Competent Authority Report

COPPER PYRITHIONE (PT21)

DOCUMENT IIIA 7.1–7.3

Fate

Applicant: API

Rapporteur Member State: Sweden

Draft December 2010

Section A7.1.1.1Hydrolysis as a function of pH and identification of
breakdown products

		1	REFERENCE	Official use only
1.1	Reference	De Wolf pyrithion to OECI V4477, 1	^C JM, De Bie AThHJ (2003) Abiotic degradation of copper ne in aqueous solutions using [14C]-copper pyrithione according D guideline 111. TNO Nutrition and Food Research, Report No. November 28, 2003 (unpublished)	
1.2	Data protection	Yes		
1.2.1	Data owner	Yoshitor	ni Fine Chemicals, Ltd.	
1.2.2	Companies with letter of access	141		
1.2.3	Criteria for data protection	Data sub purpose	omitted to the MS after 13 May 2000 on existing a.s. for the of its entry into Annex I.	
		2	GUIDELINES AND QUALITY ASSURANCE	
2.1	Guideline study	Yes, OE	CD 111	
2.2	GLP	Yes		
2.3	Deviations	No		x
		3	MATERIALS AND METHODS	
3.1	Test material	Radio-la	belled copper pyrithione ([¹⁴ C]-Copper Pyrithione)	x
3.1.1	Lot/Batch number	3362-12	0	
3.1.2	Specification	Specific	activity of radio-labelled test material: 28.68 mCi/mmol	
3.1.3	Purity	Radio-la	belled test material (radiochemical purity): > 95%.	х
3.1.4	Further relevant properties	The test from light	material is photodegradable and was stored under protection ht	
3.2	Reference substance	No		х
3.2.1	Initial concentration of reference substance			
3.3	Test solution	See table	e A7_1_1_1_1-1 and A7_1_1_1_1-2	х
3.4	Testing procedure			
3.4.1	Test system	See table	e A7_1_1_1_1-3	
		The tests Oxygen 5 min. T of biode samples	s were carried out in the dark to avoid photolytic interference. was exluded by bubbling nitrogen through the test solutions for he effectiveness of the measures taken to exclude the occurrence gradation was checked in a test for sterility by incubating of the test solutions on multi medium agar plates.	x
3.4.2	Temperature	50 and 6	0 °C	x
3.4.3	pH	5.0 ± 0.2	2, 7.0 \pm 0.2, and 9.0 \pm 0.2	x
3.4.4	Duration of the test	0-240.0	0 h, for specific test durations see tables A7_1_1_1_1-4a to f	

△ pH 7.0, 50 degrC, II

xpH 7.0, 60 degrC, I

+ pH 7.0, 60 degrC, II

Annex Point IIA7.6.2.1		breakdown products		
3.4.5	Number of replicates	2 series		
3.4.6	Sampling	The concentration of $[^{14}C]$ -copper pyrithione was determined at t = 0 and six other time points (see tables A7_1_1_1_1-4a to f)		
3.4.7	Analytical methods	HPLC with radiometric detection		
3.5	Preliminary test	Yes, at pH 5.0, 7.0, and 9.0 and 50 °C		
		4 RESULTS		
4.1	Concentration and hydrolysis values	See tables A7_1_1_1-4a to f		
4.2	Hydrolysis rate constant (k _h)	See table A7_1_1_1-5	x	
4.3	Dissipation time	See table A7_1_1_1_6		
4.4	Concentration – time data	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
		Concentration-time data at pri 5.0.		
		5 4.5 $\frac{1}{2}$ $+$ $+$ $\frac{1}{2}$ 4 $ +$ $+$ $\frac{1}{2}$ $ -$		

Section A7.1.1.1Hydrolysis as a function of pH and identification of
breakdown products

Concentration-time data at pH 7.0.

×х

100

Time (hours)

2

×

300

200

5 3.5

3

2.5 -2 -0

API Corporation	Copper Pyrithione, PT 21	CAR Doc IIIA 7.1-7.3
RMS: Sweden	December 2010	Fate

Section A7.1.1.1Hydrolysis as a function of pH and identification of
breakdown products

API Corporation	Copper Pyrithione, PT 21	CAR Doc IIIA 7.1-7.3
RMS: Sweden	December 2010	Fate

Section A7.1.1.1.1 Annex Point IIA7.6.2.1 Hydrolysis as a function of pH and identification of breakdown products

API Corporation	Copper Pyrithione, PT 21	CAR Doc IIIA 7.1-7.3
RMS: Sweden	December 2010	Fate

Section A7.1.1.1.1 Annex Point IIA7.6.2.1	Hydrolysis as a function of pH and identification of breakdown products		
			ŝ
			I T
Results and discussion			
	4.2		

API Corporation	Copper Pyrithione, PT 21	CAR Doc IIIA 7.1-7.3
RMS: Sweden	December 2010	Fate

Section A7.1.1.1.1	Hydrolysis as a function of pH and identification of	
Annex Point IIA7.6.2.1	breakdown products	

API Corporation	Copper Pyrithione, PT 21	CAR Doc IIIA 7.1-7.3
RMS: Sweden	December 2010	Fate

Section A7.1.1.1.1 Annex Point IIA7.6.2.1

Hydrolysis as a function of pH and identification of breakdown products

 Table A7_1_1_1_1:
 Type and composition of buffer solutions

pH	Type of buffer (final molarity)	Composition
5	0.05 M	250 mL of 0.1 M monopotassium citrate made up to 0.5 L with water
7	0.05 M	250 mL of 0.1 M monopotassium citrate made up to 0.5 L with water
9	0.05 M	250 mL of 0.1 M boric acid made up to 0.5 L with water

Criteria	Details
Purity of water	Demineralised, sterile water
Preparation of test medium	A stock solution containing 8.8 μ g [¹⁴ C]-copper pyrithione/mL methanol was prepared by dissolving 3 mg [¹⁴ C]-copper pyrithione in 10 mL dichloromethane. 50 μ L aliquots of this solution were diluted with methanol to obtain the required concentration. 2.5 mL of this stock solution was transferred to 500 mL sterile buffer solutions of pH 5.0, 7.0, and 9.0 and homogenised.
Test concentrations (µg a.i./L)	44 μ g [¹⁴ C]-copper pyrithione/L buffer solution
Temperature (°C)	50 and 60 °C
Controls	In order to determine the between-run variation of retention times, a control sample, containing 44 μ g [¹⁴ C]-copper pyrithione/L buffer solution (pH 7.0) was stored in the refrigerator and analysed on each day of analysis of the study samples
Identity and concentration of co-solvent	Methanol (0.5 % v/v)
Replicates	2 series

 Table A7_1_1_1-2:
 Description of test solution

Table A7 1 1 1 1-3:	Description of test system

Glassware	Sterilised 20-mL sample vials and teflon-coated closures
Other equipment	Calibrated pH electrodes, thermostatically controlled enclosure
Method of sterilization	Glassware was sterilised at 120 °C for at least 30 min before use; buffer solutions were sterilised by filtration over a 0.45 μ m filter

Table A7_1_1_1-4a:	Hydrolysis of test compound and transformation products, expressed as
	percentage of initial concentrations, at pH 5 and 50 °C

		Series	Ι				
Compound	Sampling times (hours))	
	0	76.3	97.0	119.4	142.3	168.4	240.0
Parent compound	92.9 95.4	58.2	42.0	40.0	34.0	35.5	20.5
Transformation product 2		2.3	6.8	7.8	10.7	9.4	16.5
Transformation product 3	7.1 4.6	39.5	51.1	52.1	55.4	55.1	63.0
Total % recovery ¹⁾						82	
		Series]	Π				
Compound		<u>.</u>	Samp	ling time	s (hours))	
	0	27.0	52.1	76.7	151.0	167.0	
Parent compound	93.7	71.4	59.0	48.3	32.1	38.8 32.5	
Transformation product 2			3.8	8.1	16.0	11.2 11.9	
Transformation product 3	6.3	28.6	37.3	43.6	51.9	50.0 55.6	
Total % recovery ¹⁾							

Table A7_1_1_1-4b:	Hydrolysis of test compound and transformation products, expressed as
	percentage of initial concentrations, at pH 5 and 60 °C

Series I							
Compound		Sampling times (hours)					
	0	76.6	97.0	119.4	142.3	170.6	240.0
Parent compound	92.9 95.4	38.1	27.0	30.5	23.9	27.0	21.3
Transformation product 2		11.0	18.2	24.0	26.4	26.1	29.5
Transformation product 3	7.1 4.6	50.9	54.8	45.4	49.8	46.9	49.2
Total % recovery ¹⁾							111
		Series l	I				
Compound			Samp	ling time	s (hours))	
	0	26.7	51.8	78.7	148.7	166.7	
Parent compound	93.7	71.4	59.0	48.3	32.1	38.8	
Transformation product 2			3.8	8.1	16.0	11.2	
Transformation product 3	6.3	28.6	37.3	43.6	51.9	50.0	
Total % recovery ¹⁾							

Table A7_1_1_1_1-4c:	Hydrolysis of test compound and transformation products, expressed as
	percentage of initial concentrations, at pH 7 and 50 $^{\circ}\mathrm{C}$

	Series I						
Compound		Sampling times (hours)					
	0.1	68.1	88.5	114.3	137.7	167.3	233.6
Parent compound	85.1	73.3	58.1	50.0	40.7	26.8	32.4
Transformation product 2			31.7	38.2	43.1	58.5	51.1
Transformation product 3	14.9	26.7	10.3	11.8	16.3	14.7	16.5
Total % recovery ¹⁾							
		Series 1	Π				
Compound			Samp	ling time	s (hours))	
	0.1	68.1	88.9	120.0	138.2	167.7	234.6
Parent compound	85.1	79.1	60.1	43.2	38.7	31.7	30.7
Transformation product 2			25.7	39.1	48.0	53.7	55.0
Transformation product 3	14.9	20.9	14.2	17.7	13.3	14.6	14.3
Total % recovery ¹⁾							

Table A7_1_1_1_1-4d:	Hydrolysis of test compound and transformation products, expressed as
	percentage of initial concentrations, at pH 7 and 60 °C

		Series	I				
Compound		Sampling times (hours)					
	0	75.7	96.4	118.7	141.7	170.6	239.4
Parent compound	94.0	40.0	41.3	32.9	25.9	28.9	17.9
Transformation product 2		36.8	37.5	47.2	46.0	44.8	56.6
Transformation product 3	6.0	23.3	21.2	19.9	28.1	26.7	25.5
Total % recovery ¹⁾							116
		Series 1	Π				
Compound			Samp	ling time	s (hours))	
	0	26.7	51.8	79.2	148.7	166.7	
Parent compound	96.0	72.0	64.9	57.9	34.0	26.8	
Transformation product 2		12.1	18.4	24.2	45.8	51.7	
Transformation product 3	4.0	15.9	64.9	17.9	20.3	21.5	
Total % recovery ¹⁾					111	116	

Table A7_1_1_1_1-4e:	Hydrolysis of test compound and transformation products, expressed as
	percentage of initial concentrations, at pH 9 and 50 $^{\circ}\mathrm{C}$

		Series	Ι			
Compound		Sampling times (hours)				
	0	75.3	96.0	118.4	141.3	169.1
Parent compound	93.1 94.6	36.0	30.3	26.1	10.9	11.0
Transformation product 1		37.0	40.0	38.4	51.2	48.6
Transformation product 2		1.8	2.0	3.4	7.6	
Transformation product 3	6.9 5.4	25.1	27.7	32.1	30.3	40.4
Total % recovery ¹⁾						82
		Series 1	Π			
Compound			Samp	ling time	s (hours))
	0	25.7	50.8	77.0	149.7	165.7
Parent compound	93.7	75.3	48.2	41.1	16.1	7.7
Transformation product 1		16.6	27.0	29.8	50.3	53.9
Transformation product 2			3.6	8.2	5.0	
Transformation product 3	6.3	8.1	21.3	20.9	28.6	38.4
Total % recovery ¹⁾						

Table A7_1_1_1_1-4f:	Hydrolysis of test compound and transformation products, expressed as
	percentage of initial concentrations, at pH 7 and 60 °C

	Series I							
Compound		Sampling times (hours)						
	0	4.2	20.4	27.7	45.7	53.3	69.4	75.3
Parent compound	76.0	63.1	39.2	24.3	21.8	16.4	15.9	7.5
Transformation product 1			26.1	47.6	33.3	35.3	46.9	41.7
Transformation product 2	24.0	36.9	34.7	24.3	44.9	48.3	37.2	50.9
Transformation product 3	24.0	36.9	60.8	71.9	78.2	83.6	84.1	92.5
Total % recovery ¹⁾								
		Seri	es II					
Compound			Sar	npling ti	mes (hou	irs)		
	0	4.2	20.8	28.1	46.2	53.7	69.8	76.0
Parent compound	88.1	75.8	43.9	28.8	15.8	16.2	18.2	9.6
Transformation product 1			25.5	39.2	38.3	41.2	40.4	36.9
Transformation product 2	11.9	24.2	30.6	28.8	45.9	42.6	41.4	53.5
Total % recovery ¹⁾								

API Corporation	Copper Pyrithione, PT 21	CAR Doc IIIA 7.1-7.3
RMS: Sweden	December 2010	Fate

Table A7_1_1_1_1-5:	Hydrolysis rate constants (k _h) as a function of pH and temperature and the
	correlation coefficient for each set of experiments

рН	Temperature (°C)	Correlation coefficient	Hydrolysis rate constant (* 10 ⁻⁶ sec ⁻¹)
5.0	50	0.98	1.75
		0.96	1.56
	60	0.90	1.82
		0.97	2.04
7.0	50	0.93	1.43
		0.93	1.45
	60	0.96	1.82
		0.99	1.99
9.0	50	0.98	3.65
		0.98	3.90
	60	0.96	7.24
		0.95	7.39

Table A7_1_1_1-6:Mean DT50s (hours) of parent compound at pH 5, pH 7 and pH 9 at 50 and 60 $^{\circ}C$

