EULA AISBL	Biocidal active substance:	Page 1-20
Document IIIA, Section A3	Burnt dolomitic lime (CaO'MgO)	April 2010

Introductory Remarks

Except for information on density and log Pow, no physico-chemical data on Burnt dolomitic lime is provided in this chapter. Where relevant, physical and chemical properties of CaO and MgO are presented instead for the following reasons:

- Dolomitic Lime products of the general formula CaO·MgO do not consist of a fixed Ca/Mg ratio. The content of MgO is variable and ranges from 30 36 % w/w.
- The biocidal activity takes place in solution, where it is not possible to distinguish whether dolomitic lime, or a combination of CaO and MgO was added to the matter to be treated.
- The physical and chemical properties of MgO are quite similar to those of CaO. It is expected therefore that the physical chemical properties of CaO·MgO are not differing to an extent which will justify to undertake specific studies on CaO·MgO.

Section A3	Physical and Chemical Properties of Active Substance (for the components CaO and MgO)

	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.1	Melting point, boiling point, relative density (IIA3.1)								
3.1.1	Melting point	Not indicated	Not indicated	CaO: 2614 °C MgO: 2852 °C	The values are from three different renowned manuals / standard textbooks. The fact	N	1	(1)	x
		Not indicated	Not indicated	CaO: 2572 °C MgO: 2800 °C	that the values differ from each other indicates that they reflect results from three different experiments	N	1	(2)	
		Not indicated	Not indicated	CaO: 2587 °C MgO: 2642 °C	(identical values would indicate that there was most likely only one primary publication which was cited by all manuals/ textbooks. Nevertheless, the values are in good agreement. This gives confidence that the experiments were carefully performed.	N	1	(3)	

Biocidal active substance:

Document IIIA, Section A3

Burnt dolomitic lime (CaO'MgO)

April 2010

Physical and Chemical Properties of Active Substance (for the components CaO and MgO) Section A3 Subsection Method Purity/ Results Remarks/ GLP Relia Reference Official Specification Justification (Y/N) (Annex Point) bility use only Give also data on test pressure, temperature, pH and concentration range if necessary Х 3.1.2 Boiling point Not indicated Not indicated CaO: 2850 °C Though the two sources are N 1 (1)(2)likely to refer to the same MgO: 3600 °C measurements, the indicated values are in line with (i.e. higher than) the melting points. The determination of the exact melting points would have no relevance for the assessment of Burnt dolomitic lime under the BPD. X 3.1.3 Bulk density/ Density: relative density 3,250-3,380 kg/m³ The same argument as put Not indicated Not indicated CaO: N 1 (1)forward for Section point MgO: 3,580 kg/m³ 3.1.1 applies. Not indicated Not indicated CaO: 3,320-3,350 kg/m³ N 1 (2) MgO: 3,580 kg/m³ Pour density: 0.83 g/mL Y CIPAC MT186 Doc. No. Neutralac QM: 1 Tap density: 1.15 g/mL 113-006. 59.6 % w/w CaO 37.5 % w/w MgO A3.1.3/07 **OECD 106** Y Neutralac QM: 1 Relative density (D_4^{20}) EEC Method A3 59.6 % w/w CaO 3.28 37.5 % w/w MgO

Biocidal active substance:

Document IIIA, Section A3

Burnt dolomitic lime (CaO'MgO)

April 2010

Section A3 Physical and Chemical Properties of Active Substance (for the components CaO and MgO)

5. 5.	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.2	Vapour pressure (IIA3.2)				According to the TNsG on data requirements the "[] study needs not to be conducted if the melting point is above 300 °C. As the melting points of CaO and MgO lie far above this trigger, the determination of the vapour pressure is not triggered. It can be assumed that the vapour is below 10 ⁻⁵ Pa.				
3.2.1	Henry's Law Constant (Pt. I-A3.2)			not applicable	CaO and MgO are not stable in aqueous systems: They react to Ca(OH) ₂ and Mg(OH) ₂ . Depending on the burning conditions in the production of CaO MgO, MgO might also not hydrolyse and in this case will consequently be insoluble.				
3.3	Appearance (IIA3.3)								
3.3.1	Physical state	Not indicated	Not indicated	CaO: solid		N	1	(2)	W 10
				MgO: solid CaO/MgO: solid		N	1	(2)	

Biocidal active substance:

Document IIIA, Section A3

Burnt dolomitic lime (CaO'MgO)

April 2010

Section A3

Physical and Chemical Properties of Active Substance (for the components CaO and MgO)

	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.3.2	Colour	Not indicated	Not indicated	CaO: white, grey, yellowish, greyish green or brown (depending on impurities) MgO: white CaO/MgO: white, grey, yellowish, greyish green or brown (depending on impurities)		N	1	(2)	x
3.3.3	Odour				Due to low volatility no odour is expected.				
3.4	Absorption spectra (IIA3.4)								\$\$
3.4.1	UV/VIS	 spectrum is scient In the visible colourless (w In the UV regnot provide in 	ifically not necessary region, no absorption hite). zion, absorption of lig	ements, a study needs not to be performed wh y for the following reasons: n of light can be expected, as CaO·MgO does ght might be possible. However, it can be pre analytical purposes. Please note that the anal pectrum.	not absorb visible light. The	is is the n on Lin	reason ne varia	why it is ants would	

Biocidal active substance:

Page 5-20

April 2010

Document IIIA, Section A3

Burnt dolomitic lime (CaO'MgO)

Section A3

Physical and Chemical Properties of Active Substance (for the components CaO and MgO)

	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.4.2	IR	Selected crystals were cleaved and ground to platelets. Spectra were recorded on a Perkin-Elmer 180 infrared spectrophoto- meter.	Single crystals of pure MgO or CaO	For CaO and MgO "Multiphonon infrared absorption spectra of MgO and CaO" are presented in literature. Two main peaks for MgO at 846.5 and 981 cm ⁻¹ and two main peaks for CaO at 628 and 738 cm ⁻¹ were found.		N	1	(4)	x

Biocidal active substance:

Document IIIA, Section A3

Physical and Chemical Properties of Active Substance (for the components CaO and MgO)

Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
	Infrared matrix isolation spectroscopy	Test substance Ca(OH) ₂ was produced in the argon matrix by co-condesation of metallic Ca, water and argon at 15 K on a copper surface. For the test substance Mg(OH)2 a CsI surface was used at 10 K.	For Ca(OH) ₂ and Mg(OH) ₂ wavenumbers for the Element-Oxygen asymmetric stretching modes are stated in literature, recorded in the Argon matrix for isolated molecules (591.9 Ca(OH) ₂ and 866.9 cm ⁻¹ Mg(OH) ₂). These values are also interesting, when an IR-spectrum of burnt dolomitic lime is discussed as can be concluded from the following argumentation. The measured frequencies of the metal oxygen stretching mode for any of the mentioned compounds containing Calcium are lower than for those containing Magnesium, because of the higher mass of calcium. The cited values indicate that the metal oxygen stretching mode frequency for calcium containing compounds lies between 590 and 740 cm ⁻¹ . The magnesium oxygen stretching mode frequencies range from 840 – 990 cm ⁻¹ . The gap between the two regions allows to distinguish between calcium or magnesium oxygen stretching modes. The cited data is sufficient to assign the peaks in a spectrum of dolomitic lime to the possible vibrational modes.	produced <i>in situ</i> the argon matrix prior to the measurement. To state a specification of the test substance is therefore not applicable.	Ν	1	(5) (6)	

Biocidal active substance:

April 2010

Document IIIA, Section A3

Burnt dolomitic lime (CaO'MgO)

Section A3

Physical and Chemical Properties of Active Substance (for the components CaO and MgO)

Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
	Absorption spectra measured using CaO powder pressed to various film thicknesses (< 1µm – 6µm)	>99.5%	423 cm ⁻¹ for MgO, 318 cm ⁻¹ for CaO see Figure 7 of the cited document.	In addition to the previously submitted multiphonon spectrum, a conventional IR spectrum is submitted.	N	1	(7)	

Biocidal active substance:

April 2010

Document IIIA, Section A3

Burnt dolomitic lime (CaO'MgO)

Section A3

Physical and Chemical Properties of Active Substance (for the components CaO and MgO)

Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
	The infrared (IR) absorption spectrum was recorded as a potassium bromide disc over the scan range 4000 to 500 cm ⁻¹ . Resolution: 4.0 or 8.0 cm ⁻¹ Number of scans: 64 Gain: 1	56.6 / WW MED	For Burnt dolomitic lime a weak sharp peak was observed at 3640 cm ⁻¹ corresponding to the O-H stretch of Ca(OH) ₂ . A weak broad band at 3450 cm ⁻¹ was attributed to absorbed H ₂ O, whereas the weak broad band at 1450 cm ⁻¹ is attributed to the C-O carbonates stretch.	The IR spectrum was consistent with the assigned structure of the lime variant. Any moisture present will react with CaO to Ca(OH) ₂ and for this reason, the O-H stretch is also observed in Burnt lime variant. The low intensity of the O-H stretch of the Ca(OH) ₂ is explained by the larger grain size of the Neutralac QM sample compared to the Precal 30S/N samples. Hence less water is adsorbed onto the surface of the crude Neutralac QM before sample preparation. As described in Document IIIA, section 5, CaO is more reactive than MgO, thus no signal for the O-H stretch of Mg(OH) ₂ is observed in the IR spectrum of Neutralac QM.	Y	1	Doc. No. 117-001; Section A3.4.2/06 (dossier on Hydrated lime)	
3.4.3 NMR			ments, a study needs not to be performed whe tra for Burnt lime is scientifically not necess					

Biocidal active substance:

Document IIIA, Section A3

Burnt dolomitic lime (CaO'MgO)

Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pl concentration range if necessary	Remark Justificat	3041)	Relia bility	Reference	Official use only
3.4.4 MS	 Only at extreme! The analytical m An MS can be carried to the main of the m	ly high temperatu nethods for CaO·1 alculated (see tab S peaks for CaC lculated on the ba		is based on an MS spec		tempera	atures).	
		m / z [u]	Relative intensity of the peaks for the respective fragment related to the highest peak (100).	Assignment	2			
	CaO·MgO	m / z [u] 56 58 59 60 64		Assignment CaO	2			

Biocidal active substance:

Document IIIA, Section A3

Burnt dolomitic lime (CaO'MgO)

GLP Relia Reference Official Remarks/ Subsection Method Purity/ Results Specification **Justification** (Y/N) bility use only (Annex Point) Give also data on test pressure, temperature, pH and concentration range if necessary (1) Х N 1 Solubility in water Not indicated Not indicated CaO: 1.31 g/L cold water CaO and MgO are not stable in 3.5 aqueous systems: They react to (IIA3.5) 0.7 g/L hot water Ca(OH)2 and Mg(OH)2. Depending MgO: 0.0062 g/L cold water on the burning conditions in the production of CaO MgO, MgO 0.086 g/L hot water might also not hydrolyse and in this case will consequently be insoluble. N 1 (1)Ca(OH)2 and especially Mg(OH)2 are generally known to be slightly soluble. It can be assumed that the testing was done with the pure substance, as these data come from peer reviewed scientific literature. Cold water refers to water of a temperature close to 0°C and hot water refers to water close the boiling point of 100°C. It can be assumed that the testing was N (8) Not indicated. Not indicated 1 1.3 done with the pure substance, as these solubility of lime 81.8 data come from peer reviewed scientific is expressed as literature. CaO or Ca(OH)2 814 at different It is concluded that the differences between the values can be linked to the temperatures solvent temperature and it can be g/1000 g assumed that the test substances used saturated 180 were of comparable purity. \$11 20 40 MU 80 10 solution. Temperature, "C. Fig. 1.—Bohahility of color nor oxids in water. Circles, Hershell's false, crosses, wetbary data. In this publication, no information on MgO is available.

Biocidal active substance:

April 2010

Document IIIA, Section A3

Burnt dolomitic lime (CaO'MgO)

	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentratio range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
		Not indicated, solubility of lime is expressed as CaO or Ca(OH) ₂ different temperatures g/100 g saturated solution. The conductivity method was used for Mg(OH) ₂	Not indicated	For Mg(OH) ₂ values for 18° are given of 0.008 – 0.009 g/		N	1	(9)	
		(Average curve from t	per 200 Grams HaO. Typ. CaO. 55 0.140 66 0.133 95 0.125 59 0.120 53 0.116	ben, 1883-84; Herzfeld, 1897, and Guthrie, 1					
3.6	Dissociation constant (-)	The dissociation co		l MgO cannot be determined as nformation can be provided:	CaO and MgO react with water to Ca(OF	I) ₂ and	Mg(OF	I)2. For	

Biocidal active substance:

April 2010

Document IIIA, Section A3

Burnt dolomitic lime (CaO'MgO)

Subsection GLP Relia Reference Official Method Purity/ Results Remarks/ Justification (Y/N) (Annex Point) Specification bility use only Give also data on test pressure, temperature, pH and concentration range if necessary The pH of a saturated Ca(OH)2 It can be assumed that the testing N (1)(2)(3)Not indicated: the Not indicated 1 thermodynamic solution is 12.4. (pH measurement of a saturated Ca(OH)₂ solution) was done with the quotient of the It can therefore be qualitatively first ionisation of pure substance, as these data come concluded that Ca(OH)2 is a the base from peer reviewed scientific strong base and that pKb < 0. dissolved in literature. The same holds true for aqueous solution The basicity of CaO·MgO in water Mg(OH)2. at "infinite is triggered by the basicity of CaO. dilution" is The pKb of CaOH+ and MgOH pH of a saturated Ca(OH)₂ solution described. are 1.2 and 2.6 respectively. It is 12.4. is stated that these forms are very sensitive to ionic medium. MgO reacts with water to Ca(OH)2 and Mg(OH)2 are known to Mg(OH)₂ which is only slightly be slightly soluble in water and therefore a direct titration would be soluble in water, hence nearly no dissociation takes place. hard to conduct.

