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PROPOSAL FOR IDENTIFICATION OF A 
SUBSTANCE OF VERY HIGH CONCERN ON THE 
BASIS OF THE CRITERIA SET OUT IN REACH 

ARTICLE 57

Substance Name(s): 1,6,7,8,9,14,15,16,17,17,18,18-Dodecachloropentacyclo-
[12.2.1.16,9.02,13.05,10]octadeca-7,15-diene 

(“Dechlorane Plus”TM) 

[covering any of its individual anti- and syn-isomers or any combination thereof]

EC Number(s): 236-948-9; -; -

CAS number(s): 13560-89-9; 135821-74-8; 135821-03-3

 It is proposed to identify the substance(s) as very persistent and very 
bioaccumulative (vPvB) according to Article 57(e) of Regulation (EC) No 
1907/2006 (REACH).

Summary of how the substance meets the criteria set out in Article 57 of 
the REACH Regulation

Persistence

Based on the weight of evidence of the data available, it is concluded that 
Dechlorane Plus meets the criteria for vP in Annex XIII of REACH. This is based on:

 modelling of degradation potential and microbial metabolic pathways which 
suggests that biodegradation is likely to be very slow; and

 a low probability that it will degrade any faster than structural analogues 
that are considered to be very persistent under the Stockholm Convention.

This conclusion is also supported by the very low water solubility (suggesting 
limited bioavailability to micro-organisms once bound to solid matrices), monitoring 
data indicating that the substance can persist in sediments (a major sink) for many 
years, lack of evidence of biotransformation in fish (supporting the premise that 
the molecule is metabolically recalcitrant) and widespread occurrence in remote 
regions.

Bioaccumulation

Using a weight of evidence assessment of the data available, Dechlorane Plus meets 
the vB criteria in Annex XIII of REACH. This is based on:

 the long-depuration half-life determined in fish feeding studies which is 
indicative of a BCF above 5 000 L/kg, by comparison with other substances 
(supported by a long depuration half-life in mammalian liver);

 numerous studies that show that the substance is widely dispersed in 
freshwater, marine and terrestrial food chains, including top predators; and
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 evidence that the substance can exceed levels in biota that are of concern 
based on critical body burden considerations related to baseline narcosis.

This conclusion is supported by the detection of the substance in human blood, 
placenta and breast milk.

Toxicity

Based on the available ecotoxicity and mammalian data, Dechlorane Plus does not 
currently meet the T criterion. Long-term toxicity studies using relevant life stages 
of fish (via diet), sediment or soil organisms, and/or birds could be performed to 
clarify whether adverse effects can occur via these exposure routes. However, as 
the substance meets both the vP and vB criteria, these are not scientifically 
necessary for environmental risk management purposes.

Other concerns

The substances 1,3- and 1,5-Dechlorane Plus monoadduct (DPMA) have been 
detected in the environment, sometimes at higher concentrations than Dechlorane 
Plus in the same samples. DPMA might be under-reported because destructive 
sample preparation methods may degrade it. Dechlorane Plus is the only likely 
source of these two substances, although there is no information on reaction rates 
or amounts that can be formed under relevant environmental conditions. Based on 
predictive models, DPMA screens as being potentially PBT and vPvB on the basis of 
QSAR (although some of the predictions are uncertain). No information is available 
on its mammalian toxicity, but due to structural similarities to aldrin or heptachlor 
it might be epoxidised in the environment to form a substance that could be 
neurotoxic and/or cause hepatotoxicity. Experimental data would be needed to 
confirm these properties. However, as a degradation product of Dechlorane Plus, 
any concerns about DPMA would be alleviated by the identification of Dechlorane 
Plus as a substance of very high concern. 

In conclusion, despite the lack of definitive data, Dechlorane Plus is proposed to be 
identified as a vPvB substance according to Art. 57(e) of REACH by comparing all 
relevant and available information listed in Annex XIII of REACH with the criteria 
set out in the same Annex, in a weight-of-evidence determination.

Registration dossiers submitted for the substance? Yes
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PART I

Justification
The data described in this dossier were taken from public sources unless stated 
otherwise, including robust study summaries from the REACH registration dossier 
available on the ECHA dissemination website in May 2015 
(http://www.echa.europa.eu/) and submitted to the U.S. EPA by the Occidental 
Chemical Company (2003). Studies that are not formal regulatory test reports or 
published in peer reviewed journals (e.g. conference posters) are indicated as 
abstracts only [ABST]. Original test reports have not been reviewed (unless stated), 
although the information in the robust study summaries is considered sufficient. 
Published literature articles have been reviewed in detail. 

The number of published papers is growing at a fast rate and it is not considered 
proportionate to attempt to summarise all available studies that refer to this 
substance. Detailed study descriptions for the major end points relevant to this 
dossier are provided in Appendix 1, which also includes a list of references that are 
not considered relevant, and another list of references that might be relevant but 
are likely to be of relatively low significance.

http://www.echa.europa.eu/
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1. Identity of the substance and physical and 
chemical properties

1.1 Name and other identifiers of the substance

The substance 1,6,7,8,9,14,15,16,17,17,18,18-dodecachloropentacyclo-
[12.2.1.16,9.02,13.05,10]octadeca-7,15-diene has two isomers, named anti- [2] and 
syn- [3]. This dossier covers the individual anti- and syn- isomers (mono-
constituent substances) and all possible combinations of the syn- and anti- isomers 
[1] (see structural formula below).

Table 1: Substance identity of 1,6,7,8,9,14,15,16,17,17,18,18-dodecachloropentacyclo-
[12.2.1.16,9.02,13.05,10]octadeca-7,15-diene, Dechlorane Plus [1].

EC number: 236-948-9

EC name: 1,6,7,8,9,14,15,16,17,17,18,18-Dodecachloro-
pentacyclo[12.2.1.16,9.02,13.05,10]octadeca-7,15-
diene

CAS number (in the EC inventory): 13560-89-9

CAS number:
Deleted CAS numbers:

13560-89-9

-

CAS name: 1,4:7,10-Dimethanodibenzo[a,e]cyclooctene, 1,2,
3,4,7,8,9,10,13,13,14,14-dodecachloro-1,4,4a,5,
6,6a,7,10,10a,11,12,12a-dodecahydro- 

IUPAC name: 1,6,7,8,9,14,15,16,17,17,18,18-
Dodecachloropentacyclo[12.2.1.16,9.02,13.05,10]oct
adeca-7,15-diene

Index number in Annex VI of the 
CLP Regulation

Not applicable

Molecular formula: C18H12Cl12

Molecular weight range: 653.73 g/mole

Synonyms: Bis(hexachlorocyclopentadieno)cyclooctane; 
1,2,3,4,7,8,9,10,13,13,14,14-Dodecachloro-
1,4,4a,5,6,6a,7,10,10a,11,12,12a-dodechydro-
1,4:7,10-dimethanodibenzo[a,e]cyclooctene; 
Dodecachlorododecahydrodimethanodibenzocyclo
octene; Dechlorane Plus 25 (Dech Plus); 
Dechlorane Plus 35 (Dech Plus-2); DP-515; 
Dechlorane 605; DP; DDC-CO

Note: The academic literature usually refers to this substance by a registered trade name “Dechlorane 
Plus” (often abbreviated as DP, but sometimes DDC-CO), and this is the name used throughout this 
report for convenience.
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Table 2: Substance identity of (1S,2S,5S,6S,9R,10R,13R,14R)-
1,6,7,8,9,14,15,16,17,17,18,18-dodecachloropentacyclo[12.2.1.16,9.02,13.05,10]octadeca-
7,15-diene,  anti- (or exo ) Dechlorane Plus [2, see structural formula below]

EC number: -

EC name: -

CAS number:
Deleted CAS numbers:

135821-74-8

-

CAS name: 1,4:7,10-Dimethanodibenzo[a,e]cyclooctene, 1,2,3,4,7,8,9,10,13,13,14,
14-dodecachloro-1,4,4a,5,6, 6a,7,10,10a,11,12,12a-dodecahydro-, (1R,
4S,4aS,6aS,7S,10R,10aR,12aR)-rel-

IUPAC name: (1S,2S,5S,6S,9R,10R,13R,14R)-1,6,7,8,9,14,15,16,17,17,18,18-
Dodecachloropentacyclo[12.2.1.16,9.02,13.05,10]octadeca-7,15-diene

Index number in 
Annex VI of the CLP 
Regulation

Not applicable

Molecular formula: C18H12Cl12

Molecular weight 
range:

653.73 g/mole

Synonyms: anti-DP, anti-Dechlorane plus, anti-Dodecachloropentacyclooctadecadiene
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Table 3: Substance identity of (1S,2S,5R,6R,9S,10S,13R,14R)-
1,6,7,8,9,14,15,16,17,17,18,18-dodecachloropentacyclo[12.2.1.16,9.02,13.05,10]octadeca-
7,15-diene,  syn- (or endo ) Dechlorane Plus [3, , see structural formula below]

EC number: -

EC name: -

CAS number:
Deleted CAS numbers:

135821-03-3

-

CAS name: 1,4:7,10-Dimethanodibenzo[a,e]cyclooctene, 1,2,3,4,7,8,9,10,13,13,14,
14-dodecachloro-1,4,4a,5,6,6a,7,10,10a,11,12,12a-dodecahydro-, (1R,4S,
4aS,6aR,7R,10S,10aS,12aR)-rel-

IUPAC name: (1S,2S,5R,6R,9S,10S,13R,14R)-1,6,7,8,9,14,15,16,17,17,18,18-
Dodecachloropentacyclo[12.2.1.16,9.02,13.05,10]octadeca-7,15-diene

Index number in 
Annex VI of the CLP 
Regulation

Not applicable

Molecular formula: C18H12Cl12

Molecular weight 
range:

653.73 g/mole

Synonyms: syn-DP, syn-Dechlorane plus, syn-Dodecachloropentacyclooctadecadiene

Structural formula:

   anti- (or exo ) Dechlorane Plus [2]     syn- (or endo ) Dechlorane Plus [3]
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1.2 Composition of the substance

Name: Dechlorane PlusTM 

Substance type: not applicable (group entry)

The information in this section is for the substance containing both the anti- and 
the syn- isomers as main constituents. 

Table 4: Constituents other than impurities/additives

Constituents Typical 
concentration

Concentration 
range (w/w)

Reference

anti- (or exo-)Dechlorane 
Plus (CAS no. 135821-74-8)

- 60-80 % Ben et al. 
(2013)

syn- (or endo-)Dechlorane 
Plus (CAS no. 135821-03-3)

- 20-40 % Ben et al. 
(2013)

The substance is described as mono-constituent by the lead Registrant. However, 
two geometric isomers are present in the commercial substance (e.g. Chou et al., 
1979; Occidental, 2013). This means that it is multi-constituent. The structures of 
the two isomers are provided in Figure 1.

Figure 1: Geometric isomers of Dechlorane Plus 

    

(reprinted from Muñoz-Arnanz et al. (2010). Copyright 2010: 
International Symposium on Halogenated Persistent Organic 

Pollutants)

Ben et al. (2013) reported that the anti- isomer fractional abundance (fanti) value 
(defined as [anti- isomer]/([anti- isomer] + [syn- isomer])) is not constant in 
Chinese commercial products, and varies from 0.60 to 0.80. The fanti value of 
OxyChem commercial products has also been reported by several authors to be in 
the range 0.64 to 0.80 (e.g. see references in Wang et al., 2010).

The substance is made by a Diels-Alder reaction between 1,5-cyclooctadiene and 
hexachlorocyclopentadiene in a molar ratio of 2:1. Cyclooctadiene can also exist as 
1,4- and 1,3- isomers, and both these, 4-vinylcyclohexene and 1,2-
divinylcyclobutane might be present as impurities in, or formed via thermal 
rearrangement of, the starting materials (Sverko et al., 2010b). Consequently, they 
can produce Diels-Alder reaction products with the same molecular weight as 
Dechlorane Plus. Sverko et al. (2010b) analysed a technical Dechlorane Plus 
product and detected four minor chromatographic peaks that are potentially related 
to these other substances. 

Compounds with a smaller number of chlorine atoms may also be impurities in the 
commercial substance. For example, Li et al. (2013b) found a mono-dechlorinated 
substance (DP-1Cl; see Section 1.3) in the commercial substance produced by 
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Jiangsu Anpon Co. Ltd., China; in contrast, Peng et al. (2014) could not detect 
DP-1Cl in samples from the same source (although this might reflect differences in 
detection limits).

Based on the variation of isomer-specific properties and the available test results, 
the study outcomes reported in Sections 3 can be considered to reflect with 
sufficient certainty the P and B properties of this group entry. The Annex XV entry 
covers the identity of the assessed substance to the level possible.

1.3 Identity and composition of degradation 
products/metabolites relevant for the SVHC assessment

Three substances are relevant to this evaluation because they have been detected 
in various monitoring studies (e.g. Sverko et al., 2008 & 2010b; Muñoz-Arnanz et 
al., 2010; Mӧller et al., 2010; Guerra et al., 2011; Sun et al., 2012; Chen et al., 
2013b; Yu et al., 2013; Ben et al., 2013 & 2014; Zheng et al., 2014a; Wang et al., 
2015). These are 1,3-Dechlorane Plus monoadduct (1,3-DPMA), 1,5-Dechlorane 
Plus monoadduct (1,5-DPMA) and two substances formed through dehalogenation: 
one that has a single chlorine atom replaced by hydrogen (DP-1Cl or Cl11-DP) and 
another in which two adjacent chlorine atoms are replaced by hydrogen (DP-2Cl or 
Cl10-DP). The structures of these three substances are provided in Figure 2. Other 
substances could include hydroxyl or other substituents in place of the hydrogen 
atoms. 

Figure 2: Potential dechlorinated transformation products of Dechlorane 
Plus 

(reprinted from Muñoz-Arnanz et al. (2010). Copyright 2010: 
International Symposium on Halogenated Persistent Organic 
Pollutants)
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Figure 3: Potential mono-adduct transformation products of Dechlorane Plus 

          1,3-DPMA       1,5-DPMA
(adapted with permission from Sverko et al. (2010). Copyright 
2010: American Chemical Society)

There is no information about their rates of formation or the conditions under which 
they are formed. They might also be impurities in the commercial substance (see 
Section 1.2). Their properties have been estimated for the purposes of this 
document (see Appendix 2).

Table 5: Identity of 1,3-DPMA

EC number: Not available

EC name: Not available

SMILES: C32(Cl)C(Cl)(Cl)C(Cl)(C(Cl)=C3Cl)C1C2CCCCC=C1

CAS number (in the EC inventory): Not available

CAS number: Not available

CAS name: Not available

IUPAC name: 1,10,11,12,13,-13-Hexachlorotricyclo[8.21.02,9]-
trideca-3,11-diene

Index number in Annex VI of the CLP 
Regulation

Not applicable

Molecular formula: C13H12Cl6

Molecular weight range: 380.96 g/mole

Synonyms: 1,3-DPMA, 1,3-Dechlorane Plus mono-adduct
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Table 6: Identity of 1,5-DPMA

EC number: Not available

EC name: Not available

SMILES: C32(Cl)C(Cl)(Cl)C(Cl)(C(Cl)=C3Cl)C1C2CCC=CCC1

CAS number (in the EC inventory): Not available

CAS number: Not available

CAS name: Not available

IUPAC name: 1,10,11,12,13,-13-Hexachlorotricyclo[8.21.02,9]-
trideca-5,11-diene

Index number in Annex VI of the CLP 
Regulation

Not applicable

Molecular formula: C13H12Cl6

Molecular weight range: 380.96 g/mole

Synonyms: 1,5-DPMA, 1,5-Dechlorane Plus mono-adduct
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Table 7: Identity of DP-1Cl

EC number: Not available

EC name: Not available

SMILES: C(=C(C(C1(CL)CL)(C(C2CCC(C(C(=C(C34CL)CL)CL)(C
3(H)CL)CL)C4C5)C5)CL)CL)(C12CL)CL

CAS number (in the EC inventory): Not available

CAS number: Not available

CAS name: Not available

IUPAC name: 1,6,7,8,9,14,15,16,17,17,18-Undecachloropenta-
cyclo[12.2.1.16,9.02,13.05,10]octadeca-7,15-diene

Index number in Annex VI of the CLP 
Regulation

Not applicable

Molecular formula: C18H13Cl11

Molecular weight range: 619.29 g/mole

Synonyms: DP-1Cl or Cl11-DP

Table 8: Identity of DP-2Cl

EC number: Not available

EC name: Not available

SMILES: C(=C(C(C1(CL)CL)(C(C2CCC(C(C(=C(C34CL)CL)CL)(C
3(H)H)CL)C4C5)C5)CL)CL)(C12CL)CL

CAS number (in the EC inventory): Not available

CAS number: Not available

CAS name: Not available

IUPAC name: 1,6,7,8,9,14,15,16,17,17-Decachloropenta-
cyclo[12.2.1.16,9.02,13.05,10]octadeca-7,15-diene

Index number in Annex VI of the CLP 
Regulation

Not applicable

Molecular formula: C18H14Cl10

Molecular weight range: 584.84 g/mole

Synonyms: DP-2Cl or Cl10-DP
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1.4 Identity and composition of structurally related 
substances (used in a benchmarking or read-across approach)

Ten substances sharing the hexachlorinated norbornene moiety are listed in Table 
5 along with data for key physico-chemical end points.1 The measured data are 
taken from the 13th (Budavari, 2001) and 15th (O’Neil, 2013) editions of The Merck 
Index (and subsequently https://www.rsc.org/Merck-Index/) and the experimental 
database within EPI Suite v4.11 (U.S. EPA, 2012). Data were estimated using EPI 
Suite v4.11 for consistency reasons. 

Dechlorane Plus contains two chlorinated norbornene groups, whereas seven of the 
potential analogues only contain one such group. Whilst they tend to share limited 
water solubility, high n-octanol-water partition coefficients (log KOW values) and 
very low vapour pressures, they are not a homogeneous group:

 Compared to Dechlorane Plus, six of the substances (dieldrin/endrin, aldrin, 
endosulfan, chlorendic acid2, Dechlorane 602 and Dechlorane 604) contain 
additional functional groups (i.e. epoxide, alkene, sulfite, carboxylic acid, 
furan or brominated benzene) that affect polarity and reactivity, and are 
likely to influence their (eco)toxicological and environmental fate 
properties. With the exception of Dechlorane 602 and Dechlorane 604, they 
also have a lower molecular weight and higher water solubility than 
Dechlorane Plus. Therefore, these substances are not suitable analogues 
for Dechlorane Plus in terms of bioaccumulation or (eco)toxicity 
assessment, but they may offer a ‘best case’ comparison in terms of 
persistence.

 Chlordane and heptachlor do not contain reactive functional groups but do 
have additional chlorine atoms, so are closer structural analogues to 
Dechlorane Plus. However, they have much lower molecular weights (410 
and 370 g/mole, respectively, compared to 650 g/mole for Dechlorane 
Plus), significantly higher water solubility (0.06 and 0.2 mg/L, respectively, 
compared to <0.00000167 mg/L for Dechlorane Plus), and lower log KOW 
values (6.3 and 5.9, respectively, compared to ≥9 for Dechlorane Plus). 
Their bioavailability and toxicokinetic profile are likely to be quite different 
to Dechlorane Plus and so direct read-across of bioaccumulation and 
(eco)toxicity end points is not appropriate. Read-across for persistence is 
likely to be more reliable than for the previous six substances.

 Dechlorane 603 and Chlordene Plus have two chlorinated norbornene 
groups like Dechlorane Plus and no additional reactive functional groups. 
They have lower conformational flexibility, which could affect reactivity. 
They have similar molecular weights to Dechlorane Plus (611 – 
638 g/mole), and very similar predicted water solubility and log KOW values. 
They are therefore its closest structural analogues. They appear to have 
been impurities in some pesticide active substances rather than commercial 
products as such, and no experimental data seem to be available.

1 Mirex (EC no. 219-196-6, CAS no. 2385-85-5) [also known as Dechlorane and 
perchloropentacyclodecane] is made using similar starting materials, but has a much more compact 
carbon skeleton and is fully chlorinated (molecular formula: C10Cl12; SMILES: 
C12(C3(C4(C5(C3(C(C1(C5(C2(C4(Cl)Cl)Cl)Cl)Cl)(Cl)Cl)Cl)Cl)Cl)Cl)Cl). It is therefore not a suitable 
analogue for the purposes of this assessment. Further information can be found in WHO (1984b & 1995).
2 Chlorendic anhydride (EC no. 204-077-3, CAS no. 115-27-5) is another analogue but as it rapidly 
forms chlorendic acid in contact with water it is not directly relevant for this analysis. The acid was 
considered as part of an EU Substance Evaluation of chlorendic anhydride. A decision requesting further 
information was sent to the Registrant(s) and the data submission deadline was 26 September 2016. 
The follow-up evaluation is not yet available.

https://www.rsc.org/Merck-Index/
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Table 9: Identity of selected analogues 
Substance 
name

Chlordanea Heptachlorb Dieldrinc Aldrind Endosulfan Chlorendic acid 

EC number: 200-349-0 200-962-3 200-484-5 206-215-8 204-079-4
EC name: Chlordane , pur Heptachlor Dieldrin Aldrin Endosulfan 1,4,5,6,7,7-hexachloro-

8,9,10-trinorborn-5-
ene-2,3-dicarboxylic 
acid 

Canonical 
SMILES

ClC1CC2C(C1Cl)C1(C(C
2(Cl)C(=C1Cl)Cl)(Cl)Cl)
Cl

ClC1C=CC2C1C1(Cl)C(
Cl)=C(Cl)C2(Cl)C1(Cl)C
l

ClC1=C(Cl)[C@]2(Cl)[C
@@H]3[C@@H]4C[C@
@H]([C@H]5O[C@@H]
45)[C@@H]3[C@@]1(
Cl)C2(Cl)Cl

ClC3=C(Cl)C4(Cl)C2C1
CC(C=C1)C2C3(Cl)C4(
Cl)Cl

O=S1OCC2C(CO1)C1(C
(C2(Cl)C(=C1Cl)Cl)(Cl)
Cl)Cl

OC(=O)C1C(C(=O)O)C
2(C(C1(Cl)C(=C2Cl)Cl)(
Cl)Cl)Cl

CAS number (in 
the EC 
inventory):

57-74-9 76-44-8 60-57-1 309-00-2 115-29-7 115-28-6

CAS no. 57-74-9 76-44-8 60-57-1 309-00-2 115-29-7 115-28-6
CAS name: 4,7-Methano-1H-

indene, 1,2,4,5,6,7,8,
8-octachloro-2,3,3a,4,
7,7a-hexahydro-

4,7-Methano-1H-
indene, 1,4,5,6,7,8,8-
heptachloro-3a,4,7,7a-
tetrahydro-

2,7:3,6-
Dimethanonaphth[2,3-
b]oxirene, 3,4,5,6,9,9-
hexachloro-1a,2,2a,3,6,
6a,7,7a-octahydro-, 
(1aR,2R,2aS,3S,6R,6aR,
7S,7aS)-rel-

1,4:5,8-
Dimethanonaphthalene, 
1,2,3,4,10,10-
hexachloro-1,4,4a,5,8,
8a-hexahydro-, (1R,4S,
4aS,5S,8R,8aR)-rel- 

6,9-Methano-2,4,3-
benzodioxathiepin, 6,7,
8,9,10,10-hexachloro-
1,5,5a,6,9,9a-
hexahydro-, 3-oxide

Bicyclo[2.2.1]hept-5-
ene-2,3-dicarboxylic 
acid, 1,4,5,6,7,7-
hexachloro- 

IUPAC name: 1,2,4,5,6,7,8,8-
Octachloro-3a,4,7,7a-
tetrahydro-4,7-
methanoindane

1,4,5,6,7,8,8-
Heptachloro-3a,4,7,7a-
tetrahydro-4,7-
methano-1H-indene

(1S, 
2R,3R,6S,7S,8R,9R,11S
)-3,4,5,6,13,13-
hexachloro-10-
oxapentacyclo[6.3.1.1³
,⁶.0²,⁷.0⁹,¹¹]tridec-4-
ene

(1R,2R,3R,6S,7S,8S)-
1,8,9,10,11,11-
hexachlorotetracyclo[6.
2.1.13,6.02,7]dodeca-
4,9-diene

1,2,3,4,7,7-hexachloro-
8,9,10-trinorborn-2-en-
5,6-ylenedimethylene 
sulfite|1,4,5,6,7,7-
hexachloro-8,9,10-
trinorborn-5-en-2,3-
ylenedimethylene 
sulfite

1,4,5,6,7,7-hexachloro-
5-norbornene-2,3-
dicarboxylic acid

Index no. in 
CLP Annex VI

602-047-00-8 602-046-00-2 602-049-00-9 602-048-00-3 602-052-00-5 -

Molecular 
formula: C10H6Cl8 C10H5Cl7 C12H8Cl6O

C12H8Cl6 C9H6Cl6O3S C9H4Cl6O4
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Structural 
formula

Molecular 
weight, g/mole

409.78 373.32 380.91 364.92 406.93 388.85 

Melting point
(experimental)

106 °C 95.5 °C 226-230 °C 104 °C, 240°C 106 °C 209 °C

Boiling point 
(experimental)

175 °C at 2 mm Hg 310 °C - - - -

Vapour 
pressure

0.0013 Pa at 25 °C 
(experimental)
0.003 Pa at 25 °C 
(estimated)

0.053 Pa at 25 °C 
(experimental)
0.03 Pa at 25 °C 
(estimated)

4.0E-04 Pa at 20 °C 
(experimental)
3.7 E-04 Pa at 25 °C 
(estimated)

0.016 Pa at 25 °C 
(experimental)
 2.5 E-04 Pa at 25 °C 
(estimated)

8.0E-05 Pa at 25 °C 
(experimental)
1.7E-04 Pa at 25 °C 
(estimated)

1.9E-06 Pa at 25 °C 
(estimated)

Water solubility 0.056 mg/L at 25 °C 
(experimental)
0.013 mg/L at 25 °C 
(estimated)

0.18 mg/L at 25 °C 
(experimental)
0.095 mg/L at 25 °C 
(estimated)

0.195 - 0.25  mg/L at 
25 °C (experimental)
0.15 mg/L at 25 °C 
(estimated)

0.017 mg/L at 25 °C 
(experimental)
0.002 - 0.014 mg/L at 
25 °C (estimated)

0.325 mg/L at 22 °C 
(experimental)
1.5 mg/L at 25 °C 
(estimated)

3,500 mg/L at 25 °C 
(experimental)
18 mg/L at 25 °C 
(estimated)

log KOW 6.1-6.2 (experimental)
6.3 (estimated)

5.5-6.1 (experimental)
5.9 (estimated)

5.2-5.4 (experimental)
5.4 (estimated)

6.5 (experimental)
6.8 (estimated)

3.8 (experimental)
2.25 (estimated)

3.1 (estimated)

     



ANNEX XV – IDENTIFICATION OF DECHLORANE PLUS AS SVHC

10 

Substance name Dechlorane 602 Dechlorane 603 Dechlorane 604 Chlordene Plus
EC number: 250-472-9 - 252-097-6 -
EC name: 1,2,3,4,6,7,8,9,10,10,11,11-

Dodecachloro-1,4,4a,5a,6,9,9a,9b-
octahydro-1,4:6,9-
dimethanodibenzofuran

1,2,3,4,7,7-Hexachloro-5-
(tetrabromophenyl)bicyclo[2.2.1]he
pt-2-ene

Canonical SMILES C12C3C(C4(C(=C(C3(C4(Cl)Cl)Cl)Cl
)Cl)Cl)OC1C5(C(=C(C2(C5(Cl)Cl)Cl)
Cl)Cl)Cl

C62(Cl)C(Cl)(Cl)C(Cl)(C(Cl)=C6Cl)C
1C3C4C5(Cl)C(Cl)(Cl)C(Cl)(C(Cl)=C
5Cl)C4C(C21)C3

C1C(C2(C(=C(C1(C2(Cl)Cl)Cl)Cl)Cl)
Cl)C3=CC(=C(C(=C3Br)Br)Br)Br

ClC4=C(Cl)[C@@]5(Cl)[C@@H]1[C
@@H](C[C@H]2[C@@H]1[C@]3(Cl
)C(Cl)=C(Cl)[C@@]2(Cl)C3(Cl)Cl)[C
@]4(Cl)C5(Cl)Cl

CAS number (in 
the EC inventory):

31107-44-5 13560-92-4 34571-16-9 13560-91-3

CAS no. 31107-44-5 13560-92-4 34571-16-9 13560-91-3
CAS name:
IUPAC name: 1,4,5,6,7,11,12,13,14,14,15,15-

dodecachloro-9-
oxapentacyclo[9.2.1.1⁴,⁷.0²,¹⁰.0³,⁸]
pentadeca-5,12-diene

1,2,3,4,5,6,7,8,12,12,13,13-
dodecachloro-
1,4,4a,5,8,8a,9,9a,10,10a-
decahydro-1,4:5,8:9,10-
trimethanoanthracene

1,2,3,4,7,7-hexachloro-5-(2,3,4,5-
tetrabromophenyl)bicyclo[2.2.1]hep
t-2-ene

(1R,4S,4aR,4bS,5S,8R,8aS,9aR)-
1,2,3,4,5,6,7,8,10,10,11,11-
dodecachloro-4,4a,4b,5,8,8a,9,9a-
octahydro-1H-1,4:5,8-
dimethanofluorene

Index number in 
CLP Annex VI

- - - -

Molecular formula: C14H4Cl12O C17H8Cl12 C13H4Br4Cl6 C15H6Cl12

Structural formula

Cl

Cl

Cl
Cl

Cl

Cl

Cl

Cl

Cl Cl

Cl

Cl

HH

H H

Molecular weight, 
g/mole

613.62 637.69 692.49 611.61

Melting point 190 °C (estimated) 198 °C (estimated) 203 °C (estimated) 189 °C (estimated)
Boiling point - - - -
Vapour pressure 1.1E-06 Pa at 25 °C (estimated) 3.2E-07 Pa at 25 °C (estimated) 1.7E-07 Pa at 25 °C (estimated) 1.3E-06 Pa at 25 °C (estimated)
Water solubility ≤1.7E-05 mg/L at 25 °C 

(estimated)
≤6.4E-07 mg/L at 25 °C 
(estimated)

≤4.7E-06 mg/L at 25 °C 
(estimated)

6E-07 mg/L at 25 °C (estimated)

log KOW 8.0 (estimated) 11.2 (estimated) 10.6 (estimated) 9.8 (estimated)
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Note: a – Chlordane consists of more than 140 compounds, of which trans-chlordane, cis-chlordane and trans-nonachlor are present in the highest 
amounts (Dearth & Hites, 1991; Liu et al., 2009). 

b – Technical heptachlor usually contains about 72 % (±)-heptachlor and 28 % related compounds including about 18 % trans-chlordane (EFSA, 
2007).

c – A stereoisomer of dieldrin called endrin (CAS no. 72-20-8) was also made commercially. It has effectively the same physico-chemical 
properties as dieldrin.

d – A stereoisomer of aldrin called isodrin (CAS no. 465-73-6) was also made commercially. It has effectively the same physico-chemical 
properties as aldrin.
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1.5 Physicochemical properties

Unless otherwise stated, the data are taken from the REACH registration on the 
ECHA public dissemination website. There is no information available for the 
individual syn- and anti- isomers. Therefore it is not possible to conclude whether 
there are physicochemical differences between these or not.

