Section A1 Applicant

Annex Point IIA1
1.1 Applicant Duke Faunabeheer
1.2 Manufacturer of Linde gas Benelux Active
Substance (if different)
1.3 Manufacturer of As above Product(s) (if different)

Section A1.2 (01) Annex Point IIA2.7-2.8		5-batch analysis	
		1 REFERENCE	Official use only
1.1 1.2	REFERENCE DATA PROTECTION	Duke Faunabeheer BV (2012) - Results of analyses of 5 batches of food grade carbon dioxide liquefied gas, manufactured by Linde Gas Benelux Yes	
1.2.1	Data owner	Duke Faunabeheer BV, Lelystad, The Netherlands	
1.2.2	Companies with letter of access	Not applicable	
1.2.3	Criteria for data protection	Data on new a.s. /PT combination for first entry to Annex IA	
		$\begin{aligned} & 2 \text { GUIDELINES AND QUALITY } \\ & \text { ASSURANCE } \end{aligned}$	
2.1	$\begin{aligned} & \text { GUIDELINE } \\ & \text { STUDY } \end{aligned}$	Yes ISBT 2010. Bulk carbon dioxide quality guidelines and analytical methods reference (2 nd revision). International Society of Beverage Technologists, Dallas, TX USA, November 2010, pg. 64 - 68 : Carbon dioxide $\left(\mathrm{CO}_{2}\right) \%$ purity by caustic absorption analysers. Published	
2.2	GLP	No	
2.3	DEVIATIONS	No	

Section A1.2 (01) Annex Point IIA2.7-2.8		5-batch analysis
		3 MATERIALS AND METHODS
3.1	TEST MATERIAL	Carbon dioxide
3.1.1	Lot/Batch number	376099981434633 376099981434701 376099981434764 376099981434944 376099981435303
3.1.2	Specification	Kooldioxide foodgrade EIGA/ISBT vloeibaar
3.1.3	Appearance	Colourless and odourless gas
3.2	TEST METHOD	
3.2.1	Preparation of test substance for analysis	No preparation required
3.2.2	Methods	Analyte-specific methods are described in detail in ISBT 2010.
3.2.3	Analyte(s)	$\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{O}_{2}, \mathrm{NO}, \mathrm{NO}_{2}, \mathrm{CH}_{3} \mathrm{CHO}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{CH}_{3} \mathrm{OH}$, total Sulphur, CO, total volatile hydrocarbons, non-volatile residues (particles), non-volatile organic residues.
3.2.4	Measurement range	$\mathrm{CO}_{2}: 99.0-100.0 \% \mathrm{v} / \mathrm{v}$ purity
		RESULTS AND DISCUSSION
3.3	RESULTS	Batch number CO_{2} content (\% v/v)
		37609998143463399.9
		37609998143470199.9
		$376099981434764 \quad 99.9$
		37609998143494499.9
		376099981435303100.0
		4 APPLICANT'S SUMMARY AND CONCLUSION
4.1	MATERIALS AND METHODS	ISBT 2010. Bulk carbon dioxide quality guidelines and analytical methods reference (2 nd revision). The analyses were performed by Linde Gas Benelux B.V., Europoort Rotterdam, The Netherlands
4.2	RESULTS AND DISCUSSION	5 batches of food grade CO_{2} from Linde Gas Benelux were analysed following internationally accepted methods and criteria for food grade CO_{2}. The purity of the CO_{2} was $\geq 99.9 \%$ v / v.

Section A1.2 (01) 5-batch analysis

Annex Point IIA2.7-2.8
4.3 CONCLUSION
4.3.1 Reliability
4.3.2 Deficiencies

	All batches meet the requirements set by the European Industrial Gases Association (EIGA, 2008) for carbon dioxide for use in food and beverages.
	No
	Evaluation by Competent Authorities Use separate "evaluation boxes" to provide transparency as to the comments and views submitted
EVALUATION BY RAPPORTEUR MEMBER STATE	
MATERIALS AND	Applicant's version is acceptable.
METHODS	Applicant's version is acceptable. RESULTS AND DISCUSSION CONCLUSION
Applicant's version is acceptable.	
REMARKS	The 5 batch data meet the requirements set by the European Industrial Gases Association (EIGA, 2008) for carbon dioxide for use in food and beverages and this considered to be sufficient.