Biocidal active substance:

Document IIIA, Section A3

Burnt dolomitic lime (CaO'MgO)

	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.7	Solubility in organic solvents, including the effect of temperature on solubility (IIIA3.1)	Not indicated	Not indicated	It is expected the CaO·MgO is not soluble in organic solvents. CaO and MgO are not soluble in ethanol. In reference 1 it is stated that they are soluble in acids. It should be noted that CaO reacts exothermically with acids, glycerin and sugarsirups.	There are only qualitative statements on the solubility in ethanol available in literature. It can be assumed that solubility testing was done with the pure substance, as these data come from peer reviewed scientific literature. CaO and MgO are very polar substances. For this reason, it can predicted that they are not soluble in unpolar (= organic) solvents. The fact that CaO and MgO are not soluble in ethanol shows that this statement is valid: please note that ethanol is one of the most polar organic solvents. In less polar organic solvents, CaO can be expected to be less soluble than in ethanol.	Ν	1	(1) (2)	X
		Shake flask method according to OECD 107	Neutralac QM: 59.6 % w/w CaO 37.5 % w/w MgO	Rate of Calcium recovery in aqueous phase: 103.9 %	The $Ca(OH)_2$ -content in the test solutions was completely found in the aqueous phase. $Ca(OH)_2$ does not dissolve in n-octanol and a partition coefficient could therefore not be calculated.	N	1	Doc. No. 154-001; A3.9/01 (dossier on Hydrated lime)	
3.8	Stability in organic solvents used in b.p. and identity of relevant breakdown products (IIIA3.2)			not relevant	There are no formulated products based on Burnt dolomitic lime.				

Biocidal active substance:

April 2010

Document IIIA, Section A3

Burnt dolomitic lime (CaO'MgO)

Subsection GLP Relia Reference Official Method Purity/ Results Remarks/ Justification (Annex Point) Specification (Y/N) bility use only Give also data on test pressure, temperature, pH and concentration range if necessary It is expected, that the logPow is $\ll 3$. X 3.9 Partition coefficient noctanol/water Burnt dolomitic lime hydrolyses rapidly in water to (IIA3.6) Ca(OH)2 Mg(OH)2 and/or Ca(OH)2MgO. MgO in Ca(OH)2MgO has shown to be inert against water and it is therefore insoluble in water and needs not to be considered. No Ca(OH)2 or Mg(OH)2 is dissolved undissociated in water. The portion of Ca(OH)2 and Mg(OH)2 that dissolves in water completely dissociate to Ca2+, Mg2+ and OH-. A test would be performed in buffer solutions at different pH values (5 to 9). Therefore the OH- concentration is given by the test conditions and only the Ca²⁺ and Mg²⁺ concentration is of relevance. Ca²⁺ and Mg²⁺, being charged species, are not expected to move to the unpolar noctanol phase to a significant extent. N **OECD 107** Rate of Calcium recovery in Neutralac OM: The Ca(OH)₂-content in the test 1 Doc. No. solutions was completely found in 59.6 % w/w CaO aqueous phase: 103.9 % 154-001; 37.5 % w/w MgO the aqueous phase. Ca(OH)2 does A3.9/01 Magnesium concentrations in not dissolve in n-octanol and a (dossier water prior to testing were very partition coefficient could therefore on low. Hydrated not be calculated. lime)

Biocidal active substance:

April 2010

Document IIIA, Section A3

Burnt dolomitic lime (CaO'MgO)

4	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.10	Thermal stability, identity of relevant breakdown products (IIA3.7)			CaO and MgO are stable at extremely high temperatures.	The melting point of CaO is > 2500 °C and of MgO is > 2600 °C. Therefore it can be excluded that CaO·MgO is instable at high temperatures. CaO·MgO is produced from Dolomitic limestone at 900 – 1300 °C. It can be concluded that CaO·MgO is stable at least at this temperature range.				
3.11	Flammability, including auto- flammability and identity of combustion products (IIA3.8)			It can be excluded that CaO∙MgO is flammable.	In CaO·MgO, Calcium, Magnesium and Oxygen are in their respective preferred oxidation state. Consequently, flammability can be excluded. Please refer to the arguments provided in the previous point (3.10).				
3.12	Flash-point (IIA3.9)			CaO·MgO is neither capable of burning, nor forming flammable gases.	The same argument as for point 3.11 apply here.				X
3.13	Surface tension (IIA3.10)	OECD 115 EEC A5	90% saturated solution of Ca(OH) ₂ (98.2 % w/w)	72.5 mN/m	EuLA contracted a study to cover this point with experimental data. The study has been performed with Ca(OH) ₂ as CaO and MgO hydrolyse rapidly in water to form Ca(OH) ₂ and Mg(OH) ₂ anyway. The poor solubility of Mg(OH) ₂ is not expected to effect the surface tension.	Y	1	Doc. No. 113-001; A3.1.3/02 (dossier on Hydrated lime)	X

Biocidal active substance:

April 2010

Document IIIA, Section A3

Burnt dolomitic lime (CaO'MgO)

	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.14	Viscosity (-)			not applicable	According to the TNsG this data must only be submitted for liquid substances.				
3.15	Explosive properties (IIA3.11)	formula or its "oxy releasing heat very	gen balance" establi rapidly."		when [] absence of certain reactive gr t the substance is incapable of decompo- wided for points 3.10 and 3.11.				
3.16	Oxidizing properties (IIA3.12)	that the active ingr justification for the There is no chemic	edient is incapable o e non-determining of	f reacting exothermically with con oxidising properties." ne oxidising properties for CaO·M	ation of structural formula establishes b nbustible material, it is acceptable to pr gO because in CaO·MgO, Calcium, Ma	rovide s	uch info	ormation as	
3.17	Reactivity towards container material (IIA3.13)				Experience indicates that paper bags lined with plastic (to prevent contact with moisture), plastic bags, steel, stainless steel and Aluminium do not react significantly with dry lime and so can be used as container material for this product. Aluminium and other materials sensitive to high pH are not suitable container materials for wet lime based products (e.g. milk of lime) For bulk transport of dry lime, steel, stainless steel and Aluminium can be used. Stainless steel is recommended, whereas Aluminium is unsuitable as container materials for bulk transportation of wet lime products.				x

Document IIIA, Section A3 Burnt dolomitic lime (CaO•MgO)

- (1) Handbook of Chemistry and Physics, 70th Edition 1989 1990, CRC Press Inc. Boca Raton, Florida. Doc.No. 192-002; Submitted with the Hydrated lime dossier under the Section point A3.1.1/01.
- (2) CD Römpp Chemie Lexikon Version 1.0, Stuttgart/New York: Georg Thieme Verlag **1995**. Doc.No. 192-003; Submitted with the Hydrated lime dossier under the Section point A3.1.3/01.
- (3) Hollemann, Wiberg, "Lehrbuch der anorganischen Chemie", 91. 100. Auflage, de Gruyter, Berlin, New York 1985. Doc.No. 192-001; Submitted with the Hydrated lime dossier under the Section point A3.1.1/02.
- (4) J. T. Gourley and W. A. Runciman: "Multiphonon infrared absorption spectra of MgO and CaO", J. Phys. C: Solid State Phys. 1973, 6, pp. 583-592. Doc.No. 192-007; Submitted with the Burnt lime dossier under the Section point A3.4.2/03.
- (5) J. W. Kauffman, R. H. Hauge, J. L. Margrave: "Infrared Matrix Isolation Studies of the Interactions of Mg, Ca, Sr and Ba Atoms and Small Clusters with Water", High Temperature Science 1984, 18, pp. 97-118. Doc.No. 192-004; Submitted with the Hydrated lime dossier under the Section point A3.4.2/02.
- (6) T. J. Tague, Jr., L. Andrews: "Pulsed Laser evaporated Magnesium Atom Reactions with Hydrogen Infrared Spectra of five Magnesium Hydride Molecules", J. Phys. Chem. 1994, 98, p. 8611. Doc.No. 192-006; A3.4.2/04.
- (7) A.M. Hofmeister, E. Keppel and A.K. Speck, *"Absorption and reflection infrared spectra of MgO and other diatomic compounds*", Mon. Not. R. Astron. Soc. 2003, 345, pp. 16-38. Doc. No. 192-009 submitted with the Burnt lime dossier under the Section point A3.4.2/01.

(8) R.T. Haslam, G. Calingaert, C.M. Taylor:" The Hydrates of Lime", J. Am. Chem. Soc., **1924**, 46 (2), pp. 308-311. Doc. No. 192-010; Submitted with the Hydrated lime dossier under the Section point A3.5/01.

(9) A. Seidell, **1919**, "Solubilities of inorganic and organic substances – a compilation of quatitantive solubility data from the periodical literature"; Stanhope Press. Doc. No. 192-011; Submitted with the Hydrated lime dossier under the Section point A3.5/02.

EULA AISBL	Biocidal active substance:	Page 18-20
Document IIIA, Section A3	Burnt dolomitic lime (CaO•MgO)	April 2010

This fact is relevant when studies on the surface tension of the Lime variants are considered. One study with $Ca(OH)_2$ covers the requirements for the studies for all the other variants, for the following reasons:

- Burnt dolomitic lime reacts with water to form Ca(OH)₂MgO or Ca(OH)₂Mg(OH)₂. Only the completely hydrated form needs to be considered in detail, as the MgO in Ca(OH)₂MgO has shown to be inert against water and is therefore insoluble. Hence a "solution" of Ca(OH)₂MgO in water is a solution of Ca(OH)₂.
- To consider the species in water when Ca(OH)₂Mg(OH)₂ is dissolved the solubility products need to be considered (K_L)

 $K_L(Ca(OH)_2) = 3.9 \times 10^{-6} \text{ mol}^3 / L^3$

 $K_L(Mg(OH)_2) = 1.5 \text{ x } 10^{-12} \text{ mol}^3 / L^3$

On the basis of these solubility products, the solubilities can be calculated as:

 $L(Ca(OH)_2) = 9.9 \text{ mmol} / L$ and $L(Mg(OH)_2) = 0.072 \text{ mmol} / L$

As can be seen the solubility of Ca(OH)₂ is ca. 137 times the solubility of Mg(OH)₂.

In pure water a maximum of 4.2 mg of Mg(OH)₂ can dissolve.

The highest possible concentration of Mg²⁺ is calculated for the pH-value of a saturated Ca(OH)₂ in the following:

pH = 12.4; $c(OH^{-}) = 0.025 \text{ mol /L}$

 $K_L(Mg(OH)_2) = c(Mg^{2+}) \ge c(OH^{-})^2 = c(Mg^{2+}) \ge (0.025 \text{ mol }/L)^2 = c(Mg^{2+}) \ge 0.00063 \text{ mol}^2/L^2$

 $c(Mg^{2+})$ = 0.00000238 mmol / L or $0.06~\mu g$ / L

Corresponding of $0.138 \ \mu g / L$ dissolved Mg(OH)₂.

It can be concluded that in the presence of Ca(OH)₂, i.e. at high pH values, Mg²⁺ concentrations are negligible.

Biocidal active substance:

Document IIIA, Section A3

Burnt dolomitic lime (CaO'MgO)

	Evaluation by Competent Authorities
	Use separate "evaluation boxes" to provide transparency as
	to the comments and views submitted
	EVALUATION BY RAPPORTEUR MEMBER STATE
Date	17 September 2010
Materials and methods	Adopt applicant's version with the following amendments.
	Some of the data submitted in section 3 are taken from the published literature in the form of well established reference texts which are identified in the reference list. As a result details such as purity of sample and methods used are not available.
	However, it is considered that the information supplied is suitable for its intended use especially given that the data have been in use for a considerable time in many technical fields apart from the uses of immediate concern.
	The remaining physicochemical tests have been conducted on identified samples and reports have been submitted but the reports are not necessarily to GLP.
	The following points are recorded for individual studies.
	3.1.1 Melting point Literature values - Method and purity not recorded. The studies are not to GLP The values quoted are high enough (>2000°C) for the differences to be of little concern. The provision of separate data for Magnesium hydroxide is acceptable. Reliability 2.
	3.1.2 Boiling point Literature values - Method and purity not recorded. The studies are not to GLP The values quoted are high enough (>2000°C) for the differences to be of little concern. The provision of separate data for Magnesium hydroxide is acceptable. Reliability 2.
	3.1.3 Relative density
	The relative density will vary depending on the source of the lime and the level and identity of the impurities present. The measured value reported is within a range quoted from one of the reference texts.
	Reliability of the literature values 2. The Pycnometer method was used in the study carried out on Neutralac QM.
	3.3.2 Colour In the study reports for Neutralac QM the appearance is recorded as white/beige
	powder.
	3.4.2 IR Spectrum Details of an infra red spectrum recorded as a potassium bromide disc over the scan range 4000-500 cm-1 (Doc 117-001) are available. The remaining information relating to infra red spectra can be disregarded.
	 3.5 Solubility in water Literature values - Method and purity not recorded. The studies are not to GLP. Document 192-002 (the CRC handbook) gives CaO: hot-water as 80°C and cold-water as 10°C MgO: hot-water as 30°C but no temperature given for the cold water value. Reliability 2.