Table 10: Overview of physicochemical properties
Property Value [Unit] Reference/source of information/remarks

Physical state at 
20°C and 101.3 kPa

The substance is 
a free flowing 
solid

Melting/freezing 
point

Decomposition 
from 340 – 
382 °C (no 
melting 
observed) 

Boiling point Data waived on 
the basis of a 
melting point > 
300 °C

Vapour pressure Data waived on 
the basis of a 
melting point > 
300 °C

A vapour pressure of approximately 9.4E-08 Pa at 
25 °C is predicted using MPBPVP v1.43 (U.S. EPA, 
2012, modified Grain method, recommended for 
solids). This is highly uncertain (approximately ±1 
log unit) as it is close to the lower limit of the range 
of the model, where there is some scatter in the 
training set. However, the molecular weight of the 
substance is within the range of the model’s 
training set. Also, structural analogues are part of 
the MPBPVP training and test sets.
A measured vapour pressure of approximately 
0.008 hPa (0.8 Pa) at 200 °C was reported by 
Occidental Chemical Company (2003). An 
extrapolated vapour pressure of 4.6E-04 Pa at 25 
°C can be estimated from this result using EUSES 
v2.1.2, and this is preferred for assessment 
purposes. There is some uncertainty due to the 
extrapolation from very high temperature, and the 
unknown reliability of the underlying result.
The substance has a very low vapour pressure at 
environmentally relevant temperatures.

Surface tension Data waived on 
the basis of low 
water solubility 
(<1 mg/L).

Dissociation 
constant

Data waived on 
the basis of low 
solubility in 
water.

The substance does not contain any acidic or basic 
functional groups.



ANNEX XV – IDENTIFICATION OF DECHLORANE PLUS AS SVHC

13 

Property Value [Unit] Reference/source of information/remarks

Water solubility < 1.67 ng/L at 
20 °C (below the 
limit of 
quantitation)

Reliability 1: OECD Test Guideline 105 (column elution 
method) and GLP (ECHA website, 2017)).

Dechlorane Plus (>99 % purity) was coated onto the 
column using dichloromethane. HPLC grade reagent 
water was pumped through the column at two 
different flow rates, and analysed using gas 
chromatography with micro electron capture detection 
(GC-ECD).

There is some uncertainty in the precise value for 
water solubility. However, all available measurements 
and predictions3 are in agreement that the substance 
is very poorly water soluble.

Partition 
coefficient n-
octanol/water 
(log value)

Waived by 
Registrant due to 
low water 
solubility.

Chou et al. (1979) reported a log KOW of 9.3 (also 
reported by the U.S. EPA, 2012). This is a calculated 
value; its validity has not been assessed. 
A log KOW of 11.3 is predicted using KOWWIN (U.S. 
EPA, 2012). This result was also reported in the U.S. 
EPA (2001) review. The predicted result is considered 
to be within the validity range of the model because 
the molecular weight of the substance is within the 
range for this parameter for both the training and test 
sets. The number of aliphatic chlorines exceeds the 
maximum occurrences of this fragment in a single 
compound in the training set (8 in Dechlorane Plus, 
maximum 6 in the training set). The value is above the 
log KOW values used in the training and tests sets and 
above the normal experimental range, but is indicative 
of the expected lipophilic character of the substance. 
It would be unusual to expect to quantify values above 
approximately 9 experimentally.
The log of the ratio of n-octanol and water solubilities 
is >8.4, using a solubility of < 2 ng/L at 20 °C for 
water (ECHA website, 2017) and 470 mg/L at 25 °C 
for n-octanol (see below). 
Additional estimation methods give similar values. For 
example, the ACD/Percepta platform gives the 
following results: LogP Classic: 9.51±0.67; LogP 
GALAS: 9.16 (Reliability: Borderline; RI = 0.41. 
Chlordene and different chlordane isomers are in the 
training set).
Whilst there is clearly uncertainty in the value of log 
KOW, the value is assumed to be ≥9. 

3 Chou et al. (1979) reported mean water solubilities of 207 and 572 ng/L for the two isomers at 
22±2.5°C using radiolabelled substance in equilibration with water by slow stirring for six weeks. This 
is considered unreliable by the Registrant. No reason is provided, but the report concluded that samples 
in the solubility experiment may have contained particulates, and so estimated a solubility of 
44.1±2 ng/L at 22 °C (total for both isomers). 

Water solubilities estimated based on a log KOW range of 7 to 9 using WSKOWWIN v.1.42 (U.S. EPA, 
2012) are 7.5E-05 – 1.5E-06 mg/L [75 – 1.5 ng/L]. The substance is outside the estimation domain of 
the model because both molecular weight and log KOW are outside the ranges of these parameters in 
the training and test sets for the method. A water solubility of 6.5E-07 mg/L [0.65 ng/L] can be 
estimated using the WaterNT v1.01 fragment method (U.S. EPA, 2012), which does not use log KOW as 
an input. The molecular weight is outside the range of this parameter in the training set, but not the 
test set. The number of aliphatic attached chlorines exceeds the maximum occurrences of this fragment 
in a single compound in the training set (8 in Dechlorane Plus, maximum 6 in the training set). Therefore, 
the substance is not considered to be within the estimation domain of the model. 
U.S. EPA (2011) reported another measured value of 2.49E-04 mg/L [240 ng/L] at 25 °C (Scharf, 1978). 
In EPI Suite (U.S. EPA, 2012), a measured water solubility of 4.4E-08 mg/L at 25 °C is reported citing 
a HPV Robust Summary as the source; this result is discounted given the discrepancy between the value 
quoted and the original source (4.4E-05 mg/L, Chou et al., 1979). 



ANNEX XV – IDENTIFICATION OF DECHLORANE PLUS AS SVHC

14 

Property Value [Unit] Reference/source of information/remarks

Partition 
coefficient 
air/water (log 
value)
[log KAW]

No data were 
provided by the 
Registrant.

The following log KAW values at 25 °C are estimated 
based on the Henry’s Law constant: 

-3.2 (from measured water solubility and estimated 
vapour pressure)

0.44 (from measured water solubility and vapour 
pressure)

-2.8 (from EPIWIN predicted water solubility using log 
KOW of 9 and vapour pressure)

-3.5 (from HENRYWIN v.3.20, predicted from structure 
using Bond Method).

See discussion of Henry’s Law Constant (Section 
3.2.2 of Appendix 1) for further details. 

Partition 
coefficient n-
octanol/air (log 
value)
[log KOA]

No data were 
provided by the 
Registrant.

A log KOA of 14.8 is estimated using KOAWIN (U.S. EPA 
2012). This is a simple ratio of the octanol-water (log 
KOW 11.3) and air-water (log KAW -3.5) partition 
coefficients calculated within EPI Suite. 
There is uncertainty in this value resulting from 
uncertainty in the estimated KOW and KAW (see 
above). Using a log KOW of 9, a log KOA of 12.5 is 
estimated with a log KAW of -3.5, or 8.6 with a log 
KAW = 0.44.

Henry’s Law 
Constant

No data were 
provided by the 
Registrant.

The following values were obtained using a range of 
estimation methods (including a structural fragment 
based QSAR method) in light of the uncertainty in 
vapour pressure and solubility measurements and 
predictions:

1.4 Pa.m3/mol at 25 °C (from measured water solubility 
and estimated vapour pressure)

6800 Pa.m3/mol at 25 °C (from measured water 
solubility and extrapolated vapour pressure)

41 Pa.m3/mol at 25 °C (from EPIWIN predicted water 
solubility using log KOW of 9 and vapour pressure)

0.75 Pa.m3/mol at 25 °C (from HENRYWIN v.3.20, 
predicted from structure using Bond Method).

The Bond method training set comprises much 
smaller molecules than Dechlorane Plus, which are 
generally much more soluble and of higher vapour 
pressure than the substance, although the predicted 
Henry’s Law constant is mid-range for the method. It 
is therefore difficult to estimate the uncertainty of 
the predicted values. See also Section 3.2.2 of 
Appendix 1 for further discussion.

Solubility in 
organic solvent4

n-Octanol 
solubility: 
470 mg/L (to the 
nearest 10 mg/L) 
at 25 °C

Reliability 1: non-guideline study conducted in a GLP 
facility but not formally to GLP (reference not 
provided, but it appears to have been conducted in the 
UK in 2013)
Approximately 2 g sample was weighed into a 125 mL 
conical flask and 20 mL n-octanol was added. A 
magnetic stirrer was placed on a thermostatic water 
bath overnight followed by slow stirring. Stirring was 
stopped and test solutions containing insoluble test 
substance were allowed to settle for 30 minutes before 
filtration under gravity. Clear colourless filtrates were 

4 Occidental Chemical Company (2004) refers to a study from 1978 that mentions a solubility in 
n-octanol of 264 - 346 (average 305) ppb (µg/L) at 25 °C. No further details are available, but the result 
was obtained “after partitioning” (presumably with water, as the data entry is for the water solubility 
end point) so this is probably not a true solubility value.

Product literature (OxyChem, 2007) provides further values (all in units of g/100 g solvent at 25 °C) as 
follows: benzene 2.0, xylene 1.0, styrene 1.8, trichloroethylene 1.4, methyl ethyl ketone 0.7, n-butyl 
acetate 0.7, hexane 0.1, methyl alcohol [methanol] 0.1. The analytical information provided in the 
REACH registration dossier mentions that the substance is “insoluble” in methanol, but “soluble” in 
tetrachloroethane, dichloromethane and tetrahydrofuran.
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Property Value [Unit] Reference/source of information/remarks
obtained and test solution was analysed using GC-ECD 
without further dilution.
The solubility in octanol is used as part of the 
assessment of octanol-water partitioning and also 
bioaccumulation. Although the test solution was 
filtered, it is not known whether the reported result 
represents truly dissolved substance. 
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2. Harmonised classification and labelling

No harmonised classification is reported for Dechlorane Plus (CAS 13560-89-9) in 
Annex VI of Regulation (EC) No. 1272/2008 (CLP Regulation). 

There are no proposals for new or amended harmonised classification of Dechlorane 
Plus (CAS 13560-89-9) on the Registry of Intention. 

The Registrant has not proposed classification for any hazard.

The European Chemical Agency (ECHA) online Classification & Labelling (C&L) 
Inventory database, which was checked on 13 July 2017, reports a joint submission 
(consisting of 92 notifiers) indicating no classification according to the CLP criteria. 
In addition, 78 notifiers have classified the substance as Acute Toxicity Category 4, 
H332 Harmful if inhaled. 



ANNEX XV – IDENTIFICATION OF DECHLORANE PLUS AS SVHC

17 

3. Environmental fate properties

3.1 Degradation 

3.1.1 Abiotic degradation

3.1.1.2 Hydrolysis

The Registrant waived the hydrolysis endpoint in accordance with Column 2 of 
REACH Annex VIII because the substance is highly insoluble in water. Dechlorane 
Plus does not contain any hydrolysable groups. Hydrolysis is not expected to be a 
relevant fate process.

3.1.1.3 Oxidation

The Registrant considers that an estimated first-order rate constant of 
1/10 000 000 000 s-1 (corresponding to a half-life of 2 100 years) for oxidation in 
water by Chou et al. (1979) is unreliable as the calculation method was not 
described. 

The potential for phototransformation in air has been predicted using the AOPWIN 
Program (v1.92). Under standard atmospheric conditions, the half-life is predicted 
to be 17 hours at 25 °C, based on reaction with hydroxyl radicals in the vapour 
phase. Complete information on training set development for this well-established 
predictive method is not publicly available, although hydroxyl radical rate constants 
for numerous polycyclic and highly chlorinated or brominated substances are 
represented in the training set. The molecular weight of Dechlorane Plus is high 
relative to substances in the training set, so the predicted half-life may be 
misleading. However, given the very low vapour pressure of this substance (see 
Section 1.5), the relevance of this estimate is low. 

3.1.1.3 Phototransformation/photolysis

3.1.1.3.1 Phototransformation in air

Details of available studies are summarised in Appendix 1 (Sverko et al., 2008; 
Wang et al., 2011; Li et al., 2013b; Wang et al., 2013b; Tao et al., 2015). These 
suggest that significant photodegradation can potentially occur (with the formation 
of at least mono-dechlorinated substances), and that the anti- isomer might be 
more photodegradable than the syn- isomer. However, these studies cannot be 
directly related to natural conditions. The light intensity might not be comparable, 
and the use of organic solvents could promote the generation of hydrogen radicals 
(especially as the substance itself does not show any significant light absorption 
above 260 nm).

Dechlorane Plus will be mainly adsorbed on particulates in air (see Section 3.2.1). 
Particulates will shield the substance from light and inhibit radical reactions.  

Nevertheless, monitoring studies provide some evidence of changes in isomer 
ratios with increasing distance from the source (further details are provided in 
Section 3.1.1.3.1 in Appendix 1). For example, Möller et al. (2010) found that the 
fanti value decreased with decreasing northern latitude (r = 0.974, p <0.01) from 
0.63 to around 0.33 southwards of the equator. Yang et al. (2012) also found that 
the mean fanti value was highest in spring and lowest in the autumn, although the 
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differences were not statistically significant (p > 0.05). These observations are 
often explained as being due to the effects of UV light (i.e. the anti- isomer 
degrading more rapidly than the syn- isomer), although Sverko et al. (2011) point 
out that it may reflect isomerisation of the anti- isomer to the syn- isomer. 

Overall, atmospheric phototransformation/photolysis is likely to be of relatively low 
relevance to the overall fate of the substance, but may account of some of the 
changes in isomer fractional abundance that are observed in some matrices 
compared to the commercial products.

3.1.1.3.2 Phototransformation in water

Details of available studies are summarised in Appendix 1 (Chou et al., 1979). In 
general, aquatic photolysis is unlikely to be a significant fate process in natural 
waters, since light is attenuated with increasing water depth and shading. Radical 
reactions may also be inhibited by humic substances. The available information 
suggests that phototransformation in water is a potential but insignificant removal 
process for Dechlorane Plus.

3.1.1.3.3 Phototransformation in soil

No data were reported by the Registrant. Similar to water, this is unlikely to be a 
significant removal pathway.

3.1.2 Biodegradation

3.1.2.1 Biodegradation in water

3.1.2.1.1 Estimated data

The aerobic biodegradation potential of the substance can be assessed using 
BIOWIN v4.10 (U.S. EPA, 2012). It has six different models which have been 
developed based on expert judgment. The program outputs for the non-linear 
model (BIOWIN 2), ultimate biodegradation (BIOWIN 3) and the MITI non-linear 
model (BIOWIN 6) can be used as a screening assessment of persistence (P) in 
accordance with the REACH Guidance R.7b (ECHA, 2017b). The following results 
indicate that a substance may be persistent:

BIOWIN 2: Does not biodegrade fast (<0.5) or 
BIOWIN 3: ≥months (< 2.25 (to 2.75)5)
BIOWIN 6: Not readily biodegradable (<0.5) and 

Inputting the structural details of Dechlorane Plus results in a BIOWIN 2 value of 
0, a BIOWIN 3 value of -1.60 and a BIOWIN 6 value of 0. These values are all 
significantly below the cut-offs, indicating that Dechlorane Plus is not expected to 
be aerobically biodegradable.

With regard to validity, the BIOWIN models are based on structural group 
contributions and there is no defined estimation domain as such. The software 
providers acknowledge that multiple occurrences of a contributing positive 
fragment group can sometimes lead to incorrect prediction of rapid degradation. In 

5 For substances fulfilling this but BIOWIN 3 indicates a value between 2.25 and 2.75 more 
degradation relevant information is generally warranted.
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view of the group fragment values present in Dechlorane Plus, and the prediction 
of “not biodegradable”, this is unlikely to be a problem for the substance.

The BIOWIN model validity is considered in detail in the appendix (section 
3.1.2.1.1). In summary the BIOWIN 2 and 3 model estimates have a degree of 
uncertainty due to (i) the lack of fragment coefficients to represent the whole 
Dechlorane Plus structure and, (ii) the number of identified fragments exceeding 
the maximum of occurrence in training set substances. The latter issue does not 
appear to affect the prediction that Dechlorane Plus is not biodegradable.  For 
BIOWIN 6, the Dechlorane Plus structure is fully represented by the model 
fragments. The number of each fragment in the Dechlorane Plus structure is also 
within the range of the training set. The training set substances include two 
chemicals, which contain the hexchloronorbornene moiety of Dechlorane Plus. The 
model predictions for those substances do agree with the measured data. Overall 
BIOWIN 6 is considered to be a relevant and reliable model for Dechlorane Plus. 
The model provides support to the BIOWIN 2 and 3 predictions as all three models 
are consistent in predicting that Dechlorane Plus does not biodegrade fast.

It is concluded that based on the estimated data associated uncertainties, that 
Dechlorane Plus is unlikely to be biodegradable.

Overall it can therefore be concluded, based on estimated data, that Dechlorane 
Plus is unlikely to be biodegradable.

3.1.2.1.2 Screening tests

Two old biodegradation screening studies were included in the registration dossier 
as key studies, and further details are provided in Appendix 1 (Boudreau, 1973; 
Chou et al., 1979). Neither was performed according to a standard test guideline 
method, and neither assessed biodegradation using biological oxygen demand or 
carbon dioxide evolution, which would be appropriate for such an insoluble 
substance. No biodegradation was observed over 21 days in the first test (based 
on analysis of the test substance). In the second, degradation was determined as 
loss of radioactivity; significant loss was observed after 6 weeks’ [42 days’] 
incubation under aerobic conditions, but no mass balance was performed, no 
metabolites were detected, adsorption to sludge or bacteria cannot be excluded 
and the position of radiolabelling in the molecule was not described. Consequently 
the Registrant concluded that Dechlorane Plus is non-biodegradable.

In view of the inappropriate test methods used, these screening studies provide no 
reliable information on the biodegradation potential of the substance. 

A modified MITI (OECD TG 301C) study using an activated sludge inoculum was 
conducted in 1974, and the limited details are summarised in Appendix 1. 
Dechlorane Plus achieved 0.6 % of its theoretical biochemical oxygen demand 
(BOD) over two weeks and 0.3 % degradation was determined by gas 
chromatography. The reliability of this study cannot be assessed.

3.1.2.1.3 Simulation tests (water)

No simulation data were presented by the Registrant. A test would be technically 
very challenging given the reported solubility in pure water.

3.1.2.2 Biodegradation in sediment

No data are available in the registration dossier.
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Qiu et al. (2007) measured Dechlorane Plus in a sediment core from central Lake 
Ontario, Canada. There was a linear trend (r2 = 0.739) of increasing fanti values 
with time, from an average of 0.76 in surficial (recent) sediments to >0.90 in the 
deeper layers corresponding to around 1980. This suggests that the anti- isomer 
could be more persistent than the syn- isomer in sediment (although the variation 
of fanti in commercial batches over this time period is not known, and it could also 
reflect the isomerisation of the syn- isomer to the anti-).

Wang et al. (2010) measured fanti values in two freshwater sediment samples 
collected from a canal close to the Chinese manufacturing facility. An fanti value of 
0.76 in the surficial layer (0-5 cm) contrasted with a value of 0.70 in a deeper 
layer (15-20 cm). The study authors contrast these with the measured fanti value 
of the Chinese commercial product (0.60) and speculate that this implies a 
stereoselective depletion of the syn- isomer in sediment. 

Fang et al. (2014) investigated the distribution of Dechlorane Plus in marine 
sediments from South Korea. The highest concentrations (451.2 and 149.9 µg/kg 
dw for the two bays studied) were detected in the finest grain size (< 10 μm). The 
fanti in the two fractionated samples increased with reduced grain size and 
significantly correlated with organic carbon content. The study authors 
hypothesised that the enrichment of the anti- isomer was likely to be due to 
preferential biodegradation of the syn- isomer in the sediment. 

Discussion

Dechlorane Plus is very hydrophobic, so it is not surprising that these three 
academic studies indicate that it accumulates in sediments. The study of Qiu et al. 
(2007) suggests that it can still be present over thirty years after initial deposition. 
However, it is not possible to estimate sediment degradation half-lives. This is 
because the initial amount of substance deposited in the sediment is unknown, and 
the nature of the sediment (e.g. in terms of heavy metal content and presence of 
other substances, which may inhibit micro-organisms) is not described. 

 3.1.2.3 Biodegradation in soil

No standard simulation data are available. The registration dossier summarises a 
monitoring study by Wang et al. (2010) which indicates that the substance can be 
detected in layers up to one metre deep (see Appendix 1), but it cannot be used to 
estimate soil degradation half-lives for similar reasons to the sediment studies. 

3.1.2.4 Analogue data

In view of the lack of definitive degradation half-life data in water, sediment and 
soil it is appropriate to consider information from analogues. As discussed in Section 
1.4 there are ten potential analogues to Dechlorane Plus based on a common 
hexachlorinated norbornene moiety: chlordane, heptachlor, dieldrin/endrin, aldrin, 
endosulfan, chlorendic acid, Dechlorane 602, Dechlorane 603, Dechlorane 604 and 
Chlordene Plus. 

The closest structural analogues are Dechlorane 603 and Chlordene Plus. No 
standardised degradation data appear to be available for these (they are not 
registered under REACH and there are no data available from a search of the OECD 
eChemPortal6 (accessed 13 July 2017)).

Five of the substances (chlordane, heptachlor, dieldrin/endrin, aldrin and 

6 https://www.echemportal.org/echemportal/index.action
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endosulfan) are identified as Persistent Organic Pollutants (POPs) under the 
Stockholm Convention. The persistence of many of the early POPs was determined 
based on their favourable chemical properties for long-range transport and their 
detection in compartments and biota in the Arctic. Measured property data are 
presented in Appendix 1. There are few measured environmental half-lives, which 
is not surprising as many were banned before formal test guidelines or 
requirements for these existed. 

Simulation data for endosulfan indicate that the α isomer is not persistent (P) within 
the meaning of the Annex XIII criteria, but the β isomer would be considered very 
persistent (vP) in some soils. In addition, the primary degradant (a sulfate) would 
meet the vP criterion in a number of soils. In sediment, the metabolites would be 
at least P (with an unbounded DT50 value of 120 days). None of the data for 
endosulfan indicate rapid breakdown of the chlorinated norbornene moiety, and 
very little mineralisation were observed in the studies (<5 %).

The use of the five POPs as pesticide active substances implies that they are 
reasonably bioavailable, which is confirmed by their high aquatic toxicity (not 
reported here). A comparison of the physico-chemical data of Dechlorane Plus with 
the POPs (summarised in Section 1.4) suggests that it is likely to be much less 
bioavailable as it is considerably less water soluble, and has a much higher log KOW 
value. In addition, those POPs that do show signs of degrading have functional 
groups (e.g. dichlorocyclopentyl for chlordane, monochlorocyclopentenyl for 
heptachlor and sulfite for endosulfan) that are not present in Dechlorane Plus 
(which is a less polar molecule as a result). The POPs are all agreed to be 
environmentally persistent (within the meaning of the Stockholm Convention7). 
These provide a “best case” indication of persistence for Dechlorane Plus, i.e. it is 
expected to be at least as persistent as POPs with higher bioavailability and polarity. 

There are no simulation data for chlorendic acid despite its relatively high water 
solubility (168 mg/L). Although it appears to rapidly degrade under UV light in 
water (half-life 5 days) and on solid surfaces (half-life 16 days), the half-life is 
much longer in soil (140 d at 1 mg/kg; 280 d at 10 mg/kg). No degradation was 
observed in a test for ready biodegradation after 31 days (based on removal of 
dissolved organic carbon). It therefore screens as being potentially P/vP. This is a 
much more polar and hydrophilic molecule than Dechlorane Plus, i.e. Dechlorane 
Plus is likely to degrade much more slowly than this substance.