	рН 5		рН 7		рН 9				
	50 °C	60 °C	20 °C ¹	50 °C	60 °C	20 °C ¹	50 °C	60 °C	20 °C ¹
Parent compound	116	100	192	134	101	336	51.1	26.3	480

¹ Calculated by use of the Arrhenius relationship

Section A7.1.1.2Phototransformation in water including identity of
transformation products

		1 REFERENCE	Official use only		
1.1	Reference	De Vette HQM, Van Es C (2002a) A study on the photolysis of copper pyrithione in aqueous solutions using [¹⁴ C] copper pyrithione (OECD Proposal, SETAC-Europe and EU Commission Directive 95/36/EC). TNO Chemistry, Report No. 2422/10, August 27, 2002 (unpublished)			
1.2	Data protection	Yes			
1.2.1	Data owner	Yoshitomi Fine Chemicals, Ltd.			
1.2.2	Companies with letter of access				
1.2.3	Criteria for data protection	Data submitted to the MS after 13 May 2000 on existing a.s. for the purpose of its entry into Annex I.			
		2 GUIDELINES AND QUALITY ASSURANCE			
2.1	Guideline study	Yes, OECD Proposal for a new guideline and the SETAC-Europe procedure as specified by the EU Commission Directive 95/36/EC	х		
2.2	GLP	Yes			
2.3	Deviations	No			
		3 MATERIALS AND METHODS			
3.1	Test material	Radio-labelled copper pyrithione ([¹⁴ C]-copper pyrithione)			
3.1.1	Lot/Batch number	3362-120			
3.1.2	Specification	Specific activity of radio-labelled test material: 28.680 mCi/mmol.	х		
3.1.3	Purity	Radio-labelled test material (radiochemical purity): 99.0%.			
3.1.4	Radiolabelling	Copper Omadine Pyridine-2,6- ¹⁴ C	Х		
3.1.5	UV/VIS absorption spectra and absorbance value	Not available			
3.1.6	Further relevant properties	Not applicable			
3.2	Reference substances	No			
3.3	Test solution	See table A7_1_1_1_2-1	х		
3.4	Testing procedure				
3.4.1	Test system	See table A7_1_1_2-2.	X		
3.4.2	Properties of light source	See table A7_1_1_2-2 X			
3.4.3	Determination of irradiance	Not reported X			
3.4.4	Temperature	$20 \pm 3 \ ^{\circ}\mathrm{C}$			
3.4.5	pH	7.0			

Section A7.1.1.2Phototransformation in water including identity of
transformation products

3.4.6	Duration of the test	Irradiated	Irradiated samples: 300 sec; dark controls: 60 min					
3.4.7	Number of replicates	2						
3.4.8	Sampling	The irradi and 300 so and after 3	ne irradiated test solutions were samped after 0, 20, 40, 60, 90, 120, d 300 sec. The dark control was taken immediately after incubation d after 30 and 60 min of incubation.					х
3.4.9	Analytical methods	LSC and I	SC and HPLC					x
3.5	Transformation products	Transform	nation produ	acts tested: Y	7es			х
3.5.1	Method of analysis for transformation products	HPLC						x
		4 F	RESULTS					
4.1	Screening test	Preliminar percentage (average c	ry test: Ame e of the init of duplicate	ounts of [¹⁴ C ial radioactiv s) and dark c] copper pyri rity in irradia ontrol (DC) a	thione and m ted aqueous s as detected by	etabolites as solutions y HPLC:	
		Time (h)	Test	Metabolite	Metabolite	Metabolite	Sum	
			substance	1	2	3		
		0.0	91.0	9.0	0.0	0.0	100.0	
		0.5	14.8	45.7	33.1	1.5	95.0	
		1.0	1.6	68.9	<mark>39.7</mark>	0.0	110.2	
		2.0 DC	99.8	5.7	0.0	0.0	105.5	
4.2	Actinometer data	Not applie	cable					X
4.3	Controls	Initial (C ₀ were 95.7) and final (and 90.4%	(C _{60 min}) conc of the initial	entrations of radioactivity	[¹⁴ C]-copper /.	pyrithione	
4.4	Photolysis data							х
4.4.1	Concentration values	120.0 100.0 % of mininal 60.0 40.0 20.0 0.0	50.0 1	×	, , 200.0 250.0 accuab)		stat substance Metabolin 1 Metabolin 2 Ketabolin 3	x

Amounts of copper pyrithione and its metabolites in irradiated aqueous solutions as mean percentage of the initial radioactivity detected by HPLC-analysis.

Section A7.1.1.2Phototransformation in water including identity of
transformation products

4.4.2 Mass balance

Recovery of radiolabelled test substance at different time points (DC is dark control):

Time (s)	DPM total	Recovery
0.0	155600	100.0
0.0 DC	142000	91.3
20	144050	92.6
40	147475	94.8
60	139225	89.5
90	149750	96.2
120	149925	96.4
300	149400	96.0
30 min DC	150050	96.4
60 min DC	152600	98.1

Mean overall recovery: 94.1 \pm 5.4% for the test system and 95.3 \pm 3.6% for the dark control

4.4.3	k ^c _p	$0.020 \pm 0.002 \text{ sec}^{-1}$	x
4.4.4	Kinetic order	First order	
4.4.5	$\mathbf{k}_{p}^{c}/\mathbf{k}_{p}^{a}$	Not applicable	X
4.4.6	Reaction quantum yield (ϕ^{c}_{E})	Not applicable	
4.4.7	k _{pE}	Not applicable	x
4.4.8	Half-life (t _{1/2E})	34.1 sec	х

4.5	Specification of the transformation products	The maximum amount of the metabolite 1 with a retention time of approximately 8 min. was 61.6% of the initial activity and the metabolite 2 with a retention time of approximately 6 min. was 35.5%. The maximum amount of the third metabolite with a retention time of approximately 14 min. was 3.7%. The identity of the metabolites is investigated in the metabolite (2003a, b) and (2005) (see section A7.1.2).	x		
		5 APPLICANT'S SUMMARY AND CONCLUSION			
5.1	Materials and methods	The OECD Proposal for a new guideline and the SETAC-Europe procedure as specified by the EU Commission Directive 95/36/EC were followed	x		
5.2	Results and discussion	[¹⁴ C]copper pyrithione in aqueous solutions demonstrated a very rapid degradation when irradiated. The half-life under the chosen conditions was 34.1 sec.			
5.2.1	k ^c _p	$0.020 \pm 0.002 \text{ sec}^{-1}$			
5.2.2	K _{pE}	Not applicable			
5.2.3	$\phi^{c}{}_{E}$	Not applicable			
5.2.4	t _{1/2E}	34.1 sec	x		
5.3	Conclusion	Validity criteria were fulfilled. The very rapid photolysis of [¹⁴ C]copper pyrithione indicates that metabolites were also present in the test media used in the toxicity tests. Therefore, it is expected that the observed effects resulted from the mixture of parent compound and its metabolites.	х		
5.3.1	Reliability	1	x		
5.3.2	Deficiencies	No			

Copper Pyrithione, PT 21 December 2010

23 (109)

24 (109)

API Corporation RMS: Sweden	Copper Pyrithione, PT 21 December 2010	CAR Doc IIIA 7.1–7.3 Fate
	According to Equation 13 of the US EPA guideline, k _{pE}	= k _p /2.2 for test tubes
Results and discussion		
Conclusion		
Reliability Acceptability		

API Corporation RMS: Sweden	Copper Pyrithione, PT 21 December 2010	CAR Doc IIIA 7.1–7.3 Fate
Remarks		

Criteria	Details
Purity of water	0.05 M phosphate buffer solution of pH 7 (hydrolysis rat in this solution is much lower than the expected rate of photolysis)
Preparation of test chemical solution	An amount (approximately 3.9 mg) of $[^{14}C]$ copper pyrithione was dissolved in 15 mL of dichloromethane. From this solution, 0.7 mL was mixed with 9.0 mL of methanol and this solution was used as stock solution. An aliquot (50 µL) was pippeted in each test vessel containing 9.95 mL of phosphate buffer. The final concentration was 77.2 ng/mL.
Test concentrations (µg a.s./L)	77.2
Temperature (°C)	20 ± 3 °C
Preparation of a.s. solution	See preparation of test chemical solution
Controls	Additional flasks with aqueous solution with the same concentration of the test substance were kept in the dark in order to distinguish between photochemical degradation and other reactions.
Identity and concentration of co-solvent	Dichloromethane $(0.5 \% v/v)$

 Table A7_1_1_2-1:
 Description of test solution and controls

Table A / T T T 2-2: Description of test system	Table A7 1 1 1 2-2:	Description of test system
---	---------------------	----------------------------

Criteria	Details
Laboratory equipment	Open scintillation vials
Test apparatus	LSC and HPLC
Properties of artificial light source:	
Nature of light source	Xenon lamp at a distance of ca. 26.5 cm and a capacity of 800 W
Emission wavelenght spectrum	100 80- 60- 20- 260 280 300 320 340
Light intensity	$34.5 \ \mu mol/s^{-1} \cdot m^{-2}$
Filters	Wavelengths < 290 nm were excluded
Properties of natural sunlight:	Not applicable
Latitude	-
Hours of daylight	-
,Time of year	-
Light intensity	-
Solar irradiance (L_{λ})	-

Section A7.1.1.2.1 Biodegradability (ready)

Annex Point IIA7.6.1.1

		1 REFERENCE	Official use only
1.1	Reference	Mead C (2000) Copper pyrithione: assessment of ready biodegradability; CO ₂ evolution test. Safepharm Laboratories Limited, Report No: ECCMR00517, January 18, 2000 (unpublished)	
1.2	Data protection	Yes	
1.2.1	Data owner	Yoshitomi Fine Chemicals, Ltd.	
1.2.2	Companies with letter of access	9-1	
1.2.3	Criteria for data protection	Data submitted to the MS after 13 May 2000 on existing a.s. for the purpose of its entry into Annex I.	
		2 GUIDELINES AND QUALITY ASSURANCE	
2.1	Guideline study	Yes, OECD 301B, EC C.4, and OPPTS 835.3110	
2.2	GLP	Yes	
2.3	Deviations	No	
		3 MATERIALS AND METHODS	
3.1	Test material	Copper pyrithione	
3.1.1	Lot/Batch number	990210	X
3.1.2	Specification	As given in section 2	X
3.1.3	Purity	As given in section 2	X
3.1.4	Further relevant properties	The test material is photodegradable and was stored under protection from light	
3.1.5	Composition of Product		
3.1.6	TS inhibitory to microorganisms	Yes, toxicity was observed in the culture medium at 10 mg C/L. In the respiration inhibition test, a 3-h EC50 of 15 mg/L was found.	X
3.1.7	Specific chemical analysis	TOC analyser (Ionics 1555B and Dohrman DC-190)	
3.2	Reference substance	Yes, sodium benzoate	
3.2.1	Initial concentration of reference substance	17.1 mg/L	х
3.3	Testing procedure		
3.3.1	Inoculum / test species	See table A7_1_1_2_1-1	х
3.3.2	Test system	See table A7_1_1_2_1-2	х
3.3.3	Test conditions	See table A7_1_1_2_1-3	х
3.3.4	Method of preparation of test solution	The test substance was directly dispersed in culture medium	Х

Section A7.1.1.2.1 Biodegradability (ready)

Annex Point IIA7.6.1.1

3.3.5	Initial TS concentration	13.2 mg/L (nominal concentration)	x
3.3.6	Duration of test	29 d	
3.3.7	Analytical parameter	CO ₂ evolution	х
3.3.8	Sampling	The first CO_2 absorber vessel was sampled on days 0, 1, 2, 3, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 28, and 29. The second absorber vessel was sampled on days 0 and 29.	
3.3.9	Intermediates/ degradation products	Not identified	
3.3.10	Nitrate/nitrite measurement	No	х
3.3.11	Controls	Control without test substance, control with standard material, and toxicity control	x
3.3 <mark>.1</mark> 2	Statistics	The percentage degradation was calculated according to the equations given in OECD 301B	х

4 RESULTS

4.1 Degradation of test substance

4.1.1 Graph

Course of degradation of copper pyrithione against time

 4.1.2
 Degradation
 6% degradation after 28 days
 X

 4.1.3
 Other observations
 In an initial experiment at a concentration of 10 mg C/L, the test substance showed toxicity to the sewage sludge microorganisms used in the study
 X

 4.1.4
 Degradation of TS in abiotic control
 Not applicable
 X

Section A7.1.1.2.1 Biodegradability (ready)

Not applicable

Annex Point IIA7.6.1.1

```
4.1.5 Degradation of reference substance
```


Course of degradation of sodium benzoate against time

4.1.6 Intermediates/ degradation products

5 APPLICANT'S SUMMARY AND CONCLUSION

5.1	Materials and methods	OECD 301B, EC C.4, and OPPTS 835.3110 were followed	
5.2	Results and discussion	The test substance attained 6% degradation after 28 d	х
5.3 Conclusion Validity criteria were fulfilled, except that the IC/TC ratio of the test media exceeded 5% (see table A7_1_1_2_1-4). This was probably due to the low level of TC added and is not considered to have influenced the results of the test. The test substance cannot be considered to be readily biodegradable in 29 d under the conditions of the test. Although $\geq 25\%$ degradation was observed in the toxicity control after 14 days (a required by the OECD guideline), inhibition of the inoculum cannot be excluded as the degradation in the toxicity control (test substance plus sodium benzoate) is less than the sum of the degradation in the test substance treatment and the sodium benzoate treatment separately (71% versus 96% after 28 days, respectively).			
5.3.1	Reliability	1	х
5.3.2	Deficiencies	Yes, the IC/TC ratio of the test media exceeded, but this is not considered to have influenced the results of the test.	