Section A2

Identity of Active Substance

Subsection (Annex Point)		
2.1	Common name (IIA2.1)	This active substance is not listed in Annex I to Directive 67/548/EEC. EINECS Name: Carbon dioxide. Synonyms: carbonic acid gas, carbonic anhydride.
2.2	Chemical name (IIA2.2)	IUPAC Name: Carbon dioxide
2.3	Manufacturer's development code number(s) (IIA2.3)	Manufacturer's development code number is not applicable, as Carbon dioxide is a naturally occurring gas.
2.4	CAS No and EC numbers (ПА2.4)	
2.4.1	CAS-No	124-38-9
2.4 .2	EC-No	204-696-9
2.4 .3	Other	None known
2.5	Molecular and structural formula, molecular mass (IIA2.5)	
2.5.1	Molecular formula	CO 2
2.5.2	Structural formula	$\mathrm{O}=\mathrm{C}=\mathrm{O}$ (smiles code)
2.5.3	Molecular mass	$44.01 \mathrm{~g} / \mathrm{mol}$
2.6	Method of manufacture of the active substance (IIA2.1)	Carbon dioxide is obtained industrially as a by-product of hydrogen production.
2.7	Specification of the purity of the active substance, as appropriate (IIA2.7)	g / kg g / l $\% \mathrm{w} / \mathrm{w}$ $\% 9 \% \mathrm{v} / \mathrm{v}$ dioxide

Section A2

Identity of Active Substance

Kooldioxide foodgrade EIGA/ISBT vloeibaar

EIGA limiting characteristics for carbon dioxide for foods and beverages.

Component

Assay
Moisture
Ammonia
Oxygen
Oxides of Nitrogen (NO/NO2)
Oxids of (NO2) $\quad 2.5 \mathrm{ppm} \mathrm{v} / \mathrm{v}$ max. each
Non-volatile residue(particulates) $10 \mathrm{ppm} \mathrm{w} / \mathrm{w}$ max.
Non-volatile organic residue
(oil and grease) $\quad 5 \mathrm{ppm} \mathrm{w} / \mathrm{w}$ max.
Phosphine *** $\quad 0.3 \mathrm{ppm} \mathrm{v} / \mathrm{v}$ max
Total volatile hydrocarbons
(calculated as methane) $50 \mathrm{ppm} \mathrm{v} / \mathrm{v}$ max. of which 20 ppm v / v max non-methane hydrocarbons.
Acetaldehyde
$0.2 \mathrm{ppm} \mathrm{v} / \mathrm{v}$ max.

Benzene
Carbon Monoxide
Methanol
Hydrogen Cyanide*
Total Sulphur (as S) **
Taste and Odour in Water
$0.02 \mathrm{ppm} \mathrm{v} / \mathrm{v}$ max.
$10 \mathrm{ppm} \mathrm{v} / \mathrm{v}$ max.
$10 \mathrm{ppm} \mathrm{v} / \mathrm{v}$ max.
$0.5 \mathrm{ppm} \mathrm{v} / \mathrm{v} \mathrm{max}$
$0.1 \mathrm{ppm} \mathrm{v} / \mathrm{v}$ max.
No foreign taste or odour

* Analysis necessary only for carbon dioxide from coal gasification sources
** If the total sulphur content exceeds $0.1 \mathrm{ppm} \mathrm{v} / \mathrm{v}$ as sulphur then the species must be determined separately and the following limits apply:
Carbonyl Sulphide $0.1 \mathrm{ppm} \mathrm{v} / \mathrm{v}$ max.
Hydrogen Sulphide $0.1 \mathrm{ppm} \mathrm{v} / \mathrm{v}$ max.
Sulphur Dioxide $1.0 \mathrm{ppm} \mathrm{v} / \mathrm{v}$ max.
*** Analysis necessary only for carbon dioxide from phosphate rock sources

No additives present in carbon dioxide.
No impurities present in carbon dioxide above the concentration limit of $1 \mathrm{~g} / \mathrm{kg}$.

No impurities of toxicological or ecotoxicological significance present below the concentration limit of $1 \mathrm{~g} / \mathrm{kg}$.

Not relevant. Carbon dioxide is made up of one carbon and two oxygen atoms which can only be combined in one way.
Although carbon dioxide is obtained industrially as a by-product of hydrogen production (refer to 2.6, above), it occurs naturally in the atmosphere. It is uniformly distributed in the atmosphere over the earth's surface at a concentration of about 0.033% or 330 ppm .

	Evaluation by Competent Authorities
	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted
EVALUATION BY RAPPORTEUR MEMBER STATE	
Date	March 2013
Materials and methods	Agree with the available information
Conclusion	
Reliability Acceptability Remarks	

Section A3 Physical and Chemical Properties of Active Substance

	Subsection (Annex Point)	Method	Purityl Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Reliability	Reference	
3.1	Melting point, boiling point, relative density (IIA3.1)								
3.1.1	Melting point	Not reported		$-78.5^{\circ} \mathrm{C}$ (sublimation temperature)	The information required for this data end point can be derived from existing data.	N		O'Neil et al (2001) Haynes and Lide (20112012)	accepta ble
3.1.2	Boiling point	Not reported		$-78.5^{\circ} \mathrm{C}$ (sublimation temperature)	Boiling point is defined as the temperature at which the vapour pressure of a liquid is $101,325 \mathrm{~Pa}$ (normal atmospheric pressure). Carbon dioxide does not exist as a liquid at normal atmospheric pressure. It is technically not feasible to determine the boiling point of a gas. There is no approved guideline for testing the boiling point of a gas	N/A		O'Neil et al (2001) Haynes and Lide (20112012)	accepta ble

