Welcome

Webinar: OECD QSAR Assessment Framework in REACH dossier evaluation: what you need to know

21 March 2024

Adam Elwan
European Chemicals Agency
What you can expect today

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.00</td>
<td>Welcome</td>
<td>Adam Elwan – ECHA</td>
</tr>
<tr>
<td>11.05</td>
<td>ECHA efforts towards phasing out animal studies</td>
<td>Tomasz Sobanski – ECHA</td>
</tr>
<tr>
<td>11.15</td>
<td>Introduction of OECD QSAR Assessment Framework</td>
<td>Patience Browne – OECD</td>
</tr>
<tr>
<td>11.25</td>
<td>OECD QSAR Assessment Framework: ECHA perspective</td>
<td>Doris Hirmann - ECHA</td>
</tr>
<tr>
<td></td>
<td>• QSAR Assessment Framework and related IUCLID updates</td>
<td>Andrea Gissi – ECHA</td>
</tr>
<tr>
<td></td>
<td>• ECHA’s current practice in assessing QSARs and comparison with QSAR Assessment Framework</td>
<td></td>
</tr>
<tr>
<td>12.25</td>
<td>Conclusions</td>
<td>Adam Elwan – ECHA</td>
</tr>
<tr>
<td>12:30</td>
<td>BREAK 15 minutes</td>
<td></td>
</tr>
<tr>
<td>12.45 – 14.00</td>
<td>Live Q&A panel</td>
<td></td>
</tr>
</tbody>
</table>
Live Q&A

- Join Q&A at: slido.com
 Event code: #qaf2024
- Send questions until 13:00 (EET, GMT +2)
- Only questions within scope
- Question not answered?
 Contact us: echa.europa.eu/contact
Material available

- Video recording
- Presentations
- Q&A transcript (soon after the event)
- Subscribe to our newsletter at echa.europa.eu/subscribe
Thank you
adam.elwan@echa.europa.eu
echa.europa.eu/subscribe

Connect with us

echa.europa.eu/podcasts European Chemicals Agency @one_healthenv_eu
@EU_ECHA @EUECHA EUchemicals
ECHA efforts towards phasing out animal studies

Webinar: OECD QSAR Assessment Framework in REACH dossier evaluation: what you need to know

21 March 2024

Tomasz Sobanski
European Chemicals Agency
ECHA’s mandate and legal context

→ Promotion of alternative methods: part of aim and scope of REACH (Article 1)

→ To introduce substances to EU market, REACH registrants need to provide information about (eco)toxicological properties – part of standard information requirements

→ REACH registrants can adapt standard information requirements using alternative methods such as in vitro, read-across and (Q)SAR studies

→ Criteria for adaptations listed in Annex XI of REACH
ECHA’s mandate and legal context (2)

→ ECHA working on development and promotion of alternative methods by:

• Providing guidance
• Developing new ways of characterising hazard
• Contributing to discussion about future regulatory system
Alternatives used so far

→ Adaptations used more than experimental studies
→ Read-across most used adaptation
Use of adaptations in REACH information requirements

REACH information requirements where QSARs used the most:
- bioaccumulation,
- aquatic toxicity (all)
- skin sensitisation

Room for more effective use of QSARs under REACH
Extrapolation from existing toxicological knowledge provide biggest reduction potential in short to medium term.

Reliable QSARs more suitable for less complex properties, while well justified read-across can be used for more complex ones.

To further eliminate need for animal testing, application of new approach methodologies needed.
ECHA approach towards animal-free hazard assessment in three steps:

Step 1. Define

Identify critical needs to transition to animal-free system to steer further development

Step 2. Demonstrate

Apply available tools under current system

Step 3. Re-design

Re-think overall system to enable new approach methodologies and *redefine* main elements
Step 2: Demonstrate

Apply already existing tools under current system to build experience and gain confidence

ECHA focusing on this step, using tools available in following areas:

→ Advancements in *in silico methods*:
 • Enhanced predictive capacity and broader applicability from ECHA data efforts
 • OECD QSAR Assessment Framework: explicit regulatory acceptance criteria

→ Use of molecular data for read-across and grouping with clear acceptance criteria

→ Establishment of in vitro PBK/TK measurements and modelling for industrial chemicals

→ Integration of 'omics in regulatory toxicological testing for molecular data in relevant biological systems
QAF: important part of ECHA approach

→ Newly introduced criteria for prediction:
 → Provide **guidance** to QSAR developers on how to check if prediction is reliable
 → Allow users to **assess** validity of predictions for substances (even using existing tools)
 → Bring **transparency** on how QSAR predictions are assessed by authorities
QAF: important part of ECHA approach (2)