33 (109)

Criteria	Details
Nature	Activated sludge
Species	Mixed population of activated sewage sludge micro- organisms
Strain	Not applicable
Source	Sewage treatment plant treating predominantly domestic sewage
Sampling site	Severn Trent Water Plc sewage treatment plant at Belper, Derbyshire, UK
Laboratory culture	No, the activated sewage sludge sample was used on the day of collection
Method of cultivation	Not applicable
Preparation of inoculum for exposure	Sample of sludge was washed three times by settlement and resuspension in culture medium to remove any excessive amounts of DOC possibly present
Pretreatment	Continuous aeration upon receipt
Initial cell concentration	30 mg suspended solids/L

 Table A7_1_1_2_1-2:
 Test system

Criteria	Details
Culturing apparatus	5-L glass culture vessels containing 3 L of test solution
Number of culture flasks/concentration	2 for the control, the reference material and each test concentration and 1 for the toxicity control (test substance and reference material)
Aeration device	CO ₂ -free air was produced by passing compressed air through a glass column containing self indicating soda lime (Carbosorb [®]) granules
Measuring equipment	CO ₂ produced by degradation was collected in two 500-mLDreschel bottles containing 350 mL of 0.05 M NaOH.
Test performed in closed vessels	Yes
Table A7_1_1_2_1-3:Test conditions

Criteria	Details
Composition of medium	Culture medium according to OECD 301B, prepared by adding minerals to purified water
Additional substrate	No
Test temperature	21 °C
pH	Not reported
Aeration of dilution water	Yes, ca. 40 mL/min
Suspended solids concentration	30 mg/L
Other relevant criteria	The test solution was stirred and the test was performed in the dark

Table A7_1_1_2_1-45: Pass levels and validity criteria for tests on ready biodegradability

	fulfilled	not fulfilled
Pass levels		
70% removal of DOC resp. 60% removal of ThOD or ThCO ₂		х
Pass values reached within 10-d window (within 28-d test period) - not applicable to MITI-I-Test		х
- 14-d window acceptable for Closed-Bottle-Test		
Criteria for validity		
Difference of extremes of replicate values of TS removal at plateau (at the end of test or end of 10-d window) $< 20\%$	Not reported	Not reported
Percentage of removal of reference substance reaches pass level by day 14	Х	

Section A7.1.1.2.2 Annex Point IIA7.6.1.2	Biodegradability (inherent)	
	JUSTIFICATION FOR NON-SUBMISSION OF DATA	Official use only
Other existing data [X]	Technically not feasible [] Scientifically unjustified [X]	x
Limited exposure [X]	Other justification []	x
Detailed justification:	The inherent biodegradability was not determined, because a water/sediment study in sea water was performed (see section A7.1.1.2.3).	x
Undertaking of intended data submission []		
	Evaluation by Competent Authorities	
Date	EVALUATION BY RAPPORTEUR MEMBER STATE	
Evaluation of applicant's justification		F
Conclusion		
Remarks		

Section A7.1.1.2.3 Marine water/sediment degradation study

Annex Point IIA7.6.1.3

		1 REFERENCE	Official use only
1.1	Reference	Bowmer CT, De Vette HQM (2003) A marine water/sediment degradation study using [¹⁴ C] labelled copper pyrithione (OECD 308 & SETAC-Europe). TNO Chemistry, Report No: 2422/07, November 6, 2003 (unpublished)	
1.2	Data protection	Yes	
1.2.1	Data owner	Yoshitomi Fine Chemicals, Ltd.	
1.2.2	Companies with letter of access	·	
1.2.3	Criteria for data protection	Data submitted to the MS after 13 May 2000 on existing a.s. for the purpose of its entry into Annex I.	
		2 GUIDELINES AND QUALITY ASSURANCE	
2.1	Guideline study	Yes, OECD 308 and the SETAC Europe guidelines as specified by the EU Commission Directive 95/36/EC	
2.2	GLP	Yes	
2.3	Deviations	Yes, the organic matter contents of the two marine sediments differ from the content recommended by the test guidelines for freshwater sediments. Since no properties for the selection of marine water/sediments are given in the guidelines, sediments which best represent coastal benthic conditions were chosen (one with low and one with a higher organic matter content).	x
		3 MATERIALS AND METHODS	
3.1	Test material	Non-radiolabelled test material (used in fumigation tests): Copper pyrithione Radiolabelled test material (used in degradation tests): [¹⁴ Cl-Copper	
		Pyrithione (Copper Omadine, [Pyridine-2,6- ¹⁴ C])	
3.1.1	Lot/Batch number	Unlabelled test material: Y104 E.	
		Radio-labelled test material: 3362-120.	
3. <mark>1</mark> .2	Specification	Non-radiolabelled test material: as given in section 2	
		Radiolabelled test material: specific activity 28.680 mCi/mmol	
3.1.3	Purity	Non-radiolabelled test material: 99.9% (as given in section 2)	
		Radio-labelled test material (radiochemical purity): 99.0%	
3.1.4	Further relevant properties	The test material is photodegradable and was stored under protection from light	
3.1.5	Composition of Product		
3.1.6	TS inhibitory to microorganisms	Yes, in the ready biodegradability test, toxicity was observed in the culture medium at 10 mg C/L. In the respiration inhibition test, a 3-h EC50 of 15 mg/L was found.	X
3.1.7	Specific chemical analysis	LSC and HPLC 2	X

Section A7.1.1.2.3 Marine water/sediment degradation study

Annex Point IIA7.6.1.3

3.2	Reference	No	
	substance		
3.2.1	Initial concentration of reference substance		
3.3	Testing procedure		
3.3.1	Inoculum /	See table A7_1_1_2_3-1	
	test species	Anaerobic water conditions do not exist in the environment and are therefore not relevant. Anaerobic sediment conditions do exist in the environment, but the present water/sediment study already accounts for that as the sediment has got an anaerobic phase.	x
		As copper pyrithione biodegrades very quickly under aerobic conditions and exposure of the anaerobic sediment compartment is unlikely, an anaerobic water/sediment study is not considered necessary.	
3.3.2	Test system	See table A7_1_1_2_3-3	
3.3.3	Test conditions	See table A7_1_1_2_3-4	x
3.3.4	Method of preparation of test solution	The test substance was dissolved in isopropanol (0.016% v/v)	X
3.3.5	Initial TS concentration	0.083 mg/L (Colijnsplaat), 0.082 mg/L (Zandkreekdam), and 0.084 mg/L (TNO) radiolabelled copper pyrithione	X
3.3.6	Duration of test	7 d	
3.3.7	Analytical parameter	[¹⁴ C]CO ₂ evolution, dissolved radioactivity present in aqueous phase, extractable radioactivity present in sediment phase, and unextractable radioactivity (bound residue) present in sediment phase	
3.3.8	Sampling	Duplicate test flasks containing the marine water/sediment systems were taken after 0, 0.5, 1, 1.5, 2, 3, 7, and 14 d.	X
3.3.9	Intermediates/ degradation products	Not identified	х
3.3.10	Nitrate/nitrite measurement	Not applicable	
3.3.11	Controls	A reference water/sediment system (freshwater) was tested	х
3.3.12	Statistics	A mass balance was calculated for each sampling point. DT50 and DT90 values were calculated using Jandel TableCurve TM 2D (version 4) software assuming first-order kinetics.	

х

RESULTS

4

4.1 Degradation of test substance

4.1.1 Graph

Course of degradation against time for Colijnsplaat water/sediment system

Course of degradation against time for Zandkreekdam water/sediment system

4.1.2	Degradation	In the entire Colijnsplaat system, $[^{14}C]$ copper pyrithione decreased from 51.5% of the initial activity to 0.0% after 1.5 d of incubation. In the entire Zandkreekdam system, the test substance decreased from 69.0% at the start to 0.0% after 1 d of incubation. An apparently single	х
		70.9% of the initial radioactivity after 1.5 d (Colijnsplaat) and 77.4% after 1.5 d (Zandkreekdam).	
		DT50 values for the aqueous phase and the entire system were 4.6 and 1.3 h for Colijnsplaat and 3.7 and 1.3 h for Zandkreekdam, respectively.	
4.1.3	Other observations	After 15 d, microbial biomass had decreased from 174 mg/kg (dw) to 59 mg/kg (34 % of start value) in Colijnsplaat sediment and to 134 mg/kg (77 % of start value) in Zandkreekdam sediment. For TNO sediment, microbial biomass had doubled to 409 mg/kg. The sediments were considered to be microbially active during the test, although a variable inhibition of microbial activity was observed in the marine sediments.	
4.1.4	Degradation of TS in abiotic control	Not applicable	
4.1.5	Degradation of reference substance	Not applicable	
4.1.6	Intermediates/ degradation	In all three water/sediment systems, nearly all test material degraded into a metabolite. However, the observed HPLC peak may represent	

API Corporation RMS: Sweden			Copper Pyrithione, PT 21 CAR Doc IIIA December 2010	A 7.1–7.3 Fate	
	products	more were inves sectio	than one co-eluted fraction in the aqueous phase. Bound residues observed in all three sediments. The identity of the metabolites is tigated in (2003a, b) and (2005) (see on A7.1.2).		
		5	APPLICANT'S SUMMARY AND CONCLUSION		
5.1	Materials and methods	OEC. Com	D 308 and the SETAC Europe guidelines as specified by the EU mission Directive 95/36/EC were followed		
5.2	Results and discussion	The test substance was rapidly degraded at 15 °C; after 1.5 d of incubation, all test substance was transformed into one or a group of polar metabolites in both marine water/sediment systems. DT50 values for the aqueous phase and the entire system were 4.6 and 1.3 h for Colijnsplaat and 3.7 and 1.3 h for Zandkreekdam, respectively.			
5.3	Conclusion	Valid test n	lity criteria can be considered as fulfilled (recovery of radiolabelled naterial between 90 and 110%)		
5.3.1	Reliability	1		x	
5.3.2	Deficiencies	No			

API Corporation RMS: Sweden	Copper Pyrithione, PT 21 December 2010	CAR Doc IIIA 7.1–7.3 Fate

44 (109)

API Corporation RMS: Sweden	Copper Pyrithione, PT 21 December 2010				C	AR Doc IIL	A 7.1–7.3 Fate
	Dettem	2010					Tate
	CO ₂ trap	CO ₂ in water	forma tion	phase	phase	resid ue	
	2						
					10		
				ŝ			
				5- 			
					2		
24							
						ļ	
			1 1				
			2 0				
_		_				2	
		8 — 1				i de la companya de la compan	
		2		6 - S			
│					55		
							a de la companya de
•							-
]]]]]]					23		
	45	(109)					

		70
		8 <mark>-</mark> 2
2		

Criteria	Details		
Nature	Two marine water/sediment systems (Colijnsplaat and Zandkreekdam) and one reference freshwater/sediment system (TNO). The characteristics of the three sediments are given in table A7_1_1_2_3-2.		
Species	Mixed population present in field samples		
Strain	Not applicable		
Source	Marine field samples, representative of coastal areas in terms of grain size, organic matter and silt/clay content. Freshwater field samples frequently used as reference in tests of this type at TNO		
Sampling site	Marine water and sediment samples were taken from coastal areas of Colijnsplaat and Zandkreekdam. Freshwater reference water and sediment was taken from the North-Eastern part of the ditch surrounding the TNO premises at Schoemakerstraat 97, Delft, the Netherlands. Sediment samples were taken from the top 5 cm layer (approximately).		
Laboratory culture	No, samples were pre-incubated in the laboratory prior to use in the test		
Method of cultivation	Not applicable		
Preparation of substrate for exposure	Sediment samples were allowed to settle, the supernatants were drawn off, the sediments were passed through a 2 mm sieve and the dry solid contents were determined. Marine water samples were sieved at 0.1 mm to remove zooplankton and fortified with sea salt to ca. 31‰.		
Pretreatment	Water/sediment systems were acclimatised for up to 35 days at 15 ± 2 °C with some temporary increased to 20 °C, in the dark and on a slowly revolving rotary shaker		
Initial cell concentration	174 mg biomass/kg dry sediment (mean for the three sediments)		

 Table A7_1_1_2_3-1:
 Inoculum / Test organism

	_		_	-
	Unit	Colijnsplaat	Zandkreekdam	TNO
		water/sediment	water/sediment	water/sediment
		system	system	system
Origin		Colijnsplaat	Zandkreekdam	Delft
Country		The Netherlands	The Netherlands	The Netherlands
Date of sampling		1 February 2001	1 February 2001	2 February 2001
63µm – 2mm	%	54.14	80.04	42.28
$2\mu m - 63\mu m (silt)^1$	%	30.02	12.99	28.67
<2µm (clay)	%	15.84	6.97	29.05
pH (1:5) in water		8.6	8.7	8.0
pH (1:5) in 1M		8.6	8.7	7.8
KCl				
pH (1:5) in 0.01M		7.3	7.7	7.3
CaCl ₂				
Critical Electrolyte	mEq/100g	8.7	2.1	22.2
Concentration				
(CEC)				
Organic Carbon	%	1.5	0.8	3.3
Organic Matter ²	%	2.6	1.4	5.6
Phosphorus _{total}	mg/kg	783.6	437.1	365.0
Nitrogen _{total}	mg/kg	1498.1	546.0	2701.8

Table A7 1 1 2 3-2:	Composition of the three sediments used in the present study

¹ Silt is defined as having a grain size of between 63μ m and 4μ m and that of clay as $< 4\mu$ m on the basis of gravimetric analysis of sieved fractions. As silt/clay is used here as the operative description of the sediments, the fact that a 2μ m in place of a 4μ m sieve was used is not of importance.

