Draft background document for cyclohexane-1,2-dicarboxylic anhydride [1], cis-cyclohexane-1,2-dicarboxylic anhydride [2], trans-cyclohexane-1,2-dicarboxylic anhydride [3] [The individual cis- [2] and trans- [3] isomer substances and all possible combinations of the cis- and trans-isomers [1] are covered by this entry] (HHPA)

Document developed in the context of ECHA’s seventh Recommendation for the inclusion of substances in Annex XIV

ECHA is required to regularly prioritise the substances from the Candidate List and to submit to the European Commission recommendations of substances that should be subject to authorisation. This document provides background information on the prioritisation of the substance, as well as on the determination of its draft entry in the Authorisation List (Annex XIV of the REACH Regulation). Information comprising confidential comments submitted during public consultation(s), or relating to content of registration dossiers which is of such nature that it may potentially harm the commercial interest of companies if it was disclosed, is provided in a confidential annex to this document.

The following public name is used throughout the document: HHPA (deriving from the name hexahydrophthalic anhydride) and covering cyclohexane-1,2-dicarboxylic anhydride [1], cis-cyclohexane-1,2-dicarboxylic anhydride [2], trans-cyclohexane-1,2-dicarboxylic anhydride [3] and all possible combinations of the cis- and trans-isomers [1].

Information relevant for prioritisation and/or for proposing Annex XIV entries provided during the public consultation on the inclusion of HHPA on the authorisation list or in the registration dossiers (as of last day of the public consultation, i.e. 18 February 2016) will be taken into consideration when finalising the recommendation and will be reflected in an update of the present document.

Contents

1. Identity of the substance ... 3
2. Background information for prioritisation .. 3
 2.1. Intrinsic properties ... 3
 2.2. Volume used in the scope of authorisation ... 3
 2.3. Wide-dispersiveness of uses ... 4
 2.4. Further considerations for priority setting .. 4
 2.5. Conclusions and justification .. 4
3. Background information for the proposed Annex XIV entry 4
 3.1. Latest application and sunset dates .. 5
 3.2. Review period for certain uses .. 5
 3.3. Uses or categories of uses exempted from authorisation requirement 5
3.3.1. Exemption under Article 58(2) ... 5
3.3.2. Exemption of product and process oriented research and development (PPORD) 5

4. Further information on uses .. 5
5. References .. 7
1. Identity of the substance

Chemical name: Cyclohexane-1,2-dicarboxylic anhydride [1], cis-cyclohexane-1,2-dicarboxylic anhydride [2], trans-cyclohexane-1,2-dicarboxylic anhydride [3] [The individual cis- [2] and trans- [3] isomer substances and all possible combinations of the cis- and trans-isomers [1] are covered by this entry]

EC Number(s): 201-604-9 236-086-3 238-009-9

CAS Number(s): 85-42-7 13149-00-3 14166-21-3

IUPAC Name: Cyclohexane-1,2-dicarboxylic anhydride [1], cis-cyclohexane-1,2-dicarboxylic anhydride [2], trans-cyclohexane-1,2-dicarboxylic anhydride [3]

2. Background information for prioritisation

Priority was assessed by using the General approach for prioritisation of SVHCs for inclusion in the list of substances subject to authorisation. Results of the prioritisation of all substances included in the Candidate List by June 2014 and not yet included or recommended in Annex XIV of the REACH Regulation is available at http://echa.europa.eu/documents/10162/13640/prioritisation_results_CL_substances_nov_2015_en.pdf

2.1. Intrinsic properties

HHPA is classified in Annex VI, part 3, Table 3.1 (the list of harmonised classification and labelling of hazardous substances) of Regulation (EC) No 1272/2008 as a respiratory sensitiser, (amongst other endpoints). Taking into account all available information on the intrinsic properties of HHPA and their adverse effects, it was concluded that the substance can be regarded as substance for which in accordance with Article 57 (f) of REACH there is scientific evidence of probable serious effects to human health which give rise to an equivalent level of concern to those of other substances listed in points (a) to (e) of Article 57. HHPA was identified as a Substance of Very High Concern (SVHC) according to Article 57 (f) and was therefore included in the Candidate List for authorisation on 19 December 2012, following ECHA’s decision ED/169/2012.

2.2. Volume used in the scope of authorisation

The amount of HHPA manufactured and/or imported into the EU according to registration data (ECHA, 2015) is >10,000 t/y. Some uses appear not to be in the scope of authorisation, such as use as an intermediate including use as a monomer in the manufacture of thermoplastics. Based on information on the volume corresponding to those uses from registrations (CSR), the

volume in the scope of authorisation is estimated to be in the range of 1,000 - <10,000 t/y.

2.3. Wide-dispersiveness of uses

Registered uses of HHPA in the scope of authorisation include uses at industrial sites (formulation of mixtures; hardener for epoxy resins; process regulator for polymer processes).

Furthermore, according to information from the SVHC public consultation, the substance is used by professional workers (use of paints) in volumes < 10t/y.