Biocidal active substance:

Document IIIA, Section A3

Burnt dolomitic lime (CaO•MgO)

	3.7 Solubility in organic solvents Limited qualitative data from literature only. The studies are not to GLP
	Reliability of the literature values 2. Non GLP studies on identified samples measuring the partition coefficient of burnt dolomitic lime indicated that the substance hydrolyses and there is no absorption into the organic layer.
	3.9 Partition coefficient n-octanol/water Non GLP studies on identified samples confirm that the partition coefficient of burnt dolomitic lime could not be calculated. The substance hydrolyses.
	3.12 Flash point The substance is a solid therefore the determination of flash point is not applicable.
	 3.13 Surface tension The OECD Harmonised ring method was used. A 1g/L solution was measured rather than a 90% saturated solution of hydrated lime. Burnt lime hydrolyses to hydrated lime. The test was conducted on Hydrated lime. Because of the poor solubility of Magnesium hydroxide a significantly different result is not expected.
	3.17 Reactivity towards container material There should be clear evidence that no problems will arise if aluminium is to be used for any product.
Conclusion	Adopt applicant's version with the above amendments.
Reliability	The following entries are based on recent tests conducted on identified samples. Reliability is 1.
	3.1.3 Relative density / Bulk density
	3.4 Spectra (IR)
	3.7 Solubility in organic solvents 3.9 Partition coefficient
	3.13 Surface tension
	Reliability of the literature values is 2
Acceptability	Acceptable
Remarks	None
	COMMENTS FROM
Date	Give date of comments submitted
Results and discussion	Discuss additional relevant discrepancies referring to the (sub)heading numbers and to applicant's summary and conclusion. Discuss if deviating from view of rapporteur member state
Conclusion	Discuss if deviating from view of rapporteur member state
Reliability	Discuss if deviating from view of rapporteur member state
Acceptability	Discuss if deviating from view of rapporteur member state
Remarks	

Biocidal active substance:

Document IIIA, Section A3

Burnt lime (CaO)

	0.1	Mala	B :: /	D h	D	CLD	DP	D. C.	0.00
	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.1	Melting point, boiling point, relative density (IIA3.1)								
3.1.1	Melting point	Not indicated Not indicated Not indicated	Not indicated Not indicated Not indicated	2614 °C 2572 °C 2587 °C	The values are from three different renowned manuals / standard textbooks. The fact that the values differ from each other indicates that they reflect results from three different experiments (identical values would indicate that there was most likely only one primary publication which was cited by all manuals/ textbooks. Nevertheless, the values are in good agreement. This gives confidence that the experiments were carefully performed.	N N N	1 1	(1)(2)(3)	X
3.1.2	Boiling point	Not indicated Not indicated	Not indicated Not indicated	2850 °C 2850 °C	Though the two sources are likely to refer to the same measurement, the indicated value is in line with (i.e. higher than) the melting point. The determination of the exact melting point would have no relevance for the assessment of Burnt lime under the BPD.	N N	1	(1) (2)	x
3.1.3	Bulk density/ relative density	Not indicated Not indicated	Not indicated Not indicated	Density: 3,250 – 3,380 kg/m ³ 3,320 – 3,350 kg/m ³	The same argument as put forward for Section point 3.1.1 applies.	N N	1	(1) (2)	x

Biocidal active substance:

Document IIIA, Section A3

Burnt lime (CaO)

Secti	ion A3	Physical and Ch	emical Propertie	s of Active Substance					
	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
		CIPAC MT186	Precal 30S: 97.6 % w/w	Pour density: 0.74 g/mL Tap density: 1.04 g/mL		Y	1	Doc. No. 113-003, A3.1.3/04	
			Precal 30N: 96.5 % w/w	Pour density: 0.77 g/mL Tap density: 1.08 g/mL		Y	1	Doc. No. 113-004, A3.1.3/05	
		OECD 106 EEC Method A3	Precal 30S: 97.6 % w/w	Relative density (D_4^{20}) 3.09		Y	1	Doc. No. 113-003, A3.1.3/04	х
			Precal 30N: 96.5 % w/w	Relative density (D_4^{20}) 3.21		Y	1	Doc. No. 113-004, A3.1.3/05	х
3.2	Vapour pressure (IIA3.2)				According to the TNsG on data requirements the "[] study needs not to be conducted if the melting point is above 300 °C. As the melting point of Burnt lime is far above this trigger, the determination of the vapour pressure is not triggered.				
3.2.1	Henry's Law Constant (Pt. I-A3.2)			not applicable	CaO is not stable in aqueous solution: It reacts with water forming Ca(OH) ₂ .				
3.3	Appearance (IIA3.3)								
3.3.1	Physical state	Not indicated	Not indicated	solid		N	1	(2)	

Biocidal active substance:

Document IIIA, Section A3

Burnt lime (CaO)

A 1311	2010
AUII	2010

Physical and Chemical Properties of Active Substance Section A3 Subsection Method Purity/ Remarks/ GLP Relia Reference Official Results Specification Justification (Annex Point) (Y/N) bility use only Give also data on test pressure, temperature, pH and concentration range if necessary 3.3.2 Colour Not indicated Not indicated colourless, grey, yellowish, Pure burnt lime is white. Any N (2)Х 1 grevish green or brown tint (see left) is caused by the impurities present. (depending on impurities) odourless Burnt lime is not volatile. It can 3.3.3 Odour therefore be excluded that it has any odour. 3.4 Absorption spectra (IIA3.4) According to the TNsG on data requirements, a study needs not to be performed when it is scientifically not necessary. Recording an 3.4.1 UV/VIS UV spectrum is scientifically not necessary for the following reasons: In the visible region, no absorption of light can be expected, as CaO does not absorb visible light. This is the reason why it is . colourless (white). In the UV region, absorption of light might be possible. However, it can be predicted that any UV spectrum on Lime variants . would not provide information useful for analytical purposes. Please note that the analytical methods for Lime variants are well established. None of them is based on a UV spectrum. For CaO, a multiphonon (4)Single crystals of 3.4.2 IR Selected crystals were Ν 1 infrared absorption cleaved and ground to pure CaO spectrum is presented in platelets. Spectra were literature. Two main peaks recorded on a Perkinoccur at 628 and 738 cm⁻¹. Elmer 180 infrared spectrophotometer.

Biocidal active substance:

Document IIIA, Section A3

Burnt lime (CaO)

0					-
	ec	t16	m	•	-
		uu	, 11		

Physical and Chemical Properties of Active Substance

Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
	Absorption spectra measured using CaO powder pressed to various film thicknesses (< 1µm – 6µm)	>99.5%	318 cm ⁻¹ for CaO see Figure 7 of the cited document.	In addition to the multiphonon spectrum, a conventional IR spectrum is submitted.	N	1	(5)	
	The infrared (IR) absorption spectrum was recorded as a potassium bromide disc over the scan range 4000 to 500 cm ⁻¹ Resolution: 4.0 or 8.0 cm ⁻¹ Number of scans: 64 Gain: 1	0 = 4 0/ /	For Burnt lime a medium/strong sharp peak was observed at 3640 cm ⁻¹ corresponding to the O-H stretch of Ca(OH) ₂ . A weak broad band at 3450 cm^{-1} was attributed to absorbed H ₂ O, whereas the weak broad band at 1450 cm^{-1} is attributed to the C-O carbonates stretch.	The IR spectrum was consistent with the assigned structure of the lime variant. Any moisture present will react with CaO to Ca(OH) ₂ and for this reason, the O-H stretch is also observed in the Burnt lime variant.	Y	1	Doc. No. 117-001; Section A3.4.2/06 (dossier on Hydrated lime)	x
3.4.3 NMR				formed when it is scientifically r scientifically not necessary, bec				

EU	LA	AIS	BL

April 2010

Document IIIA, Section A3

Burnt lime (CaO)

Section A3	Physical and Ch	emical Propert	ies of Active Substance					
Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.4.4 MS	 The analytical m An MS can be ca Table: Expected MS Values have been cal 	aethods for CaO are alculated (see table S peaks for CaO. culated on the basi	es, CaO peaks could be expected (in co e well established. None of them is bas) s of the abundance of the isotopes of o web.com/mstools/isotope htm	sed on an MS spectrum.		nperature	:).	
		m / z [u]	Relative intensity of the peaks for Calcium oxide related to the highest peak (100).	Assignment				
	CaO	56 58 59 60	100 0.9 0.1 2.2	CaO				
		64	0.2					

Biocidal active substance:

Page 6-15

Document IIIA, Section A3

Burnt lime (CaO)

April 2010

Section A3 Physical and Chemical Properties of Active Substance

	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
Contraction ()	Solubility in water (IIA3.5)	Not indicated	Not indicated	1.31 g/L cold water 0.7 g/L hot water	CaO is not stable in aqueous solution: It reacts to Ca(OH) ₂ , which is generally known to be only slightly soluble. It can be assumed that the testing was done with the pure substance, as these data come from peer reviewed scientific literature. Cold water refers to water of a temperature close to 0°C and hot water refers to water close the boiling point of 100°C.	N	1	(1)	x
		Not indicated, solubility of lime is expressed as CaO or Ca(OH)2 at different temperatures g/100 g or 1000 g saturated solution.	Not indicated	See graph and table below	It can be assumed that the testing was done with the pure substance, as these data come from peer reviewed scientific literature. It is concluded that the differences between the values	N	1	(6) (7)	

Biocidal active substance:

Page 7-15

April 2010

Document IIIA, Section A3

Burnt lime (CaO)

Section A3

Physical and Chemical Properties of Active Substance

Subsection (Annex Point)	Method	Purity/ Specification	Result Give also data on temperature, pH and range if nec	est pressure, concentration	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
	La software 1.2 1.2 1.2 1.2 1.2 1.2 1.1 201.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ure, *C. ide in water. Circles, Herzield DE Ca(OH)3.			can be linked to the solvent temperature and it can be assumed that the test substances used were of comparable purity.				
	(Average curve from the result t ^e . Grams per zoo Ca(OH) ₂ . 0 0.185 10 0.176 20 0.165 25 0.159 30 0.153 40 0.141	Grams H40. Ca0. 0.140 0.133 0.125 0.120 0.116		ad Guthrie, 1901.) Grams H40. Ca0. 0.097 0.088 0.080 0.071 0.064 0.058					
6 Dissociation consta (-)			210	100	th water to Ca(OH) ₂ For Ca(OH)	I) ₂ the f	ollowing	g information	

Biocidal active substance:

Document IIIA, Section A3

Burnt lime (CaO)

Section A	3
-----------	---

Physical and Chemical Properties of Active Substance

	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
		Not indicated; the thermodynamic quotient of the first ionisation of the base dissolved in aqueous solution at "infinite dilution" is described.	Not indicated	The pH of a saturated Ca(OH) ₂ solution is 12.4. It can therefore be qualitatively concluded that Ca(OH) ₂ is a strong base and that pKb < 0. The pK _b of CaOH ⁺ is 1.2. It is stated that this form is very sensitive to ionic medium.	It can be assumed that the testing (pH measurement of a saturated Ca(OH) ₂ solution) was done with the pure substance, as these data come from peer reviewed scientific literature. Ca(OH) ₂ is known to be slightly soluble in water and therefore a direct titration would be hard to conduct.	N	1	(1) (2)	
3.7	Solubility in organic solvents, including the effect of temperature on solubility (IIIA3.1)	Not indicated	Not indicated	CaO is not soluble in ethanol. In reference 1 it is stated that it is soluble in acids. It should be noted that CaO reacts exothermically with acids, glycerin and sugarsirups.	There is only a qualitative statement on the solubility in ethanol available in literature. It can be assumed that solubility testing was done with the pure substance, as these data come from peer reviewed scientific literature. CaO is a very polar substance. For this reason, it can predicted that it is not soluble in unpolar (= organic) solvents. The fact that CaO is not soluble in ethanol shows that this statement is valid: please note that ethanol is one of the most polar organic solvents. In less polar organic solvents, CaO can be expected to be less soluble than in ethanol.	N	1	(1) (2)	

Biocidal active substance:

Page 9-15

Document IIIA, Section A3

Burnt lime (CaO)