 2 Organic matter is calculated as ca. 1.7 times the organic carbon content.

Table A'	71	1 2 3-3	3: Test	system
				•

Criteria	Details
Culturing apparatus	Fumigation test for the determination of biomass: 250-mL flasks containing a total amount of 200 mL sediment and surface water. Flasks were filled with 91.7 g wet sediment and 171 mL seawater (Colijnsplaat), 87.6 g wet sediment and 171 mL seawater (Zandkreekdam), and 44.4 g wet sediment and 175.6 mL ditch water (TNO).
	Degradation test: 1000-mL cylindrical incubation flasks (biometer flasks) with a soda lime column for trapping evolved CO ₂ which also contained an oil- covered, quartz-wool layer for trapping volatile metabolites. Flasks were filled with sediment and water to achieve a ratio of 1:4 for the marine systems. For Colijnsplaat, flasks were filled with 275 g wet sediment containing 118 g pore water and 513 g water. For Zandkreekdam, 260 g wet sediment containing 80 g pore water and 513 water was used. For the TNO systems, 133 g of wet sediment containing 73 g pore water and 527 g water was used.
Number of culture flasks/concentration	3 (fumigation test); 2 (degradation test)
Aeration device	Not reported
Measuring equipment	LSC and HPLC
Test performed in closed vessels due to significant volatility of TS	Yes, vessels were closed with a soda lime column for trapping evolved CO ₂ which also contained an oil- covered, quartz-wool layer for trapping volatile metabolites

Table A7_1_1_2_3-4: Test conditions

Criteria	Details
Composition of medium	Natural sea- and freshwater and corresponding sediment
Additional substrate	No
Test temperature	15 ± 2 °C
pH of aqueous phase (minimum – maximum)	Colijnsplaat: 7.8 – 8.2 Zandkreekdam: 7.8 – 8.3 TNO: 7.9 – 8.6
Aeration of dilution water	No
Suspended solids concentration	Not reported
Other relevant citeria	The test systems were placed on a slowly revolving rotary shaker

		1 REFERENCE	Official use only
1.1	Reference	Kramer KJ (2008) Chemical speciation of copper pyrithione in sea and surface waters. MERMAYDE, Report No. MM-1051, August 27, 2008 (unpublished)	
1.2	Data protection	Yes	
1.2.1	Data owner	API Corporation	
1.2.2	Companies with letter of access		
1.2.3	Criteria for data protection	Data submitted to the MS after 13 May 2000 on existing a.s. for the purpose of its entry into Annex I.	
		2 GUIDELINES AND QUALITY ASSURANCE	
2.1	Guideline study	No, not applicable	
2.2	GLP	No	
2.3	Deviations	No	
		3 MATERIALS AND METHODS	
3.1	Test material	Speciation modelling with Copper pyrithione	
3.1.1	Lot/Batch number	Not applicable	
3.1.2	Specification	Not applicable	
3.1.3	Purity	Not applicable	
3.1.4	Further relevant properties	Not applicable	
3.2	Reference substance	Not applicable	
3.2.1	Initial concentration of reference substance	2	
3.3	Test solution		
3.4	Testing procedure		
3. <mark>4.1</mark>	Test system	The mathematical speciation modelling program CHEAQS Pro has been set according to the following input criteria:	
		pH: fixed for each medium	
		Ionic strength: calculated	
		Convergence criterion: 0.010% (1.00E-04 M)	
		Precipitation equilibria: Not included	
		Adsorption equilibria: Not included	
		Redox equilibria: Not included	
		Organic complexation: Included; model used:	
		Cabaniss & Shuman (1988a, 1988b)	

API C RMS:	orporation Sweden	Copper Pyrithione, PT 21 December 2010	CAR Doc IIIA 7.1–7.3 Fate
Section	on A7.1.1.2.4/01	Fate and behaviour in water – Specia pyrithione	tion of copper
		Not extrapolated to other metals than Cu Components entered as: total concentration (H+ Dataset: NIST, 2004	- as free activity)
3.4.2	Components	Copper (Cu) and pyrithione (PT) shall be include components. Other elements can be included will seriously interfere with the species distribution. additional cationic component is the proton H+ elements shall be selected on the basis firstly of form (metal)PTn complexes) and presence, the environment. For the following elements the sta- been defined and the stability of the PT complex- increase: Na <mn<fe<co<ni<zn<cu. a="" as="" resu-<br="">in the model calculations. Based on earlier stud copper forms (mixed) complexes with OH-, CC been added because of its importance for the ca- strength by the program. The OH- is automatica pH. These ligands have been included in the cor- known to form strong complexes with organic matter (or DOC), an approximation has been used in CHE</mn<fe<co<ni<zn<cu.>	the in the set of hen they are expected to A first obvious . For other cations the f stability constant (to concentration in the ability constants have xes is considered to ult only Zn was included ies it is known that $D_3^{2^2}$ and $SO_4^{2^2}$. Cl has lculation of the ionic ally introduced from the mponents list. Copper is matter in natural waters. dissolved organic carbon, AQS Pro.
3.4.3	Species	The following species were defined and added to Species Io HPT CuPT ₂ ZnPT ⁺ ZnPT ₂ FePT ₃	to the program. X 9 K 4.67 8.5 ' 5.9 5.4 4.7 "
3.4.4	Duration of the test	The characteristics of the aquatic media are pre- 7.1.1.2.4_1 for the components identified above	sented in Table X
4.1	Cu speciation	4 RESULTS Focusing first on the Cu-speciation – thus the recopper over the Cu-containing cation and componentrations of PT nearly all PT is bound in Contribution for the Cu2+ and the CuDOC. With changes to an increase in concentrations of Cu2 copper the relative contribution of Cu2+ at S=3 decreasing [PT], for S=0 only up to 0.34%. This increase of DOC from 0.5 mg (at S=35) to 5 mg confirmed by the CuDOC concentrations: at S= levels reach 31.8% whereas at S=0 it levels off the importance of the complexing capacity of the For the entire range of salinities in the five wate of 1.0E-02 M and above, >99% of the copper is concentration of 1.0E-03 M PT, a considerable bound in the CuPT2 complex, but this depends the effect of the increased DOC (S=35: 61.9%, CuPT2). At a [PT] level of 1.0E-04 M or below.	elative distribution of lexes - at high CuPT2, with 0% h decreasing [PT], this H and CuDOC. For free 5 increases to 3.4% for s is the result of the g (at S=0). This is 35, maximum CuDOC at 91.2%, emphasising he DOC. ers at PT concentrations bound into CuPT2. At a amount of the copper is on the salinity, or better S=0: 39% bound in hardly any comparis

API Corporation	Copper Pyrithione, PT 21	CAR Doc IIIA 7.1-7.3
RMS: Sweden	December 2010	Fate

4.2	PT speciation	For the PT-species distribution – thus the relative distribution of PT over the PT containing anion and complexes - the picture looks rather simple. For the five waters and nearly all PT-concentrations the free PT- is the dominant species (<99%). This means that also in absolute terms practically all PT is in this form. Only at very low [PT], \leq 1.0E-6 M, and especially at S=0, some PT is bound into the ZnPT+ ion (up to 17.5% at 1.0E-10 M at S=0). Only a tiny fraction, less than 0.1% is present as HPT.	
4.3	Relative distribution	For the relative distribution in the speciation of Cu, no difference between the pyrithione concentration levels 1.0E-05 M and 1.0E-07 M exists. Both show a relatively high contribution of CuDOC, but only at the lowest copper concentrations. At higher Cu concentrations the fraction CuDOC becomes of less importance. This tendency is also shown for the fraction free Cu2+.	
		For the relative distribution in the speciation of PT, in most situations the dominant species is PT However, at the higher concentrations of copper (1.0E-02 to 1.0E-4 M) as well as high concentrations of PT (1.0E-01 to 1.0E-03 M) there is a shift towards the CuPT2 complex, with a maximum contribution of nearly 62% of the PT-concentration at [Cu(total)]=1.00E-02 M and [PT(total)]=1.00E-03 M. In an absolute sense, there is an increase of CuPT2 with increasing concentrations of Cu and PT.	
		5 APPLICANT'S SUMMARY AND CONCLUSION	
5.1	Materials and methods	The mathematical speciation modelling program CHEAQS Pro has been used.	
5.2	Conclusion	From the modelling studies it becomes clear that the speciation of copper is only to some level affected by an increase in the concentration pyrithione (PT). Only at higher concentrations of PT a considerable part of the Cu may be in the CuPT2 complex, provided the concentration of Cu is also high. The ligand PT- clearly competes with natural organic matter (DOC) to form trace metal complexes. This leads to lowering the free copper (Cu2+) concentration.	
		The species distribution of pyrithione shows that the dominant species is the free ligand PT-, followed by the zinc species ZnPT+. Addition of copper to the system, e.g. as co-biocide in the paint matrix – does not lead to different conclusions: higher concentrations of Cu and PT favour the formation of CuPT2.	
5.2.1	Reliability	2	X
5.2.2	Deficiencies	No GLP study, modelling.	х

API Corporation	Copper Pyrithione, PT 21	CAR Doc IIIA 7.1-7.3
RMS: Sweden	December 2010	Fate

API Corporation	Copper Pyrithione, PT 21	CAR Doc IIIA 7.1-7.3
RMS: Sweden	December 2010	Fate

Table 7.1.1.2.4_1. Components used in the calculations and definition of their concentration for the different waters (concentration in mol/l (M) unless indicated otherwise)

	sea/ocean	coastal	estua	arine	fresh
S	35	25	15	5	0
components					
рН	8.1	8.0	7.8	7.7	7.7
Н	7.94E-09	1.00E-08	1.58E-08	2.00E-08	2.00E-08
Mg	5.20E-02	3.73E-02	2.25E-02	7.78E-03	4.12E-04
Ca	1.01E-02	7.62E-03	5.17E-03	2.72E-03	1.50E-03
Cu(II)	1.57E-08	3.01E-08	4.45E-08	5.89E-08	6.61E-08
Zn(II)	1.53E-07	2.58E-07	3.63E-07	4.68E-07	5.20E-07
HCO3	2.27E-03	2.40E-03	2.52E-03	2.64E-03	2.70E-03
SO4	8.26E-02	5.92E-02	3.57E-02	1.22E-02	5.21E-04
CI	5.33E-01	3.81E-01	2.29E-01	7.70E-02	1.02E-03
DOC (mg/l)	0.50	1.79	3.07	4.36	5.00

		1 REFERENCE	Official use only	
1.1	Reference	Kramer KJ (2009) Chemical speciation of copper pyrithione in sea and surface waters. MERMAYDE, Report No. MM-1051a, March 19, 2009 (unpublished)	х	
1.2	Data protection	Yes		
1.2.1	Data owner	API Corporation		
1.2.2	Companies with letter of access			
1.2.3	Criteria for data protection	Data submitted to the MS after 13 May 2000 on existing a.s. for the purpose of its entry into Annex I.		
		2 GUIDELINES AND QUALITY ASSURANCE		
2.1	Guideline study	No, not applicable		
2.2	GLP	No		
2.3	Deviations	No		
		3 MATERIALS AND METHODS		
3.1	Test material	Speciation modelling with Copper pyrithione		
3.1.1	Lot/Batch number	Not applicable		
3.1.2	Specification	Not applicable		
3.1.3	Purity	ot applicable		
3.1.4	Further relevant properties	Not applicable		
3.2	Reference substance	Not applicable		
3.2.1	Initial concentration of reference substance			
3.3	Test solution			
3.4	Testing procedure			
3. <mark>4.1</mark>	Test system	The mathematical speciation modelling program CHEAQS Pro has been set according to the following input criteria:		
		pH: fixed for each medium		
		Ionic strength: calculated		
		Convergence criterion: 0.010% (1.00E-04 M)		
		Precipitation equilibria: Not included		
		Adsorption equilibria: Not included		
		Redox equilibria: Not included		
		Organic complexation: Included; model used:		
		Cabaniss & Shuman (1988a, 1988b)		

API Corporation	Copper Pyrithione, PT 21	CAR Doc IIIA 7.1-7.3
RMS: Sweden	December 2010	Fate
Section A7.1.1.2.4/02	Fate and behaviour in water – Speciatio	n of copper

pyrithione

		Not extrapolated to other metals than Cu Components entered as: total concentration (H+ as free activity) Dataset: NIST, 2004; added the PT complexes for hydrogen, copper and zinc
3.4.2	Components	Copper (Cu) and pyrithione (PT) shall be included in the set of components. Other elements can be included when they are expected to seriously interfere with the species distribution. A first obvious additional cationic component is the proton H ⁺ . For other cations the elements shall be selected on the basis firstly of stability constant (to form (metal)PTn complexes) and presence, the concentration in the environment. For the following elements the stability constants have been defined and the stability of the PT complexes is considered to increase: Na <mn<fe<co<ni<zn<cu. a="" as="" included<br="" only="" result="" was="" zn="">in the model calculations. In natural waters major compounds shall be included for the speciation of copper and H⁺, namely Mg and Ca. Based on earlier studies it is known that copper forms (mixed) complexes with OH⁻, CO₃²⁻ and SO₄²⁻. Cl⁻ has been added because of its importance for the calculation of the ionic strength by the program. The OH- is automatically introduced from the pH. These ligands have been included in the components list. Also, pyrithione has been entered as a component. Copper is known to form strong complexes with organic matter in natural waters. For complexation with natural organic matter (dissolved organic carbon, DOC), an approximation has been used in CHEAQS Pro.</mn<fe<co<ni<zn<cu.>
3.4.3	Species	The following species were defined and added to the program.

general name electron construction and a subset of a subset of the second second second second second second s	Presentation of the second	
Species	log K	
HPT	4.67	
CuPT ⁺	8.5	1
CuPT ₂	9.0	
ZnPT ⁺	5.9	
ZnPT ₂	5.4	
FePT ₃	4.7	6 17

Duration of the test The characteristics of the aquatic media are presented in Table 7.1.1.2.4_1 for the components identified above.

4 RESULTS

3.4.4

4.1	Cu speciation	Focusing first on the Cu-speciation – thus the relative distribution of copper over the Cu-containing cation and complexes - at high concentrations of PT nearly all PT is bound in CuPT+, with 0% contribution for the Cu2+ and the CuDOC. With decreasing [PT], this changes to a slight increase in concentrations of Cu2+ and a considerable increase in CuDOC. This is the result of the increase of DOC from 0.5 mg (at S=35) to 5 mg (at S=0) and emphasizes the importance of the complexing capacity of the DOC.
		For the entire range of salinities in the seven waters tested at PT concentrations of 1.0E-03 M and above, >90% of the copper is bound into CuPT+. At lower concentrations of PT, the relative contribution of CuPT+ is lowered, in favour of notably CuDOC. Only at high concentration of PT, CuPT2 is formed.