In view of the lack of reliable environmental half-life data for most of the POPs, 
BIOWIN (v4.10) predictions for each of them and chlorendic acid are included in 
Table 7.  As described in Section 3.1.2.1.1, conclusions about aerobic 
biodegradation potential can be drawn based on predictions from three of the 
models (BIOWIN 2, 3 and 6). The applicability of BIOWIN to these substances will 
be the same as for Dechlorane Plus (i.e. they are within the prediction domain). 

Table 11: Summary of predicted and measured degradation data for 
Dechlorane Plus analogues8

Substance CAS no. BIOWIN prediction Measured half-life data
Chlordane 57-74-9 BIOWIN 2 = 0

BIOWIN 3 = 0.27
BIOWIN 6 = 0

Sediment study suggests 
reduction in concentration by 70 
% in 414 days

Heptachlor 76-44-8 BIOWIN 2 = 0
BIOWIN 3 = 0.53

Rapid hydrolysis

7 That is, the half-life in water is greater than two months, or the half-life in soil is greater than six 
months, or the half-life in sediment is greater than six months; or the chemical is otherwise sufficiently 
persistent to justify its consideration within the scope of the Convention.

8 Note that only the POP analogues and chlorendic acid are included here as these have measured (as 
well as predicted) degradation data available. Aldrin transforms to dieldrin.
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Substance CAS no. BIOWIN prediction Measured half-life data
BIOWIN 6 = 0 Soil DT50 = 9-10 months or 2 

years 
(shorter half-lives lack 
supporting information)

Dieldrin 60-57-1 BIOWIN 2 = 0
BIOWIN 3 = 0.67
BIOWIN 6 = 0

Very little degradation detected 
in soil

Aldrin 309-00-2 BIOWIN 2 = 0
BIOWIN 3 = 0.72
BIOWIN 6 = 0

No quantitative information

Endosulfan 
(α and β 
isomer)

115-29-7 BIOWIN 2 = 0
BIOWIN 3 = 0.62
BIOWIN 6 = 0

Soil DT50 = 25-128 days
Metabolite: soil DT50 = 123 - 391 
days
Water/sediment DT50 >120 days

Chlorendic 
acid

115-28-6 BIOWIN 2 = 0
BIOWIN 3 = 1.39
BIOWIN 6 = 0

0 % mineralisation in 31 days

The results for BIOWIN 2 and 6 are zero for all substances, indicating a similarly 
low potential for biodegradation as Dechlorane Plus. The results for BIOWIN 3 
indicate that Dechlorane Plus (-1.60, see Section 3.1.2.1.1) may resist 
biodegradation more than all of the POPs. This appears to be due to the factor 
added for each chlorine atom in the model. While the same atom addition applies 
to the BIOWIN 2 and 6 models, these structure-activity relationships appear to only 
return zero or positive values. As a minimum, Dechlorane Plus is not predicted to 
be more rapidly biodegraded than the analogues. Chlorendic acid appears to 
provide a “best-case”, as it is the most water soluble of the group, yet it fails to 
undergo ready biodegradation. 

Fragment considerations

Dechlorane Plus differs from all of the analogues by virtue of its cyclooctane ring 
which links the two chlorinated norbornene fragments. If this ring could be opened 
by biotic or abiotic degradation, chlorendic acid (see above) could be formed as a 
stable metabolite. Whilst likely to be persistent, the negative log KOW of this 
substance suggests that it is not bioaccumulative. Cyclooctane (CAS no. 292-64-
8) is not currently registered under REACH, and a literature search9 has not located 
any degradation data for the substance. 

Cyclooctane is a relatively simple alkane. Although predicted to be of moderate 
water solubility and log KOW, EPIWEB v4.110 predicts that it can be rapidly degraded. 
However, in Dechlorane Plus, the two chlorinated norbornene rings constrain the 
flexibility of the cycloalkane structure (there are two structural isomers).  Hoh et 
al. (2006) suggested that because of the configuration of the pendant 
chlorocyclopentene moieties, the anti- isomer would be more susceptible to 
biological attack than the syn- isomer. 

Biodegradation pathway considerations

The EAWAG-BBD Pathway Prediction tool11 for biodegradation can be used to 
explore the possible aerobic degradation pathways for Dechlorane Plus. The model 
suggests two possible pathways: hydroxylation of a secondary carbon (on the 
cyclooctane ring) and hydroxylation of a tertiary carbon (the carbon atom common 

9 Including the draft voluntary assessment of gasoline under the Existing Substances Regulation, and 
recent assessments submitted to the OECD.
10 Relevant predicted results for cyclooctane, C1CCCCCCC1, are: log Kow = 4.16, water solubility = 
4.9 mg/L and 14.1 mg/L using WSKOW and WATERNT respectively. BIOWIN predictions: BIOWIN2 = 
0.80 (Biodegrades Fast); BIOWIN3 = 2.95(weeks); BIOWIN6 = 0.76 (Biodegrades Fast).
11 http://eawag-bbd.ethz.ch/predict/



ANNEX XV – IDENTIFICATION OF DECHLORANE PLUS AS SVHC

23 

to the cyclooctane and norbornene rings)12. Both pathways are predicted to be of 
neutral likelihood, which is an assessment of the general pathway rather than 
specific to the substance. As noted in Section 1.3, dechlorinated substances have 
been detected in the environment. These may be reductive transformation 
products, but might also be impurities in the commercial substance. None of the 
substances are predicted to be formed using this tool.

Similar to Dechlorane Plus, prediction for cyclooctane also suggests degradation via 
hydroxylation of a secondary carbon on the ring. Both cyclooctane attached to a 
single norbornene ring, and chlordane (the only analogue that contains a secondary 
carbon, in a pentyl ring) are predicted to degrade via both the tertiary or secondary 
carbon. Heptachlor and chlorendic acid are indicated to have the same tertiary 
carbon biodegradation pathways as Dechlorane Plus. 

The prediction for endosulfan suggests that conversion to the sulfate is favoured 
over the hydroxylation of the tertiary carbon which agrees with the experimental 
observation described in the POPs dossier. The epoxidation of dieldrin is favoured 
over the hydroxylation of the tertiary carbon.

The predictions suggest that the pathways available for Dechlorane Plus are no 
different to those for the analogues. However, the tool does not provide a prediction 
of rates for any part of the pathway, and it is not possible to determine how 
degradation rates will vary between the chemicals. The two degradation pathways 
predicted to exist for Dechlorane Plus do not appear to be rapid where these occur 
for the other analogues (e.g. dieldrin). For dieldrin one pathway is suggested to be 
more likely than the other. However, the persistence of the substance suggests 
that both are slow. 

As a further indication of the limited biotransformation potential of Dechlorane Plus, 
Tomy et al. (2008) were unable to identify any Dechlorane Plus metabolites in a 
161-day dietary exposure study with juvenile Rainbow Trout (Oncorhynchus 
mykiss) (see Section 3.4.1.2.2).

3.1.3 Other data

A study investigating changes in sewage sludge concentrations is briefly 
summarised in Appendix 1 (de la Torre et al., 2011), but does not provide any 
information to enable an environmental half-life to be estimated. 

3.1.4 Summary and discussion of degradation

No degradation studies are available that meet modern regulatory standards. Key 
studies cited in the registration dossier cannot be considered reliable. However, it 
is possible to conclude that Dechlorane Plus is unlikely to undergo significant abiotic 
degradation. There are no environmental simulation studies, but evidence from 
quantitative structure-activity relationships (QSARs), analogue read-across and 
biodegradation pathway considerations all indicate that the rate of biodegradation 
is likely to be very slow in the environment. In particular, BIOWIN predictions 
suggest that Dechlorane Plus has a biodegradation potential similar to – or possibly 
lower than – analogues that are POPs. The much more water soluble chlorendic 
acid provides the “best case” analogue in terms of persistence, and even this is not 
readily biodegradable. Two potential biodegradation pathways are predicted for 

12 Secondary aliphatic → secondary alcohol (bt0242), tertiary aliphatic → tertiary alcohol (bt0241).
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Dechlorane Plus. One of these is common to all of the POP analogues, and both are 
common to chlordane. Neither of the pathways is predicted to be “likely” or “very 
likely”, suggesting they are not favourable ways for the molecule to degrade. This 
agrees with sediment degradation data for chlordane, which suggest slow 
degradation. Overall, the non-test information provides a strong signal that 
Dechlorane Plus will degrade slowly and so have a long half-life in sediments and/or 
soils.

Field studies (e.g. Qiu et al., 2007) provide some limited evidence of high 
persistence (in that Dechlorane Plus was found in a sediment core layer 
corresponding to around 1980). A fish bioaccumulation study (Tomy et al., 2008) 
also suggests a limited potential for rapid biotransformation.

The same limited field data provides the only information for the fate of the two 
isomers of Dechlorane Plus. At present there is no strong evidence to contradict 
the assumption that both isomers have a similar level of persistence based on the 
conclusion drawn for the registered substance. 

3.2 Environmental distribution

3.2.1 Adsorption/desorption

No reliable information on the organic carbon-water partition coefficient (KOC) is 
included in the registration dossier, but a non-standard study investigating 
adsorption to sediment is summarised in Appendix 1 (Chou et al., 1979).

In view of the fact that Dechlorane Plus is a highly insoluble substance with a high 
log KOW and (relatively) high solubility in n-octanol, it is expected to have a high 
potential for adsorption. KOCWIN v2.00 (U.S. EPA, 2012) can be used to predict 
log KOC values of 7.7 (Molecular Connectivity Index estimation method) and ≥7.8 
(log KOW-based estimation method; using the log KOW value ≥9). The substance is 
within the domain of the method because the molecular weight is within the 
molecular weight range of the training set, and no fragment corrections are applied. 
The Registrant assumes a log KOC of 8 in their Chemical Safety Report (CSR).

These predicted values indicate a high adsorption potential for Dechlorane Plus, 
suggesting that sediment and soil are more relevant environmental compartments 
than water (i.e. they are likely to be major sinks).  

3.2.2 Volatilisation

No information on volatilisation was reported in the registration dossier.

The volatilisation potential of the substance from water can be estimated based on 
the available vapour pressure and water solubility data for the substance, and also 
by reference to QSAR-estimated values (see Appendix 1). Whilst there is some 
uncertainty in the values of water solubility and vapour pressure (see Section 1.5), 
the calculated HLC based on measured input data is ≥1.39×105 Pa.m3/mol at 
25 °C, suggesting that Dechlorane Plus could be volatilised from water. However, 
strong adsorption to organic matter is likely to make this fate pathway less 
important in natural waters.

Given the very low vapour pressure and high KOW of the substance (i.e. a high KOA), 
Dechlorane Plus will be mainly adsorbed on particulates in air. This has been 
demonstrated by monitoring studies, with mean fractions on particulates of 97 % 
or more (e.g. Hoh et al., 2006; Ren et al., 2008; Wang et al., 2010), although 
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Möller et al. (2010) measured it as around 80 ± 30 % and Yang et al. (2012) only 
detected Dechlorane Plus in the particulate phase. 
 

3.2.3 Distribution modelling 

No information on distribution modelling was reported in the registration dossier.

The CEMC Level III Fugacity Model v 2.80 (CEMC, 2004) can be used to model the 
distribution of Dechlorane Plus. The physico-chemical property values used in the 
model are those selected in Table 7: water solubility 2.0×10-6 mg/L; vapour 
pressure 4.6×10-4 Pa; log KOW 9. The degradation half-lives used in the model 
environment are: air 16.8 hours; water 1.8×104 hours (assuming 
photodegradation) or 8.4×106 hours (assuming no photodegradation); soil 
8.4×106 hours.

If Dechlorane Plus is assumed to be released at equal rates to air, water and soil, 
the model predicts the following distribution: air 3.7×10-3 %, water 0.087 %, soil 
96.5 % and sediment 3.45 % (the two half-lives in water give the same result). 
The substance has a very low vapour pressure. If it is released only to water (with 
no application to soil, including WWTP sludge), the calculated distribution is very 
different: air 9.0×10-5 %, water 2.46 %, soil 1.9×10-3 % and sediment 97.5 %. It 
should be noted that there is uncertainty in the property values used in the 
modelling and hence uncertainty in the results. More than 97 % of the Dechlorane 
Plus in the atmosphere is likely to reside in the particulate phase (see Section 
3.2.1). 

Using the OECD Pov and LRTP Screening Tool v2.2 (Wegmann et al., 2009), the 
results obtained for Dechlorane Plus (see Section 3.3) suggest that it has a 
relatively low transfer efficiency from air to surface media13 of 3×10-4 %. 

Sverko et al. (2011) studied air-water exchange using the data measured by Möller 
et al. (2010) in the marine environment. The mean concentrations in air (gas 
phase) and seawater (dissolved phase) were 0.12 pg/m3 and 0.009 pg/L, 
respectively, in the East Greenland Sea and 0.028 pg/m3 and 0.044 pg/L, 
respectively, along the Atlantic transect. The resulting fugacity fraction14 is near 
unity, suggesting net gaseous deposition of Dechlorane Plus to seawater.

Sverko et al. (2011) also compared the ratio of concentrations in air and soil 
reported by Wang et al. (2010) with an estimate based on the log KOA value. The 
good agreement suggested that Dechlorane Plus in the gas phase originated from 
soil volatilization. However, they did not perform a similar analysis to compare gas 
phase with particulate concentrations.

13 Transfer efficiency in this model is defined as “the ratio of the deposition mass flux from air to surface 
media in a region adjacent to the region to which the chemical is released and the mass flux of the 
chemical emitted to air in the release region”
14 This is used to assess equilibrium status of a chemical between two interacting phases, in this case 
air and water:

Fugacity fraction = CA / (CA + KAWCW )

where CA is the air concentration (in pg/m3), CW is the water concentration (in pg/L)

Values equal to 0.5 indicate air–water equilibrium and no net gas exchange. Values < 0.5 indicate net 
volatilization from water, and values > 0.5 indicate net gaseous deposition to water.



ANNEX XV – IDENTIFICATION OF DECHLORANE PLUS AS SVHC

26 

3.3 Data indicating potential for long-range transport 

No information on long range transport potential was reported by the Registrant. 
However, a summary of Xian et al. (2011) given as supporting monitoring 
information in the IUCLID file states that “long-range atmospheric transportation 
of Dechlorane Plus has been observed in remote regions, indicating a global 
presence of Dechlorane Plus.”

The potential for long range transport (LRTP) can be modelled using the OECD Pov 
and LRTP Screening Tool (Wegmann et al., 2009). 
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Table 8 shows a summary of input data for Dechlorane Plus and context for the 
model. Uncertainties in the values of vapour pressure, water solubility and log KOW 
for Dechlorane Plus (see Section 1.5) all affect the input parameters for the 
calculation. 



ANNEX XV – IDENTIFICATION OF DECHLORANE PLUS AS SVHC

28 

Table 12: Input properties used in assessing long range transport 
potential
Input 
property

Value Context in terms of property input 
data for reference POPs in the model

Log KAW 1.75 Above the range (i.e. relatively volatile)
Log KOW 9 Above the upper limit (i.e. relatively 

lipophilic) 
Half-life in air 16.8 h Within range, relatively short half-life
Half-life in 
water

Variable inputs used to 
explore range:
8.4×106 h (assuming no 
photodegradation); 
1.8×104 h (assuming 
photodegradation)

Relatively persistent (unless 
photodegradation assumed)

Half-life in soil 8.4×106 h Relatively persistent

Whilst no absolute criteria for classifying chemicals as compounds with high or low 
overall persistence (Pov) and LRTP have been established, the threshold values 
established by Klasmeier et al. (2006), based on limit values for reference POPs, 
can be applied (Pov = 195 days, Characteristic Travel Distance = 5 097 km, and 
Transfer Efficiency = 2.248 %):

 If no degradation in water or soil is assumed for Dechlorane Plus, the 
conclusion is that the potential for long range transport is low, with a 
characteristic travel distance of 350 km. The overall half-life (Pov) for 
Dechlorane Plus is predicted to be long, at 5 900 days, and it is predicted 
to have relatively low transfer efficiency from air to surface media of 
3×10-4 %. In this model, the fraction of Dechlorane Plus in air present in 
aerosols is 0.01 %.

 Taking photodegradation as a potentially relevant degradation pathway 
into account, the overall half-life (Pov) for Dechlorane Plus remains high, 
at 4 100 days. The characteristic travel distance and transfer efficiency 
are unchanged.

Although there are significant uncertainties in the physico-chemical data set, the 
predicted log KOA (>7.25 to >12) and log KAW (1.75) values for Dechlorane Plus 
also suggest a low potential to reach the Arctic according to the criteria cited by 
Wania (2006) and Brown and Wania (2008). 

The results from this modelling are uncertain, largely because most of the input 
parameters are estimated. In the context of the input properties for reference 
chemicals in the OECD model, the properties of Dechlorane Plus show that it has 
comparable or higher hydrophobicity than reference POPs, is comparatively more 
volatile (based on log KOA and log KAW values) and has relatively rapid degradation 
in the atmosphere (due to photodegradation, although this is still a slow process – 
see also Section 3.1.1.3.1). 

Nevertheless, modelling may be of limited value for substances that have low 
vapour pressure and adsorb strongly to particulates in the air. Atmospheric 
transport for such substances is likely to be governed by the fate of these 
particulates. This can result in long-range transport to remote regions when 
atmospheric conditions permit (e.g. during dry periods). This is confirmed for 
Dechlorane Plus by monitoring evidence: Appendix 1 summarises several studies 
that demonstrate detection in the Polar regions as well as high mountains (Kaj et 
al., 2010; Mӧller et al., 2010; Sverko et al., 2010a [ABST]; Mӧller et al., 2011; 
Mӧller et al., 2012; Xiao et al., 2012; Arinaitwe et al., 2014; Newton et al., 2014; 
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Salamova et al., 2014; Vorkamp et al., 2014; Ma et al., 2015; Na et al., 2015; 
Vorkamp et al., 2015), and also a study by Okonski et al. (2014) that investigated 
the presence of Dechlorane Plus on different sizes of particulate. Several of the 
studies measured Dechlorane Plus in seawater (Mӧller et al., 2010; Mӧller et al., 
2011; Mӧller et al., 2012). The authors of these papers suggest that this reflects 
either riverine emission or atmospheric deposition (rather than long range 
transport via particles in water).

In summary, although the modelling data give mixed results, possibly as a 
consequence of the physicochemical characteristics of the substance, the 
monitoring data indicate that Dechlorane Plus can undergo long range transport, 
most probably as a result of adsorption to particulates in the atmosphere.



3.4 Bioaccumulation

3.4.1 Bioaccumulation in aquatic organisms (pelagic & sediment 
organisms)

3.4.1.1 Screening information 

The log KOW of Dechlorane Plus is estimated to be ≥9 (see Section 1.5). It therefore screens as 
potentially very bioaccumulative (vB). The log KOA above 5 together with high log KOW also 
suggest it may have a high bioaccumulation potential in air-breathing wildlife.

The bioconcentration factor (BCF) of an organic chemical can often be predicted using QSAR 
correlations with log KOW, especially if the substance is not metabolised very readily. For the 
purposes of this assessment, some standard methods have been used to predict the following 
fish BCF values assuming a log KOW of 9 as the lower limit (further details are provided in 
Appendix 1; this also includes published predictions by Chou et al. (1979) which appear 
unreliable):

i) Non-linear equation from REACH Guidance R.7c (ECHA, 2017c): ≤5 500 L/kg 
(unreliable)

ii) log KOW >7 regression equation from BCFBAF v3.01 (U.S. EPA, 2012): ≤1 400 L/kg

iii) Arnot and Gobas (2003) method in BCFBAF v3.01: 1 200 L/kg (lower trophic level); 
bioaccumulation factor (BAF) 7.5 × 105 L/kg wet weight (ww)15

Given the uncertainty in the actual log KOW value, all of these predictions should be considered 
with caution. In addition, the QSARs themselves are based on assumptions and in some cases 
very small data sets (see Appendix 1 for further comment). It is also relevant to note that the 
BCFBAF program estimates the BCF (and BAF) on the basis of the total concentration in water 
rather than the dissolved concentration in water (EA, 2013). The freely dissolved concentration 
of Dechlorane Plus would be significantly lower than the total concentration and hence the actual 
BCF based on dissolved concentrations may be higher than predicted above.

The REACH guidance (ECHA, 2017a) suggests several chemical properties that may limit the 
absorption and distribution of a chemical via passive transport. In summary, the fish BCF is 
unlikely to be above 2 000 L/kg if a substance has:

 an average maximum diameter greater than 17 Å (1.7 nm)16, plus a molecular weight 
greater than 1 100 g/mol; or

 a measured octanol solubility (in mg/L) below 0.002 times the molecular weight, as an 
indicator of lipid solubility (in the case of Dechlorane Plus, this would be 1.3 mg/L) 
(without observed toxicity or other indicators of bioaccumulation).

The molecular weight of Dechlorane Plus is 654 g/mol. Using the OECD QSAR Toolbox v2.1, the 
maximum molecular diameter can be estimated as 1.43 nm (the minimum and effective 
diameters are 0.85 and 0.9 nm, respectively). Using the BCFmax model with mitigating factors 
(Dimitrov et al., 2005), Environment Canada estimated a maximum diameter of 1.35 – 1.48 nm 
(pers. comm.). Fang et al. (2014) performed molecular characterization of both isomers using 
Gaussian 03 (Revision C.02) software, showing that the syn- isomer has a higher dipole moment, 
slightly larger Van der Waals volume, but smaller maximal cross-sectional diameter than the 

15 Sverko et al. (2011) included estimated biotransformation rate constants with this model to derive BAFs of 
5.9 × 104 L/kg for the anti- isomer and 1.1 × 105 L/kg for the syn- isomer, based on total water concentrations. BAFs at 
the middle and upper trophic levels were higher.
16 A maximum molecular length greater than 43 Å (4.3 nm) is also mentioned, but EA (2009c) found that the basis for 
this value was highly dubious so it is not considered further here.
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anti- isomer (1.24 nm compared to 1.42 nm).17 On the basis of these estimates, the first criterion 
is not fulfilled.
 
The registration dossier reports the n-octanol solubility of Dechlorane Plus to be 470 mg/L at 
25 °C. It therefore appears that neither of the two criteria are fulfilled (i.e. the molecular size 
and n-octanol solubilities do not suggest that the substance is incapable of accumulation). An n-
octanol solubility of around 0.5 g/L suggests that lipid solubility might be relatively high. 

Fang et al. (2014) performed experiments using activated charcarbon to adsorb Dechlorane Plus 
dissolved in methanol. The adsorption results revealed that the syn- isomer was preferentially 
adsorbed, suggesting that it is more hydrophobic than the anti- isomer. Tomy et al. (2008) used 
a reverse-phase C18 liquid chromatography column as a surrogate for lipid, where the 
retentiveness of chemicals on the column is driven by the intrinsic polarity of the compound. 
Under isocratic conditions, the anti- isomer eluted before the syn- isomer (retention time 28.5 
and 31.1 minutes, respectively) indicating that the syn- isomer is more lipophilic. These 
observations are consistent with measured bioaccumulation data and strongly suggests that 
polarity is an important factor for the differential bioaccumulation of the two isomers.

3.4.1.2 Laboratory studies 

3.4.1.2.1 Aqueous exposure

The combined solubility of both Dechlorane Plus geometric isomers in pure water is below 2 ng/L 
(0.002 µg/L) at 20 °C (see Section 1.5). It is a very hydrophobic substance, with a presumed 
log KOW value of ≥9. These properties make aqueous laboratory studies very difficult to carry 
out reliably owing to the potential difficulties in maintaining stable exposure levels at such low 
concentrations. 

Five fish bioconcentration studies are available in the registration dossier and grey literature, 
which are summarised in detail in Appendix 1 (Boudreau & Rausina, 1973; Gara & Rawisina, 
1975; Chou et al., 1979; Zitko, 1980; U.S. EPA, 2011 (citing an unpublished Japanese study)). 
All were carried out at concentrations significantly above the solubility limit in pure water, and 
only one followed a regulatory test guideline (this study is forty years old, key data are missing, 
and it did not achieve steady state). None of these studies is reliable.  However, the longer 
duration studies do indicate that the substance can be taken up into fish tissues. If it is assumed 
that the fish were exposed to the substance at its water solubility limit (<2 ng/L), tentative BCFs 
are estimated to be well above 10 000 L/kg, although the likely oral exposure of the fish to 
particulates means that these values might be a misleading indication of bioaccumulation 
potential. The maximum fish concentrations measured in the aqueous BCF studies were 0.385 
– 8.72 mg/kg after 30 days for Lepomis macrochirus (Gara & Rawisina, 1975; Boudreau & 
Rausina, 1973) and 0.327 mg/kg after 56 days for Cyprinus carpio (Japanese BCF study cited 
by U.S. EPA, 2011). The wide range for L. macrochirus could be due to experimental variation 
(especially as the exposure conditions were variable) or could perhaps be linked to differences 
in lipid content and age of the test fish. It is not known if these measurements would have 
included any substance adsorbed to the skin or present in the gut. As steady state had not been 
reached it is possible that the concentrations could become higher with longer exposures. 

A sixth study is summarised in Appendix 1, suggesting a BCF for plants (Sea Lettuce Ulva 
pertusa) below 100 L/kg (Zhao et al., 2014). There are a number of uncertainties with this study 
that mean the results should be treated with caution, including variable exposure concentrations 
(significantly exceeding the reported water solubility limit), presence of Dechlorane Plus in 
controls, potential growth inhibition during the test (which may or may not be related to the test 

17 Tomy et al. (2008) performed molecular modelling for the global minimum energy conformer of the Dechlorane Plus 
structure using semi-empirical AM1 calculations in the Spartan ES program. However, as the modelling resulted in the 
chair conformation for the cyclooctane moiety for both isomers, the calculations may have been unreliable, and so the 
values for molecular volume and dipole moments are not reported.
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substance), and issues around the way that growth was calculated and kinetics fitted.

In summary, aqueous exposure is expected to be of limited importance in terms of 
bioaccumulation potential, and whilst significant uptake has been shown to occur in fish, there 
are no reliable measured fish BCF data. 

3.4.1.2.2 Dietary exposure

OECD TG 305 advises that dietary exposure is more suitable than aqueous exposure for 
substances with log KOW >6. Five dietary studies for fish are available and four are summarised 
in Appendix 1 (Zitko, 1980; Xiao et al., 2013; Zeng et al., 2014a; Hang et al., 2013 [ABST]). 
The key study is Tomy et al. (2008), which is summarised in full here. 

Tomy et al. (2008) report a dietary bioaccumulation laboratory test using juvenile Rainbow Trout 
(Oncorhynchus mykiss). The fish were exposed to doses of syn- and anti- isomers of Dechlorane 
Plus via their diet for 49 days (uptake phase), followed by 112 days of untreated food 
(depuration phase) to examine bioaccumulation parameters and possible metabolic products. 
Each treatment group consisted of 60 fish held in 200 L aquaria. Two groups of fish (initial mean 
weight 50 ± 5 g) were exposed separately to food dosed with 0.79 ± 0.03 µg/g (lipid weight) of 
syn- isomer and 1.17 ± 0.12 µg/g (lipid weight) of anti- isomer, while a third control group was 
fed unfortified food. Commercial fish food was blended for 20 minutes with corn oil spiked with 
known amounts of each isomer, followed by a further 20 minutes stirring with an aqueous gelatin 
binder. The food was air-dried for 40 minutes then extruded through a 4-mm-diameter noodler, 
dried at 10 °C for 48 hours, and crushed into pellets that were stored in the dark at -4 °C to 
limit the possibility of light-induced degradation. The concentrations of both Dechlorane Plus 
isomers did not decline in the food from the start of the exposure to the end of the depuration. 
Small amounts of the syn- isomer were detectable in the unfortified food (1.5 ng/g). The average 
lipid content of the food was 14.3 ± 0.3 per cent. Feed was presented by sprinkling at the surface 
of the water and was generally consumed by each group of fish within one minute. The daily 
feeding rate was 1.0 % of the mean weight of fish, adjusted after each sampling period based 
on the mean weight of the subsample of fish that were sacrificed. Flow-through conditions were 
used. The influent water was at 12 °C, pH 7.9-9.1 and dissolved oxygen was always at the level 
of saturation. A 12 h light:12 h dark photoperiod was maintained throughout the experiment.