2.4. Further considerations for priority setting

HHPA could be grouped with the substance MHHPA. MHHPA is also listed on the Candidate List and the two substances are structurally very similar - differing only by a single methyl group. The registered uses of HHPA are almost identical to MHHPA (formulation of mixtures; hardener for epoxy resins; process regulator for polymer processes) therefore MHHPA could potentially replace HHPA in some of its uses.

2.5. Conclusions and justification

<table>
<thead>
<tr>
<th>Verbal descriptions and Scores</th>
<th>Total Score</th>
<th>Further considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inherent properties (IP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume (V)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wide dispersiveness of uses (WDU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HHPA is a substance with an equivalent level of concern to CMRs having probable serious effects to human health (Article 57 f)</td>
<td>Score: 1</td>
<td>Grouping with MHHPA (CL)</td>
</tr>
<tr>
<td>The amount of HHPA used in the scope of authorisation is in the range of 1,000 - <10,000 t/y</td>
<td>Score: 12</td>
<td></td>
</tr>
<tr>
<td>HHPA is used at industrial sites.</td>
<td>Score: 12</td>
<td></td>
</tr>
<tr>
<td>Initial score: 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furthermore, the substance is used by professional workers in volumes <10 t/y.</td>
<td>Score: 7</td>
<td></td>
</tr>
<tr>
<td>Refined score: 7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion

On the basis of the prioritisation criteria further strengthened by the grouping considerations, HHPA receives priority among the substances in the Candidate List (see link to the prioritisation results above). Therefore, it is proposed to prioritise HHPA for inclusion in Annex XIV.

3. Background information for the proposed Annex XIV entry

Draft Annex XIV entries were determined on the basis of the General approach for preparation

2 Deriving from the name “methyl/hexahydrophthalic anhydride” and covering hexahydromethylphthalic anhydride [1], hexahydro-4-methylphthalic anhydride [2], hexahydro-1-methylphthalic anhydride [3], hexahydro-3-methylphthalic anhydride [4] (The individual isomers [2], [3] and [4] (including their cis- and trans- stereo isomeric forms) and all possible combinations of the isomers [1] are covered by this entry).
3.1. Latest application and sunset dates

ECHA proposes to recommend the following transitional arrangements:

- Latest application date (LAD): Date of inclusion in Annex XIV plus 18 months
- Sunset date (SSD): 18 months after LAD

There is a priori no reason to deviate from the three LAD slots of 18, 21 and 24 months after inclusion in Annex XIV that are normally assigned in a recommendation. HHPA has been considered to be placed in the same slot with MHHPA in this draft recommendation. These two substances are assigned to the 1st LAD slot. The supply chain seems to be less complex compared to other substances in this recommendation round (fewer horizontal layers in the supply chain, fewer (different) types of uses) and therefore the preparation of an application for authorisation may require comparatively less time.

3.2. Review period for certain uses

ECHA proposes not to include in Annex XIV any review period for HHPA.

3.3. Uses or categories of uses exempted from authorisation requirement

3.3.1. Exemption under Article 58(2)

ECHA proposes not to recommend exemptions for uses of HHPA on the basis of Article 58 (1)(e) in combination with Article 58(2) of the REACH Regulation.

3.3.2. Exemption of product and process oriented research and development (PPORD)

ECHA proposes not to include in Annex XIV any exemption from authorisation for the use of HHPA for PPORD.

4. Further information on uses

Cyclic acid anhydrides are widely used in the chemical industry, especially in the manufacture of polyester and alkyd resins and plasticisers for thermoplastic polymers. The anhydrides are also used as hardeners for epoxy resins and chain cross-linkers for thermoplastic polymers (Annex XV report 2012).

3 Document can be accessed at
For HHPA specifically, the following uses are identified in the literature: manufacture of alkyd resins, plasticisers, insect repellents, rust inhibitors and as hardener in epoxy resins (Keskinen 2004).

The following uses are identified in the registration dossiers: industrial use as hardener for epoxy resins (23% of total production), industrial use as intermediate in chemical synthesis (3-8% of total production) and industrial use as monomer in the manufacture of resins (74% of total production).

Comments received during the SVHC public consultation (RCOM, 2012) indicate the specific application of HHPA in high voltage electric machines.

The anhydride curing epoxies appear to be widely used for the manufacture of structural composite materials for aerospace, electrical and industrial applications. The material is selected due to a unique combination of processability and chemical/mechanical/thermal and electrical properties.

HHPA and the related substance MHHPA are used in the aerospace and defence industries as a hardener in some epoxy resins and in a Low Density Void Filler (LDVF) that has been recently qualified for use in the aerospace and defence industries (RCOM, 2012).

4 for spare parts and repairs
5 Low Density Void Fillers are typically based on epoxy resin technology
5. References

Annex XV report (2012): Proposal for identification of a substance as a CMR Cat 1A or 1B, PBT, vPvB or a substance of an equivalent level of concern. HHPA. Submitted by the Netherlands, August 2012.