API Corporation	Copper Pyrithione, PT 21	CAR Doc IIIA 7.1-7.3
RMS: Sweden	December 2010	Fate

4.2	PT speciation	For the PT-species distribution – thus the relative distribution of PT over the PT- anion and PT containing complexes - the picture looks rather simple. For the seven waters and nearly all PT-concentrations the free PT- is the dominant species (>95%). This means that also in absolute terms practically all PT is in this form. At low [PT], \leq 1.0E-4 M, there is a trend towards the formation of ZnPT+. Only a tiny fraction, less than 0.1% is present as HPT.
4.3	Relative distribution	For the relative distribution in the speciation of Cu, it is shown that at high PT (1.0E-01 M),, the majority (approx. 85%) of the copper is bound as CuPT+ complex, and nearly all of the rest in CuPT2 (approx 14%). Lowering the PT to 1.0E-03 M there is a shift towards CuPT+, accounting for >98% of the total copper. At 1.0E-05 M PT the CuPT+ is only dominant at the lower copper concentrations (<1.0E-05 M Cu). At higher concentrations of Cu there is too much copper to be totally complexed by PT and the majority is bound in inorganic copper complexes, such as hydroxides and carbonates. At the lowest PT 1.0E-07 M, the organic Cu(DOC) is the most abundant form, except for the highest CU, where the inorganic forms take over. For the relative distribution in the speciation of PT, at the highest PT the dominant species is PT- This is also true for situations where both PT
		and Cu are low. At PT=1.0E-03 for the highest Cu, CuPT+ takes over from PT- as the most abundant PT species. This trend is continues when lowering the PT. ZnPT+ is only marginally important, always <1% fo the total PT, and at maximum at the lowest Cu.
4.4	Comparison with ecotoxicological studies	For the seawater, assuming a low DOC concentration, the species distribution will be a recombination towards CuPT+ in case of abundant PT. In freshwater, which tends to have a higher concentration of DOC, CuPT+ is abundant only at the highest concentrations of PT. At lower concentrations Cu will bind to DOC, thus lowering its toxicity.
		5 APPLICANT'S SUMMARY AND CONCLUSION
5.1	Materials and methods	The mathematical speciation modelling program CHEAQS Pro has been used.
5.2	Conclusion	From the modelling studies it becomes clear that CuPT2 in water dissociates into Cu2+ and 2PT- ions, which may recombine to single CuPT+ ion as well as other copper species. The speciation of copper is affected by an increase in the concentration pyrithione (PT). The ligand PT- clearly competes with natural organic matter (DOC) to form trace metal complexes.
		Addition of copper to the system, e.g. as co-biocide in the paint matrix – does not lead to different conclusions: higher concentrations of Cu and PT favour the formation of CuPT+. At lower PT the organic Cu(DOC) becomes more dominant.
5.2.1	Reliability	2
5.2.2	Deficiencies	No GLP study, modelling.

API Corporation	Copper Pyrithione, PT 21	CAR Doc IIIA 7.1-7.3
RMS: Sweden	December 2010	Fate

Table 7.1.1.2.4_1. Components used in the calculations and definition of their concentration for the different waters (concentration in mol/l (M) unless indicated otherwise)

	sea/oo	cean	coa	stal	estua	arine	fresh
S	35	30	25	20	15	5	0
components							
pH	8.1	8.1	8.0	7.9	7.8	7.7	7.7
H	7.94E-09	7.94E-09	1.00E-08	1.26E-08	1.58E-08	2.00E-08	2.00E-08
Ma	5.20E-02	4.46E-02	3.73E-02	2.99E-02	2.25E-02	7.78E-03	4.12E-04
Ca	1.01E-02	8.84E-03	7.62E-03	6.39E-03	5.17E-03	2.72E-03	1.50E-03
Cu(II)	1.57E-08	2.29E-08	3.01E-08	3.73E-08	4.45E-08	5.89E-08	6.61E-08
Zn(II)	1.53E-07	2.05E-07	2.58E-07	3.10E-07	3.63E-07	4.68E-07	5.20E-07
HCO3	2.27E-03	2.33E-03	2.40E-03	2.46E-03	2.52E-03	2.64E-03	2.70E-03
SO4	8.26E-02	7.09E-02	5.92E-02	4.74E-02	3.57E-02	1.22E-02	5.21E-04
CI	5.33E-01	4.57E-01	3.81E-01	3.05E-01	2.29E-01	7.70E-02	1.02E-03
DOC (mg/l)	0.50	1.14	1.79	2.43	3.07	4.36	5.00

API Corporation RMS: Sweden Copper Pyrithione, PT 21 December 2010

Section 7.1.2 Annex Point IIIA XII 2.1	Rate and route of degradation in aquatic systems including identification of metabolites and degradation products	
	JUSTIFICATION FOR NON-SUBMISSION OF DATA	Official use only
Other existing data []	Technically not feasible [] Scientifically unjustified [X]	x
Limited exposure []	Other justification []	
Detailed justification:	Biodegradation in biological sewage treatment plants (section 7.1.2.1.1 and 7.1.2.1.2) is not applicable because the substance will not be discharged to sewage treatment plants due to its use as an antifouling (see also Doc IIB, In a ship-yard waste water is usually collected in a basin or reservoir. Water has to be purified before discharge, residue will be removed as chemical waste.). Further, biodegradation in freshwater (section 7.1.2.2.1 and 7.1.2.2.2) is not applicable since the a.s. is only to be used on marine ships. Alternatively, a water/sediment study with seawater and marine sediment is performed (see section A7.1.1.2.3). Therefore, such studies do not seem to be necessary.	
Undertaking of intended data submission []		
	Evaluation by Competent Authorities	
Date Evaluation of applicant's	EVALUATION BY RAPPORTEUR MEMBER STATE	
justification		

Section A7.1.2/01 Metabolite identification (study 1 of 3)

Annex Point IIIA XII.2.1

See section A6.2 for the identification of metabolites formed in mammalian toxicity studies.

		1 REFERENCE	Official use only
1.1	Reference	(2003a) Structural elucidation of [¹⁴ C]-Copper Pyrithione degradation products in rat excreta and in environmental matrices. TNO Chemistry, Report No. V4584, September 2003 (unpublished)	х
1.2	Data protection	Yes	
1.2.1	Data owner	Yoshitomi Fine Chemicals, Ltd.	
1.2.2	Companies with letter of access		
1.2.3	Criteria for data protection	Data submitted to the MS after 13 May 2000 on existing a.s. for the purpose of its entry into Annex I.	
		2 GUIDELINES AND QUALITY ASSURANCE	
2.1	Guideline study	OECD Draft Document (2000). Proposal for a new guideline: phototransformation of chemicals in water – direct and indirect photolysis. SETAC-Europe. Procedures for assessing the environmental fate and ecotoxicity of pesticides.	x
2.2	GLP	Yes	
2.3	Deviations	No	
		3 MATERIALS AND METHODS	
3.1	Test material	Radio-labelled copper pyrithione ([¹⁴ C]-Copper Pyrithione) and samples from a previously performed marine water/sediment degradation study (for materials and methods, see section A7.1.1.2.3)	
3.1.1	Lot/Batch number	Radio-labelled test material: 3362-120	
3. <mark>1</mark> .2	Specification	Specific activity of radio-labelled test material: 28.680 mCi/mmol.	
3.1.2.1	Description	Not reported	
3.1.2.2	Purity	Radio-labelled test material (radiochemical purity): 96.4%.	
3.1.2.3	Stability	As given in section 2	
3.1.2.4	Radiolabelling	[Pyridine-2,6- ¹⁴ C]	
3.2	Reference substance	No	
3.2.1	Initial concentration of reference substance		
3.3	Test solution	Hydrolysis: see table A7_1_2-1/01 and A7_1_2-2/01	х
		Photolysis: see table A7_1_2-4/01	
3.4	Testing procedure		
3.4.1	Test system	Hydrolysis: see table A7_1_2-3/01. The test was carried out in the dark to avoid photolytic interference. Oxygen was exhided by hubbling	

Metabolite identification (study 1 of 3) Section A7.1.2/01

Annex Point IIIA XII.2.1

Micrabolite Iu	cutilicatio	II (Stu	uyı	01 0)
		12.5	2.7	

		nitrogen through the test solutions.	X
		Photolysis: see table A7_1_2-5/01	
3.4.2	Temperature	Hydrolysis: 50 °C	
		Photolysis: room temperature	
3.4.3	pH	Hydrolysis: 5.0, 7.0, and 9.0	
		Photolysis: 7	
3.4.4	Duration of the test	Hydrolysis: 96 h	
		Photolysis: 5 min	
3.4.5	Number of replicates	Not reported	
3.4.6	Sampling	Hydrolysis: at $t = 0$ and 96 h	X
		Photolysis: at $t = 1, 2.5$, and 5 min	
3.4.7	Analytical methods	LSC and HPLC	X

4 **RESULTS AND DISCUSSION**

4.1 **Specification of** products

In the hydrolysis experiment, the test substance concentrations ranged the transformation from $33.7 - 37.7 \ \mu g [^{14}C]$ -copper pyrithione. After 96 h, the parent Xa compound was degraded by more than 98% in all pH solutions.

> In the photolysis experiment, the test substance concentrations ranged Xb from $80.3 - 87.3 \ \mu g [^{14}C]$ -copper pyrithione. After 5 min, the parent compound was degraded by more than 92%.

The following major degradation products were found (maximum concentrations are given):

Metabolite	рН	% of applied radioactivity	Approximated retention time (min)	X
<i>Hydrolysis</i>				
P1	5.0	45.7	4.3 - 4.6	
P4	5.0	25.3	24.6 - 25.8	
H7	7.0	66.3	8.8 - 9.4	
	9.0	58.2	8.8 - 9.4	
P2	7.0	10.5	15.3 - 16.1	
H8	9.0	11.0	12.6 - 13.5	
Photolysis			3	
P1	7	31.6	4.3 - 4.6	
P2	7	12.5 ¹⁾	15.3 - 16.1	
P3	7	30 ²⁾	19.7 – 20.9	
Water/sedimer	nt		3	
B12		45.8	10.1 - 11.1	
H8		42.3	12.6 - 13.5	

Section A7.1.2/01 Metabolite identification (study 1 of 3) Annex Point IIIA XII.2.1 ¹⁾ At t = 2.5 min (lower amounts were detected at t = 1 and 5 min) ²⁾ Only detected at t = 1 min. The peak shape of the hydrolysis products H7 and H8 was relatively broad, and therefore, it might be possible that these peaks consist of more than one degradation product. In the photolysis experiment, the formation of the hydrophilic transformation product P1 was preceded by the formation of two intermediate products (P2 and P3). Similar degradation patterns were observed for the two water/sediment systems. The degradation products formed (B12 and H8) could not clearly be separated on the HPLC system. Therefore, it might be possible that the detected peaks represent more than one degradation product. It could not be revealed if metabolite H7 and B12 are identical, nor whether H8 in the hydrolysis sample is identical to H8 in the Xd water/sediment sample. Although the degradation products were not identified yet, recommendations on the isolation and structural elucidation of these products were given (see section A7.1.2/02 and /03 for summaries). 5 APPLICANT'S SUMMARY AND CONCLUSION Degradation products were obtained from hydrolysis and photolysis 5.1 Materials and х tests and from a previously performed marine water/sediment methods degradation study. In the present study, the degradation tests were performed according to OECD Draft Document (2000), Proposal for a new guideline: phototransformation of chemicals in water - direct and indirect photolysis and SETAC-Europe, Procedures for assessing the environmental fate and ecotoxicity of pesticides. Degradation products were analysed by LSC and HPLC. Extensive degradation of [¹⁴C]-copper pyrithione was detected in all 5.2 **Results** and х samples analysed. A total of seven degradation products were found to discussion occur at a level above 10% of the total added radioactivity. These products were labelled P1, P2, P3, P4, H7, H8, and B12. The products were not identified yet, but recommendations on the isolation and structural elucidation of these products were given. 5.3 Conclusion A total of seven major degradation products were formed in the х hydrolysis, photolysis, and water/sediment degradation studies. The products were not identified yet, but recommendations on the isolation and structural elucidation of these products were given. 5.3.1 Reliability 1 5.3.2 Deficiencies No

Section A7.1.2/01

Metabolite identification (study 1 of 3)

Annex Point IIIA XII.2.1

Copper Pyrithione, PT 21 December 2010

Section A7.1.2/01 N

Metabolite identification (study 1 of 3)

Annex Point IIIA XII.2.1

Table A7_1_2-1/01: T	ype and composition of buffer solutions used in the hydrolysis test
----------------------	---

рН	Type of buffer (final molarity)	Composition
5.0	0.05 M	46.7 mL of 0.1 M NaOH and 50 mL of 0.1 M monopotassium citrate was added to 100 mL Milli-Q water
7.0	0.04 M	88.8 mL of 0.1 M NaOH and 150 mL of 0.1 M monopotassium phosphate was added to 300 mL Milli-Q water
9.0	0.04 M	63.9 mL of 0.1 M NaOH and 150 mL of 0.1 M boric acid (in 0.1 M KCl) was added to 300 mL Milli-Q water

Table A7 1 2-2/01:	Description of	of test solution	used in the	hvdrolvsis test

Criteria	Details
Purity of water	Milli-Q water
Preparation of test medium	A stock solution of the test substance was dissolved in sterile buffer solution
Test concentrations (µg a.s./L)	44 μ g [¹⁴ C]-copper pyrithione/L buffer solution
Temperature (°C)	50 °C
Controls	-
Identity and concentration of co-solvent	-
Replicates	-

Table A7_1_2-3/01: Description of test system used in the hydrolysis test

Glassware	Sterilised glassware (type of glassware was not reported)
Other equipment	Thermostatically controlled water bath
Method of sterilization	Glassware was sterilised at 120 °C before use; buffer solutions were sterilised by filtration over a 0.45 μm filter

