No /	Title. Source (where	Data Protectio	Owner	Data Identifie	Applicab	ility
		Referenc	different from	n		d as		
		eno	Company) Company,	(Yes/No)		' by the		
			Report No.			eCA ¹	CAR/RA R	CL H
			GLP (where relevant) /			(Yes/No)		
			(Un)Published					
	F		ACTIVE SUBSTA	NCE				
	1997 २	A.3.2.1.	Acute oral	Y	Mitsui Chemical	Y	Y	Y
	u	7.3.2.4.	MTI-446 in rats,		s Agro,			
			, report		Inc.			
			118. GLP.					
			unpublished					
	1997 b	A.3.2.1.	Acute oral	Y	Mitsui Chomical	Y	Y	Y
	D	A.J.2.4.	MTI-446 in mice		s Agro,			
			, report		Inc.			
			119, GLP,					
			unpublished					
	2000	A.3.2.1.	First amendment	Y	Mitsui Chemical	Y	Y	Y
			oral toxicity		s Agro,			
			study of MTI-446		Inc.			
			report no. CHW					
			6648-119, GLP,					
	1997	Δ322	Acute dermal	Y	Mitsui	Y	Y	Y
	C C	A.3.2.4.	toxicity study of		Chemical			
			MTI-446 in rats		s Agro,			
			no. CHW 6648-		Inc.			
			120, GLP,					
	1999	A.3.2.3.	MTI-446: Acute	Y	Mitsui	Y	Y	Y
		A.3.2.4.	inhalation (nose		Chemical			
			only) toxicity study in the rat.		s Agro, Inc.			
			, report		1110.			
			no. 1300/3-					
			unpublished					
	2000	A.3.2.3.	First amendment	Y	Mitsui	Y	Y	Y
	а	A.3.2.4.	446: Acute		chemicai s Agro,			
			inhalation (nose		Inc.			
			only) toxicity					
			, report					
			no. 1300/3-					
			unpublished					
	2000	A.3.2.3.	Second	Y	Mitsui	Y	Y	Y
	b	A.3.2.4.	amendment to report - MTI-		Chemical s Agro			
			446: Acute		Inc.			
			inhalation (nose					

1000		only) toxicity study in the rat, no. 1300/3- D6154, GLP, unpublished	V	Mitori	V		Y
1998 a	A.3.3.	rimary dermai irritation study of MTI-446 in rabbits, Market , report no. 6648-121, GLP, unpublished	Y	Chemical s Agro, Inc.	Ŷ	Ŷ	Ŷ
1998 b	A.3.4.	Primary eye irritation study of MTI-446 in rabbits, Marco , report no. Marco 6648-122, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
1997 d	A.3.5.	Dermal sensitization study of MTI-446 in guinea pigs - maximisation test, and , report no. and 6648-123, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2011	A.3.13.	Dinotefuran: 4- week dietary immunotoxicity study in the CD rat, , , , , , , , , , , , , , , , , , ,	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2012	A.3.13.	Amended Report - Dinotefuran: 4- week dietary immunotoxicity study in the CD rat, , , , , , , , , , , , , , , , , , ,	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2011	A.3.13.	Dinotefuran: 4- week dietary immunotoxicity study in the CD- 1 mouse, , , report no. MCW0019, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2000 a	A.3.1	Metabolism of [14C]-MTI-446 in rats, 1999 , report no. 1999 6648-136, GLP, unpublished	Υ	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2000 b	A.3.1	First amendment to report –	Y	Mitsui Chemical	Y	Y	Y

		Metabolism of [14C]-MTI-446 in rats, Marcol, report no. 6648-136, GLP, unpublished		s Agro, Inc.			
2001	A.3.1	Second amendment to report – Metabolism of [14C]-MTI-446 in rats, report no. 6648- 136, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2000 c	A.3.1	Absorption, distribution, metabolism and excretion of [G- 14C]-MTI-446 following administration of a single oral dose to neonatal rats, report no. 6648- 141, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2000 d	A.3.1	First amendment to report - Absorption, distribution, metabolism and excretion of [G- 14C]-MTI-446 following administration of a single oral dose to neonatal rats, metabolism a 6648- 141, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2006 b	A.3.1	Dermal absorption of [14C]MTI-446 formulated as aqueous solution in the rat (in vivo), 1 , report no. A25975, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
1997 a	A.3.7.1.	4-week dietary toxicity study with MTI-446 in rats, Marcolle , report no. CHW 6648-125, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
1997 b	A.3.7.1.	4-week dietary toxicity study	Y	Mitsui Chemical	Y	Y	Y