Section A3 Physical and Chemical Properties of Active Substance

	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	$\begin{aligned} & \text { GLP } \\ & (\mathrm{Y} / \mathrm{N}) \end{aligned}$	Reliability	Reference	
3.1.3	Bulk density/ relative density Bulk/rel. density 1	Not reported		Relative density: 1.527 The density is 1.977 g / l at $0^{\circ} \mathrm{C}$ and 1.799 g / l at $25^{\circ} \mathrm{C}$ and 101.325 Pa		N	0: Not applicable. Reliability cannot be assigned because No experiment al data has been submitted to meet this end point. The information required for this end point was derived from existing data.	O'Neil et al (2001) Haynes and Lide (20112012)	accepta ble
3.2	Vapour pressure (IIA3.2) Vapour pressure 1	N/A	N/A	N/A	Not applicable, as carbon dioxide is a gas. For liquefied carbon dioxide, the	N/A		Haynes and Lide (20112012)	accepta ble

Physical and Chemical Properties of Active Substance

	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	$\begin{aligned} & \text { GLP } \\ & (\mathrm{Y} / \mathrm{N}) \end{aligned}$	Reliability	Reference	Official use only
					vapour pressure is 6713 kPa at 300 K and 5984 kPa at 295 K .				
3.2.1	Henry's Law Constant (Pt. I-A3.2)	N/A	N/A	The Henry's law constant is calculated with the following literature data: P : 6443 kPa at $25^{\circ} \mathrm{C}$ (interpolated) and solubility is $1.50 \mathrm{~g} / \mathrm{l}$ at $25^{\circ} \mathrm{C}$. The calculated value is: 189037 Pa. $\mathrm{m}^{3} \cdot \mathrm{~mol}^{-1}$		N/A			accepta ble
3.3	Appearance (IIA3.3)								
3.3.1	Physical state	Not reported		gas at room temperature		N	Not applicable.	O'Neil et al (2001); AIGA (2009)	accepta ble

Physical and Chemical Properties of Active Substance

	Subsection (Annex Point)	Method	Purityl Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	$\begin{aligned} & \text { GLP } \\ & (\mathrm{Y} / \mathrm{N}) \end{aligned}$	Reliability	Reference	Official use only
3.3.3		Not reported	Colourless			N	Not applicable.	O'Neil et al (2001); AIGA (2009)	accepta ble
	Odour	Not reported		Odourless		N	Not applicable.	O'Neil et al (2001); AIGA (2009)	
3.4	Absorption spectra (IIA3.4)								accepta ble.
	UV/VIS			140 nm		N		Thompson BA, Harteck P, Reeves RR Jnr (1963)	accepta ble.
	IR			$\begin{aligned} & 2349 \mathrm{~cm}^{-1}(4.26 \mathrm{um}) \\ & \text { and at } 667 \mathrm{~cm}^{-1} \\ & (15.00 \mathrm{um}) . \end{aligned}$		N		$\begin{array}{\|l} \text { Stein SE } \\ (2001) \end{array}$	accepta ble.

N
Not
applicable.
Haynes and
Lide (2011-

2012)

Reliability cannot be assigned because no

experiment

 al test data has been submitted to meet this data end point. Theinformation required for this data end point can be derived from existing data.

3.6	Dissociation constant (-)	N/A	N/A	N/A	Carbon dioxide is a gas under the conditions it will be marketed as a biocide. It is not technically feasible to determine the dissociation constant for a gas. There is no approved guideline for testing the dissociation constant of a gas. Notwithstanding this, it is not necessary to determine the dissociation constant of carbon dioxide on the basis of limited exposure to the environment.	N/A	Not applicable. Reliability cannot be assigned because no experiment al test data has been submitted to meet this data end point. This is because the study to determine the dissociatio n constant of carbon dioxide is technically not possible to perform. This study is also not necessary due to prerequisit es fulfilled on limited exposure and toxicity profile.	United States Environment al Protection Agency (1996) EPA Product Properties Test Guidelines OPPTS 830.7370 Dissociation Constants in Water EPA 712-C-96- 036	accepta ble
3.7	Solubility in	Solubility in	The CO_{2} used	Results presented in	The information	N	2	Battino R,	