 Table A7_1_2-4/01:
 Description of test solution and controls used in the photolysis test

Criteria	Details
Purity of water	0.04 M phosphate buffer solution of pH 7
Preparation of test chemical solution	A stock solution of the test substance was dissolved in sterile buffer solution
Test concentrations (µg a.s./L)	100 μ g [¹⁴ C]-copper pyrithione/L buffer solution
Temperature (°C)	room temperature
Preparation of a.s. solution	See preparation of test chemical solution
Controls	Not applicable
Identity and concentration of co-solvent	Not applicable

Criteria	Details
Laboratory equipment	Closed plastic vessels
Test apparatus	LSC and HPLC
Properties of artificial light source:	
Nature of light source	Philips TL CLEO Natural sunlamp
Emission wavelenght spectrum	1 0.01 0.001 0.0001 0.00001 0.00001 280 310 340 370 400 430 460 wavelength (nm)
Light intensity	Not reported
Filters	Wavelengths < 290 nm were excluded
Properties of natural sunlight:	Not applicable
Latitude	-
Hours of daylight	-
Time of year	-
Light intensity	-
Solar irradiance (L_{λ})	-

Table A7_1_2-5/01:Description of test system used in the photolysis test

Section A7.1.2/02 Metabolite identification (study 2 of 3)

Annex Point IIIA XII.2.1

		1 REFERENCE	Official use only	
1.1	Reference	(2003b) Structural elucidation of seven transformation products of [¹⁴ C]-copper pyrithione, formed by photolysis, hydrolysis and in a water-sediment degradation study. TNO Chemistry, Report No. V5034, September 2003 (unpublished)		
1.2	Data protection	Yes		
1.2.1	Data owner	API Corporation, Japan		
1.2.2	Companies with letter of access			
1.2.3	Criteria for data protection	Data submitted to the MS after 13 May 2000 on existing a.s. for the purpose of its entry into Annex I.		
		2 GUIDELINES AND QUALITY ASSURANCE		
2.1	Guideline study	OECD Draft Document (2000). Proposal for a new guideline: phototransformation of chemicals in water – direct and indirect photolysis OECD Revised Guideline 111		
2.2	GLP	Yes		
2.3	Deviations	No		
		3 MATERIALS AND METHODS		
3.1	Test material	Radio-labelled copper pyrithione ([¹⁴ C]-Copper Pyrithione) and samples from a previously performed marine water/sediment degradation study (for materials and methods, see section A7.1.1.2.3)	х	
3.1.1	Lot/Batch number	3362-120		
3.1.2	Specification	Specific activity: 28.680 mCi/mmol.		
3.1.2.1	Description	Green crystalline powder		
3. <mark>1</mark> .2.2	Purity	Radiochemical purity: 96.4%	х	
3.1.2.3	Stability	As given in section 2		
3.1.2.4	Radiolabelling	[Pyridine-2,6- ¹⁴ C]		
3.2	Reference	Unlabelled copper pyrithione, 2-mercaptopyridine, and 2-		
2 2 1	substance	mercaptopyridine-1-oxide		
5.2.1	Initial concentration of reference substance	mercaptopyridine-1-oxide		
3.3	Initial concentration of reference substance Test solution	mercaptopyridine-1-oxide Photolysis: see table A7_1_2-1/02		
3.3	Initial concentration of reference substance Test solution	mercaptopyridine-1-oxide Photolysis: see table A7_1_2-1/02 Hydrolysis: see table A7_1_2-3/02 and A7_1_2-4/02		
3.3 3.4	Initial concentration of reference substance Test solution Testing procedure	mercaptopyridine-1-oxide Photolysis: see table A7_1_2-1/02 Hydrolysis: see table A7_1_2-3/02 and A7_1_2-4/02		
3.3 3.4 3.4.1	Initial concentration of reference substance Test solution Testing procedure Test system	mercaptopyridine-1-oxide Photolysis: see table A7_1_2-1/02 Hydrolysis: see table A7_1_2-3/02 and A7_1_2-4/02 Photolysis: see table A7_1_2-2/02		
Section A7.1.2/02 Annex Point IIIA XII.2.1		Metabolite identification (study 2 of 3)		
---	--	--	---	
		A short literature survey led to candidate structures for which the exact atomic masses were calculated. Fragmentation patterns in the ion-source were determined for three reference compounds (copper pyrithione, 2-mercaptopyridine, and 2-mercaptopyridine-1-oxide). First, ionic mass traces of all possible fragments in the degradation samples were compared with the trace of the radioactive signal to identify relevant mass signals specific for degradation products of [¹⁴ C]-copper pyrithione. Additionally, full scan spectra were investigated at the elution time of each radioactive peak to control for unaccounted degradation structures. Tandem MS experiments were conducted with two freeze-dried sampels.		
3.4.2	Temperature	Photolysis: 20 ± 1 °C Hydrolysis: 50 °C		
3.4.3	рН	Photolysis: 7.0 Hydrolysis: 5.0 and 9.0		
3.4.4	Duration of the test	Photolysis: 5 min		
		Hydrolysis: 96 h		
3.4.5	Number of replicates	Photolysis: 3		
3.4.6	Sampling	Photolysis: at $t = 0, 1$, and 5 min Hydrolysis: at $t = 96$ h		
3.4.7	Analytical methods	LSC, HPLC, and LC-MS	x	
		4 RESULTS AND DISCUSSION		
4.1	Specification of the transformation products	In the hydrolysis experiment, the test substance concentrations ranged from $182 - 192 \ \mu$ g/L (expressed as Parent Compound Equivalent (PCE)).		
		In the photolysis experiment, the test substance concentrations ranged from $178 - 183 \ \mu$ g/L (expressed as PCE).		
		The following major degradation products were found:		
		Hydrolysis (pH 5.0): P1, P4		
		Hydrolysis (pH 9.0): H7		
		Photolysis (pH 7.0): P1, P6		
		H8 was a minor degradation product in the hydrolysis (pH 9) test; P2, P4, P5, and H9 are minor degradation products found in the photolysis test.		
		The following degradation products were tentatively assigned to structures:		
		P4: pyrithione disulfide.		
		P5: pyrithione-S,S'-mercaptopyridine		
		The structures of the other products (P1, P2, P6, H7, H8, and H9) were not elucidated. The identity of P4 found in the photolysis sample could not be confirmed by mass spectra data, only by retention time.		

Metabolite identification (study 2 of 3)

Clean-up of the water/sediment samples was not successful. Therefore,

Section A7.1.2/02 Metabolite identification (study 2 of 3)

		they could not be analysed by LC-MS and the structures of B12 and H8 remain unresolved.
		5 APPLICANT'S SUMMARY AND CONCLUSION
5.1	Materials and methods	Degradation products were obtained from hydrolysis and photolysis tests and from a previously performed marine water/sediment degradation study. In the present study, the degradation tests were performed according to OECD 308, OECD Draft Document (2000), Proposal for a new guideline: phototransformation of chemicals in water – direct and indirect photolysis and OECD Revised Guideline 111. Degradation products were analysed by LSC, HPLC, and LC-MS.
5.2	Results and discussion	Degradation products P4 and P5 were tentatively identified as pyrithione disulfide and pyrithione-S,S'-mercaptopyridine, respectively. The structures of the other products (P1, P2, P6, H7, H8, and H9) were not elucidated. The metabolites B12 and H8 obtained from the marine water/sediment degradation study were not identified because the clean- up of the water/sediment samples was not successful.
5.3	Conclusion	Degradation products P4 and P5 were tentatively identified as pyrithione disulfide and pyrithione-S,S'-mercaptopyridine, respectively. The products P1, P2, P6, H7, H8, H9, and B12 were not identified.
5.3.1	Reliability	1
5.3.2	Deficiencies	No

Copper Pyrithione, PT 21 December 2010

Acceptability

Remarks

T-11. A7 1 2 1/02.	Description of the table is and so that he are the set of the set
Table A / T 2-1/02:	Description of test solution and controls used in the photolysis test

Criteria	Details
Purity of water	0.08 M phosphate buffer solution of pH 7.0
Preparation of test chemical solution	A stock solution of the test substance was dissolved in sterile buffer solution
Test concentrations (µg a.s./L)	$200 \ \mu g \ [^{14}C]$ -copper pyrithione/L buffer solution
Temperature (°C)	20 ± 3 °C
Preparation of a.s. solution	See preparation of test chemical solution
Controls	Additional flasks with aqueous solution with the same concentration of the test substance were kept in the dark in order to distinguish between photochemical degradation and other reactions.
Identity and concentration of co-solvent	Not applicable

Table A7 1 2-2/02:	Description of test system used in the photolysis test

Criteria	Details
Laboratory equipment	Closed glass vials
Test apparatus	LSC, HPLC, and LC-MS
Properties of artificial light source:	
Nature of light source	Philips TL CLEO Natural sunlamp
Emission wavelenght spectrum	1 0.01 0.001 0.0001 0.00001 0.00001 280 310 340 370 400 430 460 wavelength (nm)
Light intensity	Not reported
Filters	Wavelengths < 290 nm were excluded
Properties of natural sunlight:	Not applicable
Latitude	-
Hours of daylight	-
Time of year	-
Light intensity	-
Solar irradiance (L_{λ})	-

76 (109)

Table A7_1_2-3/02:	Type and composition of buffer solutions used in the hydrolysis test
--------------------	--

рН	Type of buffer (final molarity)	Composition
5.0	0.03 M	50 mL of 0.1 M tripotassium citrate was adjusted to pH 5.0 with HCl and filled up 200 mL with deionised water
9.0	0.03 M	50 mL of 0.1 M boric acid (in 0.1 M KCl) was adjusted to pH 9.0 with 0.1 M NaOH and filled up to 200 mL deionised water

Table A7 1 2-4/02:	Description of test solution used in the hydrolysis test

Criteria	Details
Purity of water	Deionised water
Preparation of test medium	A stock solution of the test substance was dissolved in sterile buffer solution
Test concentrations (µg a.s./L)	200 $\mu g [^{14}C]$ -copper pyrithione/L buffer solution
Temperature (°C)	$50 \pm 1 \ ^{\circ}\mathrm{C}$
Controls	-
Identity and concentration of co-solvent	-
Replicates	-

 Table A7_1_2-5/02:
 Description of test system used in the hydrolysis test

Glassware	Not reported
Other equipment	Thermostatically controlled water bath
Method of sterilization	Buffer solutions were sterilised by filtration over a 0.45 μ m filter

Section A7.1.2/03 Metabolite identification (study 3 of 3)

Annex Point IIIA XII.2.1

		1 REFERENCE	Official use only
1.1	Reference	(2005) Structural elucidation of hydrophilic transformation products of [¹⁴ C]-copper pyrithione, formed by photolysis, hydrolysis and in a water-sediment degradation study. TNO Quality of Life, Report No. V5764, June 2005 (unpublished)	Geolefision ● c.
1.2	Data protection	Yes	
1.2.1	Data owner	API Corporation, Japan	
1.2.2	Companies with letter of access	27. 27.	
1.2.3	Criteria for data protection	Data submitted to the MS after 13 May 2000 on existing a.s. for the purpose of its entry into Annex I.	
		2 GUIDELINES AND QUALITY ASSURANCE	
2.1	Guideline study	OECD 308	
		OECD Draft Document (2000). Proposal for a new guideline: phototransformation of chemicals in water – direct and indirect photolysis	
		OECD Revised Guideline 111	
2.2	GLP	Yes	
2.3	Deviations	No	
		3 MATERIALS AND METHODS	
3.1	Test material	Radio-labelled copper pyrithione ([¹⁴ C]-Copper Pyrithione)	
3.1.1	Lot/Batch number	3362-120	
3.1.2	Specification	Specific activity: 28.7 mCi/mmol.	
3.1.2.1	Description	As given in section 2.	
3.1.2.2	Purity	Radiochemical purity: 95.3%	X
3.1.2.3	Stability	As given in section 2	
3.1.2.4	Radiolabelling	[Pyridine-2,6- ¹⁴ C]	
3.2	Reference substance	Pyridine-2-sulfonic acid, ammonium pyridine-2-sulphinate, pyridine-2- sulphonic acid N-oxide, 2-mercaptopyridine	
3.2.1	Initial concentration of reference substance		
3.3	Test solution	Photolysis: see table A7_1_2-1/03	Х
		Hydrolysis: see table A7_1_2-3/03 and A7_1_2-4/03	
		Water/sediment: see table A7_1_2-6/03	
3.4	Testing procedure		
3.4.1	Test system	Photolysis: see table A7_1_2-2/03	
		Hydrolysis: see table $A7_1_2-5/03$. The test was carried out in the dark to avoid photolytic interference. Oxygen was exluded by bubbling	

Section A7.1.2/03 Metabolite identification (study 3 of 3)

Annex Point IIIA XII.2.1			
		nitrogen through the test solutions.	
		Water/sediment: see table A7_1_2-7/03 and A7_1_2-8/03	
		The structural identity of four metabolites of copper pyrithione, P1 (from photolysis), H7 (from hydrolysis at pH 9.0), B12 and H8 (from marine water/sediment study) was investigated.	
3.4.2	Temperature	Photolysis: 20 °C	
		Hydrolysis: $50 \pm 3 ^{\circ}\text{C}$	
		Water/sediment:	
3.4.3	pH	Photolysis: 7.0	
		Hydrolysis: 9.0	
		Water/sediment: not reported	
3.4.4	Duration of the test	Photolysis: 30 min	
		Hydrolysis: 96 h	
		Water/sediment: 3 d	
3.4.5	Number of replicates	Photolysis: 3	
		Water/sediment: 3 exposed and 1 control	
3.4.6	Sampling	Photolysis: at $t = 30 \min$	
	1 0	Hydrolysis: at $t = 96 h$	
		Water/sediment: 3 d	
3.4.7	Analytical methods	LSC, HPLC, and LC-MS	x
		4 RESULTS AND DISCUSSION	
4.1	Specification of the transformation	The following total [¹⁴ C] radioactivity concentrations were determined: $206 - 233 \ \mu g \ Eq/L$ (photolysis),	
	products	227 – 232 μg Eq/L (hydrolysis),	
		139 – 147 µg Eq/L (water/sediment).	
		The following degradation products were found:	
		Photolysis: P1, H7, H9, P4, P5, P6, and a less hydrophobic metabolite than H7	
		Hydrolysis: P1, B12, H7, P4, P5	
		Water/sediment: B12, H7, P1, P4.	
		The following degradation products were tentatively assigned to structures:	
		H7: pyridine sulfinic acid	
		H9: 2-mercaptopyridine	