		with MTI-446 in mice, Marcol , Report No. CHW 6648-124, GLP, unpublished		s Agro, Inc.			
2001 b	A.3.7.1.	28-day dermal toxicity study with MTI-446 in rat, 2000, report no. 6648- 149, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2002	A.3.7.1.	MTI-446: 28-day inhalation (nose only) toxicity study in the rat, mo. 719/16, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
1997 c	A.3.7.2.	13-week dietary toxicity study with MTI-446 in rats, Marcol , report no. CHW 6648-127, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2000 a	A.3.7.2.	First amendment to report - 13- week dietary toxicity study with MTI-446 in rats, MTI-446 in rats, MTI-446 in rats, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
1997 d	A.3.7.2.	13-week dietary toxicity study with MTI-446 in mice, Marcol , report no. CHW 6648-126, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2000 b	A.3.7.2.	First amendment to report: - 13- week dietary toxicity study with MTI-446 in mice, Marcology report no. CHW 6648-126, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
1999 a	A.3.7.2.	13-week dietary toxicity study with MTI-446 in dogs, 100, report no. 100 6648-128 GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
1999 b	A.3.7.2.	First amendment to report - 13- week dietary toxicity study	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y

		with MTI-446 in dogs, Marco , report no. 6648-128 GLP , unpublished					
1999 c	A.3.7.3.	52-week dietary chronic toxicity study with MTI- 446 in dogs, report no. 6648-129, GLP, unpublished	Ŷ	Mitsui Chemical s Agro, Inc.	Ŷ	Y	Y
2005	A.3.7.4	Historical control data for 52-week dog studies, no laboratory name, MRID No. 4563972, unpublished	Ŷ	Mitsui Chemical s Agro, Inc.	Ŷ	Y	Y
1995	A.3.8.2.	Micronucleus test of EXP-316 with mice, , , report no. 2498, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2000 c	A.3.7.3. A.3.9.	104-week dietary combined chronic toxicity and carcinogenicity study with MTI- 446 in rats, 146 in rats, 16648- 131, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2000 d	A.3.7.3. A.3.9.	78-week dietary carcinogenicity study with MTI- 446 in mice, ., report no. 6648-130, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2000 e	A.3.7.3. A.3.9.	First amendment to report - 78- week dietary carcinogenicity study with MTI- 446 in mice, report no. 6648-130, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
1998 b	A.3.10.2	Teratogenicity study of MTI-446 given orally to rats, Nippon Experimental Experimental no. H-97163, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
1998 e	A.3.10.2	Teratogenicity study of MTI-446 given orally to rabbits,	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y

CLH	
-----	--

		report no. H- 97166, GLP, unpublished					
2013	A.3.10.2	Dinotefuran: Prenatal Developmental Toxicity Study in Rabbits, report no. SR12005, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2001	A.3.10.1.	MTI-446 technical preliminary two generation study in the Han Wistar rat, report no. 774990, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2002	A.3.10.1.	MTI-446 two- generation reproduction study in the Han Wistar rat by oral (dietary) administration, report no. 775192, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2001 a	A.3.2.4. A.3.12	Acute oral gavage neurotoxicity study with MTI- 446 in rats, report no. CHW 6648-147, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2001 b	A.3.12	13-week dietary neurotoxicity study with MTI- 446 in rats, report no. CHW 6648-148, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2006 a	A.3.1	Transfer of [14C]MTI-446 into milk of lactating rats after oral administration, report no. A29136, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2009	A.3.12	Oral (Diet) Dosage-range finding developmental neurotoxicity and immunotoxicity study of MTI-446 (Dinotefuran) in CD (SD)	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y