Four fish were sampled from each tank on days 0, 7, 14, 21, 35, and 49 of the uptake period 
and on days 7, 22, 35, 49, 70, and 112 days of the depuration period. Fish were always sampled 
24 hours after the previous feeding. Samples were homogenized and weighed prior to 
accelerated solvent extraction and purification (carcass only) by Florisil chromatography. 
Analysis was by both high and low resolution gas chromatography-mass spectrometry analysis 
(GC-MS) and also liquid chromatography-UV analysis. Quality control procedures included 
injections of hexane after every five samples and method (procedural) blanks. Method detection 
limits were estimated to be 0.02 pg/g (0.6 fmoles) for both isomers. When detected, 
concentrations of the Dechlorane Plus isomers in tissue of control fish were subtracted from that 
in fish exposed to treated food. Concentrations in fish were also corrected for lipid percent and 
recovery corrected using BDE-77, -126, -197, and -207.

Dechlorane Plus had no effect on growth rate, liver somatic index or mortality at the 
concentrations used.

Fish lipid content on days 49 and 161 were 6.9 ± 0.5 % and 7.3 ± 0.6 % for the anti- isomer 
treatment, 7.5 ± 0.3 % and 7.3 ± 0.7 % for the syn- isomer treatment and 8.6 ± 0.4 % and 
7.1 ± 0.7 % for the untreated control group (which could indicate some variation in feeding rate 
in the controls), respectively (average of four fish per sample point). The growth rates of the 
fish were stated to be 0.0308±0.0020, 0.0316±0.0018 and 0.0353±0.0022 mass/d for the anti- 
isomer, syn- isomer and control fish treatments, respectively (based on a fitted linear growth 
model; see later discussion). 
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After the 49-day exposure period, neither isomer had reached a steady-state concentration in 
the fish. The data in the paper are shown graphically in terms of the amount of substance per 
fish rather than the more normal concentration units. The maximum arithmetic mean fish whole 
body (minus liver) mass of the syn- isomer (control- and lipid- corrected) present at the end of 
the uptake period was 2.2 nmole, or 1.44 µg (value read from a graph). The mass of the anti- 
isomer was 1.7 nmole, or 1.11 µg (value read from a graph). The presentation of data in this 
way is unusual; it would normally be expressed in terms of a wet weight concentration. As the 
lipid correction method is unclear, no attempt has been made to estimate what the concentration 
in fish would be at the end of the uptake phase (see also below).

The syn- isomer accumulated in the fish linearly with time (whole body minus liver) during the 
exposure phase with a calculated uptake rate of 0.045 ± 0.005 nmol/d. This rate corresponds 
to the initial slope of the plot of the amount of substance in fish against time. A similar uptake 
rate was also observed for this isomer in the liver. The uptake rate for the anti- isomer was 
calculated to be 0.018 ± 0.002 nmol/d over days 7 to 49, as there was a large increase in the 
amount of this isomer accumulated during the first seven days, after which time the uptake was 
linear. This was statistically different to the syn- isomer at the 95 % confidence level. These 
rates of uptake are considered further later.

The elimination of both isomers from the fish (whole minus liver) followed first order depuration 
kinetics according to the paper, with reported rate constants of 0.013 ± 0.003 d-1 (syn- isomer)18 
and 0.023 ± 0.004 d-1 (anti- isomer), reported assimilation efficiencies of 6.0 % (syn- isomer) 
and 3.9 % (anti- isomer) and calculated half-lives of 53.3 ± 13.1 days (syn- isomer) and 30.4 
± 5.7 days (anti- isomer).19 However, Figure 1 in the paper shows that following an initial steep 
decrease in concentration of the syn- isomer over the first ten days of depuration, the 
concentration increased by a factor of two between days 59 and 100, after which the 
concentration declined once more. The paper does not discuss this pattern specifically. This is 
considered below.

Liver-specific uptake kinetics were similar to those observed in the carcass suggesting that 
uptake rates of the isomers are not tissue-specific. Depuration from the liver did not follow first 
order kinetics for either isomer. Elimination of the isomers from the liver was difficult to interpret 
because of suspected enterohepatic circulation and redistribution of the isomers in the liver 
during clearance from other tissues. 

The biomagnification factor (BMF) values were reported to be 5.2 for the syn- isomer and 1.9 
for the anti- isomer (whole fish minus liver), suggesting that the syn- isomer is more 
bioaccumulative. However, it is not clear how these values were obtained and they appear too 
high when compared to methods of calculation more in line with the methods recommended in 
the OECD 305 test guideline (see further discussion below).

None of the possible metabolic products of Dechlorane Plus (including dechlorinated, 
hydroxylated, methoxylated and methyl sulfone derivatives) were detected in the liver. 

Discussion

Dietary studies provide a more environmentally realistic exposure route for very hydrophobic 
substances than aqueous exposure studies, and also provide a means to dose fish to see if 

18 Table 2 in the paper reports a depuration rate constant with units of “/d ×10-2” in the header, whereas the main text 
uses the unit of “/d”. If the value inferred from Table 2 for the syn- isomer were 0.00013 d-1, the half-life would be about 
5,300 days. Arnot & Quinn (2015) (supporting information) show that “×10-2” is an error.
19 Sverko et al. (2011) applied the method to estimate in vivo biotransformation rates in fish developed by Arnot et al. 
(2008) to the dietary test data reported by Tomy et al. (2008). The estimated biotransformation rate constants 
(normalized to a 10 g fish at 15 ºC) were 0.015 d-1 and 0.0083 d-1 for the anti- and syn- isomer, respectively. An 
uncertainty analysis indicated that 95 % of the expected values are approximately within an order of magnitude of the 
estimates. The equivalent biotransformation half-life is 47 and 84 days for the anti- and syn- isomer, respectively. Such 
biotransformation half-lives are slow, and comparable to biotransformation half-lives associated with chemicals that are 
known to biomagnify and bioaccumulate in aquatic food webs (Arnot et al., 2009). 



ANNEX XV – IDENTIFICATION OF DECHLORANE PLUS AS SVHC

34 

uptake can occur and to follow depuration kinetics. Nevertheless, studies with other highly 
hydrophobic substances such as decabromodiphenyl ether (ECHA, 2012a) suggest that the 
presence of undissolved microcrystals can affect the degree of absorption across the gut and the 
nature of the food may also have an influence.

The Registrant describes the Tomy et al. (2008) study as reliable with restrictions. Based on the 
information available in the paper, the study method is broadly in accordance with the OECD TG 
305-III (Dietary Exposure Bioaccumulation Fish Test). Minor deviations include the use of slightly 
fewer fish (e.g. five fish per sampling point is recommended) and lack of information on spiked 
feed homogeneity and total organic carbon content of the test water. The most important missing 
information is the actual wet weight fish concentrations at each time point (this is not provided 
in the supporting information either). 

The BMF calculation in the paper was based on a method described in a previous paper by the 
same authors (Tomy et al., 2004a). There are a number of differences between this method and 
that recommended in the OECD TG 305-III. In particular, Tomy et al. (2004a) report rates for 
certain processes rather than the equivalent rate constant that is required for calculations by 
the OECD TG 305 methods20:

 Growth rate was calculated by fitting fish and liver weight data to a linear growth 
model, whereas the OECD TG recommends that a growth rate constant is obtained 
from the slope of a plot of natural logarithm of fish wet weights against time, 
separately for the uptake and depuration phases. This cannot be done precisely in 
the absence of the raw data. However, if it is assumed that the initial fish weight 
was 50 g, and that the growth rate (rate of change of fish weight with time) was 
fitted using an equation of the form (1 + b × time), the expected fish concentrations 
at each time point during the study can be estimated approximately using the 
growth rates given in the paper (0.0308 mass/day for anti-DP and 0.0316 mass/day 
for syn-DP). Using these back-calculated fish weights it is then possible to estimate 
the rate constant for growth dilution from the slopes of plots of ln [back-calculated 
fish weight] versus time. Using this approach the rate constant for growth dilution 
(kg) can be tentatively estimated to be around 0.01 d-1 for both anti-DP and syn-
DP, although it should be noted that the plots show a slight deviation from linearity.

 Fish concentrations were lipid-corrected and corrected for growth dilution by 
multiplying them by a factor of (1 + b × time), where b is the growth rate. The 
method used for lipid correction is not clear, but it is possible that the data have 
been corrected to give them on a lipid weight basis prior to correcting for growth 
(although this cannot be ascertained). The OECD TG recommends that correction 
for growth is done separately. However, the method used by Tomy et al. (2008) 
effectively estimates the amount of substance present in the fish (rather than the 
concentration). Such data can be used directly to estimate the growth-corrected 
depuration rate constant from the slope of a plot of ln [amount per fish] versus time. 
This is the “alternative” method for estimating the growth corrected depuration rate 
constant that is discussed in the OECD TG 305. Unfortunately the raw 
concentration/amount data are not provided in the Tomy et al. (2008) paper and 
are only presented graphically. The amounts per fish during the depuration phase 
for both anti-DP and syn-DP from can be estimated the plots in the original paper 
and estimated the approximate value for the growth-corrected depuration rate 

20 It is important to distinguish clearly between rates (or more correctly the rate of change) of a process and the rate 
constant for a process. For example, OECD TG 305 assumes that the rates of uptake, depuration and growth dilution 
are all first order processes, i.e. the rate of change in concentration is a result of a constant (rate constant) multiplied 
by the appropriate concentration. Thus, as the accumulation proceeds, the rate of the uptake and depuration changes 
but the rate constant remains constant. In several places Tomy et al. (2008) reported the rate rather than the rate 
constant. Typically, the rate for the initial phases of a first order process can be approximated to the initial slope of the 
concentration-versus-time curve. Thus it is possible to estimate approximately the required rate constant from the rate 
data presented in the Tomy et al. (2008) paper in some instances.
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constant (k2g) to be 0.019 d-1 for anti-DP and 0.012 d-1 for syn-DP. These are 
reasonably consistent with the depuration rate constants of 0.023 d-1 for anti-DP 
and 0.013 d-1 for syn-DP reported by Tomy et al. (2008).

 It is also possible to estimate the overall depuration rate constant, and hence 
growth-corrected depuration rate constant, using the back-calculated fish weight 
data estimated above to convert the data on the amount per fish to a concentration 
in fish (μg/g (lipid?)21). The overall depuration rate constant (k2) can be obtained 
from plots of ln [concentration (μg/g (lipid?))] versus time. Such plots have been 
constructed for the purposes of this assessment using the amounts per fish read 
from the graphs in the Tomy et al. (2008) paper and these give estimates for the k2 
values as 0.027 d-1 for anti-DP and 0.020 d-1 for syn-DP. Using the kg value 
estimated above of 0.01 d-1, results in growth-corrected depuration rate constants 
(k2g) of approximately 0.017 d-1 for anti-DP and 0.010 d-1 for syn-DP. Given the 
assumptions made in estimating these values, agreement with the values of k2g 
determined above using the amounts per fish data directly is good.

 It is also important to note that the above depuration rate constants are obtained 
by including the value for day 49 of uptake in the depuration plot. As noted earlier, 
for both anti-DP and syn-DP there was a relatively rapid decrease from the value on 
day 49 of uptake to that on day 7 of depuration. The inclusion of the day 49 of 
uptake value for the estimation of the depuration rate constant could be questioned 
as the fish were still being exposed on day 49. When the day 49 of uptake value is 
omitted, the growth-corrected depuration rate constant (k2g) obtained from the 
amount per fish data is lower than the above values, around 0.017 d-1 for anti-DP 
and 0.0099 d-1 for syn-DP. Again these values are reasonably consistent with the 
above estimates.

 The assimilation efficiency was calculated with the equation:

(control-corrected concentration in fish × mass of fish)
(control-corrected concentration in food × mass of food eaten)

In contrast, the OECD TG recommends that it is calculated using the equation:

(derived concentration in fish at time zero of the depuration phase × overall 
(not growth-corrected) depuration rate constant) / (food ingestion rate 
constant × concentration in food × (1 – e-(overall depuration constant × uptake duration))

This calculation cannot be performed precisely due to the lack of raw data, but it is 
possible to use the estimates for the k2 value obtained above to estimate a value 
for the assimilation efficiency. The value of the concentration in fish at time zero of 
the depuration phase (C0) can be estimated to be around 0.0059 μg/g (lipid?) for 
anti-DP, and around 0.0075 μg/g (lipid?) for syn-DP, from the plot of ln [back-
calculated concentration] versus time. As mentioned above it is not clear if these 
are lipid-normalised concentrations or not. Using the known concentrations in food 
(1.17 µg/g (lipid weight) for the anti- isomer and 0.79 µg/g (lipid weight) of the 
syn- isomer), the values of the overall depuration rate constants estimated above 
(0.027 d-1 for anti-DP and 0.020 d-1 for syn-DP) and the feeding rate22, the 
assimilation efficiency can be roughly estimated as 0.008 (0.8 %) for anti-DP and 
0.016 (1.6 %) for syn-DP. These values are significantly lower than estimated by 
Tomy et al. (2008).

21 As noted earlier, it is not clear how the concentrations have been lipid-corrected in this study.
22 The feeding rate was 0.01 kg food/kg fish (1 % of body weight); if the concentrations are on a lipid basis then the 
feeding rate on a lipid basis is needed for the calculation. Using the food lipid content of 14.3 % and the lipid content of 
fish on day 49 of uptake of 6.9 % for anti-DP and 7.5 % for syn-DP the equivalent feeding rate on a kg lipid food/kg 
lipid fish can be estimated to be around 0.021 for anti-DP and 0.019 for syn-DP.
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 Depuration half-life was calculated by the formula ln(2)/depuration rate constant. 
This is the same as OECD 305, except that for the latter, the growth-corrected 
depuration rate constant can be used. As the authors seem to have corrected the 
data for growth prior to analysis, then presumably the derived half-life is effectively 
already growth-corrected (see above and as also assumed by Arnot & Quinn, 2015).

 The equilibrium biomagnification factor (BMF) was predicted from the equation 
(assimilation efficiency × feeding rate) / depuration rate constant, where the feeding 
rate is “corrected for the lipid percentage of the food”. The OECD TG 305 uses the 
same equation, with lipid correction for the feeding rate where lipid-corrected 
concentration data have been used. As the authors seem to have corrected the data 
for lipid prior to analysis, then presumably the reported BMFs can be considered to 
be lipid-normalised. However, as noted above the method used by Tomy et al. 
(2008) to estimate the assimilation efficiency is different to that recommended in 
OECD TG 305. This may be important when comparing the data with the results of 
other substances.

 For the uptake phase, Tomy et al. (2008) appear to report rates (in units of 
nmoles/day) rather than the rate constant (which has units of g/g/day). It is, 
however, possible to estimate an approximate rate constant for the uptake (k1) from 
the initial rate of uptake23. Using the reported initial rates of uptake of 0.018 
nmol/day for anti-DP and 0.045 nmol/day for syn-DP, the equivalent values of k1 
can be estimated as 0.0002 g/g/day for anti-DP and 0.00075 g/g/day for syn-DP. 
These values of k1 correspond to an assimilation efficiency of approximately 0.02 
(2 %) for anti-DP and 0.075 (7.5 % for syn-DP). Assuming the growth-corrected 
depuration rate constant (k2g) is around 0.019 d-1 for anti-DP and 0.012 d-1 for syn-
DP, the kinetic, growth-corrected BMFkg can be estimated to be around 0.01 for anti-
DP and 0.062 for syn-DP. Normalising these values to the lipid contents in fish at 
day 49 and the lipid concentration in food, gives the growth-corrected and lipid 
normalised BMFkgL as around 0.022 for anti-DP and 0.12 for syn-DP. However, it 
should be noted that it is not clear how the raw data were lipid-normalised in the 
original study and so these lipid-normalised values should be treated with caution.

Whilst the study is considered to be reliable with restrictions by the Registrant, access to the 
original raw data is required for proper interpretation. An attempt to contact the lead author was 
unsuccessful, and so a number of assumptions and approximations have had to be made in order 
to attempt to calculate the appropriate kinetic parameters from the data. This has necessarily 
introduced some uncertainty into the analysis but the results of re-analysis suggests that the 
actual BMF from the study is much lower than originally reported by Tomy et al. (2008). The 
main findings of the re-analysis are summarised below:

Anti-DP Syn-DP

Growth-corrected depuration rate constant ~0.019 d-1 ~0.012 d-1

Growth-corrected depuration half-life ~36 days ~58 days

Assimilation efficiency ~0.8-2 % ~1.6-7.5 %

Growth-corrected BMF ~0.01 ~0.062

Growth-corrected and lipid-normalised BMF ~0.022 ~0.12

23 The rate of uptake = k1×[Cfood] -  k2×[Cfish]. At the early stages of the uptake where the concentrations in fish are 
low the term k2×[Cfish] is small compared with the term k1×[Cfood] and so the intial rate of uptake approximates to 
k1×[Cfood].
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This study has also been analysed in depth by Arnot & Quinn (2015) who critically reviewed a 
large number of published dietary feeding studies (based on information in the original 
publications rather than primary data). Arnot & Quinn (2015) state that the BMFs derived by 
Tomy et al. (2008) are not reproducible: by reading the depuration data from Figures 1 and 2 
of the original paper (which plot the (control- and lipid-corrected) concentration of each isomer 
in nanomoles for whole body (minus liver) tissues against time in days), and transforming them 
(using natural logarithms) to re-calculate the depuration rate constant, growth-corrected kinetic 
BMFs of 0.046 and 0.023 were estimated for the syn- and anti- isomers, respectively. These are 
reasonably consistent with the values estimated above. The re-estimated growth-corrected 
depuration rate constant and half-life for the syn- isomer were consistent with those provided in 
Tomy et al. (2008), but the re-estimated growth-corrected depuration rate constant for the anti- 
isomer was slightly lower at 0.017 d-1, with a higher growth corrected depuration half-life of 
about 40 days (again these values are reasonably consistent with the values estimated above). 
Arnot & Quinn (2015) also estimated lipid-normalised growth-corrected BMFs, but given the 
uncertainty in how the lipid normalisation was done in the original paper, these values are not 
indicated here (they are slightly higher than the BMFs without lipid normalisation). 

Tomy et al. (2008) noted that in view of the high log KOW of Dechlorane Plus and a BMF greater 
than 1, it is anticipated that Dechlorane Plus isomers will biomagnify in aquatic food webs. In 
contrast, the analysis presented in this report indicates that the BMFs actually derived by Tomy 
et al. (2008) are unreliable and so they are not considered further in this dossier.

Conclusions

Overall the Dossier Submitter agrees with the Registrant’s assignment of the Tomy et al. (2008) 
study as “reliable with restrictions”. Unfortunately it is not possible to fully analyse the study in 
line with the recommendations of OECD TG 305-III since the raw data are not available. 
Nevertheless, the calculations made in this dossier and by Arnot & Quinn (2015) indicate 
estimated growth-corrected BMFs of 0.01 – 0.023 for the anti- isomer and 0.046 – 0.062 for the 
syn- isomer. Lipid normalisation of these data is uncertain but it is possible that the lipid-
normalised values would be around a factor of two higher than these values. Another factor that 
should be considered is that the study used a feeding rate of 1 % of body weight per day. OECD 
TG 305 recommends a feeding rate of 1-2 % of body weight. In theory, the BMF obtained in an 
OECD TG 305 study should be directly proportional to the feeding rate24, but even if a higher 
feeding rate of 2 % of body weight had been used, the BMF would still likely be below 1 (i.e. 
around 0.12 for syn-DP, which has the higher BMF).

The following points are important:

 Neither isomer had reached a steady-state concentration in the fish after 49 days of uptake, 
implying that concentrations could become higher given sufficient exposure time. However, 
the kinetic approach used above (and presumably by Arnot & Quinn, 2015) would 
approximate to the steady-state situation. Using the overall depuration rate constants (k2) 
of 0.027 d-1 for anti-DP and 0.02 d-1 for syn-DP, it can be estimated that it would take 
approximately 110-150 days to achieve 95 % steady state.

 The growth-corrected depuration half-lives are around 30 – 40 days for the anti- isomer 
and 50 – 70 days for the syn- isomer for juvenile Rainbow Trout (O. mykiss). 

 The maximum arithmetic mean fish whole body (minus liver) (control- and lipid- corrected) 
mass of the syn- isomer present at the end of the uptake period was 2.2 nmole, or 1.44 µg 
(value read from a graph). The mean mass of the anti- isomer was 1.7 nmole, or 1.11 µg 
per fish (value read from a graph). Fish weight was around 51.5 g, but a wet weight 
concentration cannot be estimated as the lipid correction method is unclear. 

24 The BMF = feeding rate × assimilation efficiency/depuration rate constant. Thus assuming the assimilation efficiency 
and depuration rate constant do not vary much with feeding rate, doubling the feeding rate should double the BMF.
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Turning to the other studies summarised in Appendix 1, the non-guideline study by Zitko (1980) 
with Atlantic Salmon Salmo salar is not valid for a variety of reasons. It does, however, indicate 
that uptake and elimination can occur in fish. The highest reported fish concentration was 
176 µg/kg ww after 15 days, although it is not clear whether this included substance present in 
the gut or adsorbed to skin (whole fish were analysed). A depuration half-life of 58 days was 
estimated by the study authors, but this did not take any account of fish growth or lipid content 
changes. The fish growth rate for this part of the study was 0.19 d-1 (based on a plot of fish 
weight against time from day 16 of depuration). If the results are expressed in terms of mass 
of Dechlorane Plus, there was effectively no change in the amount of Dechlorane Plus present in 
the fish during the 72-day depuration phase (the range was 290-370 ng, with the lower value 
occurring after 16 days of depuration). Arnot & Quinn (2015; supporting information) estimated 
a growth-corrected depuration half-life of about 100 days for ca. 15 g, 5 % lipid content fish 
using the results of this study. It therefore supports the findings of a long elimination half-life 
by Tomy et al. (2008).

Xiao et al. (2013) found that juvenile Rainbow Trout O. mykiss appear to absorb at least 16 % 
of the dose from a single feed (a single exposure to 1 270 µg/kg in food led to a whole body 
concentration of around 12 µg/kg), although there are analytical uncertainties with this study. 
The study of Zeng et al. (2014a) showed that a steady state was not achieved over 50 days’ 
exposure in Common Carp Cyprinus carpio muscle, serum or liver tissue, with the highest 
concentrations being detected at the end of the 50-day uptake period (when the total 
concentration in liver was ~615 µg/kg ww). This further supports the findings of the Tomy et al. 
(2008) study. The substance also accumulated in gonad tissue. This study suggests that factors 
other than lipid solubility (e.g. hepatic binding enzymes) could play important roles in 
determining deposition. Whole body concentrations were not reported and the small number of 
samples and variable depuration results also prevent any calculations of an overall depuration 
half-life. A BMF therefore cannot be derived from the data. However, residues remained in all 
tissues after 45 days of depuration (e.g. the total concentration in liver was ~250 µg/kg ww at 
the end of the study) which is consistent with the relatively long depuration half-life seen in 
other studies.

Benchmarking the fish bioaccumulation data

 Inoue et al. (2012) investigated the correlation of dietary BMF with BCF in Common Carp 
Cyprinus carpio for eight aromatic compounds with log KOW values in the range 4.3 – 9.0. 
This indicated that a BMF (growth-corrected and lipid-normalised) above 0.31 can 
correspond to a (lipid normalised) BCF above 5 000 L/kg. A theoretical analysis by MacKay 
et al. (2013) provides information to suggest that BCF values of 5 000 and 2 000 L/kg 
correspond approximately to BMF values of 0.25 and 0.1, respectively. This assumes that 
chemicals partition to the lipid fraction of the fish with no metabolism or growth dilution, 
and “sets” values for respiration rate and absorption efficiency that may not be typical for 
all species. Although a simplification, this supports the empirical relationship reported by 
Inoue et al. (2012). The re-estimated BMFs from the Tomy et al. (2008) study do not 
correlate with a BCF above 5 000 L/kg. A theoretical BMF of around 0.092 – 0.12 for the 
syn- isomer (if the feeding rate had been 2 % of body weight rather than 1 %) would just 
about correlate with a BCF of 2 000 L/kg. Whilst it is possible that lipid normalisation could 
increase the BMF still further (perhaps up to about 0.24), this cannot be established with 
any certainty. 

 In the absence of a reliable aqueous fish BCF value to compare to the REACH Annex XIII 
criteria, the depuration half-life is considered further. There may be significant variability 
between and within species (e.g. due to differences in lipid content and metabolic profiles). 
However, advantages of using this metric as a key indicator for bioaccumulation 
assessment are that it is relatively easy to determine and not so dependent on other 
variables within a particular study. The achievement of a high level of bioaccumulation is 
obviously related to uptake as well as depuration kinetics, since this affects body burdens. 
Nevertheless, in terms of the aims of protecting organisms from unpredictable adverse 
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effects, a long depuration half-life is a key determinant of bioaccumulation potential and is 
directly related to one of the protection aims of the PBT assessment, i.e. concentrations for 
a PBT substance may take a long time to decline once emissions cease.

Two benchmarking approaches have been used to compare the depuration half-life of 
Dechlorane Plus with other relevant substances:

(a) An Environment Agency report (EA, 2012) analysed depuration rate constants 
(k2) from a large number of available BCF studies. A k2 value ≤ 0.065 d-1 (95 % 
CI: 0.062 – 0.068) or a lipid-normalised k2 ≤0.085 d-1 95 % CI: 0.083 – 
0.086)25 was found to be consistent with a BCF of ≥5 000 L/kg (normalised to 
a 5 % lipid content)26. The ‘growth-corrected lipid-normalised’ k2 values for 
Dechlorane Plus from Tomy et al. (2008) were 0.010 – 0.013 d-1 (syn- isomer) 
and 0.017 – 0.023 d-1 (anti- isomer). Thus the low rate of depuration seen in 
the feeding study with O. mykiss is consistent with a BCF above 5 000 L/kg.

(b) It is relevant to compare the data for Dechlorane Plus with polychlorobiphenyls 
(PCBs) and other substances previously assessed to be vB under REACH. In 
particular, PCB data were used to support the identification of perfluorohexane-
1-sulfonic acid and its salts (PFHxS, CAS no. 355-46-4) as vB (the data are 
summarised in Appendix 7). There are nine studies, although only four provide 
useable depuration half-lives for this analysis. Twelve further substances had 
been determined as meeting the vB criteria up to May 2015. Seven studies 
covering four of those substances report a depuration half-life (see Appendix 
6). The information is summarised in Table 13.