→ Clear and **transparent criteria** key for wider acceptance of QSAR models/predictions by users and authorities

→ **Wider acceptance** of QSARs lead to new regulatory applications (more adaptation possibilities, better use in risk management)

→ More **regulatory applications**, significant **reduction potential** for tests needed and costs
Thank you

tomasz.sobanski@echa.europa.eu
echa.europa.eu/subscribe
INTRODUCTION TO QAF
Global drivers to use NAMs in chemical risk assessment

- Increase throughput
- Increase [human] relevance
- Use best science
- Reduce animal use
- Reduce decision time
OECD Test Guidelines & NAMs

- OECD Test Guidelines are **internationally harmonised methods for generating data** to evaluate chemical hazard
- include that NAMs (not exhaustive)

<table>
<thead>
<tr>
<th>Acute Toxicity</th>
<th>OECD publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>GD 237; TG 420, 423, 425</td>
</tr>
<tr>
<td>Dermal</td>
<td>GD 237; TG 402</td>
</tr>
<tr>
<td>Inhalation</td>
<td>GD 237, GD 39; TG 403, 433, 436</td>
</tr>
<tr>
<td>Eye Irritation and damage</td>
<td>GD 263; TG 437, 438, 460, 491, 492, TG 467</td>
</tr>
<tr>
<td>Skin Irritation and corrosion</td>
<td>GD 203; TG 430, 431, 435, 439, 460</td>
</tr>
<tr>
<td>Skin sensitisation</td>
<td>GD 256; TG 442C, 442D, 442E, TG 497</td>
</tr>
</tbody>
</table>

- OECD TG are validated following principles described in Guidance Document 34 **VALIDATION AND INTERNATIONAL ACCEPTANCE OF NEW OR UPDATED TEST METHODS**
- Results of OECD TG covered by **MAD**
Best approaches and practices for integrating information to come to a regulatory decision on chemical hazard

- Discussion of use of NAMs in a regulatory context
 - IATA Case Studies
 - Chemical grouping
 - Omics approaches
 - Various topic-specific guidance documents

- Forum to discuss how to build confidence in NAMs
 - Identification of aspects that can be harmonised
Promotes the **interlinkage** of tools to support regulatory decisions on chemicals.

Encourages use of **OHTs** to increase the ability to share data.

OECD Ecosystem of Electronic Tool

- **Global Chemicals Database**
 - Traditional Toxicity Data
 - Mechanistic and Intermediate Effects Information
 - Exposure and Use Information

- **Chemicals Portal**
 - Access point for all users
 - Display of select property information from chemical database
 - Portal to information not in database (e.g., other databases that have information on chemical; chemical assessment schedules; GHS classifications)

- **Computational and Read-Across Tools**
 - User of data in a standardised format
 - Potential provider of tools to query chemical database

- **Data systems for Regulatory Submissions and/or Regulatory Use**
 - User of data in standardised format
 - Coupled with other systems required for regulatory submission and use of data
 - Submitted data can supplement Global Chemicals database

- **Building of Adverse Outcome Pathways**
 - User of data
 - Curation of data from AOP development can supplement database

- **Open-Access Non-OECD Affiliated Tools That Link to this Network of Tools**
 - User of data in a standardised format
 - e.g., could envision tools that probe or analyse information drawing from the Database to further building a knowledge base network
OECD QSAR Toolbox

❖ initiated in 2006

❖ Developed with the goal of placing substances into chemical categories to predict apical outcome of regulatory interest

❖ Using data from tested category members [analogues] to aid in filling data gaps for untested category members

❖ Now, that and so much more

❖ Experimental data

❖ Profilers for properties of chemical

❖ Metabolism simulators
QSAR Toolbox supports alternatives to animal testing

• **Inform testing strategies** - by forming categories and identifying data gaps, intelligent testing strategies can be designed to reduce costs and number of animals required.

• **Predict properties** - predictions can replace information requirements (industry) or be used as input to support authorities e.g. prioritisation, substance evaluation.