Sect	ion A3	Physical and Chen	nical Propertie	s of Active Substance					
	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
		A shake-flask method was used according to OECD 107	Precal 30S: 97.6 % w/w Precal 30N: 96.5 % w/w	Rate of Calcium recovery in aqueous phase: 102.5 % Rate of Calcium recovery in aqueous phase: 102.9 %	The Ca(OH) ₂ -content in the test solutions was completely found in the aqueous phase. Ca(OH) ₂ does not dissolve in n-octanol and a partition coefficient could therefore not be calculated.	N	1	Doc. No. 154-001; A3.9/01 (dossier on Hydrated lime)	x
3.8	Stability in organic solvents used in b.p. and identity of relevant breakdown products (IIIA3.2)			not relevant	There are no formulated products based on Burnt lime.				
3.9	Partition coefficient n-octanol/water (IIA3.6) log Pow			to Ca(OH)2 and insoluble in	ter where it directly transforms organic solvents. No Ca(OH) ₂ water. The portion of Ca(OH) ₂ letely dissociates to Ca ²⁺ and ned in buffer solutions at Therefore the OH ⁻ test conditions and only the vance. Ca ²⁺ , being a charged				X

Biocidal active substance:

Document IIIA, Section A3

Burnt lime (CaO)

Secti	ion A3	Physical and Cl	nemical Propertie	s of Active Substance					
	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
		OECD 107	Precal 30S: 97.6 % w/w Precal 30N: 96.5 % w/w	Rate of Calcium recovery in aqueous phase: 102.5 % Rate of Calcium recovery in aqueous phase: 102.9 %	The Ca(OH) ₂ -content in the test solutions was completely found in the aqueous phase. Ca(OH) ₂ does not dissolve in n-octanol and a partition coefficient could therefore not be calculated.	N	1	Doc. No. 154-001; A3.9/01 (dossier on Hydrated lime)	
3.10	Thermal stability, identity of relevant breakdown products (IIA3.7)			CaO is stable at extremely high temperatures.	The melting point is > 2500 °C. Therefore it can be excluded that CaO is instable at high temperatures. CaO is produced from limestone (CaCO ₃) at 900 – 1300 °C. It can be concluded that CaO is stable at least at this temperature range.				
3.11	Flammability, including auto- flammability and identity of combustion products (IIA3.8)			It can be excluded that CaO is flammable.	In CaO, Calcium and Oxygen are in their respective preferred oxidation state. Consequently, flammability can be excluded. Please refer to the arguments provided in the previous point (3.10).				
3.12	Flash-point (IIA3.9)			CaO is neither capable of burning, nor forming flammable gases.	The same argument as for point 3.11 applies here.				

Biocidal active substance:

Document IIIA, Section A3

Burnt lime (CaO)

April 2010

Physical and Chemical Properties of Active Substance Section A3 Subsection Method Purity/ Remarks/ GLP Relia Reference Official Results Specification (Annex Point) Justification (Y/N) bility use only Give also data on test pressure, temperature, pH and concentration range if necessary **OECD 115** 90% saturated 72.5 mN/m Y 3.13 Surface tension 1 Doc. No. solution of 113-001; (IIA3.10) EEC A5 EuLA has contracted a Ca(OH)2 (98.2 % A3.1.3/02 study to cover this point (dossier on w/w) with experimental data. Hydrated The study has been lime) performed with Ca(OH)2 as CaO hydrolyses rapidly in water to form Ca(OH)2 anyway. 3.14 Viscosity According to the TNsG this data need only to be (-) submitted for liquid substances. According to the TNsG on data requirements "The test can be exempted when [...] absence of certain reactive groups in the structural 3.15 Explosive properties formula or its "oxygen balance" establishes beyond reasonable doubt that the substance is incapable of decomposing, forming gases or (IIA3.11) releasing heat very rapidly." These criteria fully apply to CaO. Please refer to the arguments provided for points 3.10 and 3.11. According to the TNsG on data requirements "In cases where an examination of structural formula establishes beyond reasonable 3.16 **Oxidizing** properties doubt that the active ingredient is incapable of reacting exothermically with combustible material, it is acceptable to provide such (IIA3.12) information as justification for the non-determining of oxidising properties." There is no chemical evidence to assume oxidising properties for CaO because in CaO, Calcium and Oxygen are in their respective preferred oxidation state.

EUI	A	AIS	SBL
	_		

Document IIIA, Section A3

Burnt lime (CaO)

April 2010

Sect	ion A3	Physical and Che	mical Propertie	s of Active Substance					
	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.17	Reactivity towards container material (IIA3.13)				Experience indicates that paper bags lined with plastic (to prevent contact with moisture), plastic bags, steel, stainless steel and Aluminium do not react significantly with dry lime and so can be used as container material for this product. Aluminium and other materials sensitive to high pH are not suitable container materials for wet lime based products (e.g. milk of lime) For bulk transport of dry lime, steel, stainless steel and Aluminium can be used. Stainless steel is recommended, whereas Aluminium is unsuitable as container materials for bulk transportation of wet lime products.				

(1) Handbook of Chemistry and Physics, 70th Edition 1989 - 1990, CRC Press Inc. Boca Raton, Florida. Doc.No. 192-002; Submitted with the Hydrated lime dossier under the Section point A3.1.1/01.

- (2) CD Römpp Chemie Lexikon Version 1.0, Stuttgart/New York: Georg Thieme Verlag 1995. Doc.No. 192-003; Submitted with the Hydrated lime dossier under the Section point A3.1.3/01.
- (3) Hollemann, Wiberg, "Lehrbuch der anorganischen Chemie", 91. 100. Auflage, de Gruyter, Berlin, New York 1985. Doc.No. 192-001; Submitted with the Hydrated lime dossier under the Section point A3.1.1/02.
- (4) J. T. Gourley and W. A. Runciman: "Multiphonon infrared absorption spectra of MgO and CaO", J. Phys. C: Solid State Phys. 1973, 6, pp. 583-592. Doc.No. 192-007; A3.4.2/03.

EULA AISBL	Biocidal active substance:	Page 13-15
Document IIIA, Section A3	Burnt lime (CaO)	April 2010
(5) A.M. Hofmeister, E. Keppel and	A.K. Speck, "Absorption and reflection infrared spectra of MgO and other diator	mic compounds", Mon. Not. R. Astron. Soc. 2003, 345, pp.

(6) R.T. Haslam, G. Calingaert, C.M. Taylor: J. Am. Chem. Soc., 1924, 46 (2), pp. 308-311. Doc. No. 192-010; Submitted with the Hydrated lime dossier under the Section point

(b) K.1. Hastani, G. Caningaert, C.M. Taylor, J. Am. Chem. Soc., 1924, 46 (2), pp. 508-511. Doc. No. 192-010, Submitted with the Hydrated line dossier under the Section point A3.5/01.

(7) A. Seidell, **1919**, "Solubilities of inorganic and organic substances – a compilation of quatitantive solubility data from the periodical literature"; Stanhope Press. Doc. No. 192-011; A3.5/02.

Biocidal active substance:

Document IIIA, Section A3

Burnt lime (CaO)

	Evaluation by Competent Authorities
	Use separate "evaluation boxes" to provide transparency as
	to the comments and views submitted
	EVALUATION BY RAPPORTEUR MEMBER STATE
Date	7 September 2010
Materials and methods	Adopt applicant's version with the following amendments.
	Some of the data submitted in section 3 are taken from the published literature in the form of well established reference texts which are identified in the reference list. As a result details such as purity of sample and methods used are not available.
	However, it is considered that the information supplied is suitable for its intended use especially given that the data have been in use for a considerable time in many technical fields apart from the uses of immediate concern.
	The remaining physicochemical tests have been conducted on identified samples and reports have been submitted but the reports are not necessarily to GLP.
	The following points are recorded for individual studies.
	 3.1.1 Melting point Literature values - Method and purity not recorded. The studies are not to GLP The values quoted are high enough (>2000°C) for the differences to be of little concern. Reliability 2.
	 3.1.2 Boiling point Literature values - Method and purity not recorded. The studies are not to GLP The values quoted are high enough (>2000°C) for the differences to be of little concern. Reliability 2.
	3.1.3 Relative densityThe relative density will vary depending on the source of the lime and the level and identity of the impurities present. The measured values reported are both less than the ranges quoted from in the reference texts.Reliability of the literature values 2.In the studies carried out on Precal 30S & Precal 30N the Pycnometer method was used.
	3.3.2 Colour In the study reports for Precal 30N & Precal 30S the appearance is recorded as white/beige powder.
	3.4.2 IR Spectrum Details of an infra red spectrum recorded as a potassium bromide disc over the scan range 4000-500 cm-1 (Doc 117-001) are available. The remaining information relating to infra red spectra can be disregarded.
	 3.5 Solubility in water Literature values - Method and purity not recorded. The studies are not to GLP. Document 192-002 (the CRC handbook) gives hot-water as 80° C and cold-water as 10° C.
	Data quoted from documents 192-010 and 192-011 do not refer directly to the

EULA AISBL	Biocidal active substance:
Document IIIA, Section A3	Burnt lime (CaO)
Document IIII, Section 715	
	solubility of calcium oxide. Reliability of other literature values 2.
	 3.7 Solubility in organic solvents Limited qualitative data from literature only. The studies are not to GLP. Reliability of the literature values 2. Non GLP studies on identified samples measuring the partition coefficient of burnt lime indicated that the substance hydrolyses to hydrated lime and there is no absorption into the organic layer.
	3.9 Partition coefficient n-octanol/water Non GLP studies on identified samples confirm that the partition coefficient of burnt lime could not be calculated. Burnt lime hydrolyses to hydrated lime.
	3.13 Surface tensionThe OECD Harmonised ring method was used.A 1g/L solution was measured rather than a 90% saturated solution of hydrated lime.Burnt lime hydrolyses to hydrated lime.
	3.17 Reactivity towards container material There should be clear evidence that no problems will arise if aluminium is to be used for any product.
Conclusion	Adopt applicant's version with the above amendments.
Reliability	The following entries are based on recent tests conducted on identified samples. Reliability is 1.
	 3.1.3 Relative density / Bulk density 3.4 Spectra (IR) 3.7 Solubility in organic solvents 3.9 Partition coefficient 3.13 Surface tension
	Reliability of the literature values is 2
Acceptability	Acceptable
Remarks	None
	COMMENTS FROM
Date	Give date of comments submitted
Results and discussion	Discuss additional relevant discrepancies referring to the (sub)heading numbers and to applicant's summary and conclusion. Discuss if deviating from view of rapporteur member state
Conclusion	Discuss if deviating from view of rapporteur member state
Reliability	Discuss if deviating from view of rapporteur member state
Acceptability	Discuss if deviating from view of rapporteur member state
Remarks	

Introductory Remarks

Hydrated dolomitic lime is produced from Burnt dolomitic lime by reaction with water.

Except for information on density and log Pow, no physico-chemical data on Hydrated dolomitic lime is provided in this chapter. Where relevant, physical and chemical properties of Ca(OH)₂ and Mg(OH)₂ are presented instead for the following reasons:

- Hydrated dolomitic lime of the general formula $Ca(OH)_2 \cdot Mg(OH)_2$ do not consist of a fixed Ca/Mg ratio. The content of $Mg(OH)_2$ is variable and depends on the MgO content in Burnt dolomitic lime (30 36 % w/w).
- The biocidal activity takes place in solution, where it is not possible to distinguish whether Hydrated dolomitic lime, or a combination of $Ca(OH)_2$ and $Mg(OH)_2$ was added to the matter to be treated.
- The physical and chemical properties of $Mg(OH)_2$ are quite similar to those of $Ca(OH)_2$. It is expected therefore that the physical chemical properties of $Ca(OH)_2 \cdot Mg(OH)_2$ are not differing to an extent which will justify to undertake specific studies on $Ca(OH)_2 \cdot Mg(OH)_2$.

Biocidal active substance:

Document IIIA, Section A3

Hydrated dolomitic lime [Ca(OH)2·Mg(OH)2]

April 2010

Section	on A3	Physical and	Chemical Prope	erties of Active Substance (for the compon	ents Ca(OH)2 and Mg(OH)2)				
	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.1	Melting point, boiling point, relative density (IIA3.1)								
3.1.1	Melting point	Not indicated	Not indicated	Ca(OH) ₂ : decomposition 580 °C Mg(OH) ₂ : decomposition 350 °C Ca(OH) ₂ : decomposition 450 °C Mg(OH) ₂ : decomposition 380 °C	The values are from three different renowned manuals / standard textbooks. The fact that the values differ from each other indicates that they reflect results from different experiments (identical values would indicate that there was most likely only one primary publication which was cited in all publications. Nevertheless, the values are in fairly good agreement. This gives confidence that the experiments were carefully performed. At decomposition Ca(OH) ₂ and Mg(OH) ₂ release water and forms CaO and MgO which have melting points > 2500 °C (refer to the Burnt dolomitic lime dossier DOCIIIA Sec. A3.1.1.).	N	1	(1) (3) (2)	X
3.1.2	Boiling point			not applicable	At decomposition Ca(OH)2 and Mg(OH)2 release water and form CaO and MgO which have melting points > 2500 °C (refer to the Burnt dolomitic lime dossier DOCIIIA Sec. A3.1.1.).				