Table 13: Depuration half-lives and BCF values for chemicals meeting the vB criteria

Depuration half-life, 
days BCF value, L/kg Source

39 – 77
77 – 87 7 273 SCCPs (REACH vB)

2.8 – 4.2 3 730 – 10 500 Musk xylene (REACH vB)
3.8, 105 ≥11 495 D4 (REACH vB)
24 – 39 ≥ 5 860
19 – 22 12 600 D5 (REACH vB)

>28 Arochlor 1248 (commercial PCB mixture)
>42, 50 Arochlor 1260 (commercial PCB mixture)
>974

>>5 000
PCB-52

Therefore with one exception (musk xylene), substances already agreed to 
meet the vB criterion or identified as POPs based on BCF values generally have 
relatively long depuration half-lives of 20 days or more in at least one fish 
species. A depuration half-life above around 8-10 days is also suggestive of a 
lipid-normalised and growth-corrected BCF above 5 000 L/kg according to the 
analysis in EA (2012). The depuration half-life for Dechlorane Plus was around 
30-40 days for the anti- isomer and 50-70 days for the syn- isomer in the 
dietary study of Tomy et al. (2008) with juvenile Rainbow Trout O. mykiss.27 

25 Equivalent to depuration half-lives above around 8-10 days, assuming first order kinetics.
26 Goss et al. (2013) also consider the use of elimination half-life data in bioaccumulation assessment, taking a first 
principles approach without considering actual data. The proposed half-life corresponding to a BMF of 1 is 70 days 
assuming 100 % assimilation efficiency (longer if the assimilation rate goes down).
27 Arnot & Quinn (2015) estimated a growth-corrected depuration half-life of about 100 days for a ca. 15 g fish with 5 % 
lipid content using the results of the Zitko (1980) study with Atlantic Salmon S. salar. However, this study is not valid 
for a variety of reasons: in particular co-exposure to other related substances might have affected the uptake or 
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Zeng et al. (2014a) found that residues remained in all tissues in a study using 
Common Carp C. carpio after 45 days of depuration. The long depuration half-
life for Dechlorane Plus in fish is therefore highly indicative of a very 
bioaccumulative substance.

As noted above depuration half-life can be influenced by a number of experimental factors such 
as species differences, age of fish, etc. Therefore it may be difficult to reach clear conclusions 
for borderline cases. Sufficient uptake of a chemical by an organism is also required, so 
depuration half-life alone may not be indicative of a very bioaccumulative substance. However, 
field monitoring data (see following sections) suggest that Dechlorane Plus is bioavailable, and 
can achieve a relatively high body burden in some cases that may be expected to be associated 
with toxic effects due to baseline narcosis (see Appendix 3, 4 and 6). Therefore the use of 
depuration half-life to guide decision-making is considered to be reasonable for Dechlorane Plus, 
and its very long depuration half-life is given a high weighting in the bioaccumulation 
assessment.

3.4.1.2.3 Sediment exposure

Li et al. (2014a) determined the bioaccumulation of Dechlorane Plus in the oligochaete 
Lumbriculus variegatus. The study was carried out using both laboratory-spiked sediment and 
field-collected sediment from an electronics recycling site in South China. The test was carried 
out in triplicate beakers containing approximately 120 g of wet sediment and 300 mL of 
moderately hard water, with each beaker containing 30 worms. The mean measured 
concentrations of anti-DP and syn-DP in the field sediments were 8.8 and 3.54 mg/kg organic 
carbon, respectively. For the laboratory-spiked sediments two exposure concentrations (high and 
low) were used for each of anti-DP and syn-DP. The mean measured anti-DP concentrations were 
83.1 mg/kg organic carbon (high) and 24.3 mg/kg organic carbon (low). The mean measured 
syn-DP concentrations were 27.3 mg/kg organic carbon (high) and 7.66 mg/kg organic carbon 
(low). An uncontaminated sediment was used as a control. The organic carbon contents of the 
sediments were 2.75 % for the control and 1.80 % for the field sediment. The organic carbon 
content of the laboratory soil is not clear.

The test consisted of a 28-day uptake period followed by a 28-day (laboratory sediment) or 21-
day (field sediment) depuration period. The test was carried out at 23 °C and the worms were 
not fed during the test. Approximately 150 mL of the overlying water was changed twice daily. 
The dissolved oxygen content of the water was 5.4±0.4 mg/L and the pH was 7.6. The sediment 
concentrations were found to remain constant during the uptake phase of the test. 

The exposed worms behaved similarly to the control worms, with no overt avoidance of the 
sediment and no significant reproduction of the worms occurred.

The concentrations of anti-DP and syn-DP in the worms increased during the first 14 days and 
then reached a plateau (steady-state) between days 14 and 28. The biota-sediment accumulation 
factor (BSAF) was determined as the ratio of the uptake rate constant and the depuration rate 
constant obtained using a first order kinetic model. No obvious growth of the worms was reported 
to occur in the test (worm weights per replicate were similar before and after the test).

The uptake rate constants for anti-DP were determined to be between 0.027 and 0.037 g organic 
carbon/g lipid/day in the laboratory sediments and 0.037 g organic carbon/g lipid/day in the field 
sediment. The depuration rate constants for anti-DP were determined to be 0.092-0.095 d-1 in 
laboratory sediment and 0.18 d-1 in the field sediment and the BSAF was determined to be 0.29-
0.39 g organic carbon/g lipid in laboratory sediment and 0.21 g organic carbon/g lipid in the field 

metabolism of Dechlorane Plus, as well as the health of the fish.
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sediment.  For syn-DP the uptake rate constant was between 0.0298 and 0.0698 g organic 
carbon/g lipid/day in the laboratory sediments and 0.044 g organic carbon/g lipid/day in the field 
sediment, and the depuration rate constant was 0.063-0.15 d-1 in the laboratory sediments and 
0.13 d-1 in the field sediment. The BSAF values for syn-DP were therefore 0.47-0.48 g organic 
carbon/g lipid in the laboratory sediments and 0.34 g organic carbon/g lipid in the field sediment.

All of the BSAF values determined were <1. The BSAF value for syn-DP was greater than for anti-
DP and this difference was statistically significant (p<0.05) for the low-level laboratory sediment 
and the field sediment.

Discussion

The BSAF determined with Lumbriculus variegatus is in the range 0.21-0.39 g organic carbon/g 
lipid for anti-DP and 0.34-0.48 g organic carbon/g lipid for syn-DP. The BSAF for syn-DP was 
found to be higher than for anti-DP. The values obtained in the laboratory study are discussed 
further in Section 3.4.1.2.4 alongside the available BSAF values from field studies.

3.4.1.2.4 Field studies

Twenty-two biota monitoring studies that report some measure of bioaccumulation potential 
have been summarised in detail in Appendix 1 (Wu et al., 2010; Tomy et al., 2007; Mo et al., 
2013; Klosterhaus et al., 2012; Peng et al., 2012; He et al., 2014; Zhang et al., 2011b; Peng et 
al., 2014; Wang et al., 2015; Barón et al., 2013; She et al., 2013; Jia et al., 2011; Shen et al., 
2011a; Wang et al., 2012; Chen et al., 2012b; Muñoz-Arnanz et al., 2012; Zhang et al., 2010b; 
Kim et al., 2015; Wu et al., 2013; Li et al., 2014b; Sühring et al., 2015; Sun et al., 2015). Other 
biota monitoring data are reported in Appendix 3.

In general, monitoring studies are of limited usefulness for bioaccumulation assessment because 
the concentrations that the organisms were exposed to are unknown. Some species are highly 
migratory, so exposure at the sampling location might not be very relevant (i.e. the body burden 
may result from exposures some distance away). The studies are often screening exercises, with 
several substances investigated in the same samples, and often only include relatively low 
numbers of samples. The lack of a suitably ring-tested analytical method means that the results 
should be treated with caution, especially when comparing studies undertaken by different 
laboratories and at different times. Comparisons are also limited by the expression of the 
concentration in terms of either wet or lipid weight (rarely both), the use of different tissues and 
potentially the age/size and health of the organism when it was collected (particularly dead or 
injured individuals that may have depleted fat reserves). This is important if the accumulation 
of Dechlorane Plus is linked to more factors than lipid content alone, as suggested by the studies 
of Zeng et al. (2014a), de la Torre et al. (2012), Zhang et al. (2011a), Li et al. (2013a), Chen 
et al. (2013b) and Zheng et al. (2014a) (summarised in Section 3.4.1).  

Nevertheless, the available monitoring studies show that the two isomers of Dechlorane Plus are 
widely dispersed in the European environment. Evidence from around the world shows that 
uptake can clearly occur in a wide range of wildlife species throughout freshwater and marine 
aquatic food webs, from invertebrates and fish to piscivorous top predators such as Bald Eagle 
Haliaeetus leucocephalus, Double-crested Cormorant Phalacrocorax auritus, Eurasian Otter Lutra 
lutra and cetaceans (e.g. Delphinus delphis). Dechlorane Plus is also found in bird- and mammal-
eating predators associated with aquatic environments (such as Peregrine Falcon Falco 
peregrinus and Polar Bear Ursus maritimus). From the small number of studies available, 
maximum levels in top predators in Europe are broadly in the range 0.1 – 1 µg/kg ww, although 
there are many non-detects.

Most European samples have been collected from relatively unpolluted environments, where the 
substance is more likely to be present at very low concentrations due to long range transport 
rather than (in)direct local releases. Such studies show that Dechlorane Plus can be present in 
wildlife (including top predators) in regions relatively remote from human activity, although the 
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levels are typically very low (<0.1 µg/kg ww). In contrast, studies in more polluted environments 
in China and near the U.S. manufacturing facility show higher levels, indicating that organisms 
have the potential to accumulate in the region of 1 – 10 µg/kg ww, and up to 1 mg/kg ww 
[97 mg/kg lw] in fish muscle in the vicinity of point sources (Wang et al., 2015) (whole body 
concentrations are not available). This suggests that if exposure in the European environment 
were to increase, levels in wildlife might also increase. The higher levels that have been found 
in wildlife exceed concentrations that are considered to be of concern within a bioaccumulation 
context (e.g. a “critical concentration” of 0.065 or 0.65 mg/kg ww [1.3 or 13 mg/kg lw] can be 
estimated for Dechlorane Plus based on a critical body burden of 0.001 mmol/kg ww 
recommended in the REACH PBT Guidance (ECHA, 2017a); see Appendix 7).

According to equilibrium partitioning theory, BSAF values should be in the range 1–2 when the 
partitioning of a non-ionic organic chemical is at equilibrium between the organic carbon in the 
sediment and lipids of an organism (e.g. Burkhard et al., 2004). Lower BSAFs imply that the 
partitioning of an organic compound into lipids is lower than expected, i.e. that the partitioning 
between the fish or invertebrate species and the sediment is not in equilibrium (which may be 
due to chemical disequilibrium between the water and sediment, limited bioavailability due to 
the amount and type of sediment organic carbon and/or dietary uptake efficiencies, and/or 
metabolism in the organism or its food items). In contrast, higher BSAFs suggest that the 
substance can accumulate to a greater extent than by simple partitioning alone. The available 
data for Dechlorane Plus are as follows: 

 For fish, reported average BSAFs28 for total isomers were below 1 in four studies 
(Zhang et al. (2011c): three species; Shen et al. (2011a): one fish species; Wang 
et al. (2012): one fish species; He et al. (2014): three species). However, another 
study (Wang et al., 2015) reported BSAFs above 1 for three fish species, with 
values up to 3.2 and 9.0 for the anti- and syn- isomers, respectively. 

 For invertebrates, one study reported BSAFs below 1.7 (Wang et al. (2015): river 
snail & shrimp) whereas another reported BSAFs above 2 (Jia et al. (2011): 
oysters). 

 BSAF values below 1 (in the range 0.2-0.5 g organic carbon/g lipid) have been 
determined for Lumbriculus variegatus in a laboratory study (Li et al. (2014a); see 
Section 3.4.1.2.3).

This conflicting information is difficult to interpret. The studies tend to be based on small sample 
sizes, with sediment and biota sometimes collected at different time points and/or locations in 
the same general area, so their reliability is uncertain. In addition, the ECHA PBT guidance R.11 
(Appendix R.11-4) states that it is often difficult to distinguish between real uptake and 
adsorption to the organisms or interference of gut content in the determination of the BSAF 
values for highly hydrophobic substances. BSAF values of 0.1 and below may give an incomplete 
indication of bioaccumulation potential based on pore water concentrations. However, one study 
for fish and one for invertebrates suggest that BSAFs might exceed 2, suggesting an enhanced 
level of bioaccumulation. For two studies where the BSAF is below 1, the BSAF values for BDE-
183 (a heptabromodiphenyl ether) are similar to those for Dechlorane Plus in the same samples. 
In the support document for bis(pentabromophenyl)ether, heptaBDE congeners were concluded 
to meet the B criterion of Annex XIII (ECHA, 2012a). 

Detection of Dechlorane Plus (and anti-[DP-1Cl]) in eggs shows that maternal uptake and 
transfer to eggs can occur in birds. Similar maternal uptake and transfer has also been seen in 
fish (e.g. Wu et al. (2013) and Sühring et al. (2015)). The studies of Zhang et al. (2011a) and 
Zeng et al. (2014a) also show that the substance can cross the blood-brain barrier and be passed 
from females to eggs in fish. Li et al. (2014b) showed that the substance can cross the blood-

28 Fish BSAFs are defined as the lipid normalized concentration in the fish divided by the organic carbon normalized 
sediment concentration.
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brain barrier in frogs. Sensitive life stages and tissues are therefore exposed to the substance.

Of particular relevance to this assessment are field studies that indicate biomagnification 
between trophic levels. The interpretation of such studies is evolving and it is clear that they can 
be complicated by a range of factors such as migratory behaviour of the species sampled, 
difficulties in establishing trophic position and feeding relationships, concentration gradients in 
water and/or sediment, and measurement limitations (e.g. in terms of temporal and spatial 
coverage, sample numbers (especially for larger species), specific tissue versus whole body, 
contamination during sampling, processing and analysis, etc.). These findings should therefore 
be treated with caution. Whilst some studies do not provide convincing evidence of 
biomagnification (e.g. Barón et al. (2013), Peng et al. (2014) and Klosterhaus et al. (2012)), 
four independent studies of aquatic food webs provide some evidence of trophic magnification:

 Wu et al. (2010) calculated a TMF above 1 for both Dechlorane Plus isomers in a Chinese 
aquatic food web. The value for both isomers together was approximately five times 
higher than that of total PBDEs and similar to polychlorinated biphenyls in the same web 
(although the overall Dechlorane Plus concentrations were 1 – 2 orders of magnitude 
lower). Sample numbers were low. The TMF depends on the assignment of one species (a 
water snake) to the highest trophic position; inclusion of a top predatory fish (Northern 
Snakehead) results in a lack of biomagnification (and even biodilution for the anti- 
isomer). Levels in three benthic-feeding carp species are consistently higher than potential 
invertebrate prey, suggesting that biomagnification may occur for some feeding 
relationships although this might also be influenced by sediment ingestion.  This study 
provides evidence of biomagnification for some feeding relationships in an aquatic food 
web, though this is not unequivocal. 

 Tomy et al. (2007) investigated food web samples from Lake Ontario and Lake Winnipeg, 
Canada. In Lake Winnipeg, trophic level-adjusted BMFs (based on the ratio of lipid-
corrected concentrations) for four feeding relationships were all below 1 for both syn- and 
anti- isomers, with the exception of the Walleye/Whitefish predator-prey relationship for 
the anti- isomer only (BMF of 11). In Lake Ontario, trophic level-adjusted BMFs for three 
of four feeding relationships were below 1 for both isomers. The exception was the Lake 
Trout/Smelt predator-prey relationship, with a BMF of 12 for the syn- isomer and 11 for 
the anti- isomer. These calculations assume that a predator consumes one prey species 
only, and as this is unlikely to be the case in reality, the BMFs should be treated with 
caution.

A TMF value above 1 was calculated for the anti- isomer in Lake Winnipeg (TMF = 2.5, r2 
= 0.12, p = 0.04), but not for the syn- isomer, or either isomer in Lake Ontario. The 
positioning of some of the species in the food web is open to question, and the Lake 
Winnipeg results were based on fish muscle only, which introduces uncertainty. Low 
concentrations, the very small sample sizes and possibility of variable exposure raise 
additional concerns about the representivity of the data for these food chains. 

Whilst the study suggests that interspecies differences in bioaccumulation/ 
biotransformation are likely, and that biomagnification may be taking place in some 
aquatic food webs and feeding relationships, the evidence is equivocal.

 Wang et al. (2015) investigated trophic magnification in an aquatic food chain that 
receives discharges from the Dechlorane Plus production facility in China. Sample 
numbers were low, but the TMF was 1.9 (95 % CI: 1.1–3.4) for anti-Dechlorane Plus, and 
this was statistically significant. Total Dechlorane Plus concentrations were in the range 
0.8 – 1.1 mg/kg ww for four of the five fish species sampled, including the species at the 
highest trophic level. 

In addition, the log-normalized concentration ratios of anti-DP-1Cl to anti-DP showed a 
significant relationship with trophic level (p < 0.001), implying that anti-DP-1Cl may have 
a higher trophic magnification potential than anti-DP. 

A significant negative correlation was found between fanti and trophic level for the sampled 
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species (p < 0.01), suggesting that the organisms have lower uptake efficiencies and 
higher depuration rates for the anti- isomer compared to the syn-isomer.

 Sun et al. (2015) investigated the bioaccumulation of Dechlorane Plus in biota from the 
Island Mangrove Nature Reserve, Pearl River estuary, South China. A total of 22 samples 
from four species were analysed in the study and anti-DP was detectable in 100 % of the 
samples and syn-DP was detectable in 54 % of the samples. The TMF for total Dechlorane 
Plus was determined to be 2.31, although the regression was not statistically significant 
(p = 0.07). Estimated BMFs for various predator-prey combinations were in the range 
1.27 to 11.8. These calculations assume that a predator consumes one prey species only, 
and as this is unlikely to be the case in reality, the BMFs should be treated with caution.  

The interpretation of trophic transfer studies involving waterbirds is complicated by the fact that 
sample sizes are small, and a single tissue (usually egg, muscle or liver) is typically analysed. 
Zheng et al. (2014a) (summarised in Section 3.4.2) showed that fat tissue is an important 
compartment for Dechlorane Plus accumulation in the Domestic Chicken (Gallus gallus), so whole 
body burdens might be significantly different from those implied by measured concentrations in 
a single tissue (particularly muscle). Coupled with the uncertainties about the relevance of lipid 
normalisation, firm conclusions about trophic transfer in birds cannot be drawn from the available 
data. 
  

3.4.2 Bioaccumulation in terrestrial organisms (soil dwelling organisms, 
vertebrates)

3.4.2.1 Screening information 

Although there are significant uncertainties in the physicochemical data set, the combination of 
a predicted log KOW  >2 and log KOA >5 indicate that Dechlorane Plus has the potential to 
bioaccumulate in terrestrial food webs if the rate of chemical transformation or metabolism is 
low, as suggested by Gobas et al. (2003) and Kelly et al. (2007). In particular, bioaccumulation 
of very hydrophobic substances (log KOW >7) in terrestrial biota does not necessarily fall off with 
increasing KOW. It is therefore important not to overlook the potential for terrestrial 
bioaccumulation for Dechlorane Plus. 

It is not useful to estimate an earthworm BCF using QSAR approaches given the uncertainty in 
the log KOW value and limitations of the QSAR equations themselves.

3.4.2.2 Laboratory studies 

Short-term and in vitro studies are summarised in Appendix 1 (Zhang et al., 2014; Chabot-
Giguère et al., 2013; Peng et al., 2014; Zhang et al., 2015). Due to limitations in terms of 
duration or experimental set up, these do not provide any relevant information for the 
assessment of bioaccumulation. 

Mammalian studies are reported in Section 4.1. 

Three studies involving birds are available and are summarised below:

 Li et al. (2013a) exposed male Common Quail (Coturnix coturnix) (6–8 weeks’ old, with an 
average weight of 125 g) to commercial Dechlorane Plus mixed in corn oil by oral gavage 
for 90 days at different doses (0, 1, 10, and 100 mg/kg/d). Sixty animals were used in all. 
Liver, muscle and serum samples were analysed using GC-MS at the end of the exposure 
period. The LoDs for the anti- and syn- isomers were 46.12 and 27.85 µg/kg lw in 
muscle/liver, and 0.054 and 0.20 ng/mL in serum, respectively.

Both isomers were detected in all of the tissues measured in the control group at the end of 
the 90-day exposure period (average concentrations in liver were 15 ± 8.1 and 10 ± 
5.9 mg/kg lw for the anti- and syn- isomer, respectively), indicating a background level of 
exposure (e.g. from feed or air-borne dust). DP-1Cl was also detected in the control group 
(e.g. 0.131 mg/kg lw in liver).
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In the exposure groups, the highest concentrations were detected in liver. For the 
10 mg/kg/d dose group, the total liver concentration was ~1 750 mg/kg lw (260 ± 39 mg/kg 
lw for the anti- isomer and 1 500 ± 69 mg/kg lw for the syn- isomer). These levels were 
around ten times greater than in the lower dose group, and three times greater than in the 
highest dose group (although the levels of the anti- isomer were greatest in liver in the 
1 mg/kg/d group, at 300 ± 120 mg/kg lw). The syn- isomer tended to accumulate more in 
the two highest dose groups, whereas the anti- isomer was dominant in the low-dose group 
(the isomer ratio was similar to the commercial product at this dose). 

The highest average total concentration of the mono-dechlorination products syn-DP-1Cl 
and anti-DP-1Cl occurred in the 10 mg/kg/d group, reaching 1.2 mg/kg lw in liver. Two 
additional unidentified substances were detected in the tissue samples as well as in the 
commercial substance.

In conclusion, both isomers preferentially accumulate in liver rather than muscle or blood in 
Common Quail, but accumulation was not dose-dependent (with lower levels observed in 
the top dose group compared to the mid-dose group). There appeared to be enrichment of 
the syn- isomer at higher exposures. It is not known how long it would take to achieve a 
steady state. 

 Zheng et al. (2014a) investigated dietary accumulation and tissue distribution in Domestic 
Chickens (Gallus gallus domesticus). Birds purchased from a market (several weeks old; 
n=12: 1 male, 11 females) were raised for seven months in a farmer’s yard surrounded by 
e-waste recycling workshops in Qingyuan county, Guangdong province, China. Atmospheric 
particles (n=10, collected using a high-volume air sampler), chicken food (mixture of rice, 
wheat and other types of grain, n=9) and soil (n=10) samples were collected from the yard. 
After sacrifice, eight tissues (liver, muscle, heart, gonad, brain, lung, and fat from all birds, 
and kidney from ten) and digestive tract contents (n=12 for chyme29, intestinal contents 
and faeces) were sampled, weighed and then stored at –20 °C until further analysis. 

After being spiked with surrogate standards (BDE-77, -181 & -205), approximately 2 g of 
lyophilized tissue sample were extracted with solvents, then spiked with known amounts of 
internal standards (BDE-118 & -128, 4-F-BDE-67 and 3-F-BDE-153) prior to instrumental 
analysis via GC-MS using electron capture negative ionization operated in the selected ion 
monitoring mode.

Regular analysis of procedural blanks (n=17), spiking blanks, blind triplicate samples, and 
regular injection of solvent blanks and standard solutions were performed for quality control 
purposes. Trace amounts of the anti- isomer were detected in procedural blanks with median 
concentrations of 0.46 ng/mL (accounting for 15 % of the sample with the lowest Dechlorane 
Plus level), so this was subtracted from the sample results. The recoveries in the spiking 
blanks were 90 ± 6.5 %. No surrogate correction was made to the final concentrations. 
Target chemicals detected in the triplicate samples were consistent (RSD <15 %). LoQs for 
syn-DP, anti-DP, anti-DP-2Cl, and anti-DP-1Cl were 0.04, 0.12, < 0.01, < 0.01 µg/kg dw/ww 
in environment matrices; 0.21, 0.61, 0.01, 0.01 µg/kg dw/ww in digestive tract; and 0.11, 
0.13, 0.01 and 0.01 µg/kg dw/ww in chicken tissues, respectively.

The median (and range) concentrations of Dechlorane Plus (total isomers) in chicken food, 
atmospheric particulates and soil were 0.2 (not detected – 0.98), 1 500 (360–8 700), and 
7 600 (5 900–10 000) µg/kg dw, respectively. 

The median (and range) concentrations of Dechlorane Plus (total isomers) in chyme, 
intestinal contents and faeces were 7.6 (3.7–1 100), 35 (14–580), and 31 (not detected–1 
300) µg/kg dw, respectively. Mass balance calculations indicated that there was 52 % 
“absorption” [transfer?] from chyme to intestinal contents and 50 % “absorption” [transfer?] 
from intestinal contents to faeces. No significant differences in Dechlorane Plus levels were 
found between the intestinal contents and faeces (p > 0.05); while levels in chyme were 

29 Chyme is partly digested food that is expelled by the stomach into the duodenum.
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significantly lower (p < 0.05). 

The substance was detected in all tissues. Since there was only one male, gender differences 
in accumulation behaviour were not considered. Median Dechlorane Plus (total isomers) 
concentrations (and range) were in the order of fat (10 (3.4–72) µg/kg ww) > gonad (7.9 
(0.82–417) µg/kg ww) > kidney (6.8 (1.07–460) µg/kg ww) > heart (6.3 (1.0–21) µg/kg 
ww) > liver (4.4 (0.79–320) µg/kg ww) > lung (2.8 (1.3–126) µg/kg ww) > brain (1.4 
(0.43–5.2) µg/kg ww) > muscle (0.92 (not detected–124) µg/kg ww). The range for all 
tissues was 17 – 140 µg/kg lw. 

The mass deposition percentage of Dechlorane Plus in individual tissues indicated that fat 
was the most important reservoir (accounting for 56 % of the residues), followed by liver 
(12 %) and gonad (12 %). No significant differences were found amongst the tissues levels 
(p > 0.05), except muscle contained significantly lower concentrations than those in liver, 
gonad, fat, and kidney (p < 0.05). This was thought to relate to the lower lipid content of 
muscle. 

The lipid content of fat tissue was significantly higher than other tissues (p < 0.05) although 
fat did not show significantly elevated substance concentrations compared with other tissues 
(expect for muscle). This suggests that lipid content was not the only factor that influenced 
tissue distribution, and it was speculated that blood perfusion and sequestration by proteins 
could be additional factors (Government of Canada (2016) reports that the OECD QSAR 
Toolbox (2012) profile suggests a high level of protein binding for this substance). 

Brain concentrations were not significantly different to those in other tissues, but as it has 
the lowest lipid content, the lipid-normalized concentration in brain was the highest among 
all tissues. The study suggested transfer to and retention of Dechlorane Plus in chicken 
brain, despite its high molecular weight and hydrophobicity. 

The fanti values varied from 0.39 to 0.79 in chicken tissues. Fat (0.65), brain (0.64), and 
liver (0.64) had higher fanti values than the other tissues (p < 0.01), as well as soil (0.52). 
The fanti value for the whole chicken was calculated as 0.57 ± 0.07, which was significantly 
higher than those in soil (t-test, p = 0.048). However, the fanti values ranged from 0.39 to 
0.73 in chyme, intestinal contents and faeces, respectively, and these were not statistically 
significantly different, suggesting that gastrointestinal absorption was not stereoselective. 
It was estimated that soil contributed 94–100 % of the substance in chyme. These results 
suggest a preferential accumulation of the anti- isomer in chicken compared with soil, which 
is not due to differences in gastro-intestinal absorption efficiencies.