• **Sustainable development and green chemistry** - the toxicity of substances can be predicted even before they are produced.
Objective
– The aim of the (Quantitative) Structure-Activity Relationship ((Q)SAR) Assessment Framework (QAF) is to develop a systematic and harmonised framework for the regulatory assessment

Scope
– (Q)SAR models
– (Q)SAR predictions and results based on multiple predictions

Relevance/applicability
– irrespective of the technique used to build the model, the predicted endpoint, and the intended regulatory purpose

Audience
– primarily, regulatory authorities
– as reference for other stakeholders using (Q)SARs for regulatory purposes
OECD QSAR Assessment Framework (QAF)

Project added to OECD Hazard Assessment Work Programme

• Co-led by Instituto Superiore di Sanità (ISS) Italy and the European Chemicals Agency (ECHA)

• Supported by QAF Expert Group
 – provided general input on project, feedback on proposed path forward, written comments on drafts
 – met through a series of teleconferences in 2021 - 2023
 – drafting subgroups contribute to writing/review
 – face-to-face meeting of the QAF Expert Group Q4 2022 to help finalise the draft document
 – request for written commenting round to Working Party on Hazard Assessment Q2 2023
 – declassified in Q3 2023
QSAR Assessment Framework

• Based on
 – **GD 49**: Principles for the validation of QSARs (2004)

• Sections on
 – Principles for assessing models
 – Principles for assessing predictions
 – Principles for assessing results from multiple predictions

• For each, development of assessment elements and a checklist of criteria
 – Guidance on how to determine if criteria are met
 – Examples illustrating how to evaluate criteria
The OECD QSAR Toolbox

To increase the regulatory acceptance of (Q)SAR methods, the OECD is developing a QSAR Toolbox to make (Q)SAR technology readily accessible, transparent, and less demanding in terms of infrastructure costs.

WEBINAR ON THE NEW OECD (Q)SAR ASSESSMENT FRAMEWORK: GUIDANCE FOR ASSESSING (Q)SAR MODELS AND PREDICTIONS

WHEN: 9 November 2023 at 11:00 - 14:30 CET / 07:00 - 10:30 EST
The webinar will provide an overview of the new OECD (Q)SAR Assessment Framework for evaluating the scientific validity of (Q)SAR models and introduce new principles for evaluating (Q)SAR predictions input, applicability domain, reliability, and fitness for purpose. This new framework provides regulators with a consistent and transparent approach for reviewing the use of (Q)SAR predictions in a regulatory context and increases the confidence to accept alternative methods for evaluating chemical hazards. The OECD worked closely together with the Swiss Chemical Safety Board (SCSB) and the European Chemical Agency (ECHA), supported by a variety of international experts to develop a checklist of criteria and guidance for evaluating each criterion. The aim of the OAF is to help establish confidence in the use of (Q)SARs in evaluating chemical safety, and was designed to be applicable irrespective of the modeling techniques used to build the model, the predicted endpoint, and the intended regulatory purpose. The webinar will begin with an overview of the project and walk through the main aspects of the framework for assessing models and results based on individual or multiple predictions, and provide an opportunity for Q&A.

Agenda:
- Overview of the Project: Patrick Besse, OECD Environment Directorate (10 minutes)
- (Q)SAR Assessment Framework for models: Ogs Tollefsen, EEDA (25 minutes)
- (Q)SAR Assessment Framework for predictions and results from multiple predictions: Andrea Bisal - ECHA (25 minutes)
- Q&A (30 minutes)

REGISTER HERE:

OECOSAR TOOLBOX 4.6 TUTORIALS

Do you need help with the QSAR Toolbox? Take a look at the videos uploaded on OECD's YouTube channel. They help you navigate through the different functionalities of the tool. The tutorials were developed in response to stakeholders' interest in learning how to use the tool better. ECHA plans to develop more tutorials during the next year.

• Links to QAF and background documents
• Links to Webinar presentations + how to use the QAF
Thank You For Listening

Patience.BROWNE@oecd.org

https://www.oecd.org/env/ehs/

Twitter: https://twitter.com/OECD_ENV
OECD QSAR Assessment Framework: ECHA perspective

Webinar: OECD QSAR Assessment Framework in REACH dossier evaluation: what you need to know

21 March 2024

Doris Hirmann
European Chemicals Agency
OECD QSAR Assessment Framework
ECHA perspective

→ Part I: General aspects
→ Part II: ECHA’s current practice in assessing QSARs under dossier evaluation
→ Part III: Comparison of ECHA’s current evaluation practices with OECD QSAR Assessment Framework
→ Part IV: IUCLID changes
OECD QSAR Assessment Framework
ECHA perspective

→ Part I: General aspects
→ Part II: ECHA’s current practice in assessing QSARs under dossier evaluation
→ Part III: Comparison of ECHA’s current evaluation practices with the OECD QSAR Assessment Framework
→ Part IV: IUCLID changes
QSAR Assessment Framework
General aspects
Starting point