P4: could be bis(2-pyridinyl)sulfonyl 1,1' dioxide, but based on the literature, the most probable structure is bis(2-pyridinyl)disulfide 1,1' dioxide (pyrithione disulfide)

P5: No additional information was obtained on this metabolite. In a previous study, this substance was identified as bis(2-pyridinyl)disulfide 1 oxide (mixed disulfide)

Secti	ion A7.1.2/03	Metabolite identification (study 3 of 3)	
Anne	Annex Point IIIA XII.2.1		
		Unidentified metabolites:	
		B12: very hydrophilic, pyridine-containing structure	
		P1: very hydrophilic substance under acidic and neutral pH conditions	
		P6: probably a dimer containing pyrithione or mercaptopyridine structures	
		The absence of H8, P2, P3, which were found in previous studies (P3 was only found at $t = 1$ min), indicates that these are unstable, intermediate metabolites.	
		Based on these findings, [¹⁴ C]-copper pyrithione expected to degrade as follows:	
		In aqueous solutions, the pyrithione molecules of copper pyrithione (CuPT2) will undergo speciation between a chelated state with either copper or another metal (Fe or Na), the dimer pyrithione disulfide (PT2) and the monomer (PT). The concentration of CuPT2 is therefore dependent on different factors in the aqueous solution like pH, salinity, concentration of other metals etc.	Xa
		Two of the hydrophilic metabolites of copper pyrithione were tentatively identified as Pyridine sulfinic acid (PSO2) and 2- mercaptopyridine (PSH). This indicates that further degradation of pyrithione like compounds occurs by losing the N-oxide on the pyridine ring. This degradation step is likely to be irreversible.	
		The sulphur atoms of PSO2 or PSH can be reduced or oxidized, respectively to form other compounds or disulfides.	
		The unidentified metabolites P1 and B12 were hydrophilic under both acid and neutral eluent conditions on the HPLC. They could not be extracted by one of the liquid liquid extraction procedures. Their bioaccumulation potential is therefore expected to be very low.	
		Based on the tentatively identified metabolites of copper pyrithione, it seems that the metabolic pathway of this compound is comparable to the degradation routes reported for zinc pyrithione.	Хb
		5 APPLICANT'S SUMMARY AND CONCLUSION	
5.1	Materials and methods	Degradation products were obtained from hydrolysis, photolysis, and water/sediment degradation tests. The tests were performed according to OECD 308, OECD Draft Document (2000), Proposal for a new guideline: phototransformation of chemicals in water – direct and indirect photolysis and OECD Revised Guideline 111. Degradation products were analysed by LSC, HPLC, and LC-MS.	
5.2	Results and discussion	H7 and H9 were tentatively identified as pyridine sulfinic acid and 2- mercaptopyridine, respectively. P4 is most probably pyrithione disulfide, but its identity remains ambiguous. The identities of B12, P1, and P6 were not elucidated. B12 and P1 were very hydrophilic. The previously detected degradation products H8, P2, and P3 indicate that these are unstable, intermediate metabolites. The metabolic pathway of [¹⁴ -C]-copper pyrithione appears to be comparable to the degradation routes reported for zinc pyrithione.	х
5.3	Conclusion	Degradation products H7 and H9 were tentatively identified as pyridine sulfinic acid and 2-mercaptopyridine, respectively. The identity of P4 remains ambiguous, although literature indicates that its structure is pyrithione disulfide. The products B12, P1, and P6 were not identified.	

Section A7.1.2/03 Metabolite identification (study 3 of 3)

Annex Point IIIA XII.2.1

TILCOND	once norem	 (state) -	010)

		B12 and P1 were very hydrophilic. The metabolic pathway of [¹⁴ -C]- copper pyrithione appears to be comparable to the degradation routes reported for zinc pyrithione.	
		Metabolites have been characterised and identified to the extent that is feasible, although identification could not be completed for all major metabolites. Therefore, no further efforts were made.	
5.3.1	Reliability	1	
5.3.2	Deficiencies	No	

Section A7.1.2/03

Metabolite identification (study 3 of 3)

Annex Point IIIA XII.2.1

Section A7.1.2/03 Metabolite identification (study 3 of 3) Annex Point IIIA XII.2.1 Results and discussion

83 (109)

Table A7_1_2-1/03: Description of test solution and controls used in the photolysis test

Criteria	Details
Purity of water	0.08 M phosphate buffer solution of pH 7.0
Preparation of test chemical solution	A stock solution of the test substance in DMSO was dissolved in sterile buffer solution
Test concentrations (µg a.s./L)	200 μ g [¹⁴ C]-copper pyrithione/L buffer solution
Temperature (°C)	20 °C
Preparation of a.s. solution	See preparation of test chemical solution
Controls	Not applicable
Identity and concentration of co-solvent	DMSO

Table A7_1_2-2/03: Description of test system used in the photolysis test

Criteria	Details
Laboratory equipment	Closed glass vials
Test apparatus	LSC, HPLC, and LC-MS
Properties of artificial light source:	
Nature of light source	Philips TL CLEO Natural sunlamp
Emission wavelenght spectrum	Not reported
Light intensity	Not reported
Filters	Wavelengths < 290 nm were excluded
Properties of natural sunlight:	Not applicable
Latitude	-
Hours of daylight	-
Time of year	-
Light intensity	-
Solar irradiance (L_{λ})	-

Table A7_1_2-3/03: Type and composition of buffer solutions used in the hydrolysis test

рН	Type of buffer (final molarity)	Composition
9.0	0.07 M	50 mL of 0.1 M boric acid (in 0.1 M KCl) was adjusted to pH 9.0 with 21.3 mL of 0.1 M NaOH and filled up to 100 mL deionised water

Table A7_1_2-4/03: Description of test solution used in the hydrolysis test

Criteria	Details
Purity of water	Deionised water
Preparation of test medium	A stock solution of the test substance in DMSO was dissolved in sterile buffer solution
Test concentrations (µg a.s./L)	200 $\mu g [^{14}C]$ -copper pyrithione/L buffer solution
Temperature (°C)	50 ± 3 °C
Controls	-
Identity and concentration of co-solvent	DMSO
Replicates	-

Table A7_1_2-5/03: Description of test system used in the hydrolysis test

Glassware	Not reported
Other equipment	Thermostatically controlled water bath
Method of sterilization	Buffer solutions were sterilised by filtration over a 0.45 μ m filter

Table A7_1_2-6/03: Inoculum used in the water/sediment degradation test

Criteria	Details
Nature	Two marine water/sediment systems: Colijnsplaat: fine sandy sediment with an organic matter content of ca. 2.6% and a silt clay fraction of ca. 15%. Zandkreekdam: silty fine sand sediment with an organic matter content of ca. 1.4% and a silt clay fraction 50% of more.
Source	Field samples of seawater and marine sediment
Sampling site	Marine water and sediment samples were taken from coastal areas of Colijnsplaat and Zandkreekdam in the Netherlands; the top 5 cm layer was sampled. These sediments are representative of coastal benthic conditions from an area not expected to be contaminated by the test substance. Seawater was collected in the North Sea, off the coast of Jacobahaven in Zeeland, the Netherlands
Preparation of substrate for exposure	Sediment samples were passed through a 2 mm sieve, transferred to the laboratory and allowed to settle. The supernatants were drawn off and the dry solid contents were determined. Marine water samples were sieved to remove particles.
Pretreatment	Water/sediment systems were acclimatised for up to two weeks at 20 ± 2 °C in the dark
Test concentration (µg a.s./L)	180 μ L of a stock solution was added to each bottle

Copper Pyrithione, PT 21 December 2010

Table A7_1_2-7/03: Test system used for in the water/sediment degradation test

Criteria	Details
Culturing apparatus	1-L flasks with ca. $400 - 500$ g sediment (ww) and a water phase of ca. $650 - 700$ mL
Number of culture flasks	3 with test substance and 1 control
Measuring equipment	LSC, HPLC, and LC-MS

Table A7_1_2-8/03: Test conditions of the water/sediment degradation test

Criteria	Details
Composition of medium	Natural seawater and corresponding sediment
Additional substrate	No
Test temperature	20 ± 2 °C
pH of aqueous phase (minimum – maximum)	Not reported
Aeration of dilution water	Yes (the previous study revealed that no volatile organic metabolites were formed)
Suspended solids concentration	Not reported
Other relevant criteria	-

Section A7.1.3 Adsorption / Desorption screening test

		1 REFERENCE	Official use only
1.1	Reference	De Vette HQM, Van Es C (2002b) A study on the adsorption/desorption of copper pyrithione to two sediment types using [¹⁴ C] copper pyrithione (OECD 106, SETAC-Europe). TNO Chemistry, Report No: V2422/05, September 5, 2002 (unpublished) including Amendment 01 Hamwijk, C. (2006)	х
1.2	Data protection	Yes	
1.2.1	Data owner	Yoshitomi Fine Chemicals, Ltd.	
1.2.2	Companies with letter of access	-	
1.2.3	Criteria for data protection	Data submitted to the MS after 13 May 2000 on existing a.s. for the purpose of its entry into Annex I.	
		2 GUIDELINES AND QUALITY ASSURANCE	
2.1	Guideline study	Yes, the SETAC-Europe procedure and OECD 106, as specified by EU Council Directive 95/36/EC	
2.2	GLP	Yes	
2.3	Deviations	No	
		3 MATERIALS AND METHODS	
3.1	Test material	Radiolabelled copper pyrithione (Copper Omadine Pyridine-2,6-14C)	
3.1.1	Lot/Batch number	3362-120	
3.1.2	Specification	Specific activity: 28.680 mCi/mmol	
3.1.3	Purity	Radiochemical purity: 99.0%	
3.1.4	Further relevant properties		Х
3.1.5	Method of analysis	Selected supernatant samples of each sediment treated with the highest concentration of test substance in the adsorption, as well as the first, the second desorption step and extraction solvent, were analysed by means of HPLC.	x
3.2	Degradation products	No	
3.2.1	Method of analysis for degradation products		
3.3	Reference substance	No	
3.3.1	Method of analysis for reference substance		
3.4	Soil types	See table A7_1 _3-1	Х
3.5	Testing procedure		
3.5.1	Test system	The test was carried out in 20-mL glass scintillation vials closed with	

Section A7.1.3		Adsorption / Desorption screening test					
Annex	Point IIA7.7						
		screw caps. Two vessels per concentration were used. Reference vials without sediment were also prepared and treated in the same manner as the other vials.					
3.5.2	Test solution and Test conditions	A test series containing 5, 10, 20, 40 and 70 μ g/L [14C] copper pyrithione was prepared. Therefore, 42 μ L of the stock solution (stock I) was diluted to 250 mL with 0.01M CaCl ₂ . From this solution, the 40 μ g/L test solution was prepared by diluting 114 mL with 86 mL of CaCl ₂ . All the other solutions were prepared by mixing 100 mL of the previous concentration with 100 mL of 0.01 M CaCl ₂ .	Xa				
		Adsorption was determined by placing samples of 2 g dw of each sediment in the vials. Next, 10 mL of each test substance solution was added to duplicate vials with each sediment, resulting for both sediments in a concentration series of 0.025 , 0.050 , 0.10 , 0.20 , and $0.35 \ \mu g/g$ (dw). Reference vials without sediment, containing 10 mL of $0.01 \ M \ CaCl_2$ solution only, were also prepared, and treated in the same manner as the other vials. The test and reference vials were shaken for approximately 15 min in a temperature controlled room at $20 \pm 2 \ ^{\circ}C$ in the dark. The vials were then centrifuged and duplicate samples of the supernatant (1 mL) were pipetted into vials containing 10 mL scintillation fluid and counted. The concentration of test substance at equilibrium (Ceq) was calculated from the LSC measurements.	Xb				
3.6	Test performance						
3.6.1	Preliminary test	According to OECD 106: Yes					
3.6.2	Screening test: Adsorption	According to OECD 106: Yes, however the adsorption of five concentrations by two sediments was determined at one time point instead of the adsorption of one concentration by five sediments at several time points					
3.6.3	Screening test: Desorption	According to OECD 106: Desorption was determined by removing the remaining aqueous layer and adding 10.0 mL of 0.01 N CaCl ₂ solution to each sediment. These vials were shaken for 15 min and after this period the samples were centrifuged and duplicate samples of the supernatant (1 mL) were added to 5 mL of scintillation fluid and counted by LSC. This desorption step was repeated once.	x				
3.6.4	Determination of Freundlich ad- and desorption isotherms	According to OECD 106: Yes					
3.6.5	HPLC-method	Selected supernatants, as well as methanol extracts of the sediments originating from the highest concentration were analysed by means of HPLC-RAD.	х				
3.6.6	Other test	Not applicable					
		4 RESULTS					
4.1	Preliminary test	See table A7 1 3-2					
4.2	Screening test: Adsorption	See table A7_1_3-3	X				
4.3	Screening test: Desorption	See table A7_1 _3-4	X				