Anti-DP-1Cl was detected in most samples of atmospheric particulates and soil at 
concentrations of 2.2–7.5 and 16–51 µg/kg dw, respectively, but not in chicken food. It was 
detected in three chyme samples at concentrations from 0.07 to 0.96 µg/kg dw and one 
faeces sample (1.12 µg/kg dw). In chicken tissues, concentrations of anti-DP-1Cl were in 
the range of ‘not detected’ to 4.7 µg/kg ww. It was detected in 67 % of heart and 83.3 % 
of liver samples (the detection frequency in other tissues was below 34 %). Anti-DP-2Cl was 
not detected.

Significant correlation was found between anti-DP-1Cl and anti-DP (p < 0.01) in both 
atmospheric particulates (r2 = 0.98) and soil samples (r2 = 0.79), and in both liver (r2 = 
0.99, p < 0.01) and heart (r2 = 0.31, p < 0.05). 

The ratio of anti-DP-1Cl to anti-DP was lower in soil (0.005 ± 0.002) than atmospheric 
particulates (0.010 ± 0.003). The ratios in heart and liver varied from 0.0017 to 0.01 and 
0.001 to 0.009, respectively. No significant differences were found in the ratios between soil 
and chicken tissues (p > 0.05), implying that anti-DP-1Cl mainly derives from the dietary 
uptake rather than in vivo dechlorination. This study is considered by to be reliable with 
restrictions, because the birds were not dosed in a standardised manner, and the variability 
in individual tissue concentrations was high. The validity of comparisons based on median 
concentrations only is therefore open to question. Since the birds appear to have been only 
around one year old at sacrifice, it is also possible that higher concentrations might have 
been achieved had the exposure duration been longer. However, the study is important 
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because it shows that the anti- isomer is preferentially accumulated in chicken, which is 
presumably due to differences in metabolism and/or elimination. In addition, most trophic 
transfer studies in birds use measured concentrations in either liver or muscle only (see 
Section 5.5.1 of Appendix 1), and since these are not necessarily the main compartments 
for accumulation, whole body burdens might be significantly different.

 Zheng et al. (2014b) investigated maternal transfer, potential metabolism and tissue 
distribution of Dechlorane Plus (and other flame retardants) during egg formation and 
embryo development in Domestic Chickens (Gallus gallus domesticus), apparently using the 
same birds as described in the study of Zheng et al. (2014a). Eggs were collected every day 
after the hens began laying, between March and April 2012 (n=79). The collected eggs were 
stored at ambient temperature in the yard. Nine chicks were hatched from ten collected 
eggs in an electric incubator and then sacrificed on the day of hatching, with liver and muscle 
tissues excised.30 The hens were sacrificed in May 2012, and muscle samples (n=11) were 
collected. All samples were weighed and stored at -20 °C until further analysis, which 
followed the same procedures as Zheng et al. (2014a).

Dechlorane Plus (total isomers) was found in all of the samples, covering a wide range 
of concentrations from 0.77 to 9 034 µg/kg lw. The highest concentration 
was reported for a liver sample, but eggs also had a wide range of 
concentrations, some of which were around 7 000 µg/kg lw. The results 
are summarised in 

Figure 4. The horizontal lines represents 5th, median and 95th percentiles, and the box 
represents 25th and 75th percentiles. Outliers exceeding 1.5 and 3 times of the height of 
box are shown as individual circles and asterisks, respectively. Unfortunately, the data for 
the two isomers and two potential transformation products are lumped together in the data 
table and figure in the original paper. Anti-DP-2Cl was not detected in any sample, but anti-
DP-1Cl was found in 79 % of samples at concentrations between ‘not detectable’ and 
30.7 µg/kg lw.

30 Nine eggs that had not been incubated were also divided into albumin and yolk for analysis. However, no significant 
differences were found between levels in eggs from 0 d after the onset of incubation and these nine eggs (t test, 
p > 0.05) so their results are not provided in the paper.
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Figure 4: Dechlorane Plus levels in chicken tissues

a: adult; b: chicken

(reprinted with permission from Zheng et al. (2014b). Copyright 2014: 
SETAC)

Eggs were analysed in three groups (collected at 0, 7 and 14 d of incubation, n=10 for each). 
No significant difference in concentration was found once extremes were removed (one-way 
ANOVA, p>0.05), with median levels of 16, 24 and 30 µg/kg lw, respectively. With the 
outliers included, the means (±standard error) were 1 336±878, 58±29 and 1 032±529 
µg/kg lw (total concentration of Dechlorane Plus isomers and anti-DP-1Cl).

The mean (±standard error) concentration in hen muscle was 82±32 µg/kg lw (total 
concentration of Dechlorane Plus isomers and anti-DP-1Cl). The ratios of median 
concentrations in eggs to hen muscle for the syn- (0.40) and anti- isomer (0.67) were less 
than 1, indicating that these substances were more selectively retained by mothers. The 
maternal transfer potential of syn-Dechlorane Plus was lower than that of the anti- isomer. 
Consequently, the fanti values in eggs (median 0.65, range 0.37 – 0.77; higher in albumin 
(0.89) than in yolk (0.59)) were significantly higher than those in hen muscle (median 0.56) 
(p < 0.05). The study therefore provides strong evidence for the stereoselective maternal 
transfer of Dechlorane Plus isomers to eggs.

The mean (±standard error) concentration in chick muscle and liver samples was 673±124 
and 2 595±928 µg/kg lw, respectively (total concentration of Dechlorane Plus isomers and 
anti-DP-1Cl). The difference in levels in chick tissues compared with mid-incubation eggs 
was likely caused by lipid consumption during the last days of incubation31. Egg weights also 
decreased (by 10 % at 14 days after the onset of incubation) because of water loss and 
energy consumption during incubation. 

With the assumption that the levels in eggs during incubation represented the initial level in 
eggs from which chicks were successfully hatched, the residual percentage of pollutants 
after incubation was roughly estimated by dividing the amount of substance in chicks (a 
summation of muscle and liver) by that in eggs (median levels were used for the calculation). 
The ratio for Dechlorane Plus was in the range 9 – 14 %. Although this estimation is crude 
(uncertainty exists due to data heterogeneity and underestimations of whole-body 

31 The lipid contents in chick muscle and liver (6.3±1.7 % and 13.1±2.8 %, respectively) were significantly lower than 
that in eggs (14.3±2.9 %) (p < 0.05).
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amounts), the result suggests that there might have been significant metabolism by chicken 
embryos.

The fanti values (0.68±0.02 in liver and 0.72±0.03 in muscle) in chick tissues were higher 
than those in eggs (0.65±0.07). The difference was statistically significantly different for 
muscle and eggs (p < 0.01). This suggests that stereoselective metabolism of the syn- 
isomer occurred during chicken embryo development.

This study is considered to be reliable with restrictions, because the birds were not dosed in 
a standardised manner, and the variability in individual tissue concentrations was high. The 
validity of comparisons based on median concentrations only is therefore open to question. 
However, the study shows that when exposure is sufficiently high, chicken eggs can 
accumulate up to around 7 mg/kg of Dechlorane Plus on a lipid weight basis [around 1 
mg/kg ww32]. It also implies selective maternal transfer of the anti- isomer to eggs and 
stereoselective metabolism of the syn- isomer during chicken embryo development. In 
addition, it suggests that caution is needed in the interpretation of trophic transfer studies 
involving concentrations in bird eggs (see Sections 3.4.1.3 and 3.4.2.2), since they do not 
necessarily reflect parental whole body burdens.

Discussion

Studies with other highly hydrophobic substances such as decabromodiphenyl ether (ECHA, 
2012a) suggest that achieving truly dissolved concentrations in many standard solvent vehicles 
is very difficult. The presence of undissolved microcrystals can mean that the degree of 
absorption across the gut can actually be higher at lower doses and solvent choice may also 
have an influence. This could confound conclusions drawn from any apparent dose-response 
relationship, since the nominal concentrations might not represent the actual dissolved 
concentrations.  Dechlorane Plus does seem to have a reasonable degree of solubility in several 
organic solvents (see Section 1.5), so the variation seen might perhaps be more related to 
saturation of various pathways at different doses. The studies by Zheng et al. (2014a&b) 
involved birds contaminated from their local environment, so at least represent concentrations 
that can actually be achieved in nature.

The main conclusions that can be drawn from these bird studies is that uptake, distribution and 
elimination kinetics are complex. Zheng et al. (2014a) detected the substance in all tissues 
examined in a sample of Domestic Chickens (Gallus gallus domesticus): concentrations were 
variable, but the data suggest that concentrations were typically highest in fat (median: 
10 µg/kg ww), with liver (median: 4.4 µg/kg ww) and muscle (median: 0.92 µg/kg ww) having 
lower concentrations. Fat was the most important reservoir (accounting for 56 % of the 
residues), followed by liver (12 %) and gonad (12 %). Muscle contained significantly lower 
concentrations than other tissues (p < 0.05). The comparable concentrations in these other 
tissues suggests that lipid content was not the only factor that influenced tissue distribution, and 
it was speculated that blood perfusion and sequestration by proteins could be additional factors. 
Wet weight brain concentrations were not significantly different to those in other tissues, but as 
it has the lowest lipid content, the lipid-normalized concentration in brain was the highest among 
all tissues. There was some evidence of preferential accumulation of the anti- isomer in chicken 
compared with soil. In contrast, the Zheng et al. (2014b) study found that liver had the highest 
levels in chicks of this species (up to 9 034 µg/kg lw). Similarly, Li et al. (2013a) found the 
highest concentrations in liver in Common Quail Coturnix coturnix (~1 750 mg/kg lw in the 
10 mg/kg/d dose group after 90 days; lower total levels were found at the 100 mg/kg/d dose 
group, and there appeared to be enrichment of the syn- isomer as exposure increased).

Like fish, residues increased with longer exposure times and a steady state was not achieved. It 
is not known how long it would take to achieve a steady state in chicken or quail, and none of 
the studies investigated depuration kinetics.

Zheng et al. (2014b) reported a wide range of concentrations in Domestic Chicken eggs and 

32 The lipid content of the eggs was 15 ± 4, 14 ± 2 and 15 ± 4 per cent on days 0, 7 and 14 of incubation, respectively.
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chicks. Concentrations in the mother birds were higher than in the eggs and chicks, and the 
maternal transfer potential of the syn- isomer was lower than that of the anti- isomer. There 
could also have been stereoselective metabolism of the syn- isomer during chicken embryo 
development. The study also showed that when natural exposure is sufficiently high, birds’ eggs 
can accumulate up to around 7 mg/kg of Dechlorane Plus on a lipid weight basis [around 1 mg/kg 
ww].

3.4.2.3 Field studies 

Six biota monitoring studies that report some measure of bioaccumulation potential have been 
summarised in detail in Appendix 1 (Sun et al., 2012; Yu et al., 2013; Barón et al., 2014a; Yu 
et al., 2014; Muir et al., 2014 [ABST]; Peng et al., 2015). Other terrestrial wildlife monitoring 
results from the open literature are reported in Appendix 5. 

Monitoring studies for terrestrial wildlife face the same problems and limitations as those 
involving aquatic species (see Section 3.4.1.3). The available data show that European terrestrial 
wildlife is contaminated with Dechlorane Plus, so uptake is clearly occurring. Many European 
samples have been collected from relatively unpolluted environments, where the substance is 
more likely to be present due to long range transport rather than (in)direct local releases. Levels 
therefore tend to be lower than in more polluted environments close to the U.S. manufacturing 
site and in China (e.g. by two orders of magnitude in the study of Guerra et al., 2011).

The highest concentration in terrestrial bird eggs reported to date is around 7 mg/kg lw [around 
1 mg/kg ww] (Zheng et al., 2014b) for Domestic Chicken (Gallus gallus domesticus) from an 
e-waste recycling region in southern China (Zheng et al. (2012) reported a slightly lower 
maximum concentration of just over 3 mg/kg lw). Sun et al. (2012) and Chen et al. (2013b) 
found that other terrestrial bird tissues (e.g. liver and muscle) may accumulate Dechlorane Plus 
up to 3 820 µg/kg [3.82 mg/kg] lw (approximately 500 µg/kg [0.5 mg/kg] ww). In addition, the 
latter study suggests that Dechlorane Plus burdens in terrestrial organisms could be driven by 
the accumulation of the anti- isomer, and factors other than lipid solubility (e.g. hepatic binding 
enzymes) could play important roles in determining deposition in terrestrial bird tissues (based 
on the ratio of muscle and liver levels). Similar findings apply to other highly hydrophobic 
halogenated substances, such as decabromodiphenyl ether (ECHA, 2012a).

Four studies have attempted to investigate biomagnification potential in terrestrial food chains 
involving birds:

 Yu et al. (2013) investigated the biomagnification of Dechlorane Plus in two terrestrial 
food chains in China. BMFs based on median lipid normalized concentrations were 2 in a 
rat–owl food chain, indicating biomagnification, and 0.3 for a sparrow–kestrel food chain, 
indicating biodilution. As previously noted, lipid normalisation might not be appropriate 
for this substance, and when wet weight is considered, the BMFs become 0.9 and 0.4, 
respectively. No significant differences were found for the BMF values of the two isomers 
in either feeding relationship. Other studies have found significantly higher 
concentrations of Dechlorane Plus in some of the same species from the same general 
area, which raises some doubts about the reliability of the BMFs, although they could be 
higher. 

 Barón et al. (2014a) investigated biomagnification potential for terrestrial birds of prey 
in a Spanish national park using egg concentrations (total isomers) and stable isotope 
analysis. Although the paper did not find a clear linear correlation with trophic position, 
a strongly positive trend would result if the species in the highest trophic position is 
discounted (only a single egg was collected for that species).  

 Sun et al. (2012) found a positive correlation between log normalized median muscle 
concentrations (syn- and anti- isomer separately) and δ15N values at both rural and 
urban sites for three terrestrial passerine bird species: Light-vented Bulbul (Pycnonotus 
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sinensis), Long-tailed Shrike (Lanius schach), and Oriental Magpie-robin (Copsychus 
saularis) collected from southern China. Whilst this could imply biomagnification, 
comparisons of trophic position between locations based on raw δ15N data are 
inappropriate since the baseline δ15N values for each site are unknown. It is also unclear 
how the calculations would be affected if the concentrations were expressed as a 
geometric mean rather than median concentration. The variation in trophic status is also 
surprisingly wide for each species. The actual level of accumulation from the diet cannot 
be assessed. This study therefore only provides equivocal evidence that contamination 
levels increase with trophic position in terrestrial passerines.

 Peng et al. (2015) investigated the accumulation of Dechlorane Plus in terrestrial 
passerines from a national nature reserve in South China. The levels of total Dechlorane 
Plus ranged from 1.2 to 104 μg/kg lipid and the levels were found to be significantly 
(p=0.03) higher in insectivorous birds (mean 16.9 μg/kg lipid; n-=27) than in 
omnivorous birds (mean 6.4 μg/kg lipid; n-17). As insectivorous birds generally occupy 
a higher trophic level than omnivorous birds Peng et al. (2015) considered that this could 
be an indication of biomagnification. Unfortunately the trophic levels of the birds in the 
study were not determined.

The interpretation of trophic transfer studies involving terrestrial birds is complicated by the fact 
that sample sizes are small, and a single tissue (usually egg, muscle or liver) is typically analysed. 
Zheng et al. (2014a) showed that fat tissue is an important compartment for Dechlorane Plus 
accumulation in the Domestic Chicken (Gallus gallus), so whole body burdens might be 
significantly different from those implied by measured concentrations in a single tissue 
(particularly muscle). Coupled with the uncertainties about the relevance of lipid normalisation, 
firm conclusions about trophic transfer in birds cannot be drawn from the available data. 

Guerra et al. (2011) found that the concentration of total Dechlorane Plus isomers in Peregrine 
Falcon Falco peregrinus eggs from birds with a known terrestrial diet was slightly lower than 
those with an aquatic-based diet in Spain, but of a similar order of magnitude in Canada. This 
study suggested differences in uptake in the two isomers, with the relative concentration of the 
anti- isomer in eggs from birds with a known terrestrial diet being significantly higher in Spanish 
samples compared to their Canadian counterparts. 

Detection of Dechlorane Plus and anti-[DP-1Cl] in birds’ eggs shows that maternal uptake and 
transfer to eggs can occur. Similarly, detection of these substances in human cord serum 
indicates transfer across the placenta and exposure of foetuses. Presence in human breast milk 
also means that exposure can continue prior to weaning. Sensitive life stages are therefore 
exposed to the substance. Concentrations in maternal sera imply that elevated concentrations 
may arise following prolonged exposure. 

In addition, a number of studies have examined contamination of human tissues (Ren et al. 
(2009); Yan et al. (2012); Ben et al. (2013); Ben et al. (2014); Zhang et al. (2013); He et al. 
(2013); Wang et al. (2014); Chen et al. (2015); Cequier et al. (2013); Sahlström et al. (2014); 
Brasseur et al. (2014); Siddique et al. (2012); and Zhou et al. (2014)) and these are briefly 
summarised in Appendix 1. Studies involving humans are complicated by exposure in 
occupational and consumer settings. It is therefore difficult to interpret these data in terms of 
bioaccumulation assessment. Most of the studies are from China, and reflect local sources that 
presumably include exposure to Dechlorane Plus as vapour or in/on particulates at higher levels 
than might be expected under ‘normal’ environmental conditions (including exposure to 
contaminated indoor dust). However, the substance has also been detected in breast milk 
samples from North America, and is present in blood serum in the European population. The 
distribution of concentrations in various tissues is often skewed, with some high values but many 
lower ones. However, the studies clearly show that Dechlorane Plus is bioavailable to humans 
and frequently detected in general populations (with higher levels in workers). The Zhang et al. 
(2013) study is interesting because it showed an increase in blood levels with presumed exposure 
time (working life). Exposure to developing foetuses and new born children can occur due to its 
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presence in placenta and breast milk. Concentrations in non-occupationally exposed people 
appear to be typically in the region of 1-10 µg/kg lw depending on the tissue. The highest 
reported concentration in human blood is around 3 000 µg/kg [3 mg/kg] lw (Zhang et al., 2013), 
although given the low lipid content of blood, the wet weight concentration would be much lower. 
Anti-DP-1Cl is also frequently detected at lower concentrations.

In addition, Dechlorane Plus has been detected in terrestrial plants. For example, Wang et al. 
(2013a) detected mean total isomer concentrations of 1 038 µg/kg ww for vegetables and 
877 µg/kg ww for grains collected at a site close to the Chinese manufacturing facility33. The 
maximum (for one vegetable type) was 2 720 µg/kg [2.72 mg/kg] ww.

3.4.4 Summary and discussion of bioaccumulation

Dechlorane Plus is very hydrophobic, but its molecular dimensions and relatively high n-octanol 
solubility indicate potential for bioaccumulation. Uncertainties in the physico-chemical data set 
make QSAR predictions based on log KOW difficult to interpret, but a fish BCF of ≤5 500 L/kg is 
suggested. Aqueous exposure is likely to be of limited importance in terms of bioaccumulation 
potential. There are no reliable measured fish BCF data. Based on the apparent water solubility 
limit and reported concentrations in fish in the available aquatic exposure studies, BCFs above 
10 000 L/kg can be estimated, but these are confounded by likely oral ingestion of the substance 
as a precipitate and/or adsorbed to food. The maximum wet weight fish concentrations measured 
in the aqueous BCF studies were 0.385 – 8.72 mg/kg after 30 days for Bluegill Sunfish L. 
macrochirus and 0.327 mg/kg after 56 days for Common Carp C. carpio, although this does not 
necessarily represent the concentration at steady state (it might also include the substance 
adsorbed to skin or present in the gut).

Dietary studies provide a more environmentally realistic exposure route for very hydrophobic 
substances. Whilst none of the available laboratory studies suggest a BMF > 1, they indicate 
that that it takes a long time to reach steady-state conditions (beyond 50 days), and that 
Dechlorane Plus has a long depuration half-life (around 50 days or more in fish). Tomy et al. 
(2008) is the best dietary study available, but the raw data are not available for analysis. Based 
on correlations and theoretical considerations, the long depuration half-lives for Dechlorane Plus 
observed in fish by Tomy et al. (2008) (supported by the findings of Zeng et al., 2014a) are 
considered highly indicative that the fish BCF could exceed 5 000 L/kg. Other dietary studies 
show that juvenile O. mykiss can absorb at least 16 % of the dose from a single feed, and the 
substance has been shown to distribute throughout the body in C. carpio, including gonadal 
tissue. 

Studies with mammals and birds show complex uptake, distribution and elimination kinetics with 
preferential accumulation in liver rather than muscle or blood in some species. The substance 
can be found in gonads and brain tissue, and can be transferred from mothers to eggs. There 
are similar findings in amphibians (Li et al., 2014b). The comparable concentrations in most 
tissues suggests that lipid content may not be the only factor that influences tissue distribution; 
blood perfusion and sequestration by proteins could be additional factors. Like fish, residues in 
birds and mammals appear to increase with longer exposure times and steady state was not 
achieved in the laboratory tests. Also like fish, Dechlorane Plus has a long elimination half-life 
from rat liver, in the region of 180 days or more (Li et al. (2013b), discussed in Section 4.1).

There is conflicting information available on BSAFs although they can be difficult to interpret for 
highly hydrophobic substances. Four studies suggest BSAFs below 1 and one laboratory study 
also gave BSAF values below 1 for Lumbriculus variegatus. However, one field study reported 

33 Wang et al. (2010) reported soil concentrations in the range 377 – 13,400 µg/kg dw from sampling sites within 0.5 km 
of the Chinese manufacturing site (decreasing by an order of magnitude within 7.5 km).
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BSAFs above 1 for three fish species, with values up to 3.2 and 9.0 for the anti- and syn- isomers, 
respectively and another reported BSAFs above 2 for molluscs. A BSAF above 2 suggests that 
the substance can accumulate to a greater extent than by simple partitioning alone. For two 
studies where the BSAF was below 1, the BSAF values for Dechlorane Plus were similar to those 
for BDE-183 (a heptabromodiphenyl ether) in the same samples. 

Several field studies have attempted to measure biomagnification between trophic levels, in both 
aquatic and terrestrial environments. Some studies suggest trophic dilution, whereas others 
suggest trophic magnification. The lack of a standardised approach to the assessment of trophic 
magnification and other confounding factors (including variable exposure across concentration 
gradients in the sampled environment, small sample sizes, analysis of single tissues, and reliance 
on specific feeding relationships) mean that none of the studies is fully reliable.

Monitoring studies show that the two isomers of Dechlorane Plus are widely dispersed in the 
European aquatic and terrestrial environment. Evidence from around the world shows that 
uptake occurs in a wide range of wildlife species throughout freshwater and marine aquatic food 
webs, from invertebrates and fish to piscivorous top predators such as Bald Eagle Haliaeetus 
leucocephalus, Double-crested Cormorant Phalacrocorax auritus, Eurasian Otter Lutra lutra and 
cetaceans (e.g. Delphinus delphis). Dechlorane Plus is also found in bird- and mammal-eating 
predators associated with both aquatic and terrestrial environments (such as Peregrine Falcon 
Falco peregrinus and Polar Bear Ursus maritimus). From the small number of studies available, 
maximum levels in top predators in Europe are broadly in the range 0.1 – 1 µg/kg ww, although 
there are many non-detects.

Many European samples have been collected from relatively unpolluted environments, where the 
substance is more likely to be present due to long range transport rather than (in)direct local 
releases. Such studies show that Dechlorane Plus can be present in wildlife (including top 
predators) in regions relatively remote from human activity, although the levels are typically 
very low (<0.1 µg/kg ww). In contrast, studies in more polluted environments in China and 
North America show higher levels, indicating that organisms have the potential to accumulate in 
the region of 1 – 10 µg/kg ww. The highest concentrations have been observed in China, at up 
to 1 mg/kg ww [97 mg/kg lw] in fish muscle in the vicinity of point sources (whole body 
concentrations are not available), and around 0.5 – 1 mg/kg ww [3 – 7 mg/kg lw] in terrestrial 
bird tissues, including up to around 7 mg/kg lw [~1 mg/kg ww] in birds’ eggs. This suggests 
that if exposure in the European environment were to increase, levels in wildlife might also 
increase. The higher levels that have been found in wildlife exceed those that are considered to 
be of concern within a bioaccumulation context (e.g. a “critical concentration” of 0.065 or 
0.65 mg/kg ww [1.3 or 13 mg/kg lw] can be estimated for Dechlorane Plus based on a critical 
body burden of 0.001 mmol/kg ww recommended in the REACH PBT Guidance (ECHA, 2017a); 
see Appendix 7).

Differences in bioaccumulation patterns in terrestrial environments compared to aquatic are 
difficult to distinguish based on the available information. The concentration of total Dechlorane 
Plus isomers in Peregrine Falcon Falco peregrinus eggs from birds with a known terrestrial diet 
was slightly lower than those with an aquatic-based diet in Spain, but of a similar order of 
magnitude in Canada. Dechlorane Plus has also been detected in terrestrial plants at mean 
concentrations of 1 mg/kg ww for vegetables and 0.9 mg/kg ww for grains collected at a site 
close to the Chinese manufacturing facility (with a maximum for one vegetable type of 
2.72 mg/kg ww). Uptake and translocation in plants has also been shown in a laboratory study 
although the results may have been affected by toxicity caused by other substances.

Although not easily interpretable in the context of bioaccumulation potential, studies of human 
exposure also suggest an increase in blood levels with presumed exposure time (working life). 
Concentrations in non-occupationally exposed people appear to be typically in the region of 1-
10 µg/kg lw depending on the tissue. The highest reported concentration in human blood is 
around 3 000 µg/kg [3 mg/kg] lw, although given the low lipid content of blood, the wet weight 
concentration would be much lower. Detection in human cord serum indicates transfer across 
the placenta and exposure of human foetuses, and presence in human breast milk also means 
that exposure can continue prior to weaning. 
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The amount of information available for the anti- and syn- isomers varies amongst the studies. 
Where the information is available, the syn- isomer appears to be somewhat more 
bioaccumulative as it reaches slightly higher body concentrations or has a longer depuration 
half-life. However, the results for the anti- isomer remain of concern. For instance, the 
depuration half-life in the key fish bioaccumulation study is around three times the bench-
marked value for other vB substances. Without a better understanding of what might affect 
bioaccumulation behaviour of the two isomers (for example metabolic pathways and/or switches 
between isomers in vivo), the two isomers are assumed to have the same bioaccumulation 
potential in the absence of further information.
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4. Human health hazard assessment

Mammalian toxicity data are summarised in detail in Appendix 1. They are not included in the 
main part of this report because the proposal is to identify Dechlorane Plus as vPvB only. This 
section includes relevant information for the bioaccumulation assessment.

4.1 Toxicokinetics (absorption, metabolism, distribution and 
elimination)

A toxicokinetic study conforming to OECD TG 417 is not available. 

The registration dossier includes two robust study summaries for toxicokinetics assessment:

 The first unreferenced study, considered reliable with restrictions by the Registrant (due to 
the small number of animals) was performed in 1983. No guideline was followed and the 
study was not subject to GLP. 14C-Radiolabelled Dechlorane Plus (31.5 mCi/mmol) was 
administered in corn oil once by oral gavage at a dose of 1 mg/kg bw (corresponding to 
4.8 µCi) or 113 mg/kg bw (corresponding to 3.8 µCi) to Sprague-Dawley rats (Rattus 
norvegicus). The composition of the substance was stated to be the same as the commercial 
substance (the ratio of isomers was 5.4:1). The low dose group consisted of three females 
and two males, and the high dose group consisted of two females. Another group of two 
females was fed non-labelled Dechlorane Plus at 1 % in the diet for 14 days before gavage 
administration. No control animals were used. Excretion via urine, faeces, and expired air 
and residual concentrations in organs and carcass were determined. 