Biocidal active substance:

Document IIIA, Section A3	3	Hydrated dolor	nitic lime [Ca(OH)2·Mg(OH)2]				April	2010
Section A3	Physical and (Chemical Prope	rties of Active Substance (for the compon	ents Ca(OH)2 and Mg(OH)2)				
Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Offici: use on
3.1.3 Bulk density/ relative density	Not indicated Not indicated	Not indicated Not indicated	Density: Ca(OH) ₂ : 2,240 kg/m ³ Mg(OH) ₂ : 2,360 kg/m ³ Ca(OH) ₂ : 2,080 - 2,300 kg/m ³ Mg(OH) ₂ : 2,380 kg/m ³	The same argument as put forward for Section point 3.1.1 applies.	N N	1	(1) (2)	х
	CIPAC MT186	Neutralac HM: 56.2 % w/w Ca(OH) ₂ 40.5 % w/w Mg(OH) ₂	Pour density: 0.38 g/mL Tap density: 0.56 g/mL		Y	1	Doc. No. 113-005, A3.1.3/06	
	OECD 106 EEC Method A3	Neutralac HM: 56.2 % w/w Ca(OH) ₂ 40.5 % w/w Mg(OH) ₂	Relative density (D_4^{20}) 2.20		Y	1		x

Biocidal active substance:

Document IIIA, Section A3

Hydrated dolomitic lime [Ca(OH)2'Mg(OH)2]

Section A3 Physical and Chemical Properties of Active Substance (for the components Ca(OH)2 and Mg(OH)2) Subsection Purity/ GLP Relia Reference Official Method Results Remarks/ Specification (Annex Point) Justification (Y/N) bility use only Give also data on test pressure, temperature, pH and concentration range if necessary Vapour pressure According to the TNsG on data 3.2 requirements the "[...] study needs not (IIA3.2) to be conducted if the melting point is above 300 °C. It can be assumed that the vapour is below 10⁻⁵ Pa. Ca(OH)₂ and Mg(OH)2 do not melt, but decompose at 450 - 580 °C and 350 -380 °C, respectively. (See Section point 3.1.1 and 3.1.2). not applicable Due to the high decomposition 3.2.1 Henry's Law Constant (melting) points of Ca(OH)2 and (Pt. I-A3.2) Mg(OH)₂ and therefore low vapour pressure Ca(OH)2 ·Mg(OH)2 as well as Ca(OH)2 and Mg(OH)2 are not expected to evaporate from aqueous solutions.

Document IIIA, Section A3

Hydrated dolomitic lime [Ca(OH)2·Mg(OH)2]

Sectio	on A3	Physical and (Chemical Prope	erties of Active	Substance (for the compon	ents Ca(OH)2 and Mg(OH)2)				
	Subsection (Annex Point)	Method	Purity/ Specification		Results n test pressure, temperature, pH and utration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.3	Appearance (IIA3.3)									
3.3.1	Physical state	Not indicated	Not indicated	Ca(OH) ₂ : Mg(OH) ₂ :	solid solid		N	1	(2)(3)	
3.3.2	Colour	Not indicated	Not indicated	Ca(OH) ₂ : Mg(OH) ₂ :	colourless colourless		N	1	(2)(3) (2)	X
3.3.3	Odour	Not indicated	Not indicated	Ca(OH)2:	Bitter taste	Due to low volatility of Ca(OH) ₂ and Mg(OH) ₂ no odour is expected for Ca(OH) ₂ ·Mg(OH) ₂ .			(2)	
3.4	Absorption spectra (IIA3.4)									
3.4.1	UV/VIS	 spectrum is sci In the visit why it is c In the UV not provid 	why it is colourless (white).							
3.4.2	IR				was found in literature and th nation of an IR-spectrum of I	erefore a bridging argument is presen Hydrated dolomitic lime.	nted bas	ed on s	pectra of	x

Biocidal active substance:

Document IIIA, Section A3

Hydrated dolomitic lime [Ca(OH)2·Mg(OH)2]

April 2010

~	12.000	
50	ction	Δ 5
	U IUI	

Physical and Chemical Properties of Active Substance (for the components Ca(OH)2 and Mg(OH)2)

Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
	IR spectra were recorded in KBr using a FTIR- spectrometer (Bruker IFS 88) in a wavenumber range between 600 – 4000 cm ⁻¹	The spectrum was recorded with the pure substance.	In figure 1 (see end of table) an IR- spectrum of Ca(OH) ₂ is presented. The large peak at 3650 cm^{-1} must be assigned to the OH stretching mode. The peak at $1260 - 1410 \text{ cm}^{-1}$ must be assigned to OH-deformation mode. The spectrum shown in figure 1 will not be significantly different for Ca(OH) ₂ ·Mg(OH) ₂ in the high wavenumber region, because the O-H vibration can be regarded as a molecular vibration, which is only slightly disturbed by neighbouring cations. Furthermore the mass difference between the hydrogen atoms and the rest of the "molecule" is that high, that the frequency of this vibration is practically not influenced by the heavy part of the system. Therefore Ca(OH) ₂ spectrum can be regarded as a model for O-H stretching modes for any hydroxide containing lime type. If water was involved the peaks assigned to the OH stretching modes would be overlayed by the O-H stretching modes of water. The cited data is sufficient to assign the peaks in a spectrum of a lime variant to the possible vibrational modes.		Ν	1	(4)	X

Biocidal active substance:

Document IIIA, Section A3

Hydrated dolomitic lime [Ca(OH)2'Mg(OH)2]

April 2010

ction A3	Physical and	Chemical Prope	erties of Active Substance (for the compon	ents Ca(OH)2 and Mg(OH)2)				
Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
	Infrared matrix isolation spectroscopy	Test substance Ca(OH) ₂ was produced in the argon matrix by co- condesation of metallic Ca, water and argon at 15 K on a copper surface. For the test substance Mg(OH) ₂ a CsI surface was used at 10 K.		The test substance was produced <i>in</i> <i>situ</i> the argon matrix prior to the measurement. To state a specification of the test substance is therefore not applicable.	N	1	(5) (6)	X

Biocidal active substance:

Document IIIA, Section A3

Hydrated dolomitic lime [Ca(OH)2'Mg(OH)2]

Section A3

Physical and Chemical Properties of Active Substance (for the components Ca(OH)2 and Mg(OH)2)

Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only		
	The infrared (IR) absorption spectrum was recorded as a potassium bromide disc over the scan range 4000 to 500 cm ⁻¹ . Resolution: 4.0 or 8.0 cm ⁻¹ Number of scans: 64 Gain: 1	Neutralac HM: 55.5 % w/w Ca(OH)2 41.9 % w/w Mg(OH)2	For Hydrated dolomitic lime medium sharp peaks were observed at 3700 cm ⁻¹ and at 3640 cm ⁻¹ corresponding to the O- H stretch of Mg(OH) ₂ and Ca(OH) ₂ , respectively. A weak broad band at 3450 cm ⁻¹ was attributed to absorbed H ₂ O, whereas the weak broad band at 1450 cm ⁻¹ is attributed to the C-O carbonates stretch.	The IR spectrum was consistent with the assigned structure of the lime variant.	Y	1	Doc. No. 117-001; Section A3.4.2/06 (dossier on Hydrated lime)	x		
3.4.3 NMR	 Count. 1 The measurement of NMR spectra is scientifically not necessary for the following reasons: A standard ¹³C-NMR spectrum makes no sense, because there is no carbon in Ca(OH)₂·Mg(OH)₂. A ¹H-NMR spectrum makes no sense because ¹H-NMR spectra are usually used as an analytical tool for conformational analysis of organic molecules. No informative result can be expected from a ¹H-NMR spectrum of hydrated lime. If the hydrated lime was dissolved in a non protic polar solvent, a peak for the protons might be expected. This would be only one single peak as there are only chemically equivalent protons. In aqueous solutions the exchange of protons would be extremely fast on the NMR timescale, so that, if at all, only extremely broad peaks can be expected. These would be hardly noticeable/ visible. The identification techniques for lime are well established and do not utilise NMR spectroscopy. 									

Biocidal active substance:

Document IIIA, Section A3

Hydrated dolomitic lime [Ca(OH)2'Mg(OH)2]

Subsection (Annex Point)		rity/ fication Giv	Results we also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Officia use only
3.4.4 MS	 A mass spectrum up to approx. 500 peaks can be expe The analytical me An MS can be cal Table: Expected MS Values have been calc 	is expected n °C and there cted. thods for Hyd culated (see t peaks for Ca ilated on the	-	ed dolomitic lime would f ved first. Only at much h None of them is based on	irst release wate igher temperatu	res, Ca		
		m / z [u]	Relative intensity of the peaks for the respective fragment related to the highest peak (100).	Assignment				
		18 20	100 0.2	H ₂ O				
	Ca(OH) ₂ ·Mg(OH);	56 58 59 60 64	100 0.9 0.1 2.2 0.2	CaO				
		40 41	100 12.6	MgO				

Biocidal active substance:

Document IIIA, Section A3

Hydrated dolomitic lime [Ca(OH)2'Mg(OH)2]

Secu	Subsection (Annex Point)	Method	Purity/ Specification			Remarks/ Justification	GLP (Y/N)	Relia bility		Official use only
3.5	Solubility in water (IIA3.5)	Not indicated	Not indicated	Ca(OH) ₂ :	1.85 g/L cold water 0.77 g/L hot water	Ca(OH) ₂ and especially Mg(OH) ₂ are generally known to be little soluble.	N	1	(1)	x
		Not indicated No	Not indicated	Mg(OH)2:	0.009 g/L cold water 0.04 g/L hot water	It can be assumed that the testing was done with the pure substance, as these data come from peer reviewed scientific literature.	N	1	(1)	
					1.26 g/L at 20 °C 0.004 g/L m solubility of 5 0.72 · 10 ⁴ mol/L)	Cold water refers to water of a temperature close to 0°C and hot water refers to water close the boiling point of 100°C.	N	1	(3)	
		Not indicated, solubility of lime is expressed as CaO at different temperatures g/1000 g saturated solution.	Not indicated	1.3 1.3 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.3 0001 bc 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0	Temperature, *C. f calcium oxide in water. Circles, Hernfeld's	It can be assumed that the testing was done with the pure substance, as these data come from peer reviewed scientific literature. It is concluded that the differences between the values can be linked to the solvent temperature and it can be assumed that the test substances used were of comparable purity. In this publication no information on Mg(OH) ₂ is available.	N	1	(8)	X

Biocidal active substance:

Document IIIA, Section A3

Hydrated dolomitic lime [Ca(OH)2·Mg(OH)2]

April 2010

Section A3

Physical and Chemical Properties of Active Substance (for the components Ca(OH)2 and Mg(OH)2)

Subsection (Annex Point)	Method	Purity/ Specification		Results est pressure, temperature, pH and ation range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
	Not indicated, solubility of lime is expressed as CaO or Ca(OH) ₂ different temperatures g/100 g saturated solution. The conductivity method was used for Mg(OH) ₂	Not indicated	For Mg(OH) ₂ v of 0.008 – 0.009	alues for 18°C are given 9 g/L.	It can be assumed that the testing was done with the pure substance, as these data come from peer reviewed scientific literature. It is concluded that the differences between the values can be linked to the solvent temperature and it can be assumed that the test substances used were of comparable purity.	N	1	(9)	x
	(Average curve f t ^e . G 0 0 10 0 20 0 25 0 30 0		UBILITY IN WATER 4, 1878; Maben, 1883-84 0. 10 10 10 10 10 10 10 10 10 10	Henzfeld, 1897, and Guthrie, 1901.) Grams per 100 Grams Ho. Ca(OHy). CaO. 0.128 0.097 0.116 0.088 0.106 0.080 0.094 0.071 0.085 0.064 0.077 0.058					

Biocidal active substance:

Document IIIA, Section A3

Hydrated dolomitic lime [Ca(OH)2'Mg(OH)2]

Secti	ion A3	Physical and C	hysical and Chemical Properties of Active Substance (for the components Ca(OH)2 and Mg(OH)2)									
	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only			
3.6	Dissociation constant (-)	Not indicated; the thermodynami c quotient of the first ionisation of the base dissolved in aqueous solution at "infinite dilution" is described.	Not indicated	The pH of a saturated Ca(OH) ₂ solution is 12.4. It can therefore be qualitatively concluded that Ca(OH) ₂ is a strong base and that pKb < 0. The same holds true for Mg(OH) ₂ . The pK_b of CaOH ⁺ and MgOH ⁺ are 1.2 and 2.6 respectively. It is stated that these forms are very sensitive to ionic medium. Mg(OH) ₂ is only slightly soluble in water, hence nearly no dissociation takes place.	It can be assumed that the testing (pH measurement of a saturated Ca(OH) ₂ solution) was done with the pure substance, as these data come from peer reviewed scientific literature. The basicity of Ca(OH) ₂ ·Mg(OH) ₂ will be triggered by the basicity of Ca(OH) ₂ . pH of a saturated Ca(OH) ₂ solution is 12.4. Ca(OH) ₂ and Mg(OH) ₂ are known to be slightly soluble in water and therefore a direct titration would be hard to conduct.	Ν	1	(1) (2) (3)				
3.7	Solubility in organic solvents, including the effect of temperature on solubility (IIIA3.1)	Not indicated	Not indicated	Calcium hydroxide is more soluble in glycerine than in water. In reference 1 it is further stated that Calcium hydroxide is soluble in NH4 salts and acids, insoluble in alcohol. Mg(OH) ₂ is a polar compound, which is practically not soluble water. It is not expected to be better soluble in organic solvents. In reference 1, Magnesium hydroxide is listed as soluble in NH4 salts and acids.	It can be assumed that the solubility testing was done with the pure substance, as these data come from peer reviewed scientific literature. The results from literature are in agreement with expectation: Due to its inorganic and polar nature, Ca(OH) ₂ ·Mg(OH) ₂ is not expected to be soluble in solvents that are aprotic and less polar than water, in which Ca(OH) ₂ is slightly and Mg(OH) ₂ is practically not soluble.	N	1	(1) (2) (9)	X			