Valid QSAR model ≠ Valid QSAR result

→ QSARs allowed in many chemical regulations
→ 2004 OECD QSAR principles cover scientific validity of **QSAR models**
→ Use of valid QSAR model does not guarantee validity of each result
→ Need to establish **principles to assess individual results** and a systematic and harmonised **assessment framework** for QSAR models and predictions
QSAR models
Principles for assessment

QSAR Assessment Framework Group: agree OECD principles for evaluating scientific validity of **QSAR models** remain relevant:

1. Defined endpoint
2. Unambiguous algorithm
3. Defined domain of applicability
4. Appropriate measures of goodness-of-fit, robustness and predictivity
5. Mechanistic interpretation, if possible
QSAR models

Principles for assessment

Four new OECD principles for evaluating QSAR predictions and results based on multiple predictions:

1. Correct input
2. Substance within applicability domain
3. Reliable prediction
4. Outcome fit for purpose
QAF guidance document

Text document establishing principles for assessment of QSAR results and explaining how to assess models and their results

Table of contents

Foreword
Executive summary
Visual Abstracts
1. Assessment of (Q)SAR Models (Model Checklist)
2. Assessment of (Q)SAR Predictions (Prediction Checklist)
3. Assessment of (Q)SAR Results derived from multiple predictions (Result Checklist)
4. Final considerations
Annex I – (Q)SAR model reporting format (QMRF) v2.1 *(minor update)*
Annex II – (Q)SAR prediction reporting format (QPRF) v2.0 *(major update)*
Glossary of selected terms
Roles

Visual abstract

Figure 1. (Q)SAR Assessment Framework (QAF) Result based on an individual prediction

Workflow
(Q)SAR model ➔ (Q)SAR prediction (= (Q)SAR result) ➔ Conclusion on the property for a given regulatory purpose

Reporting
QMRF
QPRF
(Q)SAR user

Assessment
Model Checklist
Prediction Checklist
Assessor
Model developer
QSAR Assessment Framework Checklist

Excel document to perform assessment in practice. Includes Model Checklist, Prediction Checklist, Result Checklist + examples and explanations

(Q)SAR Model, Prediction and Result Checklists
The (Q)SAR Model, Prediction and Result Checklists have been prepared based on the (Q)SAR Assessment Framework document (link), which provides further explanation of the principles and assessment elements.

Prediction Checklist - for the regulatory assessment of (Q)SAR predictions
Note: use the Prediction Checklist when a single prediction is considered. When multiple predictions are used to derive an overall result, please use the Result Checklist.

<table>
<thead>
<tr>
<th>Principle</th>
<th>Assessment element</th>
<th>Weight</th>
<th>Outcome</th>
<th>Uncertainty</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Clear and complete description of the input and model settings</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Input representative of the substance under analysis</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Reliable input (parameters)</td>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Substance within the applicability domain of a valid model

<table>
<thead>
<tr>
<th>Principle</th>
<th>Assessment element</th>
<th>Weight</th>
<th>Outcome</th>
<th>Uncertainty</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Substance within the applicability domain</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Any other limitation of the model is considered</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spreadsheets: more than just checklists

Tabs in excel:

- Model Checklist
- Model criteria and QMRF mapping
- Prediction Checklist
- Pred. criteria and uncertainty
- Result Checklist
- Result criteria and uncertainty

→ Separate spreadsheets provide
 • details,
 • practical advice,
 • examples and
 • mapping to QMRF/QPRF for each Assessment Element

→ Section dedicated on how to assign uncertainty level for predictions and results
QSAR Assessment Framework documents

→ **OECD Series on Testing and Assessment: publications by number**

→ **No. 386 (Q)SAR Assessment Framework: Guidance for the regulatory assessment of (Quantitative) Structure – Activity Relationship models, predictions, and results based on multiple predictions**
 - Glossy - Mono, Annex 1 (Word file), Annex 2 (Word file), Checklist in Excel
QAF guidance for assessment of models

Figure: Guidance text with explanation of Assessment Element (AE) for assessing QSAR models principle 1: a defined endpoint

Each principle is broken down to Assessment Elements (AEs)

Guidance gives more details for each AE

Ideally, acceptable model should fulfil all AEs. Depending on purpose of use, evaluators may accept models where not all AEs fulfilled
Guidance for assessment of QSAR predictions

Figure: Guidance text with explanation of AEs for assessing QSAR predictions principle 1: a correct input

Clear and complete description of the input and model settings (AE 1.1 in the Prediction and Result Checklists)

54. The first element to check is the description of the input and ensure that it is unequivocal and complete. In the simplest case, the model takes information on the structure (e.g., SMILES) as the sole input and does not have other editable options accompanying the structural input. In this case, the description of the exact structural information and the model/software version that were used to obtain the prediction are sufficient. For more complex cases, the requirement is to provide all information, including three-dimensional information on the chemical structure, customisable options (“settings”) and parameters of the software application (e.g., manual input of values of the descriptors and their source) that are needed as input to the model.