CLH

		rats, press , report no. SRY00001, GLP, unpublished					
2010	A.3.10.2. A.3.12	Oral (Diet) developmental neurotoxicity study of MTI-446 (Dinotefuran) in CD (SD) rats, rats, report no. SRY00002, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
		Reference produ	ct				
2010 a	B.5.3	Acute oral toxicity of New GOK1 to the rat - limit test -, report no. 02 G 09 024, GLP; unpublished	Y	Mitsui Chemical s Agro, Inc.	N	Y	Ν
2010 b	B.5.3	Amendment to Final Report - Acute oral toxicity of New GOK1 to the rat - limit test -, report no. 02 G 09 024, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	N	Y	Ν
2010 c	B.5.3	Acute oral toxicity of New GOK1 to the mouse - limit test -, report no. 02 G 09 025, GLP; unpublished	Y	Mitsui Chemical s Agro, Inc.	N	Y	N
2010 d	B.5.3	Amendment to final report - acute oral toxicity of New GOK1 to the mouse - limit test -, report no. 02 G 09 025, GLP; unpublished	Y	Mitsui Chemical s Agro, Inc.	Ν	Y	Ν
2009 a	B.5.3	Acute dermal toxicity test with New GOK1 in the rat - limit test -, report no. 02 G 07 011, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Ν	Y	Ν
2010 e	B.5.3	Amendment to final report - Acute dermal toxicity test with New GOK1 in the rat - limit test -,	Y	Mitsui Chemical s Agro, Inc.	N	Y	N

		Contraction of the second seco					
2009 b	B.5.3	Acute dermal toxicity test with New GOK1 in the mouse - limit test -, report no. 02 G 07 010, GLP; unpublished	Y	Mitsui Chemical s Agro, Inc.	Ν	Y	Ν
2010f	B.5.3	Amendment to Final Report - Acute Dermal Toxicity Test with New GOK1 in the Mouse - Limit Test -, report no. 02 G 07 010, GLP; unpublished	Y	Mitsui Chemical s Agro, Inc.	Ν	Y	Ν
2010 a	B.5.4	Acute dermal irritation/corrosio n test (patch test) of New GOK 1 in rabbits report no. 25219, GLP; unpublished	Y	Mitsui Chemical s Agro, Inc.	Ν	Y	Ν
2010 b	B.5.4	Acute eye irritation/corrosio n test of New GOK 1 in rabbits, COK	Y	Mitsui Chemical s Agro, Inc.	Ν	Y	N
2010 a	B.5.5	Skin sensitisation test of New GOK 1 in guinea pigs- according to the E.V. Buehler method-, method-, report No. 25221, GLP; unpublished	Y	Mitsui Chemical s Agro, Inc.	Ν	Y	N
2010 b	B.5.5	Amendment No.1 to final report - Skin sensitisation test of New GOK 1 in guinea pigs- according to the E.V. Buehler method report no. 25221, GLP; unpublished	Y	Mitsui Chemical s Agro, Inc.	Ν	Y	N

Data protection from this renewal – (end five years from the first day of the month following the date of the adoption of a decision in accordance with Article 14(4))

Not confidential (as per article 66):

Author(s)	Yea r	Section No / Referenc e No	Title. Source (where different from company)	Data Protectio n Claimed (Yes/No)	Owner	Data Identifie d as 'relevant' by the	Applicab	ility
			Company, Report No. GLP (where relevant) / (Un)Publishe			eCA ¹ (Yes/No)	CAR/RA R	CL H
	201 5	3.7.1.	Expert Statement - Dinotefuran: Proposal to revise NOAEL values in specified dietary studies justified by data generated in an investigative pair-feeding and palatability study in the rat, report no. 15- LKC-10, GLP:	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
	202 2	3.7.1.	unpublished Amendment to Expert Statement - Dinotefuran: Proposal to revise NOAEL values in specified dietary studies justified by data generated in an investigative pair-feeding and palatability study in the rat, second report no. 15- LKC-10, GLP; unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
			Reference pro	duct				
	201 4	B.5.2	Dinotefuran: Percutaneous Penetration of [14 C]-Dinotefuran Formulated as Dinotefuran 2% Gel	Y	Mitsui Chemical s Agro, Inc.	N	Y	N

Through			
Human Split-			
thickness Skin			
Membranes (in			
vitro),			
report no.			
D80138, non-			
GLP;			
unpublished			

Confidential (as per article 66) :