organic solvents, including the effect of temperature on solubility (IIIA3.1)	isobutanol.	was the purest that was commercially available (>99 moles per cent), and came from the Matheson Co. Inc.	terms of the Ostwald coefficient $L=V_{2} / V_{1}$ where: V_{2} is the volume of gas absorbed by the volume V_{1} of solvent (all measured at the same temperature). $\begin{aligned} & 24.56^{\circ} \mathrm{C} L=1.84 \\ & 24.62^{\circ} \mathrm{C} L=1.86 \\ & 25.02^{\circ} \mathrm{C} L=1.89 \\ & 25.07^{\circ} \mathrm{C} L=1.87 \end{aligned}$ These results show that carbon dioxide is soluble in isobutanol, and the solubility stays approximately constant between $24.5^{\circ} \mathrm{C}$ to $25.1^{\circ} \mathrm{C}$. Note that it is not possible to express the solubility of carbon dioxide in isobutanol in $\mathrm{cm}^{3} / \mathrm{L}$. This is because the amount of gas dissolved was not measured, all that was measured was the expansion of the solvent once it was saturated with gas.	required for this data end point can be derived from existing data. The data provided about solubility in isobutanol has been sourced from data found in the public domain. Experimental determination of the isobutanolsolubility of the carbon dioxide prescribed in this application will not add any new information to the huge volume of phys-chem data available for carbon dioxide which is in broad agreement regarding the accepted isobutanolsolubility for carbon dioxide.			Evans FD, Danforth WF, and Wilhelm E (1971)	
	Solubility in	Specification		The information	N	2	Cauquil G	accepta

		cyclohexanol Cyclohexanol was purified via the process of distillation. Two "Baudin" test tubes graduated with $1 / 20 \mathrm{~cm}^{3}$ were used. One contained cyclohexanol and the other CO_{2}. The CO_{2} was added to the test tube containing cyclohexanol, and agitated. The volume of remaining gas and total volume is measured, thereby determining solubility.	for CO_{2} not reported. *See footnote for justification why this specification of carbon dioxide can be used in support of the carbon dioxide prescribed in this application.	$677 \mathrm{~cm}^{3} \mathrm{CO}_{2} /$ litre cyclohexanol (at $26^{\circ} \mathrm{C}$ pressure 766 mmHg).	required for this data end point can be derived from existing data. The data provided about solubility in cyclohexanol has been sourced from data found in the public domain. Experimental determination of the cyclohexanolsolubility of the carbon dioxide prescribed in this application will not add any new information to the huge volume of phys-chem data available for carbon dioxide which is in broad agreement regarding the accepted cyclohexanolsolubility for carbon dioxide.			(1927)	ble
3.8	Stability in organic solvents used in b.p. and identity of relevant breakdown products (IIIA3.2)	N/A	N/A	N/A	The Technical Guidance Document in Support of the Directive 98/8/EC Concerning the Placing of Biocidal Products on the Market: Guidance on Data Requirements for Active Substances and Biocidal	N/A	Not applicable. Reliability cannot be assigned because no experiment al test data has been submitted	None.	accepta ble

				Products (dated October 2000) states that stability in organic solvents must only be determined if the active ingredient, as manufactured, includes an organic solvent. Carbon dioxide will be supplied as a 100% gas when it is marketed as a biocide. It does not contain any organic solvents, therefore stability data for carbon dioxide in organic solvents is not required.		to meet this data end point. This is because the study to determine the stability of carbon dioxide in organic solvents is not scientificall y necessary.	

3.9	Partition coefficient n-octanol/water (IIA3.6) log Pow 1	Not given.	Not given.	Partition Coefficient K for carbon dioxide at about $25^{\circ} \mathrm{C}$: octanol and water: 0.83 Isobutanol and water: 2.26 Olive oil and water: 1.74	The partition coefficient provided has been sourced from data found in the public domain. Experimental determination of the partition coefficient of the carbon dioxide prescribed in this application will not add any new information to the huge volume of phys-chem data available for carbon dioxide which is in broad agreement regarding the accepted partition coefficient for carbon dioxide.	N	3	EPI Suite Battino R, Evans FD, Danforth WF, and Wilhelm E (1971)	accepta ble
3.10	Thermal stability, identity of relevant breakdown products (IIA3.7)	Thermodynamic study-	The thermal stability of carbon dioxide, as determined theoretically by calculation in this study can be used to support the thermal stability of the carbon dioxide prescribed in	A thermodynamic study has determined the thermal decomposition products of carbon dioxide by calculating the equilibrium concentrations of the decomposition products as a function of temperature and total pressure. It was found that over a fairly	The thermal stability data provided has been sourced from data found in the public domain. Experimental determination of the thermal stability of the carbon dioxide prescribed in this application will not	N	Study conducted in accordanc e with generally accepted scientific principles, possibly with incomplete reporting	Greenwood NN and Earnshaw A (1984) Lietzke MH and Mullins C (1981)	accepta ble