Input representative of the substance under analysis (AE 1.2 in the Prediction and Result Checklists)

55. Secondly, it is important to check that the input is representative of the substance under analysis and thus relevant for its assessment. When the substance consists of a single well-defined constituent, checking the agreement between the substance name, structure and numerical identifiers is sufficient. For three-dimensional models, information on the rationale for the selection of the conformation used as input

Guidance also explains conditions for acceptable predictions
Guidance for assessment of QSAR predictions

For each assessment element (AE):

Weight - how important is AE in the context of use of the prediction. Depends on purpose of use of prediction (default given)
- High
- Medium
- Low

Outcome:
- Fulfilled
- Not fulfilled
- Not applicable/assessed
- Not documented

Uncertainty:
- Low
- Medium
- High
Guidance for assessment of QSAR predictions

For each prediction:

Conclusion on individual prediction

Uncertainty of prediction
- Low
- Medium
- High

Based on highest uncertainty of high weight AEs.

Outcome of assessment
- Acceptable for intended purpose;
- Not acceptable for intended purpose;
- Documentation insufficient to decide on acceptance for intended purpose.

Document suggests to accept predictions with low or medium uncertainty

Comments

Guidance for assessment of QSAR predictions

Prediction 1

<table>
<thead>
<tr>
<th>Principle</th>
<th>Assessment element</th>
<th>Weight</th>
<th>Outcome</th>
<th>Uncertainty</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Clear and complete description of the input and model settings</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Input representation of the substance under analysis</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Reliable input (parameters)</td>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Substance within the applicability domain</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Any other limitation of the model is considered</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Reproducibility</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Overall performance of the model</td>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Relationship of the substance with the physical-chemical, structural and response spaces of the training set of the model</td>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Performance of the model for similar substances</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Mechanistic and/or metabolic considerations</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Consistency of information</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Compliance with additional requirements</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Correspondence between predicted property and property approved by the regulation</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Brevity within the specific framework</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion on the individual prediction

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outcome of the assessment (individual prediction)

<table>
<thead>
<tr>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Principles for assessment of QSAR predictions

Four new OECD principles for evaluating QSAR predictions and results based on multiple predictions:

1. **Correct input** - complete and representative of the substance being analysed, uses reliable parameters
Correct input
Assessment Elements (AEs)

→ AE 1.1: Clear and complete description of input and model settings
 • All information (input structure and/or parameters, model settings) available to assessors, making the prediction reproducible

→ AE 1.2: Input representative of the substance under analysis
 • Structure(s) modelled represent the substance subject to regulatory assessment

→ AE 1.3: Reliable input (parameters)
 • Parameters that are input manually (other than chemical structure) are reliable
Example for assessment
Correct input

→ AE 1.1: Clear and complete description of input and model settings

What to check and how
Practical advice
Examples
Uncertainty
Example for assessment

Correct input

→ AE 1.1: Clear and complete description of input and model settings

What to check and how:

- It is clear whether structure is input using SMILES or other identifiers. If other parameters are also used as input, they are described
- If relevant, conformational (tri-dimensional) information also given
- In case of editable options, check if default settings are applied and, if not, if a justification is provided

Example

A model requires SMILES and optionally logKow as input to generate a prediction

Assessment

→ Is AE fulfilled? If yes, assign uncertainty:
 • **Low** uncertainty: SMILES and logKow provided
 • **Medium** uncertainty: SMILES provided, logKow not provided
 • **High** uncertainty: only CAS number provided, but CAS/SMILES association is ambiguous
Principles for assessment of QSAR predictions

Four new OECD principles for evaluating QSAR predictions and results based on multiple predictions:

1. **Correct input** - complete and representative of the substance being analysed, uses reliable parameters

2. **Substance within applicability domain** – assessment limited to domain as defined by model developers
Applicability domain

→ Applicability domain (AD) of a QSAR model is the physico-chemical, structural or biological space, knowledge or information on which the training set of the model has been developed.

→ Predictions outside AD have higher or unknown uncertainty compared to predictions inside AD.