Biocidal active substance:

Document IIIA, Section A3

Hydrated dolomitic lime [Ca(OH)2'Mg(OH)2]

Section A3

Physical and Chemical Properties of Active Substance (for the components Ca(OH)2 and Mg(OH)2)

	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
×		Shake flask method according to OECD 107	Neutralac HM: 56.2 % w/w Ca(OH) ₂ 40.5 % w/w Mg(OH) ₂	Rate of Calcium recovery in aqueous phase: 103.2 % Magnesium concentrations in water prior to testing were very low.	The Ca(OH) ₂ -content in the test solutions was completely found in the aqueous phase. Ca(OH) ₂ does not dissolve in n-octanol and a partition coefficient could therefore not be calculated.	N	1	Doc. No. 154-001; A3.9/01 (dossier on Hydrated lime)	
3.8	Stability in organic solvents used in b.p. and identity of relevant breakdown products (IIIA3.2)			not relevant	There are no formulated products based on Hydrated dolomitic lime.				
3.9	Partition coefficient n-octanol/water (IIA3.6) log Pow			It is expected, that the logPow is << 3. Ca(OH) ₂ is slightly soluble in water and ins Mg(OH) ₂ is more than 2 orders of magnitu Ca(OH) ₂ or Mg(OH) ₂ is dissolved undisson Ca(OH) ₂ and Mg(OH) ₂ that dissolves in wa Mg ²⁺ and OH ⁻ . A test would be performed values (5 to 9). Therefore the OH ⁻ concentr and only the Ca ²⁺ and Mg ²⁺ concentration is charged species, are not expected to move a significant extent.	de less soluble than $Ca(OH)_2$. No ciated in water. The portion of ater completely dissociates to Ca^{2+} , in buffer solutions at different pH ration is given by the test conditions s of relevance. Ca^{2+} and Mg^{2+} , being				x

Biocidal active substance:

Document IIIA, Section A3

Hydrated dolomitic lime [Ca(OH)2'Mg(OH)2]

Section A3

Physical and Chemical Properties of Active Substance (for the components Ca(OH)2 and Mg(OH)2)

Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
	OECD 107	Neutralac HM: 56.2 % w/w Ca(OH) ₂ 40.5 % w/w Mg(OH) ₂	Rate of Calcium recovery in aqueous phase: 103.2 % Magnesium concentrations in water prior to testing were very low.	The Ca(OH) ₂ -content in the test solutions was completely found in the aqueous phase. Ca(OH) ₂ does not dissolve in n-octanol and a partition coefficient could therefore not be calculated.	N	1	Doc. No. 154-001; A3.9/01 (dossier on Hydrated lime)	х

Biocidal active substance:

Document IIIA, Section A3

Hydrated dolomitic lime [Ca(OH)2'Mg(OH)2]

			10 10 10 10 10 10 10 10 10 10 10 10 10 1				-		5
	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.10	Thermal stability, identity of relevant breakdown products (IIA3.7)			Ca(OH) ₂ decomposes to CaO and water at 580 °C. Ca(OH) ₂ decomposes to CaO and water at 450 °C. Mg(OH) ₂ decomposes to CaO and water at 350 °C. Mg(OH) ₂ decomposes to CaO and water at 380 °C.	Ca(OH) ₂ and Mg(OH) decompose to CaO, MgO and water (see 3.1.1). Therefore it must be concluded that Ca(OH) ₂ ·Mg(OH) ₂ decomposes to CaO·MgO	N	1	 (1) (3) (1) (2) 	х
3.11	Flammability, including auto- flammability and identity of combustion products (IIA3.8)			It can be excluded that Ca(OH) ₂ ·Mg(OH) ₂ is flammable.	In Ca(OH) ₂ ·Mg(OH) ₂ , Calcium, Magnesium and Oxygen are in their respective preferred oxidation state. Consequently, flammability can be excluded.				
3.12	Flash-point (IIA3.9)			Ca(OH) ₂ ·Mg(OH) ₂ is neither capable of burning, nor forming flammable gases.	The same argument as for point 3.11 apply here.				X
3.13	Surface tension (IIA3.10)	OECD 115 EEC A5	90% saturated solution of Ca(OH)2 (98.2 % w/w)	72.5 mN/m	EuLA has contracted a study to cover this point with experimental data. The study has been performed with Ca(OH) ₂ as CaO and MgO hydrolyse rapidly in water to form Ca(OH) ₂ and Mg(OH) ₂ anyway. The poor solubility of Mg(OH) ₂ is not expected to effect the surface tension.	Y	1	Doc. No. 113-001; A3.1.3/02 (dossier on Hydrated lime)	X

Document IIIA, Section A3

Hydrated dolomitic lime [Ca(OH)2·Mg(OH)2]

Section	on A3	Physical and	Chemical Prop	erties of Active Substance (for the compon	nents Ca(OH)2 and Mg(OH)2)				
	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.14	Viscosity (-)				According to the TNsG this data must only be submitted for liquid substances.				
3.15	Explosive properties (IIA3.11)	formula or its releasing heat	"oxygen balance very rapidly."	a requirements "The test can be exempted wh " establishes beyond reasonable doubt that the $M(OH)_2 \cdot Mg(OH)_2$. Please refer to the argume	the substance is incapable of decompo				
3.16	Oxidizing properties (IIA3.12)	that the active justification fo There is no ch	ingredient is inc r the non-detern emical evidence	a requirements "In cases where an examinati apable of reacting exothermically with comb nining of oxidising properties." to assume oxidising properties for Ca(OH) ₂ . their respective preferred oxidation state.	bustible material, it is acceptable to p	rovide s	uch info		

Biocidal active substance:

Document IIIA, Section A3

Hydrated dolomitic lime [Ca(OH)2'Mg(OH)2]

April 2010

	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.17	Reactivity towards container material (IIA3.13)				Experience indicates that paper bags lined with plastic (to prevent contact with moisture), plastic bags, steel, stainless steel and Aluminium do not react significantly with dry lime and so can be used as container material for this product. Aluminium and other materials sensitive to high pH are not suitable container materials for wet lime based products (e.g. milk of lime) For bulk transport of dry lime, steel, stainless steel and Aluminium can be used. Stainless steel is recommended, whereas Aluminium is unsuitable as container materials for bulk transportation of wet lime products.				X

EULA AISBL		Biocidal active	substance:			Page	18-22		
Document IIIA, Section A3	ection A3 Hydrated dolomitic lime [Ca(OH)2·Mg(OH)2] Apr								
Section A3	Physical and Chemical Properties of Active Substance (for the components Ca(OH)2 and Mg(OH)2)								
Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia Reference bility	Official use only		
Figure 1: Infrared spectrum of Ca(OH)2		log (1/Reflection)			1000		X		

Document IIIA, Section A3

- (1) Handbook of Chemistry and Physics, 70th Edition 1989 1990, CRC Press Inc. Boca Raton, Florida. Doc.No. 192-002; Submitted with the Hydrated lime dossier under the Section point A3.1.1/01.
- (2) CD Römpp Chemie Lexikon Version 1.0, Stuttgart/New York: Georg Thieme Verlag **1995**. Doc.No. 192-003; Submitted with the Hydrated lime dossier under the Section point A3.1.3/01.
- (3) Hollemann, Wiberg, "Lehrbuch der anorganischen Chemie", 91. 100. Auflage, de Gruyter, Berlin, New York 1985. Doc.No. 192-001; Submitted with the Hydrated lime dossier under the Section point A3.1.1/02.
- (4) Dirk Lohmann: "Untersuchungen zur Vermeidung zu hoher pH-Werte in weichen Trinkwässern bei der Inbetriebnahme von Rohrleitungen mit einer Zementmörtelauskleidung", Dissertation, Duisburg. http://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-05212001-095224/unrestricted/inhalt.htm. Doc.No. 192-005; Submitted with the Hydrated lime dossier under the Section point A3.4.2/01.
- (5) J. W. Kauffman, R. H. Hauge, J. L. Margrave: "Infrared Matrix Isolation Studies of the Interactions of Mg, Ca, Sr and Ba Atoms and Small Clusters with Water", High Temperature Science 1984, 18, pp. 97-118. Doc.No. 192-004; Submitted with the Hydrated lime dossier under the Section point A3.4.2/02.
- (6) T. J. Tague, Jr., L. Andrews: "*Pulsed Laser evaporated Magnesium Atom Reactions with Hydrogen Infrared Spectra of five Magnesium Hydride Molecules*", *J. Phys. Chem.* **1994**, 98, p. 8611. Doc.No. 192-006; Submitted with the Burnt dolomitic lime dossier under the Section point A3.4.2/04.
- (7) J. T. Gourley and W. A. Runciman: "Multiphonon infrared absorption spectra of MgO and CaO", J. Phys. C: Solid State Phys. 1973, 6, pp. 583-592. Doc.No. 192-007; Submitted with the Burnt lime dossier under the Section point A3.4.2/03.

(8) R.T. Haslam, G. Calingaert, C.M. Taylor:" The Hydrates of Lime", J. Am. Chem. Soc., **1924**, 46 (2), pp. 308-311. Doc. No. 192-010; Submitted with the Hydrated lime dossier under the Section point A3.5/01.

(9) A. Seidell, **1919**, "Solubilities of inorganic and organic substances – a compilation of quatitantive solubility data from the periodical literature"; Stanhope Press. Doc. No. 192-011; Submitted with the Hydrated lime dossier under the Section point A3.5/02.

Document IIIA, Section A3

Hydrated dolomitic lime [Ca(OH)₂·Mg(OH)₂]

This statement is to show that irrespective of the Lime variant (Calcium or Dolomitic variants) suspended in water, the solution obtained is always a saturated solution of $Ca(OH)_2$ with negligible traces of Mg^{2+} in solution.

This fact is relevant when studies on the surface tension of the Lime variants are considered. One study with $Ca(OH)_2$ covers the requirements for the studies for all the other variants, for the following reasons:

• To consider the species in water when Ca(OH)₂Mg(OH)₂ is dissolved the solubility products need to be considered (K_L)

 $K_L(Ca(OH)_2) = 3.9 \times 10^{-6} \text{ mol}^3 / L^3$

 $K_L(Mg(OH)_2) = 1.5 \text{ x } 10^{-12} \text{ mol}^3 / L^3$

On the basis of these solubility products, the solubilities can be calculated as:

 $L(Ca(OH)_2) = 9.9 \text{ mmol} / L$ and $L(Mg(OH)_2) = 0.072 \text{ mmol} / L$

As can be seen the solubility of Ca(OH)₂ is ca. 137 times the solubility of Mg(OH)₂.

In pure water a maximum of 4.2 mg of Mg(OH)₂ can dissolve.

The highest possible concentration of Mg^{2+} is calculated for the pH-value of a saturated $Ca(OH)_2$ in the following:

pH = 12.4; $c(OH^-) = 0.025 \text{ mol /L}$

 $K_L(Mg(OH)_2) = c(Mg^{2+}) \ge c(OH^{-})^2 = c(Mg^{2+}) \ge (0.025 \text{ mol }/L)^2 = c(Mg^{2+}) \ge 0.00063 \text{ mol}^2/L^2$

 $c(Mg^{2+}) = 0.00000238 \text{ mmol} / \text{L or } 0.06 \ \mu\text{g} / \text{L}$

Corresponding of $0.138 \ \mu g / L$ dissolved Mg(OH)₂.

It can be concluded that in the presence of $Ca(OH)_2$, i.e. at high pH values, Mg^{2+} concentrations are negligible.