		this application because it is supplied as a 100\% gas. There will be a few impurities present in the carbon dioxide which will be marketed as a biocide (and these are prescribed in this application), but these are present at such low levels that they are not believed to significantly effect the thermal stability of carbon dioxide.	wide range of temperature and pressure, carbon dioxide dissociates into carbon monoxide and oxygen with no precipitation of carbon. Thermodynamically, carbon dioxide is stable under atmospheric pressure up to approximately $300^{\circ} \mathrm{C}$. Over this temperature, it dissociates in carbon monoxide and oxygen. At room temperature, CO 2 is stable from 10^{-5} to 100 atm. $\mathrm{CO} 2 \text { <-> CO + 1/2 O2 }$	add any new information to the huge volume of phys-chem data available for carbon dioxide which is in broad agreement regarding the accepted thermodynamics of carbon dioxide.		or methodolo gical deficiencie s, which do not affect the quality of relevant results. The information required for this data end point can be derived from existing data.		
3.11 Flammability, including autoflammability and identity of combustion products (IIA3.8)	N/A	N/A	N/A	A test to determine the flammability and auto-ignition temperature of carbon dioxide has not been conducted. This is because it is widely known and accepted that carbon dioxide is a non-flammable gas that does not support combustion. Indeed, carbon	N/A	0: Not applicable. Reliability cannot be assigned because no experiment al test data has been submitted to meet this data end point. It is not	None.	accepta ble

				dioxide is used as an extinguishing agent for fires involving flammable liquids or electrical equipment. Conducting a flammability and auto flammability test for carbon dioxide will only serve to confirm this wellestablished property of carbon dioxide, and will not provide any new information for the risk assessment.		scientificall y necessary to conduct a flammabilit y and auto flammabilit y test for carbon dioxide.	
3.12 Flash-point (IIA3.9)	N/A - Refer to remarks/ justification	N/A - Refer to remarks/ justification	N/A - Refer to remarks/ justification	Flash point is defined as the lowest temperature, corrected to a pressure of 101,325 Pa (normal atmospheric pressure), at which a liquid evolves vapours, under specified test conditions, in such an amount that a flammable vapour/air mixture is produced. Carbon dioxide does not exist as a liquid at normal	N/A	0 : Not applicable. Reliability cannot be assigned because no experiment al test data has been submitted to meet this data end point.	accepta ble

atmospheric pressure. It is a gas under the conditions it will be marketed as a
biocide. It is
technically not
feasible to
determine the flash point of a gas.

3.13 Surface tension (IIA3.10)	N/A - Refer to remarks/ justification	N/A - Refer to remarks/ justification	N/A - Refer to remarks/ justification	The test methods described in Directive 92/69/E.E.C A. 5 only apply to the measurement of surface tension of aqueous solutions. Carbon dioxide does not exist as an aqueous solution at normal atmospheric pressure. It is a gas under the conditions it will be marketed as a biocide. It is technically not feasible to determine the surface tension of a gas. There is no approved guideline for determining the surface tension of a gas. It is also scientifically unjustified, given that carbon dioxide is a gas under the normal physical conditions it will be used as a biocide. Determining the surface tension of carbon dioxide (by manipulating the test conditions e.g. temperature and pressure), will not provide any useful information for the	N/A	0 : Not applicable. Reliability cannot be assigned because no experiment al test data has been submitted to meet this data end point. This is because the study to determine the surface tension of carbon dioxide is technically not possible to perform. This study is also not scientificall y necessary.	Method A. 5 Surface Tension European Commission (1997) Classificatio n, Packaging and Labelling of Dangerous Substances in the European Union. Part II - Testing Methods Page 51-57 Office for Official Publications of the European Communitie s ISBN 92- 828-0076-8	accepta ble

				risk assessment.				
3.14 Viscosity (-)	N/A	N/A	N/A	The Technical Guidance Document in Support of the Directive 98/8/EC Concerning the Placing of Biocidal Products on the Market: Guidance for Data Requirements for Active Substances and Biocidal Products, Version 4.3.2 dated October 2000 states that viscosity should be measured for liquid substances only. Carbon dioxide does not exist as a liquid at normal atmospheric pressure. It is a gas under the conditions it will be marketed as a biocide. It is technically not feasible to determine the viscosity of a gas. There is no approved guideline for testing the viscosity of a gas. It is also scientifically unjustified, given that carbon dioxide	N/A	Not applicable. Reliability cannot be assigned because no experiment al test data has been submitted to meet this data end point. This is because the study to determine the viscosity of carbon dioxide is technically not possible to perform. This study is also not scientificall y necessary.	None.	accepta ble

				is a gas under the normal physical conditions it will be used as a biocide. Determining the viscosity of carbon dioxide (by manipulating the test conditions e.g. temperature and pressure), will not provide any useful information for the risk assessment.			
3.15 Explosive properties (IIA3.11)	N/A - Refer to remarks/ justification	N/A - Refer to remarks/ justification	N/A - Refer to remarks/ justification	The test method Directive 92/69/E.E.C A. 14 Explosive Properties states that the test for explosive properties need not be performed when available thermodynamic information (e.g. heat of formation, heat of decomposition) and/or absence of certain reactive groups in the structural formula establishes beyond reasonable doubt that the substance does not present any risk of explosion. It is widely known and accepted that carbon dioxide is	N/A	0 : Not applicable. Reliability cannot be assigned because no experiment al test data has been submitted to meet this data end point.	accepta ble