→ Predictions within the applicability domain of the model are more reliable than predictions outside applicability domain.
Substance within applicability domain of a valid model

→ AE 2.1: Substance within applicability domain
 • Substance meets applicability domain (AD) requirements specified by model developers

→ AE 2.2: Any other limitation of the model is considered
 • Substance does not meet any of the criteria for which the model should not be used
Principles for assessment of QSAR predictions

Four new OECD principles for evaluating QSAR predictions and results based on multiple predictions:

1. **Correct input** - complete and representative of the substance being analysed, uses reliable parameters

2. **Substance within applicability domain** – assessment limited to domain as defined by model developers

3. **Reliable prediction** – to cover elements that may not be part of developers’ definition of applicability domain
Reliable prediction

→ AE 3.1 Reproducibility

→ AE 3.2 Overall performance of the model

→ AE 3.3 Fit within physicochemical, structural and response spaces of the training set of the model

→ AE 3.4 Performance of the model for similar substances

→ AE 3.5 Mechanistic and/or metabolic considerations

→ AE 3.6 Consistency of information

More details in the following presentation
Four new OECD principles for evaluating QSAR predictions and results based on multiple predictions:

1. **Correct input** - complete and representative of the substance being analysed, uses reliable parameters

2. **Substance within applicability domain** – assessment limited to domain as defined by model developers

3. **Reliable prediction** – to cover elements that may not be part of developers’ definition of applicability domain

4. **Outcome fit for purpose** - usefulness of computational prediction to answer specific regulatory question
Outcome fit for regulatory purpose

→ AE 4.1: Compliance with additional requirements

→ AE 4.2: Correspondence between predicted property and property required by regulation

→ AE 4.3: Decidability within specific framework
Assessment of results based on multiple predictions

(Q)SAR prediction: an individual output (i.e., the predicted value of a property) of a (Q)SAR model. It can be a continuous or a categorical (two or more categories) output.

(Q)SAR result: the assessment of a property of a substance based on multiple (Q)SAR predictions.
Workflow for assessing results from multiple predictions

1. Assess predictions individually

 - **Prediction 1**
 - Uncertainty
 - Outcome

 - **Prediction 2**
 - Uncertainty
 - Outcome

2. Check how final result determined (AE 5.1)

 - **QSAR result**

3. Conclusion based on level of uncertainty and purpose of use

 - **Conclusion on the result**

Assessment element (AE)

Outcome (O): fulfilled, not fulfilled, not documented, not applicable

Weight (W): low, medium, high

Uncertainty (U): low, medium, high

Conclusion: results acceptable, not acceptable, insufficient documentation - for intended purpose
Take home messages

- QSAR Assessment Framework (QAF) published in August 2023
- Establishes new OECD principles for assessment of QSAR predictions and results from multiple predictions, and provides guidance and checklists for their assessment
- QSAR Assessment Framework becomes reference point for regulatory assessment of QSARs
- With a systematic and harmonised assessment framework, QAF will benefit regulators first, followed by model developers and QSAR users
Thank you
doris.hirmann@echa.europa.eu
echa.europa.eu/subscribe
OECD QSAR Assessment Framework: ECHA perspective

Webinar: OECD QSAR Assessment Framework in REACH dossier evaluation: what you need to know

21 March 2024

Andrea Gissi
European Chemicals Agency
OECD QSAR Assessment Framework

ECHA perspective

→ Part I: General aspects
→ **Part II: ECHA’s current practice in assessing QSARs under dossier evaluation**
→ Part III: Comparison of ECHA’s current evaluation practices with OECD QSAR Assessment Framework
→ Part IV: IUCLID changes
Current practice in QSAR assessment

QSARs and their assessment under dossier evaluation

Webinar date
3 June 2021 11:00 - 12:30

Summary

- Presented in detail previously, still relevant
- Summarised and compared to QAF in next slides

The webinar covers the requirements for the use of QSAR results as adaptations to standard information in REACH registrations. It also shows how ECHA evaluates the compliance of QSAR information. Finally, it illustrates the most common issues found in QSAR studies included in REACH dossiers and how they are addressed in ECHA’s decisions. The webinar is particularly addressed to REACH registrants, who may include QSAR results in their registration dossiers and to stakeholders interested in learning about ECHA’s methods on evaluating QSAR results.

echa.europa.eu/-/qsars-and-their-assessment-under-dossier-evaluation
QSAR assessment in REACH dossier evaluation

- REACH requirements for using QSARs to adapt standard information requirements specified in Annex XI 1.3
- **ECHA Guidance R6** used as reference in our evaluation