One rat was used for monitoring radioactivity in expired air and one rat was used for 
monitoring the time course of blood levels for 48 hours after administration of 1 mg/kg bw. 
Urine and faeces were collected from all remaining rats for 4 days, then the animals were 
killed and radioactivity in 17 different organs/tissues and carcass were determined.

At four days after a single oral administration of 1 mg/kg bw, the percentage of the dose 
excreted in faeces was 83.5 % for females and 92.7 % for males (0.07 % and 0.01 % in 
urine, respectively). This indicates a maximum absorption of 16.5 % in females and 7.3 % 
in males. 

The percentage of the dose excreted in faeces in the higher dose (113 mg/kg bw) group 
was 96.5 % for females (0.009 % in urine). This indicates a maximum absorption of 3.5 % 
in females. 

Four days after single oral administration of 1 mg/kg bw to rats pre-treated with the non-
labelled substance at 1 % in diet for 14 days, 102 % of the dose was excreted in faeces 
(0.03 % in urine) indicating almost no absorption.

Excretion in expired air amounted to 0.004 % of the administered dose within 4 days.

The concentrations in all organs and tissues investigated, besides liver and residual carcass, 
were below 1 ppm. At the high dose, the liver of females contained 1.66 ppm and the 
residual carcass contained 1.25 ppm. All organs and tissues besides liver and residual 
carcass contained well below 1 % of the dose. The livers of males and females at the low 
dose contained 1.60 and 2.29 % of the dose, respectively. The residual carcass of males 
and females at the low dose contained 5.09 and 5.05 % of the dose, respectively. The 
residual carcass of females at the high dose contained 0.90 % of the dose. The carcass of 
pre-treated females contained 4.44 % of the dose.

Metabolites were not investigated.

The Registrant concludes that “almost no” absorption occurs after oral administration to a 
single dose. 
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 The second unreferenced study, considered reliable with restrictions by the Registrant (due 
to the small number of animals and detection of more than 100 % of the administered dose 
in the faeces) was performed in 1979. No guideline was followed and the study was not 
subject to GLP. Two groups of three Sprague-Dawley rats (R. norvegicus) each were given 
a single oral dose of 0.57 mg of 14C-radiolabeled Dechlorane Plus (27.6 µCi in 0.5 mL) 
(purity stated to be the same as the commercial substance) suspended in water with 5 % 
Tween 80 and 5 % gum arabic. Three rats were killed 4 hours after administration and the 
remainder after 24 hours, and Dechlorane Plus was determined by liquid scintillation in 
blood, kidneys, liver, urine, and faeces.

Within 4 hours after oral administration, less than 0.1 % was excreted in urine. At 24 hours, 
less than 1 % had been excreted in urine, and a mean of 94.6 % (range: 76.1 – 104.8 %) 
of the administered dose was excreted in faeces, indicating a maximum absorption of 
around 5.4 %. The sum of total radioactivity detected in blood, kidneys, liver, and urine 
was at or below 6 % of the total dose.

Blood (total blood volume) contained less than 2 %, kidneys contained less than 1 %, and 
liver contained less than 5 % of the administered dose.

One metabolite was found in the liver but its identity and concentration was not reported.

The Registrant concludes that Dechlorane Plus is poorly absorbed after oral administration, 
at a maximum of 6 % of the administered dose. Highest concentrations are found in the 
liver. 

 A third study missing from the registration dossier is Li et al. (2013b), who exposed male 
Sprague–Dawley rats (R. norvegicus) (35 days’ old with an average weight of 110 g) to 
commercial Dechlorane Plus mixed in corn oil by oral gavage for 90 days at different doses 
(0, 1, 10, and 100 mg/kg/d). Another group was exposed to 100 mg/kg/d of the substance 
for 45 days followed by 45 days’ depuration, together with a control group that was fed 
uncontaminated food. Forty-two animals were used in all. Liver, muscle and serum samples 
were analysed using GC-MS. The LoDs for the anti- and syn- isomers were 70.44 and 
108.31 µg/kg lw in muscle/liver, and 0.054 and 0.20 ng/mL in serum, respectively.

Both isomers were detected in all of the tissues measured in the control group at the end 
of the 90-day exposure period (average concentrations in liver were 2.8 ± 1.2 and 0.9 ± 
0.4 mg/kg lw for the anti- and syn- isomer, respectively according to the paper, but the 
supplementary data give slightly different values), indicating a background level of 
exposure (e.g. from feed or air-borne dust). DP-1Cl and DP-2Cl were not detected in the 
control group (LoDs for anti-DP-1Cl were 0.98 µg/kg lw in muscle and liver, and 
0.042 ng/mL in serum, respectively).

In the exposure groups, the highest concentrations of both isomers were detected in liver 
from the 100 mg/kg/d dose group, at 320 ± 49 mg/kg lw for the anti- isomer and 750 ± 
120 mg/kg lw for the syn- isomer (i.e. total concentration ~1 000 mg/kg lw). These levels 
were 12–15 times higher than in muscle and around 5 times higher than in serum from the 
same group. In liver, the concentration of both isomers increased with the dose. However, 
in muscle, the highest concentration of the syn- isomer occurred in the 10 mg/kg/d group 
(~85 mg/kg lw).  Some of the statements in the paper about highest concentrations of the 
anti- isomer and in other tissues do not seem to match the information provided in the 
supplementary data. 

The concentration ratio of the anti- isomer to total isomers was similar to the commercial 
substance in the 1 mg/kg/d group, but significantly decreased in the two higher dose 
groups, suggesting enrichment of the syn- isomer with increasing dose. 

The highest average concentration of syn-DP-1Cl and anti-DP-1Cl occurred in liver in the 
100 mg/kg/d group, reaching 140 ± 51 and 480 ± 170 µg/kg lw, respectively. Average 
concentrations were 5-8 times lower in muscle in the same group, but whereas levels in 
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liver increased with dose, levels in muscle remained fairly constant. Two additional 
unidentified substances were detected in liver as well as in the commercial substance.

The treatment group that was exposed to 100 mg/kg/d for 45 days accumulated a lower 
amount of total isomers in the liver compared to the animals exposed for 90 days (achieving 
an average total liver concentration of ~310 mg/kg lw). This suggests that residues 
increase with longer exposure times. The amounts of both isomers in muscle and liver 
showed no statistically significant change during depuration, although levels in serum 
decreased significantly. The content ratio of syn- and anti- isomers in liver to those in liver 
plus muscle significantly increased after depuration compared with the end of the uptake 
phase. These data suggest that Dechlorane Plus is more prone to accumulate in liver or 
that the elimination rate in liver is lower than that in muscle. The content of both syn- and 
anti-DP-1Cl in the liver decreased significantly after depuration and neither was detected 
in serum after depuration. The elimination half-life of the syn- isomer was about 179 days 
in liver, 44 days in muscle and 24 days in serum. The elimination half-life of the anti- isomer 
was 54 days in muscle and 25 days in serum (the figure for liver is not provided as the 
concentration increased during the depuration phase, although not significantly). 

In conclusion, both isomers preferentially accumulate in liver rather than muscle or blood, 
and have a long elimination half-life in rats. Residues appear to increase with longer 
exposure times – it is not known how long it would take to achieve a steady state.

Discussion 

Based on the two studies summarised in the registration dossier, a single oral dose of 1 mg/kg 
bw in rats may lead to a maximum absorption of between 5 and 20 %. Higher doses, or dosing 
following 14 days’ prior exposure suggest a lower level of absorption, although if the substance 
was present as microcrystals in the vehicle, the nominal concentrations might not reflect actual 
exposure to dissolved substance. About 90 % of the substance is excreted unchanged in faeces 
(excretion in urine and expired air is below 0.1 %). The absorbed substance is widely distributed 
in the body, with the highest concentration in liver. Four days after administration, between 1 % 
and 10 % of the administered dose was found in the carcass. Levels of around 1 – 2 ppm [mg/kg] 
may be reached in both liver and the residual carcass.

The main conclusion that can be drawn from the Li et al. (2013b) study is that uptake, distribution 
and elimination kinetics are complex, with preferential accumulation in liver rather than muscle 
or blood. Dechlorane Plus achieved levels of ~1 000 mg/kg lw in rat liver when dosed at 
100 mg/kg/d via oral gavage for 90 days (the paper does not provide the lipid content so a wet 
weight concentration cannot be estimated). Like fish, residues increased with longer exposure 
times and a steady state was not achieved. Also like fish, Dechlorane Plus has a long elimination 
half-life from rat liver, in the region of 180 days or more. 

None of the studies permit firm conclusions to be drawn about the level of accumulation or tissue 
distribution following exposure to low concentrations over long time periods. 

5. Environmental hazard assessment

Aquatic and terrestrial organism toxicity data are summarised in detail in Appendix 1. They are 
not included in the main part of this report because the proposal is to identify Dechlorane Plus 
as vPvB only.
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6. Conclusions on the SVHC Properties

6.1 CMR assessment

Not relevant for the identification of the substance as SVHC in accordance with Article 57(e) of 
REACH.

6.2 PBT and vPvB assessment

6.2.1 Assessment of PBT/vPvB properties

A weight-of-evidence determination according to the provisions of Annex XIII of REACH is used 
to identify the substance as vPvB. All available information (such as the results of standard tests, 
monitoring and modelling, information from the application of the analogue approach (read-
across) and (Q)SAR results) was considered together in a weight-of-evidence approach. 

6.2.1.1 Persistence

The available data on persistence have been considered in terms of unequivocal, equivocal and 
negative evidence that the substance is very persistent.

Unequivocal evidence

 There are no measured half-life data for degradation of Dechlorane Plus in surface water, 
sediment or soil. Therefore there is no unequivocal evidence that the half-life of the 
substance in these media is sufficiently long to meet the Annex XIII criteria for P or vP.

Equivocal evidence

 Predictions using the BIOWIN model suggest that biodegradation of Dechlorane Plus will 
be very slow. The BIOWIN results are the same as a number of hexachloro-norbornene-
containing analogue chemicals that have been agreed to be persistent organic pollutants 
(POPs) under the Stockholm Convention. These POPs are considered to have long 
environmental half-lives consistent with the vP criteria of Annex XIII. For example, 
heptachlor has a half-life of up to two years in soil, whereas the half-life of chlordane in 
soil is around one year. These two substances are the closest analogues to Dechlorane 
Plus with measured data. Soil and sediment simulation studies for endosulfan (a much 
more polar substance) indicate that the hexachloro-norbornene part of the molecule is 
very stable: the water-sediment half-life was >120 days and the soil half-life of 
metabolites was between 123 and 391 days. 

In addition, the two possible microbial degradation pathways predicted for Dechlorane 
Plus are the same as the POP analogues. It is unlikely that metabolic rates for these 
pathways will be more rapid for Dechlorane Plus, which is significantly less water soluble 
than the POPs. 

This information is assigned a high weighting in the persistence evaluation.

 The water solubility data for Dechlorane Plus (<2 ng/L), together with a likely log KOW 
value above 9, suggests that it will be strongly bound to organic carbon in sediment/soil 
particles and therefore likely to be of low bioavailability to micro-organisms for 
biodegradation. In addition, studies with fish do not suggest a high potential for 
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biotransformation (e.g. Tomy et al., 2008). This supports the premise that the molecule 
is metabolically recalcitrant.

 Dechlorane Plus was detected in a lake sediment core layer corresponding to around 1980 
(Qiu et al., 2007). Whilst this does not provide any information about half-life, it shows 
that the substance can persist in sediments for over 20 years. 

 Dechlorane Plus has been detected in remote locations such as the Arctic and Antarctic in 
air, sediment and in wildlife such as Arctic Char (Salvelinus alpinus), Glaucous Gull (Larus 
hyperboreus), Black Guillemot (Cepphus grylle), Common Guillemot (Uria aalge), Ringed 
Seal (Phoca hispida) and Polar Bear (Ursus maritimus).  This indicates long range 
transport of Dechlorane Plus, probably as a result of adsorption to particulates in the 
atmosphere. 

Negative evidence

 None of the available data clearly show that Dechlorane Plus is rapidly degraded in water, 
sediment or soil. One biodegradation screening study (Chou et al., 1979) reports low 
recoveries of radioactivity under aerobic conditions after six weeks’ incubation. However, 
as discussed in Section 3.1.2.1.2 of Appendix 1, there are significant deficiencies in the 
methodology. It was not performed according to a standard test guideline and the 
analytical method was inappropriate to assess the degradation of such a poorly water 
soluble substance as Dechlorane Plus. It is not considered to be valid.

In summary, although there are no environmental simulation studies available for Dechlorane 
Plus that provide an unequivocal measurement of the half-life in water, sediment or soil, several 
lines of evidence indicate that it meets the vP criteria34 in Annex XIII of REACH. In particular, 
the predicted low level of biodegradability and structural similarity to chemicals that have been 
agreed to meet the Stockholm Convention definition of a POP, and lack of any predicted 
degradation pathways that are different to the POPs strongly point to the high probability that it 
will not degrade any faster than them. This conclusion is supported by its very low water 
solubility (suggesting limited bioavailability to micro-organisms once bound to solid matrices), 
lack of evidence of biotransformation in fish (supporting the premise that the molecule is 
metabolically recalcitrant) and field evidence suggesting persistence in sediment as well as 
widespread presence in remote regions. 

6.2.1.2 Bioaccumulation

The available data on bioaccumulation have been considered in terms of unequivocal, equivocal 
and negative evidence that the substance is very bioaccumulative.

Unequivocal evidence

 None of the available BCF studies is valid, so it is not possible to unequivocally 
demonstrate that the substance has a BCF value above 2 000 L/kg (B) or 5 000 L/kg (vB). 
Based on the apparent water solubility limit and reported fish concentrations in the 
available aquatic exposure studies, BCFs above 10 000 L/kg can be estimated, but these 
are confounded by likely oral ingestion of the substance as a precipitate and/or adsorbed 
to food. They are therefore assigned a low weighting for the purposes of this analysis. 

34 A substance fulfils the vP criterion when the half-life is higher than:

- 60 days in marine, fresh- or estuarine water, or
- 180 days in marine, fresh- or estuarine water sediment, or
- 180 days in soil.

These are the same as the Stockholm Convention criteria.
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Dietary exposure is more relevant, so the lack of a valid BCF study is not a hindrance for 
the evaluation of bioaccumulation.

Equivocal evidence

 Dechlorane Plus is a very hydrophobic substance, with a measured solubility in pure water 
below 2 ng/L (0.002 µg/L) at 20 °C and estimated log KOW value ≥9. This meets the 
screening vB criterion (log KOW ≥5). QSAR predictions based on log KOW are uncertain, but 
a fish BCF of up to 5 500 L/kg is suggested, and one model predicts a BAF of 7.5 × 105 L/kg 
ww. Its molecular weight of 654 g/mole, estimated maximum diameter of around 1.4 nm 
and n-octanol solubility of 470 mg/L at 25 °C mean that significant uptake via passive 
transport cannot be ruled out if aquatic organisms are exposed. Indeed, the n-octanol 
solubility suggests that lipid solubility might be relatively high, and fat tissue was the most 
important reservoir for the substance in a study involving Domestic Chickens (Zheng et 
al., 2011a). In addition, several studies suggest that factors other than lipid solubility 
(e.g. hepatic binding enzymes, blood perfusion and sequestration by proteins) could play 
important roles in determining tissue deposition (e.g. Zeng et al. (2014a), de la Torre et 
al. (2012), Guerra et al. (2011), Zhang et al. (2011a) and Li et al. (2013a&b) and Chen 
et al. (2013b)). The log KOA >5 also suggests that it has a high biomagnification potential 
in terrestrial wildlife.

 The key dietary bioaccumulation study of Tomy et al. (2008) with juvenile Rainbow Trout 
O. mykiss is reliable with restrictions. In the absence of the original raw data, a definitive 
conclusion about the BMF from this study cannot be drawn. The theoretical BMF could 
have been around 0.12 for the syn- isomer. A BMF of 0.1 or above correlates with a lipid-
normalised BCF of 2 000 L/kg based on both theoretical arguments and empirical 
observations (MacKay et al., 2013 and Inoue et al., 2012). 

 With one exception (musk xylene), substances already agreed to meet the vB criterion or 
identified as POPs based on BCF values generally have relatively long depuration half-lives 
of 20 days or more in at least one fish species (see Appendix 6 and 7). A depuration half-
life above around 8-10 days is also suggestive of a lipid-normalised and growth-corrected 
BCF above 5 000 L/kg according to the analysis in EA (2012). The depuration half-life for 
Dechlorane Plus was around 30-40 days for the anti- isomer and 50-70 days for the syn- 
isomer in the dietary study of Tomy et al. (2008) with juvenile Rainbow Trout O. mykiss.35 
Zeng et al. (2014a) found that residues remained in all tissues in a study using Common 
Carp C. carpio after 45 days of depuration. The long depuration half-life for Dechlorane 
Plus in fish is therefore highly indicative of a very bioaccumulative substance. Dechlorane 
Plus also has an elimination half-life from liver in the region of 180 days or more in Brown 
Rats Rattus norvegicus (Li et al., 2013b). These findings are assigned a high weight in the 
bioaccumulation assessment.

 Dechlorane Plus is bioavailable in laboratory studies. For example, juvenile O. mykiss can 
absorb at least 16 % of the dose from a single feed (Xiao et al., 2013). All available dietary 
laboratory studies suggest that it takes a long time to reach steady-state. Monitoring 
studies show that the two isomers of Dechlorane Plus are widely dispersed in aquatic and 
terrestrial food webs, including in areas relatively remote from human activity such as the 
Arctic and Antarctic. This involves invertebrates and fish as well as predatory birds and 
mammals such as Double-crested Cormorant Phalacrocorax auritus, Bald Eagle Haliaeetus 
leucocephalus, Peregrine Falcon Falco peregrinus, Eurasian Otter Lutra, Wolf Canis lupus, 
Polar Bear Ursus maritimus and cetaceans (e.g. Delphinus delphis). The highest levels are 
observed in polluted environments in China and near the U.S. manufacturing facility.

35 Arnot & Quinn (2015) estimated a growth-corrected depuration half-life of about 100 days for a ca. 15 g fish with 5 % 
lipid content using the results of the Zitko (1980) study with Atlantic Salmon S. salar. However, this study is not valid 
for a variety of reasons: in particular co-exposure to other related substances might have affected the uptake or 
metabolism of Dechlorane Plus, as well as the health of the fish.
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 Wang et al. (2015) reported field BSAFs above 1 for three fish species, with values up to 
3.2 and 9.0 for the anti- and syn- isomers, respectively and Jia et al. (2011) reported 
BSAFs above 2 for molluscs. A BSAF above 2 suggests that the substance can accumulate 
to a greater extent than by simple partitioning alone. 

 There is some field evidence of biomagnification between trophic levels:

i) Wu et al. (2010) calculated a TMF above 1 for both Dechlorane Plus isomers (11.3 
for the syn- isomer and 6.5 for the anti- isomer) in a freshwater food web from 
South China. The TMF depends on the assignment of one species (a water snake) 
to the highest trophic position. Inclusion of a top predatory fish (Northern 
Snakehead) results in a lack of biomagnification (and even biodilution for the anti- 
isomer). Levels in three benthic-feeding carp species were consistently higher than 
potential invertebrate prey, suggesting that biomagnification may occur for some 
feeding relationships although this might also be influenced by sediment ingestion. 

ii) Tomy et al. (2007) reported a lipid weight TMF value above 1 for the anti- isomer in 
Lake Winnipeg (TMF = 2.5, r2 = 0.12, p = 0.04), but not for the syn- isomer, or 
either isomer in Lake Ontario. In Lake Winnipeg, trophic level-adjusted BMFs (based 
on the ratio of lipid-corrected concentrations) for four feeding relationships were all 
below 1 for both syn- and anti- isomers, with the exception of the Walleye/Whitefish 
predator-prey relationship (BMF of 11, for the anti- isomer only). In Lake Ontario, 
trophic level-adjusted BMFs calculated for four feeding relationships were below 1 
for both isomers, with the exception of the Lake Trout/Smelt predator-prey 
relationship (12 for the syn- isomer and 11 for the anti- isomer). 

iii) Wang et al. (2015) reported a statistically significant TMF of 1.9 (95 % CI: 1.1–3.4) 
for anti-Dechlorane Plus in an aquatic food chain in China. Concentrations in fish 
were much higher than in the study of Tomy et al. (2007), although sample sizes 
were small.

iv) Sun et al. (2015) reported a TMF for total Dechlorane Plus of 2.31 in a Chinese 
aquatic food web, although the regression was not statistically significant (p = 0.07). 
Estimated BMFs for various predator-prey combinations were in the range 1.27 to 
11.8. These calculations assume that a predator consumes one prey species only, 
and this is unlikely to be the case in reality.

v) Several studies have attempted to investigate biomagnification potential in food 
chains involving birds, and some suggest BMFs above 1 for some feeding 
relationships or a positive trend with apparent trophic position (e.g. Yu et al., 2013; 
Barón et al., 2014a; Sun et al., 2012; Peng et al., 2015). As well as the usual 
interpretational issues surrounding field studies, uncertainties about the relevance 
of lipid normalisation and trophic positioning of the sampled species mean that firm 
conclusions about trophic transfer in birds cannot be drawn from the available data. 
These studies therefore only provide equivocal evidence that contamination levels 
increase with trophic position in birds.

Field studies are difficult to interpret because there are many confounding factors, 
including variable exposure across concentration gradients in the sampled environment, 
small sample size and a limited choice of tissues that might not actually be representative 
of whole body concentrations. TMF values obtained for polluted environments close to 
point sources are also subject to uncertainty because organisms higher in the food chain 
may be receiving the substance directly via water or sediment in addition to exposure via 
food. Because of the confounding factors, all of these studies are assigned a low weighting 
in the bioaccumulation assessment. 

Dechlorane Plus has been detected in human cord serum, which indicates transfer across 
the placenta and exposure of human foetuses. The presence of the substance in human 
breast milk also means that exposure can continue prior to weaning. These data have 
generally been obtained in areas where high exposure to the chemical occurs (e.g. 
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e-waste recycling sites in Asia). It cannot be stated with certainty whether the presence 
of a substance in human tissues alone is indicative of a B or vB substance, so this 
information is assigned a moderate weighting for the bioaccumulation assessment.

 The REACH PBT Guidance (ECHA, 2017a) suggests a value of 0.001 mmol/kg ww 
[0.02 mmol/kg lipid (normalised to a lipid content of 5 %)] as a level of accumulation that 
is unlikely to lead to high body burdens. This is divided by a factor of 10 to account for 
species differences and organ versus body differences. In the case of Dechlorane Plus 
(with a molecular weight of 653.73 g/mol), this “critical concentration” is equivalent to 
0.65 mg/kg ww [13 mg/kg lw] (without the additional factor of 10), or 0.065 mg/kg ww 
[1.3 mg/kg lw] (with the additional factor of 10) (see Appendix 7). 

The following maximum concentrations have been reported for environmental biota 
samples:

ca. 1 mg/kg ww [~95 mg/kg lw] in fish muscle (Wang et al., 2015);
ca. 1 mg/kg ww [~7 mg/kg lw] in terrestrial bird eggs (Zheng et al., 2014b);
ca. 0.5 mg/kg ww [~3.8 mg/kg lw] in terrestrial bird liver and muscle (Sun et al., 2012; 

Chen et al., 2013b);
ca. 3 mg/kg lw in human blood (Zhang et al., 2013);
1 mg/kg ww for vegetables and 0.9 mg/kg ww for grains (with a maximum for one 

vegetable type of 2.72 mg/kg ww) (Wang et al., 2013a).

In addition, a concentration of ca. 1 000 mg/kg [ca. 1 g/kg] lw in liver in Brown Rats 
Rattus norvegicus was achieved under laboratory conditions when dosed at 100 mg/kg/d 
via oral gavage for 90 days (Li et al., 2013b). Similar findings were made in Common 
Quail Coturnix coturnix (Li et al., 2013a), with the highest concentrations 
(ca. 1 750 mg/kg lw) detected in livers of the 10 mg/kg/d dose group after 90 days. None 
of the available laboratory fish studies using aqueous exposure are valid and they are 
confounded by variable exposure concentrations and potential ingestion of particulates 
and the substance adsorbed to food. Nevertheless, (non-steady state) concentrations up 
to 8.78 mg/kg ww were observed in Bluegill Sunfish Lepomis macrochirus (Boudreau and 
Rausina, 1973).

Some of these concentrations exceed the critical concentration without the factor of 10, 
and all exceed the critical concentration with the factor of 10. The accumulation in rat 
liver exceeds the highest critical concentration by a factor of around 75. On this basis, 
Dechlorane Plus can clearly achieve concentrations in biota that are of concern in a 
bioaccumulation context. This finding is assigned a high weighting in the bioaccumulation 
assessment.

Negative evidence

 Some field studies do not indicate biomagnification (e.g. Klosterhaus et al., 2012; Barón 
et al., 2013; Peng et al., 2014), or suggest BSAFs below 1 (Zhang et al., 2011c; Shen et 
al., 2011a; Wang et al., 2012; He et al., 2014). One non-standard laboratory study also 
gave BSAF values below 1 for Lumbriculus variegatus (Li et al., 2014a). However, the use 
of field evidence is given a low weighting in this analysis, and there are complications in 
the interpretation of BSAF data for highly hydrophobic substances. It may also be noted 
that for two studies where the BSAF was below 1, the BSAF values for Dechlorane Plus 
were similar to those for BDE-183 (a heptabromodiphenyl ether) in the same samples.

Significant limitations in the available regulatory data set create uncertainty in the 
bioaccumulation assessment. A high level of bioaccumulation can be expected based on simple 
screening data related to physico-chemical properties and molecular parameters. There are no 
definitive data from fully valid studies showing that Dechlorane Plus has a fish BCF above 
5 000 L/kg, a fish BMF > 1 or BSAF > 1 in the laboratory. Evidence from field studies is 
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conflicting; whilst some suggest TMF/BMF/BSAFs above 1, none of the studies is considered to 
be particularly reliable. Nevertheless, the substance is widely dispersed in both aquatic and 
terrestrial food chains, including top predators. In terms of the aim of protecting organisms from 
unpredictable adverse effects, a long depuration half-life is a key factor since substance 
concentrations may take a long time to decline once emissions cease. Dechlorane Plus has a 
long depuration half-life in fish consistent with other substances that have a fish BCF above 
5 000 L/kg (supported by a long depuration half-life in mammalian liver). Levels achieved in 
laboratory exposures and detected in a variety of wildlife species indicate that Dechlorane Plus 
can achieve a relatively high body burden in some cases, consistent with levels that may be 
associated with toxic effects due to baseline narcosis (see Appendix 3, 4 and 6). These are the 
principle reasons why the substance is concluded to meet the very bioaccumulative (vB) criteria36 
in Annex XIII of REACH.

6.2.1.3 Toxicity

6.2.1.3.1 Fulfilment of the T criterion based on human health classification

The substance does not appear to cause relevant adverse effects in mammals via oral or dietary 
exposure at concentrations above 1 000 mg/kg bw/d, although there are some data gaps (e.g. 
there are no long-term studies exceeding 90 days, which might be important given the 
apparently slow uptake of the substance). The dosing vehicles might also limit exposure (e.g. 
due to the presence of undissolved micro-crystals), such that the high “doses” might not truly 
reflect the degree of exposure of the organisms.

Nevertheless, based on the available data, Dechlorane Plus does not meet the classification 
criteria for mutagenicity, toxicity to reproduction or specific target organ toxicity. The data are 
considered to be conclusive but not sufficient for classification for these endpoints. 
Carcinogenicity data are lacking (and are not required at the registration tonnage). There is 
some evidence for potential liver impairment in mice (Wu et al., 2012), but the significance of 
these findings is unclear.