				thermodynamically stable and therefore does not exhibit explosive properties. Conducting an explosivity test for carbon dioxide will only serve to confirm this wellestablished property of carbon dioxide, and will not provide any new information for the risk assessment.			
3.16 Oxidizing properties (IIA3.12)	N/A - Refer to remarks/ justification	N/A - Refer to remarks/ justification	N/A - Refer to remarks/ justification	The test methods described in Directive 92/69/E.E.C A. 17 only applies to solid materials. Carbon dioxide is not a solid at normal atmospheric pressure. It is a gas under the conditions it will be marketed as a biocide. It is not technically possible to determine whether carbon dioxide has oxidising properties because there are no approved guidelines for testing the	N/A	0 : Not applicable. Reliability cannot be assigned because no experiment al test data has been submitted to meet this data end point. This is because the study to determine whether carbon dioxide has	accepta ble

				oxidising properties of a gas. Notwithstanding this, examination of the structural formula of carbon dioxide, along with the fact that it is widely accepted that carbon dioxide is thermodynamically stable, suggests that carbon dioxide will not exhibit oxidising properties, even if it could be tested.		oxidising properties is technically not possible to perform. This study is also not scientificall y necessary.		
3.17 Reactivity towards container material (IIA3.13)			Carbon dioxide is supplied in containers designed and manufactured in accordance with ENISO 9809-1:2010 (Gas ciliners Rifillable seamless steel gas cylinders Design, construction and testing - Part 1 : Quenched and tempered steel cylinders with tensile strength less than 1100 MPa), and ENISO 9809-3:2010 (Gas cylinders Refillable seamless steel gas cylinders Design, construction and testing - Part 3 : Normalized steel	The information required for this data end point can be derived from existing data. The storage stability of carbon dioxide can be confirmed as acceptable, even though there is no specific test data available, because the packaging used is in accordance with proven industry standards for carbon dioxide. Because of this, experimental determination of the storage stability of carbon		0 Reliability cannot be assigned because no experiment al test data has been submitted to meet this data end point. The information can be derived from existing data.	$\begin{aligned} & \text { N-ISO } \\ & 2010 a, b) \end{aligned}$	accepta ble

Section A4 (4.1-4.3)	Analytical Methods for Detection and Identification
 IIIA-IV.	Specify where appropriate, e.g. isomer of a.s., metabolite of a.s., impurity of a.s., matrix

impurity of a.s., matrix

JUSITIFCATION FOR NON SUBMISSION
 Analysis of the active substance as manufactured

Quality standards for food grade carbon dioxide are set by the European Industrial Gases Association (EIGA) working in conjunction with the Compressed Gases Association of America (CGA) and the International Society of Beverage Technologists (ISBT). In these standards, the purity, the impurities to be analysed and the analytical methods are defined.

Carbon dioxide content is determined by absorption trapping in KOH while impurities are measured gravimetrically, or by spectroscopy (MS, IR, UV), atomic absorption and/or chemical analysis.

Formulation analysis

There is no formulation process involved for the use of carbon dioxide as avicide. Consequently, no separate information on a biocidal product is necessary.

Residue analysis

No methods for measurement of carbon dioxide residues in soil, air, water, body fluids/tissues, in/on food or feedstuff and other products are submitted.

- After use as avicide the carbon dioxide is released into the atmosphere. Here the gas is rapidly diluted and becomes part of the carbon dioxide pool present in the surrounding air.
- The amounts of carbon dioxide used as avicide are on a kilogramme scale which is negligible compared to the billions of tonnes of carbon dioxide which are released into the atmosphere following natural processes and human activities.

Annex Point IIA4.1/4.2 \& IIIA-IV. 1

Specify where appropriate, e.g. isomer of a.s., metabolite of a.s., impurity of a.s., matrix

- In living organisms, carbon dioxide levels are well controlled.
- Free exchange of carbon dioxide in food or feedstuff and other products with the surrounding atmosphere can occur during production, preparation and consumption.
- Carbon dioxide is included in Annex IV of COMMISSION REGULATION (EC) 149/2008 (List of active substances of plant protection products evaluated under Directive 91/414/EEC for which no MRLs are required)