GUIDANCE DOCUMENT ON THE VALIDATION OF (QUANTITATIVE)STRUCTURE-ACTIVITY RELATIONSHIPS [(Q)SAR] MODELS (OECD ENV/JM/MONO(2007)2)

Guidance on information requirements and chemical safety assessment Chapter R.6: QSARs and grouping of chemicals
Current practice

→ **Scientifically valid model** -> OECD QSAR principles (2007)

→ **Substance within applicability domain** ->
 Check applicability domain
 as defined by model developers + parametric, structural, mechanistic and metabolic domain, as relevant

→ **Results adequate for purpose** -> Check input structure and reliability of prediction

→ **Documentation** -> Check QSAR Prediction Reporting Format (QPRF) and QSAR Model Reporting Format (QMRF), or equivalent content
Is the model scientifically valid?

- **Defined endpoint** -> Check data used to build the model (i.e. training set)

- **Unambiguous algorithm** -> Check prediction is reproducible (same input and settings = same output)

- **Defined domain of applicability** -> Check applicability domain is defined

- **Appropriate measures of goodness of fit, robustness and predictivity** -> Check availability of measures of performances

- **Mechanistic interpretation, if possible** -> Not formally checked
Substance within domain?

Model developers' definition of applicability domain is the starting point for ECHA’s assessment.

ECHA also considers following aspects, as relevant:

→ Descriptor domain
→ Structural domain
→ Mechanistic domain
→ Metabolic domain
Adequate results? (for adapting REACH information requirements)

Input structure
Choosing correct input structure(s) is not trivial in case of multi-constituents or substances with unknown or variable composition, complex reaction product or biological origin (UVCB).

Reliability of prediction
- Reliability of input parameters
- Presence of analogues in training/test sets and accuracy of their predictions
- Consistency of prediction with other information available for substance
Adequate documentation?

QSAR Model Reporting Format (QMRF) must include information on:

→ Predicted endpoint, including information on experimental protocol and data quality for data used to develop model

→ Unambiguous definition of algorithm, descriptor(s) of the model and its applicability domain

→ Estimate of goodness-of-fit and of predictivity of the model, including information on training set and validation statistics
Adequate documentation? (2)

QSAR Prediction Reporting Format (QPRF) must include information on:

→ Model prediction(s), including endpoint
→ Precise identification of the substance modelled
→ Relationship between modelled substance and defined applicability domain
→ Identities of close analogues, including considerations on how predicted and experimental data for analogues support the prediction
OECD QSAR Assessment Framework
ECHA perspective

→ Part I: General aspects
→ Part II: ECHA’s current practice in assessing QSARs under dossier evaluation
→ **Part III: Comparison of ECHA’s current evaluation practices with OECD QSAR Assessment Framework**
→ Part IV: IUCLID changes
Current evaluation practices vs QAF

1. Scientific validity of the model

→ When assessing models, ECHA refers to OECD QSAR principles from 2007

→ QAF expert group confirmed use of principles from 2007, with special attention to quality of data used to build the model

→ Data quality checked by ECHA under first OECD principle (defined endpoint), in line with AEs 1.2 and 1.3 in the QAF Model Checklist (transparency and quality of underlying experimental data)
Current evaluation practices vs QAF

2. Substance within applicability domain

→ ECHA refers to applicability domain (AD) as defined by model developers + parametric, structural, mechanistic and metabolic domain, as relevant

→ Under applicability domain (AD), QAF considers AD as defined by model developers only. However, under reliability, QAF checks:

 • AE 3.3 - Fit within physicochemical, structural and response spaces of model training set
 • AE 3.6 - Mechanistic and/or metabolic considerations

→ Overall, two approaches are aligned
Current evaluation practices vs QAF
3. Results adequate for purpose

→ For adequacy, ECHA refers to input structure and reliability of prediction

→ QAF checks that input is correct as first principle, and reliability as third principle

→ Let’s look at “Reliability” in more detail...
Current evaluation practices vs QAF