Biocidal active substance:

Document IIIA, Section A3

Hydrated dolomitic lime [Ca(OH)2·Mg(OH)2]

	Evaluation by Competent Authorities
	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted
	EVALUATION BY RAPPORTEUR MEMBER STATE
Date	17 August 2010
Materials and methods	Adopt applicant's version with the following amendments.
	Some of the data submitted in section 3 are taken from the published literature in the form of well established reference texts which are identified in the reference list. As a result details such as purity of sample and methods used are not available.
	However, it is considered that the information supplied is suitable for its intended use especially given that the data have been in use for a considerable time in many technical fields apart from the uses of immediate concern.
	The remaining physicochemical tests have been conducted on identified samples and reports have been submitted but the reports are not necessarily to GLP.
	The following points are recorded for individual studies.
	3.1.1 Melting point Literature values - Method and purity not recorded. The studies are not to GLP The values quoted are high enough (>360°C) for the differences to be of little concern. The provision of separate data for Magnesium hydroxide is acceptable. Reliability 2.
	3.1.3 Relative densityThe relative density will vary depending on the source of the lime and the level and identity of the impurities present. The measured value reported is within a range quoted from one of the reference texts.Reliability of the literature values 2.The Pycnometer method was used in the study carried out on Neutralac HM.
	3.3.2 ColourIn the study reports for Neutralac HM the appearance is recorded as white/beige powder.
	3.4.2 IR Spectrum Details of an infra red spectrum recorded as a potassium bromide disc over the scan range 4000-500 cm-1 (Doc 117-001) are available. The remaining information relating to infra red spectra can be disregarded.
	3.5 Solubility in water Literature values - Method and purity not recorded. The studies are not to GLP The reported table is taken from document 192-011 and could be the source of the hot-water and cold-water data from document 192-002 (the CRC handbook) The value of 1.26 g/L at 20°C (taken from document 192-001) appears to have been read from the graph. From the table the value would be 1.65 g/L at 20°C. Reliability of the literature values 2.
	3.7 Solubility in organic solvents Literature values - Method and purity not recorded. The studies are not to GLP Reliability of the literature values 2.
	3.9 Partition coefficient n-octanol/water Non GLP studies on identified samples confirm that the partition coefficient of

EULA	AISBL

Biocidal active substance:

Document IIIA, Section A3

Hydrated dolomitic lime [Ca(OH)₂·Mg(OH)₂]

	hydrated lime could not be calculated. Magnesium Hydroxixe is even less soluble.
	3.10 Thermal stability Literature values - Method and purity not recorded. The studies are not to GLP The information is taken from the same sources as the melting point. Calcium hydroxide and magnesium hydroxide do not melt but decompose at elevated temperature. They are thermally stable up to 150°C. Reliability of the literature values 2.
	3.12 Flash point The substance is a solid therefore the determination of flash point is not applicable.
	 3.13 Surface tension The OECD Harmonised ring method was used. A 1g/L solution was measured rather than a 90% saturated solution of hydrated lime. The test was conducted on Hydrated lime. Because of the poor solubility of Magnesium hydroxide a significantly different result is not expected.
Conclusion	3.17 Reactivity towards container materialThere should be clear evidence that no problems will arise if aluminium is to be used for any product.Adopt applicant's version with the above amendments.
Reliability	The following entries are based on recent tests conducted on identified samples. Reliability is 1.
	3.1.3 Relative density / Bulk density3.4 Spectra (IR)3.9 Partition coefficient
	Reliability of the literature values is 2
Acceptability	Acceptable
Remarks	None
	COMMENTS FROM
Date	Give date of comments submitted
Results and discussion	Discuss additional relevant discrepancies referring to the (sub)heading numbers and to applicant´s summary and conclusion. Discuss if deviating from view of rapporteur member state
Conclusion	Discuss if deviating from view of rapporteur member state
Reliability	Discuss if deviating from view of rapporteur member state
Acceptability	Discuss if deviating from view of rapporteur member state
Remarks	

Biocidal active substance:

Page 1-16

Document IIIA, Section A3

Hydrated lime [Ca(OH)2]

April 2010

Sectio	on A3	Physical and Chemi	cal Properties of Ac	tive Substance					
2	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.1	Melting point, boiling point, relative density (IIA3.1)								
3.1.1	Melting point	Not indicated Not indicated	Not indicated Not indicated	decomposition 580 °C decomposition 450 °C	The values are from two different renowned manuals / standard textbooks. The fact that the values differ from each other indicates that they reflect results from two different experiments (identical values would indicate that there was most likely only one primary publication which was cited in both publications. Nevertheless, the values are in fairly good agreement. This gives confidence that the experiments were carefully performed. At decomposition Ca(OH)2 releases water and forms CaO which has a melting point > 2500 °C (refer to the Burnt lime dossier Doc IIIA Sec. A3.1.1.).	N N	1	(1) (3)	X
3.1.2	Boiling point			not applicable	At decomposition Ca(OH) ₂ releases water and forms CaO which has a melting point > 2500 °C (refer to the Burnt lime dossier Doc IIIA Sec. A3.1.1.).				

Biocidal active substance:

Page 2-16

Document IIIA, Section A3

Hydrated lime [Ca(OH)2]

April 2010

	Section	A3	H	2
--	---------	----	---	---

	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.1.3	Bulk density/ relative density	Not indicated Not indicated	Not indicated Not indicated	Density: 2,240 kg/m ³ 2,080 – 2,300 kg/m ³	The same argument as put forward for Section point 3.1.1 applies.	N N	1	(1) (2)	x x
		CIPAC MT186	Precal 50S: 98.2 % w/w	Pour density: 0.45 g/mL Tap density: 0.57 g/mL		Y	1	Doc. No.: 113-001; A3.1.3/02	
		OECD 106	Precal 50N: 97.0 % w/w	Pour density: 0.39 g/mL Tap density: 0.51 g/mL		Y	1	Doc. No.: 113-002; A3.1.3/03	
		OECD 106 EEC Method A3	Precal 50S: 98.2 % w/w	Relative density (D_4^{20}) 2.22		Y	1	Doc. No. 113-001, A3.1.3/02	х
			Precal 50N: 97.0 % w/w	Relative density (D_4^{20}) 2.26		Y	1	Doc. No.: 113-002; A3.1.3/03	x
3.2	Vapour pressure (IIA3.2)				According to the TNsG on data requirements the "[] study needs not to be conducted if the melting point is above 300 °C. It can be assumed that the vapour is below 10^{-5} Pa. Hydrated lime does not melt, but decomposes at $450 - 580$ °C (See Section point 3.1.1 and 3.1.2).				

Biocidal active substance:

Page 3-16

Document IIIA, Section A3

Hydrated lime [Ca(OH)2]

April 2010

	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.2.1	Henry's Law Constant (Pt. I-A3.2)				Due to the assumed very low vapour pressure, Ca(OH) ₂ is not expected to evaporate from aqueous solutions.				
3.3	Appearance (IIA3.3)								
3.3.1	Physical state	Not indicated	Not indicated	solid		N	1	(2) (3)	
3.3.2	Colour	Not indicated	Not indicated	colourless, grey, yellowish, greyish green or brown (depending on impurities)	Pure Hydrated lime is white. Any tint (see left) is caused by the impurities present.	N	1	(2) (3)	x
3.3.3	Odour			odourless	Hydrated lime is not volatile. It can therefore be excluded that it has any odour.				
				Bitter taste.				(2)	

Biocidal active substance:

Page 4-16

Document IIIA, Section A3

Hydrated lime [Ca(OH)2]

April 2010

Section A3	Physical and Chemical Properties of Active Substance
------------	--

	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.4	Absorption spectra (IIA3.4)								
3.4.1	UV/VIS	 an UV spectrum is scient In the visible region is colourless (white In the UV region, a 	ntifically not neces n, no absorption of). bsorption of light 1	nts, a study needs not to be perf sary for the following reasons: light can be expected, as Ca(O) night be possible. However, it of for analytical purposes. Please	H)2 does not absorb visible lig can be predicted that any UV s	ht. This	s is the n on Li	reason why it me variants	
		established. None o	f them is based on		The pure substance was		ine va	(4)	
3.4.2	IK	IR spectra were recorded in KBr using a FTIR-spectrometer (Bruker IFS 88) in a wavenumber range between 600 – 4000 cm ⁻¹	The spectrum was recorded with the pure substance.	table) an IR-spectrum of Ca(OH) ₂ is presented. The large peak at 3650 cm^{-1} must be assigned to the OH stretching mode. The peak at $1260 - 1410 \text{ cm}^{-1}$ must be assigned to OH-deformation mode.	used to record the IR- spectrum, no further specification on purity or impurities are given. This is acceptable, as it is not expected that impurities would significantly influence the IR spectra of the test substance.	N	1		X

Biocidal active substance:

Page 5-16

April 2010

Document IIIA, Section A3

Hydrated lime [Ca(OH)2]

Section A3

Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
	Infrared matrix isolation spectroscopy	Test substance was produced in the argon matrix by condensation of metallic Ca, water and argon at 15 K on a copper surface	For Ca(OH) ₂ the wave number for the element- Oxygen asymmetric stretching mode is stated in literature, recorded in the Argon matrix for isolated molecules (591.9 cm ⁻¹ Ca(OH) ₂).	The test substance was produced <i>in situ</i> the argon matrix prior to the measurement. To state a specification of the test substance is therefore not applicable.	N	1	(5)	х
	The infrared (IR) absorption spectrum was recorded as a potassium bromide disc over the scan range 4000 to 500 cm ⁻¹ Resolution: 4.0 or 8.0 cm ⁻¹ Number of scans: 64 Gain: 1	Precal 50S: 98.4 % w/w Precal 50N: 97.3 % w/w	For Ca(OH) ₂ a medium/strong sharp peak was observed at 3640 cm ⁻¹ corresponding to the O-H stretch. A weak broad band at 3450 cm ⁻¹ was attributed to absorbed H ₂ O, whereas the weak broad band at 1450 cm ⁻¹ is attributed to the C-O carbonates stretch.	The IR spectrum was consistent with the assigned structure of the lime variant.	Y	1	Doc. No. 117-001; Section A3.4.2/06	X
3.4.3 NMR	 A standard ¹³C-NM A ¹H-NMR spectrum analysis of organic r hydrated lime was of single peak as there In aqueous solutions broad peaks can be 	R spectrum makes m makes no sense to molecules. No infor dissolved in a non p are only chemicall s the exchange of p expected- These wa	ifically not necessary for the form of sense, because there is no coecause ¹ H-NMR spectra are urmative result can be expected rotic polar solvent, a peak for y equivalent protons. rotons would be extremely fas build be hardly noticeable/ visilare well established and do not	earbon in Ca(OH) ₂ . sually used as an analytical too from a ¹ H-NMR spectrum of the protons might be expected at on the NMR time-scale, so the ble.	hydrate . This v	ed lime. would b	If the e only one	

EUI	AA	ISBL

Biocidal active substance:

Page 6-16

April 2010

Document IIIA, Section A3

Hydrated lime [Ca(OH)2]

	Physical and Chem	ical Properties	of Active Substance					-
Subsection (Annex Point)	Method	Purity Specificat		Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Officia use on
3.4.4 MS	 A mass spectrum is expected not to provide valuable information: Hydrated lime would first release water at temperatures up approx. 500 °C and therefore a water mass spectrum would be observed first. Only at much higher temperatures, CaO peaks c be expected. The analytical methods for CaO are well established. None of them is based on an MS spectrum. An MS can be calculated (see table) Table: Expected MS peaks for Ca(OH)₂. Values have been calculated on the basis of the abundance of the isotopes of different elements. Source of model used: <u>http://www2.sisweb.com/mstools/isotope htm</u> 							
		m / z [u]	Relative intensity of the peaks for the respective fragment related to the highest peak (100).	Assignment				
		18 20	100 0.2	H ₂ O				
	Ca(OH) ₂	56 58 59	100 0.9 0.1	CaO				

Biocidal active substance:

Page 7-16

Document IIIA, Section A3

Hydrated lime [Ca(OH)2]

April 2010

	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.5	Solubility in water (IIA3.5)	Not indicated	Not indicated	1.85 g/L cold water 0.77 g/L hot water	It can be assumed that the testing was done with the pure substance, as these data come from peer reviewed scientific literature. Cold water refers to water of a temperature close to 0°C and hot water refers to water close the boiling point of 100°C.	N	1	(1)	х
		Not indicated	Not indicated	1.26 g/L at 20 °C	It can be assumed that the testing was done with the pure substance, as these data come from peer reviewed scientific literature. The measured water solubility at 20°C is consistent with the results found at 0°C and 100°C, respectively. It is concluded that the differences between the values can be linked to the solvent temperature and it can be assumed that the test substances used were of comparable purity.	N	1	(3)	x

Biocidal active substance:

Page 8-16

April 2010

Document IIIA, Section A3

Hydrated lime [Ca(OH)2]

Section A3

Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Officia use on
	Not indicated, solubility of lime is expressed as CaO or Ca(OH) ₂ at different temperatures g/100 g or 1000 g saturated solution.	Not indicated	See graph and table below	It can be assumed that the testing was done with the pure substance, as these data come from peer reviewed scientific literature. It is concluded that the differences between the values can be linked to the solvent temperature and it can be	N	1	(6) (7)	x
	10 12 12 12 12 12 12 12 12 12 12	10 10 10 10		assumed that the test substances used were of comparable purity.				
	CALCIUM HYDROXI (Average curve from the result Grams per roo t*. Ca(OH)2- 0 10 0 10	DE Ca(OH) ₂ . SOLUBILITY IN W Its of Lamy, 1878; Maben, 1 Grams HsO. CaO. 0.140 0.133 0.125 0.120						

Biocidal active substance:

Page 9-16

Document IIIA, Section A3

Hydrated lime [Ca(OH)2]