Author(s)	Year	Section No / Referenc e No	Title. Source (where different from	Data Protectio n Claimed (Yes/No)	Owner	Data Identifie d as 'relevant' by the	Applicab	ility
			company) Company, Report No. GLP (where relevant) / (Un)Publishe d			eCA ¹ (Yes/No)	CAR/RA R	CL H
		A	CTIVE SUBSTA	NCE				
	1998 a	A.3.7.1.	Repeated Dose Toxicity Test of MTI-446 by Forced Oral Administration for One Week Using Dogs, MINE, report no. H 97326, non-GLP; unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
	1998 b	A.3.7.1.	Repeated Dose Toxicity Test of MTI-446 Mixed in the Diet for One Week Using Dogs, Using Dogs, Normal, report no. H 97327, non-GLP; unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
	2019	A.3.8.2.	Micronucleus Test in Bone Marrow Cells of Mouse with Dinotefuran Technical, Report no. 8721, GLP; unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
	2003	A.3.10.2.	A Study for Effects of Dinotefuran on Fertility and Early Embryonic Development to Implantation in Rats Following Oral Administration, Report no. MA02198, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Υ	Y	Y
-	2004	A.3.10.2.	Study for Effects of	Y	Mitsui Chemical	Y	Y	Y

		Dinotefuran on Pre- and Postnatal Development, Including Maternal Function, in Rats Following Oral Administration, Report no. MA02200, GLP, unpublished		s Agro, Inc.			
2015 a	A.3.16	Study in Sprague Dawley Rats for 4 Weeks, Report no. MCW0059, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2015 b	A.3.16	Report amendment 1 - Study in Sprague Dawley Rats for 4 Weeks, MCW0059, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2020	A.3.15	Health report of workers who manufacture dinotefuran, Report no. not specified, non- GLP, unpublished.	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2011 a	A.3.14	FIRST AMENDMENT TO REPORT - MTI-446 two- generation reproduction study in the Han Wistar rat by oral (dietary) administration, content report no. 775192, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Ν
2011 b	A.3.14	SECOND AMENDMENT TO REPORT - MTI-446 two- generation reproduction study in the	Ŷ	Mitsui Chemical s Agro, Inc.	Ŷ	Ŷ	N

		Han Wistar rat by oral (dietary) administration, report no. 775192, GLP, unpublished					
2013	A.3.14	THIRD AMENDMENT TO REPORT - MTI-446 two- generation reproduction study in the Han Wistar rat by oral (dietary) administration, report no. 775192, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	N
2004	A.3.4	LX-1434-04 (Dinotefuran Technical): Acute eye irritation study in rabbits, Report No. 8394-04, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	N (EFSA MRL Article 10 applicatio n (import tolerance applicatio n in various crops)	Y

Environmental part:

Data protection from the first approval - 01/06/2015 - 31/11/2024

Confidential (as per article 66) :

Author(s)	thor(s Year Section No / Refer e No	r Section Title. No / Source (where Referenc different from e No company) Company,	Data Protectio n Claimed (Yes/No)	Owner	Data Identifie d as `relevant ' by the eCA ¹	Applicability CAR/RA CL		
			GLP (where relevant) / (Un)Published			eCA ¹ (Yes/No)	R	H
			ACTIVE SUBSTAN	CE	1			
	2012 a	A.4.2.2	Toxicity testing of dinotefuran technical - on microorganisms with the activated sludge respiration inhibition test, unpublished report no. S11- 03209, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
	1999	A.4.2.3.1	Acute Toxicity of MTI-446 to Rainbow Trout (Oncorhynchus mykiss) in a 96- Hour Static Test, unpublished report no. 740924, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
	2001 a	A.4.2.3.1	MTI-446 technical : a 96-hour flow- through acute toxicity test with the sheepshead minnow (Cyprinodon variegatus), unpublished report no. 236A- 105, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
	2000 a	A.4.2.3.1	Acute Toxicity of MTI-446 to bluegill sunfish (Lepomis macrochirus) in a 96-Hour Static	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y