Results adequate for purpose: Reliability

<table>
<thead>
<tr>
<th>Dossier evaluation</th>
<th>(Q)SAR Assessment Framework (AEs from Prediction Checklist)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input structure</td>
<td>AE 1.2 - Input representative of the substance under analysis</td>
</tr>
<tr>
<td>Reliability of input parameters</td>
<td>AE 1.3 – Reliable input (parameters) [Under input]</td>
</tr>
<tr>
<td>Presence of analogues in training/test sets and accuracy of their predictions</td>
<td>AE 3.4 – Performance of model for similar substances</td>
</tr>
<tr>
<td>Consistency of prediction with other information available for the substance</td>
<td>AE 3.6 – Consistency of information</td>
</tr>
<tr>
<td>[Considered under validity of the model – Unambiguous algorithm]</td>
<td>AE 3.1 – Reproducibility</td>
</tr>
<tr>
<td>[Considered under validity of the model]</td>
<td>AE 3.2 – Overall performance of the model</td>
</tr>
<tr>
<td>[Considered under applicability domain]</td>
<td>AE 3.3 - Fit within physicochemical, structural and response spaces of the training set of the model and AE 3.5 - Mechanistic and/or metabolic considerations</td>
</tr>
</tbody>
</table>
Current evaluation practices vs QAF

4. Adequate documentation

→ ECHA requires information on model (QSAR Model Reporting Format (QMRF)) and on prediction (QSAR Prediction Reporting Format (QPRF))

→ QAF provides updated versions of QMRF and QPRF
What changes in ECHA’s assessments with QAF publication?

→ **Scientific assessment will not change**
 QAF fully aligned with current ECHA practice

→ In our decisions in compliance check:
 - For now, we keep using reference to ECHA Guidance R6
 - In future, we will refer to QAF assessment elements to be even clearer on identified issues
OECD QSAR Assessment Framework
ECHA perspective

→ Part I: General aspects
→ Part II: ECHA’s current practice in assessing QSARs under dossier evaluation
→ Part III: Comparison of ECHA’s current evaluation practices with OECD QSAR Assessment Framework
→ Part IV: IUCLID changes
QAF publication
Changes in IUCLID

→ Based on updated QPRF in QAF
→ 17 new fields appear when “study type = QSAR” and reliability score is assigned

→ Benefits
 • Help QSAR users to report key information
 • Facilitate assessors in finding key information for evaluation
 • Structuring of information in IUCLID fields and not in attachments

→ Model information (QMRF) still expected as an attachment (especially if information is not easily publicly accessible)
Annexes:

- Updated **QSAR Prediction Reporting Format (QPRF v2.0)**: Major update to reflect QSAR Assessment Framework Guidance. Eight main sections:
 1. General information
 2. Substance
 3. Model and software
 4. Prediction
 5. Input
 6. Applicability domain and limitations
 7. Reliability assessment
 8. Purpose of use (for regulatory applications)

- Updated **QSAR Model Reporting Format (QMRF v2.1)**: minor update because OECD principles for validity of models have not changed
New QSAR fields in IUCLID

Acute toxicity: oral.001
 UUID: 495585dd-93c9-46b6-af31-a049c5013c1a

Administrative data Data source Materials and methods

Model and software
Model name and version
Software name and version
Remarks

Any other information on materials and methods incl. tables

Additional information about applicability domain and reliability of (Q)SAR predictions
Fit with the applicability domain
Justification for the fit with the applicability domain
Fit with the space defined by the training set of the model
Mechanistic and metabolic considerations
Similar substances with experimental data
Performance of the model for similar substances
Conclusions on applicability domain and reliability
Uncertainty
Any other information on results incl. tables
New QSAR fields in IUCLID

→ QAF-related fields available in IUCLID release planned for 29 April 2024
→ Expect registrants to fill-in new IUCLID fields for QSARs but they will not be mandatory (at least for now)
→ By completing new fields, easier for registrants to make sure relevant information is reported and considered during dossier evaluation
Thank you
andrea.gissi@echa.europa.eu
echa.europa.eu/subscribe

Connect with us

echa.europa.eu/podcasts European Chemicals Agency @one_healthenv_eu
@EU_ECHA @EUECHA EUchemicals
Conclusions

Webinar: OECD QSAR Assessment Framework in REACH dossier evaluation: what you need to know

21 March 2024

Adam Elwan
European Chemicals Agency
Conclusions

→ QAF guidance and checklist reflects ECHA’s current practices

→ ECHA’s scientific assessment of QSAR studies remains the same

→ Communication of incompliances: ECHA starts referring to QAF to be even clearer on reasons for rejecting a QSAR study

→ Guidance, new reporting formats, and IUCLID fields guide you in providing documentation needed for ECHA’s assessment
Live Q&A

- Join Q&A at: slido.com
 Event code: #qaf2024
- Send questions until 13:00 (EET, GMT +2)
- Only questions within scope
- Question not answered? Contact us: echa.europa.eu/contact
Thank you

adam.elwan@echa.europa.eu
echa.europa.eu/subscribe