April 2010

Section A3

	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.6	Dissociation constant (-)	Not indicated; the thermodynamic quotient of the first ionisation of the base dissolved in aqueous solution at "infinite dilution" is described.	Not indicated	The pH of a saturated Ca(OH) ₂ solution is 12.4. It can therefore be qualitatively concluded that Ca(OH) ₂ is a strong base and that pKb < 0. The pK _b of CaOH ⁺ is 1.2. It is stated that this form is very sensitive to ionic medium.	It can be assumed that the testing (pH measurement of a saturated Ca(OH) ₂ solution) was done with the pure substance, as these data come from peer reviewed scientific literature.	Ν	1	(1) (2)	
3.7	Solubility in organic solvents, including the effect of temperature on solubility (IIIA3.1)	Not indicated	Not indicated	Calcium hydroxide is more soluble in glycerine than in water. In reference 1 it is further stated that Calcium hydroxide is soluble in NH ₄ salts and acids, insoluble in alcohol.	It can be assumed that the solubility testing was done with the pure substance, as these data come from peer reviewed scientific literature. The results from literature are in agreement with expectation: Due to its inorganic and polar nature, Hydrated lime is not expected to be soluble in solvents that are aprotic and less polar than water, in which Ca(OH)2 is only slightly soluble.	N	1	(1) (2) (7)	X
		A shake-flask method was used according to OECD 107	Precal 50S: 98.2 % w/w Precal 50N: 97.0 % w/w	Rate of Calcium recovery in aqueous phase: 102.1 % Rate of Calcium recovery in aqueous phase: 103.1 %	The Ca(OH) ₂ -content in the test solutions was completely found in the aqueous phase. Ca(OH) ₂ does not dissolve in n- octanol	N	1	Doc. No. 154-001; A3.9/01	

Biocidal active substance:

Page 10-16

Document IIIA, Section A3

Hydrated lime [Ca(OH)2]

April 2010

Section A3	
------------	--

	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.8	Stability in organic solvents used in b.p. and identity of relevant breakdown products (IIIA3.2)			not relevant	There are no formulated products based on Hydrated lime.				
3.9	Partition coefficient n-octanol/water (IIA3.6)			It is expected, that the logPor Ca(OH) ₂ is slightly soluble in organic solvents. No Ca(OH) in water. The portion of Ca(O completely dissociates to Ca ² performed in buffer solutions 9). Therefore the OH ⁻ concer conditions and only the Ca ²⁺ relevance. Ca ²⁺ , being a char to move to the unpolar n-octa extent.	n water and insoluble in)2 is dissolved undissociated DH)2 that dissolves in water 2+ and OH ⁻ .A test would be s at different pH values (5 to intration is given by the test concentration is of ged species, is not expected				
		OECD 107	Precal 50S: 98.2 % w/w Precal 50N: 97.0 % w/w	Rate of Calcium recovery in aqueous phase: 102.1 % Rate of Calcium recovery in aqueous phase: 103.1 %	test solutions was	N	1	Doc. No. 154-001; A3.9/01	x

Biocidal active substance:

Page 11-16

Document IIIA, Section A3

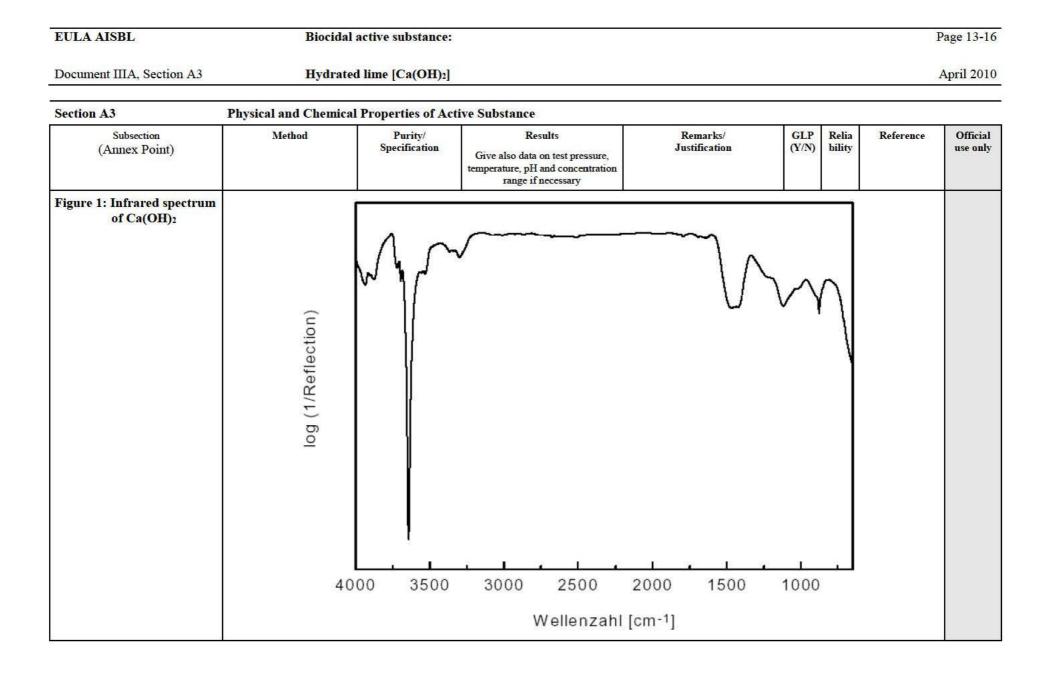
Hydrated lime [Ca(OH)2]

April 2010

Section A3

	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.10	Thermal stability, identity of relevant breakdown products (IIA3.7)	Not indicated	Not indicated	Ca(OH) ₂ decomposes to CaO and water at 580 °C. Ca(OH) ₂ decomposes to CaO and water at 450 °C.				(1) (3)	х
3.11	Flammability, including auto- flammability and identity of combustion products (IIA3.8)			It can be excluded that Ca(OH) ₂ is flammable.	In Ca(OH) ₂ , Calcium and Oxygen are in their respective preferred oxidation state. Consequently, flammability can be excluded.				
3.12	Flash-point (IIA3.9)			Ca(OH) ₂ is neither capable of burning, nor forming flammable gases.	The same arguments as for point 3.11 apply here.				
3.13	Surface tension (IIA3.10)	OECD 115 EEC A5	90% saturated solution of Ca(OH) ₂ (98.2 % w/w)	72.5 mN/m		Y	1	Doc. No. 213-001, A3.1.3/02;	x
3.14	Viscosity (-)				According to the TNsG this data must only be submitted for liquid substances.				
3.15	Explosive properties (IIA3.11)	According to the TNsG on data requirements "The test can be exempted when [] absence of certain reactive groups in the structural formula or its "oxygen balance" establishes beyond reasonable doubt that the substance is incapable of decomposing, forming gases or releasing heat very rapidly." These criteria fully apply to Ca(OH) ₂ . Please refer to the arguments provided for 3.11.							

EULA	AISBL


Biocidal active substance:

April 2010

Document IIIA, Section A3

Hydrated lime [Ca(OH)2]

Secti	on A3	Physical and Chemic	al Properties of Ac	tive Substance					
	Subsection (Annex Point)	Method	Purity/ Specification	Results Give also data on test pressure, temperature, pH and concentration range if necessary	Remarks/ Justification	GLP (Y/N)	Relia bility	Reference	Official use only
3.16	Oxidising properties (IIA3.12)	doubt that the active i information as justific	ngredient is incapabl ation for the non-det evidence to assume o	nts "In cases where an examina le of reacting exothermically w termining of oxidising propertie oxidising properties for Ca(OH)	ith combustible material, it is a es."	acceptal	ole to pro	ovide such	
3.17	Reactivity towards container material (IIA3.13)				Experience indicates that paper bags lined with plastic (to prevent contact with moisture), plastic bags, steel, stainless steel and Aluminium do not react significantly with dry lime and so can be used as container material for this product. Aluminium and other materials sensitive to high pH are not suitable container materials for wet lime based products (e.g. milk of lime) For bulk transport of dry lime, steel, stainless steel and Aluminium can be used. Stainless steel is recommended, whereas Aluminium is unsuitable as container materials for bulk transportation of wet lime products.				x

EULA AISBL	Biocidal active substance:	Page 14-16
Document IIIA, Section A3	Hydrated lime [Ca(OH)2]	April 2010

(1) Handbook of Chemistry and Physics, 70th Edition 1989 – 1990, CRC Press Inc. Boca Raton, Florida. Doc.No. 192-002; A3.1.1/01.

(2) CD Römpp Chemie Lexikon – Version 1.0, Stuttgart/New York: Georg Thieme Verlag **1995**. Doc.No. 192-003; A3.1.3/01.

(3) Hollemann, Wiberg, "Lehrbuch der anorganischen Chemie", 91. – 100. Auflage, de Gruyter, Berlin, New York 1985. Doc.No. 192-001; A3.1.1/02.

(4) Dirk Lohmann: "Untersuchungen zur Vermeidung zu hoher pH-Werte in weichen Trinkwässern bei der Inbetriebnahme von Rohrleitungen mit einer

Zementmörtelauskleidung", Dissertation, Duisburg. http://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-05212001-095224/unrestricted/inhalt htm. Doc.No. 192-005; A3.4.2/01.

(5) J. W. Kauffman, R. H. Hauge, J. L. Margrave: "Infrared Matrix Isolation Studies of the Interactions of Mg, Ca, Sr and Ba Atoms and Small Clusters with Water", High Temperature Science **1984**, 18, pp. 97-118. Doc.No. 192-004; A3.4.2/02.

(6) R.T. Haslam, G. Calingaert, C.M. Taylor:" The Hydrates of Lime", J. Am. Chem. Soc., 1924, 46 (2), pp. 308-311. Doc. No. 192-010; A3.5/01.

(7) A. Seidell, **1919**, "Solubilities of inorganic and organic substances – a compilation of quatitantive solubility data from the periodical literature"; Stanhope Press. Doc. No. 192-011; A3.5/02.

April 2010

	Evaluation by Competent Authorities
	Use separate "evaluation boxes" to provide transparency as to the comments and views submitted
	EVALUATION BY RAPPORTEUR MEMBER STATE
Date	18 June 2010
Materials and methods	Adopt applicant's version with the following amendments.
	Some of the data submitted in section 3 are taken from the published literature in the form of well established reference texts which are identified in the reference list. As a result details such as purity of sample and methods used are not available.
	However, it is considered that the information supplied is suitable for its intended use especially given that the data have been in use for a considerable time in many technical fields apart from the uses of immediate concern.
	The remaining physicochemical tests have been conducted on identified samples and reports have been submitted but the reports are not necessarily to GLP.
	The following points are recorded for individual studies.
	 3.1.1 Melting point Literature values - Method and purity not recorded. The studies are not to GLP The values quoted are high enough (>360°C) for the differences to be of little concern. Reliability 2.
	3.1.3 Relative densityThe relative density will vary depending on the source of the lime and the level and identity of the impurities present. The measured values reported are within a range quoted from one of the reference texts.Reliability of the literature values 2.In the studies carried out on Precal 50S & Precal 50N the Pycnometer method wa used.
	3.3.2 Colour In the study reports for Precal 50N & Precal 50S the appearance is recorded as white powder.
	3.4.2 IR Spectrum Details of an infra red spectrum recorded as a potassium bromide disc over the scan range 4000-500 cm-1 (Doc 117-001) are available. The remaining information relating to infra red spectra can be disregarded.
	3.5 Solubility in water Literature values - Method and purity not recorded. The studies are not to GLP The reported table is taken from document 192-011 and could be the source of the hot-water and cold-water data from document 192-002 (the CRC handbook) The value of 1.26 g/L at 20°C (taken from document 192-001) appears to have been read from the graph. From the table the value would be 1.65 g/L at 20°C.
	Reliability of the literature values 2.
	3.7 Solubility in organic solvents

EULA AISBL	Biocidal active substance:	Page 16-16
Document IIIA, Section A3	Hydrated lime [Ca(OH)2]	April 2010
	Literature values - Method and purity not recorded. The studies are not to GLP Reliability of the literature values 2.	
	3.9 Partition coefficient n-octanol/water Non GLP studies on identified samples confirm that the partition coefficient could not be calculated.	1
	 3.10 Thermal stability Literature values - Method and purity not recorded. The studies are not to GLP The information is taken from the same sources as the melting point. Hydrated lime does not melt but decomposes at elevated temperature. It is thermally stable up to 150°C. Reliability of the literature values 2. 	
	3.13 Surface tensionThe OECD Harmonised ring method was used.A 1g/L solution was measured rather than a 90% saturated solution.Document number is incorrect and should read 113-001.	
	3.17 Reactivity towards container material	
	There should be clear evidence that no problems will arise if aluminium is to be used for any product.	
Conclusion	Adopt applicant's version with the above amendments.	
Reliability	The following entries are based on recent tests conducted on identified samples. Reliability is 1.	
	3.1.3 Relative density / Bulk density3.4 Spectra (IR)3.9 Partition coefficient3.13 Surface tension	
	Reliability of the literature values is 2	
Acceptability	Acceptable	
Remarks	None	
	COMMENTS FROM	
Date	Give date of comments submitted	
Results and discussion	Discuss additional relevant discrepancies referring to the (sub)heading numbers and to applicant's summary and conclusion. Discuss if deviating from view of rapporteur member state	
Conclusion	Discuss if deviating from view of rapporteur member state	
Reliability	Discuss if deviating from view of rapporteur member state	
Acceptability	Discuss if deviating from view of rapporteur member state	
Remarks		