Based on this information, the T criterion is not fulfilled at present. 

6.2.1.3.2 Fulfilment of the T criterion based on ecotoxicity data

The very limited available data do not indicate that Dechlorane Plus fulfils the T criterion for the 
environment. All the available aquatic toxicity studies were conducted at concentrations 
significantly above the solubility limit of the substance in pure water (2 ng/L), and studies using 
dietary and gavage exposure also used relatively high concentrations that may not be 
environmentally relevant. The study of Liang et al. (2014) suggests that the substance might 
induce potentially toxic effects in fish liver, but is inconclusive.  However, similar findings were 
also observed in a study with mice via oral exposure (see Wu et al. (2012) in Section 4.2.1 of 

36 A substance fulfils the vB criterion when the BCF in aquatic species is higher than 5 000 L/kg; or other information on 
the bioaccumulation potential [is available] … such as: 

- Results from a bioaccumulation study in terrestrial species; 
- Data from scientific analysis of human body fluids or tissues, such as blood, milk, or fat; 
- Detection of elevated levels in biota, in particular in endangered species or in vulnerable populations, compared to 
levels in their surrounding environment; 
- Results from a chronic toxicity study on animals; 
- Assessment of the toxicokinetic behaviour of the substance; 
- Information on the ability of the substance to biomagnify in the food chain, where possible expressed by 
biomagnification factors or trophic magnification factors.
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Appendix 1). Recent non-standard studies with adult and embryo/larval Zebrafish suggest that 
Dechlorane Plus has biological activity and can induce effects such as oxidative stress, thyroid 
hormone-related gene up-regulation and neurobehavioural changes (Hang et al., 2013 [ABST]; 
Noyes et al., 2015; Kang et al., 2016; Chen et al., 2017). However, the reliability of the findings 
is uncertain, their links to population-relevant adverse apical effects is unknown, and 
benchmarking with other substances would be beneficial (where this has been done, the level of 
response seems lower for Dechlorane Plus than (chlorinated) phosphate esters). In general, the 
NOEC from these studies appears to be above 0.01 mg/L (for aqueous exposures), i.e. above 
the T criterion (and also significantly above the solubility limit in pure water).

It is highly unlikely that effects would be observed in short- or long-term toxicity tests involving 
aqueous exposure, as there would be difficulties in maintaining test concentrations given the 
very low water solubility and high hydrophobicity37.  A more appropriate test might be a long-
term fish toxicity study with relevant life stages using dietary exposure, although a standard test 
guideline does not exist. 

Several studies show that maternal uptake and transfer to eggs can occur in birds (e.g. Guerra 
et al., 2011; Munoz-Arnanz et al., 2011; Gauthier et al., 2007; Barón et al., 2014a; and Zheng 
et al., 2014b) and fish (e.g. Wu et al., 2013; Sühring et al., 2015).  The studies of Zhang et al. 
(2011a) and Zeng et al. (2014a) also show that the substance can cross the blood-brain barrier, 
is present in gonads and can be passed from females to eggs in fish. Li et al. (2014b) found that 
the substance can cross the blood-brain barrier in frogs. Similarly, detection of these substances 
in human cord serum indicates transfer across the placenta and exposure of foetuses, and 
presence in human breast milk also means that exposure can continue prior to weaning (e.g. 
Ben et al. (2014) and Zhou et al. (2014)). Sensitive life stages and tissues are therefore exposed 
to the substance following prolonged exposure, and there is a possibility that they might 
experience subtle but important adverse effects that are not detectable in the studies currently 
available (e.g. because of their short duration).

No sediment toxicity studies are available. 

Suitable long-term soil organism toxicity data are also unavailable, although two studies 
investigating molecular and biomarker end points have detected signs of oxidative stress and 
other damage (including on DNA) in the earthworm Eisenia fetida following exposures up to 
14 days (Zhang et al., 2014) and 28 days (Yang et al., 2014), with a 28-d NOEC below 0.1 mg/kg 
dw. Although these findings cannot be related directly to adverse population-relevant apical 
effects, they imply that effects (e.g. on behaviour and reproduction) cannot be excluded in 
earthworms over the longer term.

Results from long-term or reproductive avian toxicity studies may also be used assess the T 
criterion. No mortalities occurred in male Common Quail (Coturnix coturnix) exposed up to 
1 000 mg/kg bw/d for 90 days (Li et al., 2013a). No effects were observed in Domestic Chicken 
(Gallus gallus domesticus) embryonic hepatocytes in vitro or embryos following egg injection 
(although there was a possible dose-dependent decrease in pipping success, the results were 
within the historical control range so cannot be considered significant). The available data do not 
suggest significant toxicity in birds, but a standard test guideline study is not available so the 
findings cannot be considered conclusive. 

Dechlorane Plus is structurally related to known pesticides such as heptachlor (CAS no. 76-44-
8) and chlordane (CAS no. 57-74-9) (see Section 1.4). However, the structures and physico-
chemical properties of the analogues and Dechlorane Plus are not similar enough to conclude 
that Dechlorane Plus would have similar toxic properties. 

37 Indications of effects on growth of Sea Lettuce (Ulva pertusa) have been reported in a 14-d bioconcentration study by 
Zhao et al. (2014). However, the results of this study are not considered to be sufficiently robust to conclude that the T 
criterion is met.
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In summary, the available information is insufficient to make a full assessment of the T criterion 
based on ecotoxicity data. 

6.2.1.4 Additional considerations

As summarised in Appendix 2, several studies have detected 1,3- or 1,5-Dechlorane Plus 
monoadduct (DPMA) in environmental samples such as sediment and fish (e.g. Sverko et al., 
2010b; Guerra et al., 2011; Tomy et al., 2013; Sühring et al., 2014; Wang et al., 2015; Wolschke 
et al., 2015; Rjabova et al., 2016). In some cases, the concentrations of DPMA isomers are 
greater than the total Dechlorane Plus concentration in the same samples. In addition, it is 
possible that failure to use a non-destructive clean-up procedure for sample preparation could 
lead to under-reporting of this substance (Rjabova et al., 2016).  

Whilst there is uncertainty in the QSAR predictions, 1,3-/1,5-DPMA screens as being potentially 
PBT and/or vPvB. No information is available on mammalian toxicity, but if it reacts like aldrin 
or heptachlor via epoxidation in the environment, it could be neurotoxic and/or cause 
hepatotoxicity.

Given its structure, Dechlorane Plus is the only likely source of DPMA in the environment. There 
is no information on reaction rates or amounts that can be formed under relevant environmental 
conditions. Some other possible transformation products (e.g. hexachloronorbornadiene) also 
screen as potentially PBT and/or vPvB. 

A definitive conclusion would require experimental data to confirm that these degradants are 
formed in relevant amounts in standard transformation studies, and also to confirm their 
properties. However, DPMA in particular flags an additional relevant concern as it is has been 
detected in biota (including in the Antarctic).

6.2.2 Summary and overall conclusions on the PBT and vPvB properties

Persistence

Based on the weight of evidence of the data available, it is concluded that Dechlorane Plus meets 
the criteria for vP in Annex XIII of REACH. This is based on:

 modelling of degradation potential and microbial metabolic pathways which suggests that 
biodegradation is likely to be very slow; and

 a low probability that it will degrade any faster than structural analogues that are 
considered to be very persistent under the Stockholm Convention.

This conclusion is also supported by the very low water solubility (suggesting limited 
bioavailability to micro-organisms once bound to solid matrices), monitoring data indicating that 
the substance can persist in sediments (a major sink) for many years, lack of evidence of 
biotransformation in fish (supporting the premise that the molecule is metabolically recalcitrant) 
and widespread occurrence in remote regions.

Bioaccumulation

Using a weight of evidence assessment of the data available, Dechlorane Plus meets the vB 
criteria in Annex XIII of REACH. This is based on:

 the long-depuration half-life determined in fish feeding studies which is indicative of a 
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BCF above 5 000 L/kg, by comparison with other substances (supported by a long 
depuration half-life in mammalian liver);

 numerous studies that show that the substance is widely dispersed in freshwater, marine 
and terrestrial food chains, including top predators; and

 evidence that the substance can exceed levels in biota that are of concern based on 
critical body burden considerations related to baseline narcosis.

This conclusion is supported by the detection of the substance in human blood, placenta and 
breast milk.

Toxicity

Based on the available ecotoxicity and mammalian data, Dechlorane Plus does not currently 
meet the T criterion. Long-term toxicity studies using relevant life stages of fish (via diet), 
sediment or soil organisms, and/or birds could be performed to clarify whether adverse effects 
can occur via these exposure routes. However, as the substance meets both the vP and vB 
criteria, these are not scientifically necessary for environmental risk management purposes.

Other concerns

The substances 1,3- and 1,5-Dechlorane Plus monoadduct (DPMA) have been detected in the 
environment, sometimes at higher concentrations than Dechlorane Plus in the same samples. 
DPMA might be under-reported because destructive sample preparation methods may degrade 
it. Dechlorane Plus is the only likely source of these two substances, although there is no 
information on reaction rates or amounts that can be formed under relevant environmental 
conditions. Based on predictive models, DPMA screens as being potentially PBT and vPvB on the 
basis of QSAR (although some of the predictions are uncertain). No information is available on 
its mammalian toxicity, but due to structural similarities to aldrin or heptachlor it might be 
epoxidised in the environment to form a substance that could be neurotoxic and/or cause 
hepatotoxicity. Experimental data would be needed to confirm these properties. However, as a 
degradation product of Dechlorane Plus, any concerns about DPMA would be alleviated by the 
identification of Dechlorane Plus as a substance of very high concern. 

In conclusion, despite the lack of definitive data, Dechlorane Plus is proposed to be identified as 
a vPvB substance according to Art. 57(e) of REACH by comparing all relevant and available 
information listed in Annex XIII of REACH with the criteria set out in the same Annex, in a weight-
of-evidence determination.
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Part II

7. Registration and C&L notification status 

7.1 Registration status 

Table 14: Registration status

From the ECHA dissemination site38

Registrations 2 Full registration(s)

(Art. 10)

7.2 CLP notification status

Table 15: CLP notifications

CLP Notifications39

Number of aggregated notifications 2

Total number of notifiers 170

8. Total tonnage of the substance 

Table 16: EU and global tonnage status

Total tonnage band for the REACH registered 
substance (excluding the volume registered 
under Art 17 or Art 18)40

100-1 000 tonnes/year

Tonnage information from public sources 
other than registration dossiers, global 
volume41

5 000 tonnes/year

38 https://echa.europa.eu/registration-dossier/-/registered-dossier/11906/1 (accessed 04/07/2017)
39 C&L Inventory database, http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database 
(accessed 13/07/2017)
40 https://echa.europa.eu/registration-dossier/-/registered-dossier/11906/1 (accessed 04/07/2017)
41 Ren et al., 2009.

https://echa.europa.eu/registration-dossier/-/registered-dossier/11906/1%20
http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
https://echa.europa.eu/registration-dossier/-/registered-dossier/11906/1%20
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9. Information on uses of the substance

Dechlorane Plus is an additive chlorinated flame retardant, introduced in the 1960s as a 
substitute for Dechlorane (Mirex) (CECBP, 2008). Its market is therefore presumably mature. 

According to the website of one of the few known global producers (Oxychem Corp, USA)42, 
Dechlorane Plus is used as a non-plasticizing flame retardant in a wide variety of polymeric 
systems, with applications in moulded or extruded electrical/electronic applications and ‘wire 
and cable’, including nuclear power plant control cable. A submission to the U.S. EPA in 200443 
mentioned uses of the polymers in coatings for commercial electrical wires and cables, in 
connectors used in computers, and in plastic roofing material used for commercial buildings. 
Claimed benefits include maintaining electrical and physical properties, excellent UV stability, an 
increase in heat distortion temperature, and no blooming. It is claimed to be a more efficient 
flame retardant than brominated additives in some polymers. It also produces less smoke in 
polyolefin compositions than decabromodiphenyl ether. 

Dechlorane Plus is not manufactured in the EU by Registrants to date44. It is noted that at the 
time of writing, only manufacturers and importers of quantities in excess of 100 tonnes per year 
are obliged to have registered. Non-confidential uses are listed below (taken from the ECHA 
public dissemination site, unless otherwise stated). A broad range of uses and applications are 
indicated, but it is not clear how many are currently relevant. Descriptor codes defined by the 
Registrant (taken from the ECHA public dissemination site) are presented in Table 19.

Use in an industrial setting (use of substance as such):

 Formulation (types of formulated products identified as adhesives, sealants; explosives; 
metal surface treatment products; polymer preparations and compounds).

 Formulation [mixing] of preparations and/or re-packaging (excluding alloys). 
 Manufacture of plastics products, including compounding and conversion. 
 Manufacture of other non-metallic mineral products, e.g. plasters, cement. 
 Manufacture of computer, electronic and optical products, electrical equipment. 
 General manufacturing, e.g. machinery, equipment, vehicles, other transport equipment. 
 Manufacture of food products. 
 Manufacture of fine chemicals.

The SPIN database confirms the use of Dechlorane Plus in adhesives and binding agents in the 
air transport sector over the past eight years, but does not present the volumes in use in this 
sector45.

Dechlorane Plus is listed in the SPIN database. The annual use of Dechlorane Plus in Sweden 
from 1999 to 2006 was reported by Kaj et al (2010) and is listed below in Table 13. No use was 
reported for Finland, Norway and Denmark during this time. It was reported that in 2008 there 
was one preparation registered as raw material for production of plastic material, but there was 
no sale (KEMI, 2010 cited in Kaj et al., 2010). There do not appear to be any more recent 
notifications. 

42 http://www.oxy.com/OurBusinesses/Chemicals/Products/Documents/dechloraneplus/ dechlorane_plus.pdf. Another 
major producer mentioned in the scientific literature is Anpon Electrochemical Co., Ltd in Jiangsu, China.
43 http://www.epa.gov/hpv/pubs/summaries/dechlorp/c15635.pdf
44 Non-confidential extracts of registration dossier for Dechlorane Plus, published (disseminated) by ECHA via its 
Registered Substances information web pages, http://apps.echa.europa.eu/registered/data/dossiers/DISS-dffb4072-
e357-47ae-e044-00144f67d031/DISS-dffb4072-e357-47ae-e044-00144f67d031_DISS-dffb4072-e357-47ae-e044-
00144f67d031.html, accessed August 2017.
45 http://spin2000.net/ accessed August 2017.

http://apps.echa.europa.eu/registered/data/dossiers/DISS-dffb4072-e357-47ae-e044-00144f67d031/DISS-dffb4072-e357-47ae-e044-00144f67d031_DISS-dffb4072-e357-47ae-e044-00144f67d031.html
http://apps.echa.europa.eu/registered/data/dossiers/DISS-dffb4072-e357-47ae-e044-00144f67d031/DISS-dffb4072-e357-47ae-e044-00144f67d031_DISS-dffb4072-e357-47ae-e044-00144f67d031.html
http://apps.echa.europa.eu/registered/data/dossiers/DISS-dffb4072-e357-47ae-e044-00144f67d031/DISS-dffb4072-e357-47ae-e044-00144f67d031_DISS-dffb4072-e357-47ae-e044-00144f67d031.html
http://spin2000.net/


ANNEX XV – IDENTIFICATION OF DECHLORANE PLUS AS SVHC

69 

Table 17: Use of Dechlorane Plus and total number of preparations containing 
Dechlorane Plus in Sweden

Year Amount (tonnes) Number of 
preparations

2006 5 3
2005 11 3
2004 7 3
2003 4 3
1999 2 7

Source: (SPIN, 2010 cited in Kaj et al., 2010)

Use by professional users (use of substance as such):

 Formulation [mixing] of preparations and/or re-packaging (excluding alloys). 
 Manufacture of rubber products. 
 Manufacture of plastics products, including compounding and conversion. 
 Manufacture of computer, electronic and optical products, electrical equipment. 
 General manufacturing, e.g. machinery, equipment, vehicles, other transport equipment. 
 Manufacture of fine chemicals.

Use by consumers (use of formulated products only):

 Adhesives, sealants. 
 Explosives. 
 Metal surface treatment products, including galvanic and electroplating products. 
 Polymer preparations and compounds.

Service life release from wide dispersive exposure:

 Vehicles. 
 Machinery, mechanical appliances, electrical/electronic articles. 
 Electrical batteries and accumulators. 
 Stone, plaster, cement, glass and ceramic articles. 
 Fabrics, textiles and apparel. 
 Leather articles.

Service life release in industrial setting:

 Rubber articles.

Product literature (OxyChem, 2007) available from the lead Registrants’ website provides some 
useful additional information regarding performance and recommended loading rate of 
Dechlorane Plus in different polymer systems. This manual refers to the use of Dechlorane Plus 
in the following polymer systems: ABS; Chloroprene; DAP; EEA; EPDM; Epoxy; Neoprene; Nylon 
(6, 6/6, 12); PBT; Phenolics; Polyester; Polyethylene; EPR; EVA; Hypalon®; Hytrel®; Kraton; 
Natural Rubber TPU; High Impact Polystyrene; Polypropylene; Polyurethanes; SBR Block 
Copolymer; Silicon Rubber; TPE. It is unknown which of these are relevant in EU.
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Table 18: Uses according to the REACH registration(s)

Use(s) Registered 
use?

Use in the 
scope of 

Authorisation?

Uses as 
intermediate

None registered
No No

Formulation 
or repacking

 Polymer preparations and compounds

 Semiconductors
Yes Yes

Uses at 
industrial 
sites

 Adhesives, sealants
 Polymer preparations and compounds
 Semiconductors

Sector of end use:
 Formulation [mixing] or preparations and/or re-

packaging (excluding alloys)
 Manufacture of plastic products, including 

compounding and conversion 
 Manufacture of computer, electronic and optical 

products, electrical equipment

Yes Yes

Uses by 
professional 
workers

Article category related to subsequent service life
 Vehicles 
 Machinery, mechanical appliances, 

electrical/electronic articles 
 Electrical batteries and accumulators 
 Fabrics, textiles and apparel 
 Plastic articles

Yes Yes

Consumer 
uses

 Adhesives, sealants. 
 Explosives. 
 Metal surface treatment products, including 

galvanic and electroplating products. 
 Polymer preparations and compounds.

Yes Yes

Article 
service life

 Vehicles. 
 Machinery, mechanical appliances, 

electrical/electronic articles. 
 Electrical batteries and accumulators. 
 Stone, plaster, cement, glass and ceramic articles. 
 Fabrics, textiles and apparel. 
 Leather articles.
 Rubber articles

Yes Potentially
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Quantities

Table 19: Non-confidential descriptor codes used in registration
Life cycle 
stage

Descriptor codes

Formulation Process category PROC 23: Open processing and transfer operations with 
minerals/metals at elevated temperature
Environmental release category ERC 2: Formulation of preparations
Substance supplied to that use in form of As such

Formulation Process category PROC 1: Use in closed process, no likelihood of exposure
PROC 2: Use in closed, continuous process with occasional controlled exposure
PROC 3: Use in closed batch process (synthesis or formulation)
PROC 4: Use in batch and other process (synthesis) where opportunity for exposure 
arises
PROC 5: Mixing or blending in batch processes for formulation of preparations and 
articles (multistage and/or significant contact)
PROC 6: Calendering operations
PROC 8a: Transfer of substance or preparation (charging/discharging) from/to 
vessels/large containers at non-dedicated facilities
PROC 8b: Transfer of substance or preparation (charging/discharging) from/to 
vessels/large containers at dedicated facilities
PROC 9: Transfer of substance or preparation into small containers (dedicated filling 
line, including weighing)
PROC 13: Treatment of articles by dipping and pouring
PROC 14: Production of preparations or articles by tabletting, compression, extrusion, 
pelletisation
PROC 27a: Production of metal powders (hot processes)
PROC 27b: Production of metal powders (wet processes)
Chemical product category PC 1: Adhesives, sealants
PC 11: Explosives
PC 14: Metal surface treatment products, including galvanic and electroplating 
products
PC 32: Polymer preparations and compounds
Environmental release category ERC 2: Formulation of preparations
ERC 3: Formulation in materials
Substance supplied to that use in form of As such

Use at 
industrial 
sites to 
manufacture 
products

Process category PROC 1: Use in closed process, no likelihood of exposure
PROC 2: Use in closed, continuous process with occasional controlled exposure
PROC 3: Use in closed batch process (synthesis or formulation)
PROC 4: Use in batch and other process (synthesis) where opportunity for exposure 
arises
PROC 5: Mixing or blending in batch processes for formulation of preparations and 
articles (multistage and/or significant contact)
PROC 6: Calendering operations
PROC 8a: Transfer of substance or preparation (charging/discharging) from/to 
vessels/large containers at non-dedicated facilities
PROC 8b: Transfer of substance or preparation (charging/discharging) from/to 
vessels/large containers at dedicated facilities
PROC 9: Transfer of substance or preparation into small containers (dedicated filling 
line, including weighing)
PROC 14: Production of preparations or articles by tabletting, compression, extrusion, 
pelletisation
Environmental release category ERC 4: Industrial use of processing aids in 
processes and products, not becoming part of articles
ERC 5: Industrial use resulting in inclusion into or onto a matrix
ERC 6a: Industrial use resulting in manufacture of another substance (use of 
intermediates)
ERC 6d: Industrial use of process regulators for polymerisation processes in 
production of resins, rubbers, polymers
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Life cycle 
stage

Descriptor codes

Substance supplied to that use in form of As such
Sector of end use SU 10: Formulation [mixing] of preparations and/or re-packaging 
(excluding alloys)
SU 12: Manufacture of plastics products, including compounding and conversion
SU 13: Manufacture of other non-metallic mineral products, e.g. plasters, cement
SU 16: Manufacture of computer, electronic and optical products, electrical equipment
SU 17: General manufacturing, e.g. machinery, equipment, vehicles, other transport 
equipment
SU 4: Manufacture of food products
SU 9: Manufacture of fine chemicals
Subsequent service life relevant for that use? No

Use by 
professional 
workers

Process category PROC 1: Use in closed process, no likelihood of exposure
PROC 2: Use in closed, continuous process with occasional controlled exposure
PROC 3: Use in closed batch process (synthesis or formulation)
PROC 4: Use in batch and other process (synthesis) where opportunity for exposure 
arises
PROC 5: Mixing or blending in batch processes for formulation of preparations and 
articles (multistage and/or significant contact)
PROC 6: Calendering operations
PROC 8a: Transfer of substance or preparation (charging/discharging) from/to 
vessels/large containers at non-dedicated facilities
PROC 8b: Transfer of substance or preparation (charging/discharging) from/to 
vessels/large containers at dedicated facilities
PROC 9: Transfer of substance or preparation into small containers (dedicated filling 
line, including weighing)
PROC 14: Production of preparations or articles by tabletting, compression, extrusion, 
pelletisation
Environmental release category ERC 8a: Wide dispersive indoor use of processing 
aids in open systems
ERC 8c: Wide dispersive indoor use resulting in inclusion into or onto a matrix
ERC 8f: Wide dispersive outdoor use resulting in inclusion into or onto a matrix
Substance supplied to that use in form of As such
Sector of end use SU 10: Formulation [mixing] of preparations and/or re-packaging 
(excluding alloys)
SU 11: Manufacture of rubber products
SU 12: Manufacture of plastics products, including compounding and conversion
SU 16: Manufacture of computer, electronic and optical products, electrical equipment
SU 17: General manufacturing, e.g. machinery, equipment, vehicles, other transport 
equipment
SU 9: Manufacture of fine chemicals
Subsequent service life relevant for that use? No

Consumer 
Use

Chemical product category PC 1: Adhesives, sealants
PC 11: Explosives
PC 14: Metal surface treatment products, including galvanic and electroplating 
products
PC 32: Polymer preparations and compounds
Environmental release category ERC 8a: Wide dispersive indoor use of processing 
aids in open systems
Substance supplied to that use in form of In a mixture
Subsequent service life relevant for that use? No

Service life 
(consumers)

Environmental release category ERC 10a: Wide dispersive outdoor use of long-life 
articles and materials with low release
ERC 11a: Wide dispersive indoor use of long-life articles and materials with low 
release
Article category related to subsequent service life AC 1: Vehicles
AC 2: Machinery, mechanical appliances, electrical/electronic articles
AC 3: Electrical batteries and accumulators
AC 4: Stone, plaster, cement, glass and ceramic articles
AC 5: Fabrics, textiles and apparel
AC 6: Leather articles

Service life Process category PROC 21: Low energy manipulation of substances bound in 
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Life cycle 
stage

Descriptor codes

(worker at 
industrial 
site)

materials and/or articles
PROC 24: High (mechanical) energy work-up of substances bound in materials and/or 
articles
PROC 25: Other hot work operations with metals
Environmental release category ERC 12b: Industrial processing of articles with 
abrasive techniques (high release)
ERC 12a: Industrial processing of articles with abrasive techniques (low release)
Article category related to subsequent service life AC 10: Rubber articles

10. Information on structure of the supply chain

The lead Registrant has indicated that their supply chain is relatively short, with direct supply by 
them to formulators and industrial users. However, there is no information from the joint 
Registrant (or other suppliers yet to register). The structure of the supply chain for imported 
treated articles (if any) is unknown.

11. Additional information 

11.1 Substances with similar hazard and use profiles on the Candidate 
List

There are three flame retardants on the Candidate List with PBT/vPvB properties, i.e. short-chain 
chlorinated paraffins (SCCPs) (CAS no. 85535-84-8), decabromodiphenyl ether (decaBDE) (CAS 
no. 1163-19-5) and hexabromocyclododecane (HBCDD) (CAS no. 3194-55-6). Dechlorane Plus 
is a potential substitute for decaBDE (according to U.S. EPA, 2014), for which an Annex XVII 
restriction has recently been adopted (with some derogations) and a proposal to list decaBDE as 
a POP under the Stockholm Convention is also under consideration.  

Other substances with flame retardant uses and similar hazardous properties are or have been 
included on Annex XVII of REACH (for example polybromodiphenyl ethers and 
polybromobiphenyls), but are not on the Candidate List.

11.2 Alternatives

The lead Registrant has confirmed that they do not make any alternatives to Dechlorane Plus 
themselves. Further information on alternatives to Dechlorane Plus was gathered through direct 
contact with two of the lead Registrant’s EU customers (downstream users of Dechlorane Plus). 
Some alternatives have been considered but to date no suitable alternatives have been identified 
that meet the mechanical and flame retardant properties of Dechlorane Plus.

11.3 Existing EU legislation

There are currently no legislative controls on Dechlorane Plus.

11.4 Previous assessments by other authorities

No other EU Member States have assessed Dechlorane Plus in detail. 

Dechlorane Plus is being assessed by Environment and Climate Change Canada (ECCC) as part 
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of the ‘Certain Organic Flame Retardants Grouping’ under the Substance Groupings Initiative of 
Canada's Chemicals Management Plan. The ECCC has published a draft screening assessment 
with the conclusion that Dechlorane Plus meets the criteria for further risk management 
measures ‘because it is entering the environment in a quantity or concentration or under 
conditions that have or may have an immediate or long-term harmful effect on the environment 
or its biological diversity’ (Canada, 2016a). The public consultation for these reports is currently 
ongoing and ECCC expect to publish their final conclusions in late 2017 or early 2018.

If the proposed conclusion is confirmed in the final screening assessment, the ECCC will consider 
options for risk management including the implementation of regulatory and non-regulatory 
controls on its import, manufacture and use and will also consider additional measures to address 
potential transboundary sources.
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