		Test, unpublished report no. 740946, GLP, unpublished					
2000 b	A.4.2.3.1	Acute Toxicity of MTI-446 to common carp (Cyprinus carpio) in a 96-Hour Static Test, unpublished report no. 741003, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2002 a	A.4.2.3.1	DN Phosphate Determination of Acute Toxicity to Rainbow Trout (96 h, Semi- static), Semi- static), Semi- unpublished report no. 19814, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2002 b	A.4.2.3.1	DN Phosphate Determination of Acute Toxicity of Bluegill Sunfish (96-Hour Semi- static), unpublished report no. 19799, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2000 c	A.4.2.3.1	Acute toxicity of MTI-446 to Daphnia magna in a 48-hour immobilization test, unpublished report no. 740968, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2001 b	A.4.2.3.1	DN phosphate determination of acute toxicity to Daphnia (48 h, Static), unpublished report no. 20122, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2000 d	A.4.2.3.1	Toxicity of MTI- 446 to Pseudokirchneriel la subcapitata (Formerly Selenastrum capricornutum) in a 96-hour algal growth inhibition test, manual unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y

		report no. 740981, GLP, unpublished					
2002 c	A.4.2.3.1	DN phosphate alga, growth inhibition test (96 h), mmm unpublished report no. 19849	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2002 d	A.4.2.3.1	Toxicity of MTI- 446 to the aquatic higher plant Lemna gibba in a 7-day semistatic growth inhibition test, unpublished report no. 827752, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2001 c	A.4.2.3.1	Toxic effects of MTI-446 to Rainbow trout (Oncorhynchus mykiss) in an early-life stage toxicity test, unpublished report no. 794338, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2000 e	A.4.2.3.1	Influence of MTI- 446 on survival and reproduction of Daphnia magna in a semistatic test over three weeks, unpublished report no. 752106, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2000f	A.4.2.3.2	Acute toxicity of MTI-446 to first- instar larvae of Chironomus riparius, unpublished report no. 752128, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y
2003 a	A.4.2.3.2	Effects of MTI- 446 on the development of sediment- dwelling larvae of Chironomus riparius in a water sediment system.	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y

		Environmental Chemistry & Pharmanalytics Division, Itingen, Switzerland; unpublished report no. 844569, GLP, unpublished					
2007	A.4.2.3.2	Effects of DN phosphate on the development of sediment- dwelling larvae of Chironomus riparius in a water-sediment system with spiked sediment, unpublished report no. 844571, GLP, unpublished	Y	Mitsui Chemical s Agro, Inc.	Y	Y	Y

Author (s)	Year	Section No / Reference No	Title. Source (where different from company) Company, Report No. GLP (where relevant) /	Data Protecti on Claime d (Yes/N o)	Owner	Data Identifi ed as 'releva nt' by the eCA ³ (Yes/N	Applicabilit y	
			(Un)Published			o)	AR	L H
	2012 b	A.4.1.1.2 Biotic degradation, initial studies, P 40; Appendix VII, 4.1.1	Ready biodegradability of dinotefuran technical in a manometric respirometry test unpublished report no. 70891163, March 8, 2012	yes	Mitsui Chemica Is Agro, Inc.	yes	У	У
	1998	A.4.1.1.1 Abiotic degradation Hydrolysis p35, Appendix VII, 5.1.1 study 1	MTI-446: Determination of hydrolysis as a function of pH. Unpublished report no. 95/MTO098/1216 (MRID 45640101), July 29, 1998.	yes	Mitsui Chemica Is Agro, Inc.	yes	У	У
	2002 e	A.4.1.1.1 Abiotic degradation ;phototransformati on in water p36, Appendix VII, 5.1.1 study 2	Aqueous Photolysis of 14C- MTI-446 under Laboratory Conditions and Determination of Quantum Yield. unpublished report no. 729011, MRID 45640105, February 7, 2002.	yes	Mitsui Chemica Is Agro, Inc.	yes	У	У
	200 0k	A.4.1.1.1 Abiotic deg radation; Photo-oxydation in air	Estimation of the degradation of MTI-446 by photo-oxidation in air. 1999 , unpublished report no. 731160, (MRID 45640110), September 22, 2000	yes	Mitsui Chemic als Agro, Inc.	yes	У	У

 $^{^3}$ Only relevant for the renewal of an active substance. Remove column for active substance approval and CLH process. For the identification of the relevant data, please see <u>CA-Sept20-Doc.7.1.b</u> - <u>Relevant Renewal Data under Article 95 FINAL</u>