In conclusion, no methods are required to determine carbon dioxide in residues in soil, air, water, body fluids, food or other relevant products following its use as an avicide
\(\left.$$
\begin{array}{|ll|}\hline & \text { Evaluation by Competent Authorities } \\
\hline & \begin{array}{l}\text { Use separate "evaluation boxes" to provide transparency as to the } \\
\text { comments and views submitted }\end{array} \\
\hline \text { Date } & \text { EVALUATION BY RAPPORTEUR MEMBER STATE } \\
\text { March 2013 }\end{array}
$$ \quad $$
\begin{array}{l}\text { Justification for non submission of data is considered acceptable. } \\
\text { Conclusion methods } \\
\\
\begin{array}{l}\text { The justification for the non submission of analytical methods for } \\
\text { the active substance as manufactured as for the formulation are } \\
\text { considered acceptable as there are methods available via public } \\
\text { literature for carbon dioxide as a commonly available gas. } \\
\text { Furthermore the formulation is identical to the active substance, } \\
\text { therefore no anlaytcail methods for the formulation is required. }\end{array} \\
\text { Reliability }\end{array}
$$ \begin{array}{l}No residue analytical methods are submitted to determine carbon

dioxide in food and feed and the environmental matrices. This is

considered acceptable as carbon dioxide is already present in large

quantities in all matrices, therefore monitoring regarding this

application is not required.\end{array}\right\}\)| acceptability |
| :--- |
| Remarks |

Section A5

Subsection
 (Annex Point)

5.1 Function
(IIA5.1)
5.2 Organism(s) to be controlled and products, organisms or objects to be protected (IIA5.2)
5.2.1 Organism(s) to be controlled (IIA5.2)
5.2.2 Products, organisms or objects to be protected (IIA5.2)
5.3 Effects on target organisms, and likely concentration at which the active substance will be used (IIA5.3)
5.3.1 Effects on target organisms (IIA5.3)
5.3.2 Likely concentrations at which the A.S. will be used (IIA5.3)
5.4 Mode of action (including time delay) (IIA5.4)

5.4.1 Mode of action

5.4.2 Time delay
5.5 Field of use envisaged (IIA5.5)
MG03: Pest control PT15, avicide
5.6 User (IIA5.6)

Effectiveness against target organisms and intended uses

Avicide

Nuisance birds

Airplanes taking off and landing

Unconsciousness, minimal brain activity, ineffective heartbeat and ultimately death.
$70-90 \% \mathrm{v} / \mathrm{v}$ in air

The biocidal action of carbon dioxide is primarily due to it causing "respiratory acidosis" in target animals, leading to unconsciousness, minimal brain activity, ineffective heartbeat and ultimately death.

Unconsciousness is observed before target concentration ($70-90 \% \mathrm{v} / \mathrm{v}$ in air) is reached. Administration of carbon dioxide is regulated in such a way that the concentration is reached within 1 minute. Death (ineffective heart beat) is observed within 5 minutes.
The sensitivity of geese, chickens, ducks and turkeys to increasing carbon dioxide concentrations was found to be very similar.

Section A5	Effectiveness against target organisms and intended uses	
	Industrial Professional	Industrial use as avicide is not envisaged Carbon dioxide is used by professional pest control officers to kill nuisance birds.
	General public	Non-professional use as avicide is not envisaged.

Section 5.3: Summary table of experimental data on the effectiveness of the active substance against target organisms at different fields of use envisaged, where applicable

| Function | Field of
 use
 envisaged | Test substance | Test organism(s) | Test method | Test conditions | Test results: effects, mode of action,
 resistance |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Avicide | PT15 | $\geq 99.7 \%$ pure
 carbon dioxide | Goose (Anser
 anser)/adult
 males and females/ | Geese were
 instrumented for
 recording of EEG and
 ECG. Subsequently
 the animals were
 placed in an air tight
 container in which
 carbon dioxide was
 led. | The time to reach
 unconsciousness, minimal brain
 activity and ineffective heartbeat
 during anaesthesia and killing the
 geese of birds with carbon
 dioxide was measured. The
 animals were exposed to carbon
 dioxide concentrations between
 70 and 90%. The concentration
 was reached within 1 minute
 after start of administration of the
 gas to the container in which the
 animals were placed. | The geese reached the stage of
 unconsciousness within one minute
 $(56$ seconds in CO $)$ i.e. before the
 target concentration was reached.
 Minimal brain activity and ineffective
 heart rate were registered after 112
 and 312 seconds respectively. |

* References:

Wageningen UR Livestock Research (July 2010). Killing of wild geese with CO_{2} and argon; Report 338a.

Section A6	HUMANTOXICOLOGICAL PROFILE
	JUSTIFICATION FOR NON-SUBMISSION OF DATA As outlined in the TNsG on data requirements, the applicant must always be able to justify the suggested exemptions from the data requirements. The justifications are to be included in the respective location (section) of the dossier. If one of the following reasons is marked, detailed justification has to be given below. General arguments are not acceptable.
Official use only	
Other existing data []	Technically not feasible [] Scientifically unjustified []

Section A6
Detailed justification:

HUMANTOXICOLOGICAL PROFILE

A number of publicly available and published studies are
summarised in Document II of the application dossier, but no Document III summaries are provided. These literature data were included for supporting purposes and are considered non-essential for the evaluation of carbon dioxide as an avicide (PT15) within the framework of the Biocidal Products Directive 98/8/EC for the reason given below.
It is not technically possible to determine the toxicity of carbon dioxide - a gas - by the oral or dermal route, or to perform skin sensitisation or skin and eye irritation studies. The principle route of exposure to carbon dioxide will be inhalation, which should however be viewed in relation to the concentration of carbon dioxide in exhaled air of approximately 5%.