2000 I	A.4.1.1.3.2Biodegr adation in freshwater, p.42 Appendix VII, 4.1.1	14C-MTI-446 : Degradation and Metabolism in Aquatic Systems. unpublished report no.	yes	Mitsui Chemica Is Agro, Inc.	yes	У	У
200	A.4.1.2.1	709604, October 20, 2000 Adsorption/deso	yes	Mitsui	yes	у	у
16	onto/desorption from soils	MTI-446 on soils; ; unpublished report no. 728998; September 19, 2001.		als Agro, Inc.			
200 1e	A.4.1.2.1 Adsorption onto/desorption from soils	Adsorption/deso rption of 14C- MTI-446 on soils; ; unpublished report no. 728998; September 19, 2001.	yes	Mitsui Chemic als Agro, Inc.	yes	у	У
200 3b	A.4.1.1.3.6.1	14C MTI-446 metabolism in one soil incubated under aerobic conditions, GLP, unpublished	yes	Mitsui Chemic als Agro, Inc.	yes	У	У
200 3c	A.4.1.1.3.6.1	14C MTI-446: Anaerobic soil degradation and metabolism, Mathematical degradation metabolism, Mathematical degradation metabolism, Mathematical degradation metabolism, Mathematical degradation metabolism, Mathematical degradation metabolism, Mathematical degradation metabolism, Mathematical degradation metabolism,	yes	Mitsui Chemic als Agro, Inc.	yes	У	У

Data protection from this renewal – (end five years from the first day of the month following the date of the adoption of a decision in accordance with Article 14(4))

Confidential (as per article 66) :

Author (s)	Yea r	Section No / Reference No	Title. Source (where different from company) Company	Data Protecti on Claimed (Yes/N	Owner	Data Identifi ed as `releva nt' by	Applicab	ility
			Report No. GLP (where relevant) / (Un)Published	0)		the eCA ¹ (Yes/N o)	CAR/R AR	CL H
		ACTI	VE SUBSTANCE					
	201 1e	A.4.2.3.3	MTI-446 technical : a 96- hour flow- through acute toxicty test with the saltwater mysid (Mysidopsis bahia), unpublished report no. 236A- 104A, GLP, unpublished	Y	Mitsui Chemic als Agro, Inc.	Y	Y	Y
	201 1b	A.4.2.3.3	Dinotefuran: a flow-through life-cycle toxicity test with the saltwater mysid (Americamysis bahia), unpublished report no. 236A- 141B, GLP, unpublished	Y	Mitsui Chemic als Agro, Inc.	Y	Y	Y
	201 1c	A.4.1.1.3.2Biodegra dation in freshwater, p.42 Appendix VII, 4.1.1	aerobic & anaerobic water- sediment degradation/key / Dinotefuran/(RS) -1-methyl-2- nitro-3- (tetrahydro-3- furylmethyl)guan idine /165252- 70-0; OECD / Biodegradation in water and sediment: simulation tests	Y	Mitsui Chemic als Agro, Inc.	Y	Y	Y
	202 0a	A.4.1.1.3.2Biodegra dation in freshwater, p.42 Appendix VII, 4.1.1	aerobic water- sediment degradation/ /key / Dinotefuran / (RS)-1-methyl- 2-nitro-3-	Y	Mitsui Chemic als Agro, Inc.	yes	У	У

		(tetrahydro-3- furylmethyl)guan idine / 165252- 70-0: OECD / Biodegradation in water and sediment: simulation tests					
200 1e	A.4.1.1.3.6.1	Degradation rate of MTI-446 in 11 agricultural soils from Germany incubated under aerobic conditions, Report n° 734422, GLP, unpublished	У	Mitsui Chemic als Agro, Inc.	У	У	У
202 0b	A.4.1.1.3.2	Re-evaluation of the water sediment degradation kinetics studies conducted with Dinotefuran; GMP, unpublished	У	Mitsui Chemic als Agro, Inc.	У	У	У
202 0c	A.4.1.1.3.2	Dinotefuran: assessment of environmental persistence, 20-LKC-04, GLP, unpublished	У	Mitsui Chemic als Agro, Inc.	У	У	У

Appendix VI: Confidential information

See the Confidential Annex (separate document).

Appendix VII: Study summaries (relevant for the CLH proposal)

Study summaries are presented in the Annex I report (separate document).