Fully guideline-compliant acute or repeated dose toxicity studies for carbon dioxide by the inhalation route are not available. Nevertheless, there is a substantial volume of information on inhalation toxicity of carbon dioxide available, including data on humans. The available studies are considered as supportive data and as such are summarised in Document IIA3.

Largely based on the same studies, an Occupational Exposure Limit (OEL) of $5,000 \mathrm{ppm}(0.5 \%-8$-h time weighted average) was established in Directive 2006/15/EC in implementation of Directive 98/24/EC. For the specific case of CO_{2}, for which the human metabolism is well known, for the purpose of the risk assessment the OEL was preferred to the derivation of a reference concentration from NOAEL or LOAEL derived in the available animal studies of poor reliability. For the same reason, because the OEL was accepted at the EU level, non-submission of data is deemed acceptable and new testing is not considered necessary.

Section A6	HUMANTOXICOLOGICAL PROFILE
Undertaking of intended data submission []	Not applicable
Date COMMENTS FROM ... Comments on applicant's data Conclusion Applicant's justification is acceptable. Acceptability Applicant's justification is acceptable. Remarks For the human health effects assessment of CO 2 for PT15 the relevant information and data available (open literature) already described in the Draft Assessment Report for Plant Protection Products (2009) and in the Competent Authority Report for PT14 (2006) are used. 	

Section A7	ECOTOXICOLOGICAL PROFILE INCLUDING ENVIRONMENTAL FATE AND BEHAVIOUR	
	JUSTIFICATION FOR NON-SUBMISSION OF DATA As outlined in the TNsG on data requirements, the applicant must always be able to justify the suggested exemptions from the data requirements. The justifications are to be included in the respective location (section) of the dossier. If one of the following reasons is marked, detailed justification has to be given below. General arguments are not acceptable.	Official use only
Other existing data []	Technically not feasible [] Limited exposure [] Scientifically unjustified []]	Other justification []

Section A7	ECOTOXICOLOGICAL PROFILE INCLUDING ENVIRONMENTAL FATE AND BEHAVIOUR
Detailed justification:	A number of publicly available and published studies are summarised in Document II of the application dossier, but no Document III summaries are provided. These literature data were included for supporting purposes and are considered non-essential for the evaluation of carbon dioxide as an avicide (PT15) within the framework of the Biocidal Products Directive 98/8/EC for the reason given below.
	Carbon dioxide is representing the end point in mineralisation of organic substances. Therefore it is not subject to biological degradation. Since it is a gas, carbon dioxide used as an avicide in confined spaces will rapidly enter the atmosphere when vented and contribution to naturally occurring carbon dioxide concentrations will be negligible. Testing for the biodegradability of carbon dioxide and testing for route and rate of degradation in soil or water is scientifically unjustified and therefore not applicable.
	During the 9th Technical Meeting in February 2003, it was agreed that environmental properties data are not required for CO 2 , and where relevant, could come from literature.
	Because of the rapid dilution of carbon dioxide in adjacent air (inhomogeneous concentration on a spatial and temporal scale) it is not reasonable to calculate PEC-values for environmental compartments for the use of carbon dioxide as an avicide (geese killing). It can be concluded that due to the high gradient in carbon dioxide concentration, when the gas is released to air, there will be a fast transport and dispersion of carbon dioxide in air preventing initial or time-weighted average concentrations that would be relevant with regard to ecotoxicological effects to the environment.
	Considering the vast amounts of carbon dioxide, naturally present in air, water and soil as part of the global carbon cycle, a measurable elevation of carbon dioxide concentrations in air, surface water or soil from its use as an avicide can be excluded. For algae, aquatic and terrestrial plants carbon dioxide is an essential substrate for photosynthesis and hence it is not scientifically necessary to calculate the growth inhibition caused by it. Regarding toxicity to fish, aquatic invertebrates and earthworms, available literature data of insufficient quality were not used in the risk assessment of carbon dioxide used as a biocide (PT14 and PT18) or as a plant protection product. It is proposed that, because of the lack of relevant exposure of the
Carbon dioxide - 124-38-9	environmental conpetments, there is no unacceatabla-A risk for non-target organisms from the use of carbon dioxide as an avicide for the control of nuisance birds.

Section A7	ECOTOXICOLOGICAL PROFILE INCLUDING ENVIRONMENTAL FATE AND BEHAVIOUR
Undertaking of intended data submission []	Not applicable