Section A7.1.3		Adsorption / Desorption screening test						
Annex	Point IIA7.7							
4.4	Calculations							
4.4.1	Ka, Kd	For ¹⁴ C copper pyrithione and radiolabeled transformation products: Zandkreekdam : Ka = 1.7 mL/g, Kd = 10.2 mL/g Colijnsplaat : Ka = 10.3 mL/g, Kd = 21.0 mL/g						
4.4.2	Ka _{oc} , Kd _{oc}	For ¹⁴ C copper pyrithione and radiolabeled transformation products: Zandkreekdam: $Ka_{oc} = 276 \text{ mL/g}$, $Kd_{oc} = 1656 \text{ mL/g}$ ($Ka_{om} = 162 \text{ mL/g}$) Colijnsplaat: $Ka_{oc} = 3442 \text{ mL/g}$, $Kd_{oc} = 7018 \text{ mL/g}$ ($Ka_{om} = 2024 \text{ mL/g}$)	х					
4.5	Degradation product(s)	See table A7_1_3-5						
		5 APPLICANT'S SUMMARY AND CONCLUSION						
5.1	Materials and methods	The SETAC-Europe procedure and OECD 106, as specified by EU Council Directive 95/36/EC were followed. However, the adsorption of five concentrations by two soils was determined at one time point instead of the adsorption of one concentration by five soils at several time points.	х					
5.2	Results and discussion	The K _a , K _d , Ka _{oc} and K _a /K _d values given below in sections $5.2.2 - 5.2.5$ are all based on LSC measurements and are therefore for ¹⁴ C copper pyrithione and radiolabeled transformation products. LSC is an unspecific technique which cannot differentiate between the test substance and its transformation products. Selected supernatants, as well as methanol extracts of the sediments originating from the highest concentration were analysed by means of HPLC-RAD. The results showed that, in spite of the short incubation time (15 min), the test substance was not stable in both Zandkreekdam and Colijnsplaat sediment. In some cases, the unstability can be taken into account by analyzing both phases (water and sediment). However, in the present study, the identity of the radiolabeled substance that was adsorbed to the sediment could not be determined due to the relatively high percentage of bound residue .	Xa Xb					
		The results showed that ¹⁴ C copper pyrithione and radiolabeled transformation products are easily adsorbed to sediments. The adsorption coefficients (Ka _{oc}) show that copper pyrithione and radiolabeled transformation products can be considered as immobile. The radiolabeled material was not easily desorbed from both sediments. Therefore, the adsorption appeared to be irreversible in both systems. The parent compound was easily degraded into a more polar metabolite. The recovery of radioactivity appeared to be 99.6% - 111.6%. The recovery of the radioactivity in the supernatant after the adsorption/desorption test was 70.6% for the Zandkreekdam and 42.1% for the Colijnsplaat, whereas 4.6% and 1.8% was desorbed with the extraction solvent, respectively. Finally, 24.4% and 67.7%, respectively, remained as unextractable radioactivity (bound residue) in the sediments.						
5.2.1	Adsorbed a.s. [%]	Not reported						
5.2.2	Ka	For ¹⁴ C copper pyrithione and radiolabeled transformation products: 1.7 mL/g (Zandkreekdam) 10.3 mL/g (Colijnsplaat)	х					
5.2.3	K _d	For ¹⁴ C copper pyrithione and radiolabeled transformation products:	x					

5.2.3 K_d

Section A7.1.3 Adsorption / Desorption screening test

		10.2 mJ /a (Zandkraakdam)	
		21.0 mL/g (Colijnsplaat)	
5.2.4	Ka _{oc}	For ¹⁴ C copper pyrithione and radiolabeled transformation products:	x
		276 mL/g (Zandkreekdam) 3442 mL/g (Colijnsplaat)	
5.2.5	Ka/Kd	0.167 (Zandkreekdam) 0.490 (Colijnsplaat)	x
5.2.6	Degradation products (% of a.s.)	One polar metabolite was found which exceeded 10% of the parent compound (59.1 and 100% of the parent compound in Zandkreekdam and Colijnsplaat sediment, respectively)	х
5.3	Conclusion	Validity criteria can be considered as fulfilled. ¹⁴ C copper pyrithione and radiolabeled transformation products are considered to be immobile, as the adsorption of radiolabeled material appeared to be irreversible in both systems.	x
5.3.1	Reliability	1	
5.3.2	Deficiencies	No	

Copper Pyrithione, PT 21 December 2010

Section A7.1.3

Adsorption / Desorption screening test

Section A7.1.3

Adsorption / Desorption screening test

Copper Pyrithione, PT 21 December 2010

Section A7.1.3

Adsorption / Desorption screening test

Section A7.1.3

Adsorption / Desorption screening test

API Corporation RMS: Sweden

Table A7_1_3-1	:
----------------	---

Classification and physico-chemical properties of sediments used as adsorbents (sediments were sieved through a ≤ 2 mm sieve)

	Soil 1	Soil 2
Soil order	Not reported	Not reported
Soil series	Not reported	Not reported
Classification	Not reported	Not reported
Location	Colijnsplaat, Eastern Scheld Estuary, the Netherlands	Zandkreekdam, Eastern Scheld Estuary, the Netherlands
Horizon	Not reported	Not reported
Sand [%]	95.50	85.03
Silt [%]	2.24	9.68
Clay [%]	2.26	5.29
Organic carbon [%]	0.3	0.6
Carbonate as CaCO ₃	Not reported	Not reported
insoluble carbonates [%]	Not reported	Not reported
pH (1:5 H ₂ O)	8.2	8.3
pH (1:5 1 M KCl)	8.8	8.5
pH (1:5 0.01 M CaCl ₂)	8.1	8.0
Cation exchange capacity (MEQ/100 g)	6.4	6.5
Extractable cations (MEQ/100 g)	Not reported	Not reported
Ca	Not reported	Not reported
Mg	Not reported	Not reported
Na	Not reported	Not reported
K	Not reported	Not reported
Н	Not reported	Not reported
Special chemical/mineralogical features	Not reported	Not reported
Clay fraction mineralogy	Not reported	Not reported
Dry matter content (%)	99.6	82.5
Water content (%)	0.4	21.2
Total phosphorus (mg/kg)	197.4	231.7
Total nitrogen (mg/kg)	196.0	419.9

Test substance	¹⁴ C copper pyrithione
Sample purity	Radiochemical purity: 99.0%
Weighed sediment	Mixed Zandkreekdam and Colijnsplaat sediments (0.4, 2, and 10 g)
Volume of CaCl ₂ solution	10 mL
Nominal concentration of a.s. final solution	40 µg/L
Analytical concentration final of a.s. solution	135.0 Bq/mL
Concentration of the test solution (show calculation)	An amount of ¹⁴ C copper pyrithione was added to 3 mL of methanol and 5 mL of dimethylsulfoxide (stock solution I). An aliquote (50 μ L) was counted and contained 68.0 kBq. From this solution, 50 μ L was diluted to 500 mL 0.01 M CaCl ₂ solution (stock solution II) and an aliquote (1 mL) was counted by Liquid Scintillation Counting (LSC). The final concentration was 40 μ g/L and 135.0 Bq/mL.
Details of the analytical method used:	
Method	LSC
Recovery rate	-
Detection limit	-

Table A7_1_3-2: Results of preliminary test:

API Corporation RMS: Sweden

			-							
	Zandkreekdam			Colijnsplaat						
Concentration of test material [µg/l]	5.1	10.0	20.7	40.8	70.5	5.1	10.0	20.7	40.8	70.5
After contact of ca. 15 min with soil	1.4	3.1	7.6	17.8	35.3	1.3	2.3	6.8	9.5	20.3
Correction for blank with soil										
Correction for blank without soil			_1			_1				
Final corrected concentration [mg/l]										
Initial concentration of test solution [µg/L]	5	10	20	40	70	5	10	20	40	70
Decrease in concentration [mg/l]										
Quantity adsorbed [µg]										
Quantity of soil [g of oven-dried equivalent]	2	2	2	2	2	2	2	2	2	2
Quantity adsorbed [µg] per gram of soil	0.02	0.03	0.06	0.11	0.17	0.02	0.04	0.07	0.15	0.24
Test material adsorbed [%]										
Temperature [°C]		1	20 ± 2 °	°C			2	$20 \pm 2^{\circ}$	С	
Volume of solution recovered after centrifugation [ml]										
Volume of solution not recovered [ml]										
Corresponding quantity of test substance [mg]										
Recovery of test substance [%] (determined in reference vials without sediment)	96.8	95.4	93.6	94.8	95.8	96.5	95.4	93.6	94.8	95.8

Table A7_1 _3-3: Results of screening test - adsorption:

¹ The recovery of the test substance in the reference vials without sediment was between 93.6 and 96.8%, which means that the test substance was not adsorbed to the glass.

Table A7_1_3-4: Results of screening test - desorption:

	Zandkreekdam					Colijnsplaat				
Temperature [°C]		,	20 ± 2 °C	2		20 ± 2 °C				
Concentration in combined washings [µg/l]	0.3	0.6	1.1	2.4	3.4	0.2	0.5	1.0	2.1	3.9
Corresponding quantity of test material [µg]	0.003	0.006	0.011	0.024	0.034	0.002	0.005	0.01	0.021	0.039
Quantity desorbed [µg]										
[%] of adsorbed test material, which is desorbed	50	0	17	27	35	0	25	29	20	29
[%] of adsorbed test material, which is not desorbed	50	100	83	73	65	100	75	71	80	71

Table A7_1 _3-5:	Degradation products analysed by HPLC:
------------------	--

Sediment	Treatment	Metabolite 1 (%) ^a	¹⁴ C copper pyrithione (%) ^a
Zandkreekdam	Adsorption	59.1	40.9
Colijnsplaat		100	n.d.
Zandkreekdam	Desorption I	100	n.d.
Colijnsplaat		100	n.d.
Zandkreekdam	Desorption II	100	n.d.
Colijnsplaat		100	n.d.
Zandkreekdam	Methanol	100	n.d.
Colijnsplaat	Extraction		

n.d.: not detectable

a: as percentage in HPLC chromatogram

Section 7.1.4.1 Annex Point IIIA XII 2.2	Field study on accumulation in the sediment	
	JUSTIFICATION FOR NON-SUBMISSION OF DATA	Official use only
Other existing data []	Technically not feasible [] Scientifically unjustified [X]	
Limited exposure []	Other justification []	
Detailed justification:	This study is not considered relevant because the non-extractable residues formed in the water/sediment study do not exceed 70% of the initial dose and the mineralisation rate in the water/sediment system is higher than 5% in 100 days.	
Undertaking of intended data submission []		
	Evaluation by Competent Authorities	
	EVALUATION BY RAPPORTEUR MEMBER STATE	
Date		
Evaluation of applicant's justification		
Conclusion		
Remarks		

Section A7.2 Annex Point IIIA XII 1	Fate and behaviour in soil	
	JUSTIFICATION FOR NON-SUBMISSION OF DATA	Official use only
Other existing data []	Technically not feasible [] Scientifically unjustified []	
Limited exposure [X]	Other justification []	
Detailed justification:	As no to limited exposure of soil will take place due to the use of the active substance as an anti-fouling, no studies seem to be necessary. See also the environmental exposure assessment (Doc IIB)	
Undertaking of intended data submission []		
	Evaluation by Competent Authorities	
	EVALUATION BY RAPPORTEUR MEMBER STATE	
Date		
Evaluation of applicant's justification		
Conclusion		
Remarks		

Section A7.3.1 Phototransformation in air (estimation method)

		1	REFERENCE	Official use only
1.1	Reference	Holland in air o TNO C	der JCTh, Paulussen JJC (2005) Determination of the photolysis f the active substance copper pyrithione by Atkinson calculation. hemistry, Report No: V6462, June 1, 2005 (unpublished)	
1.2	Data protection	Yes		
1.2.1	Data owner	API Co	API Corporation, Japan	
1.2.2	Companies with letter of access	3 <u>2</u> 8		
1.2.3	Criteria for data protection	Data su purpose	abmitted to the MS after 13 May 2000 on existing a.s. for the e of its entry into Annex I.	
		2	GUIDELINES AND QUALITY ASSURANCE	
2.1	Guideline study	Yes, th	e SETAC Europe Guideline and the EU Directive 95/36/EEC	
2.2	GLP	No, thi	s is a theoretical study	
2.3	Deviations	No		
		3	MATERIALS AND METHODS	
3.1	Test material	Copper	pyrithione	x
3.1.1	Lot/Batch number	Not applicable		
3.1.2	Specification	As give	en in section 2	
3.1.3	Purity	Not app	plicable	
3.1.4	Radiolabelling	Not app	plicable	
3.1.5	UV/VIS absorption spectra and absorbance value	Not app	plicable	
3.1.6	Further relevant properties	Not app	plicable	
3.2	Reference substances	Not app	plicable	
3.3	Test solution	Not app	plicable	
3.4	Testing procedure			
3.4.1	Test system	The ph Atkinso was cal softwar	otolysis of copper pyrithione in air was determined using on calculation. The atmospheric decay rate, expressed as half-life, culated with the Atmospheric Oxidation Programme AOPWIN©, re package v1.8 (Syracuse Research Corporation).	X a
		The atriaddition addition ligands 1.5×1 calcula bonds.	nospheric decay by hydroxyl radicals was determined by the n of hydroxyl radicals to the aromatic rings in the two pyrithione in the complex. An average hydroxyl radical concentration of 0 ⁶ /cm ³ was used in the calculation. No reaction with ozone is ted because the complex does not contain olefinic or acetylenic	Хb

Section A7.3.1 Phototransformation in air (estimation method)

3.4.2	Properties of light source	Not applicable	
3.4.3	Determination of irradiance	Not applicable	
3.4.4	Temperature	Not applicable	
3.4.5	pH	Not applicable	
3.4.6	Duration of the test	Not applicable	
3.4.7	Number of replicates	Not applicable	
3.4.8	Sampling	Not applicable	
3.4.9	Analytical methods	Not applicable	
3.5	Transformation products	Not applicable	х
3.5.1	Method of analysis for transformation products	Not applicable	x
		4 RESULTS	
4.1	Screening test	Not applicable	
4.2	Actinometer data	Not applicable	
4.3	Controls	Not applicable	
4.4	Photolysis data		
4.4.1	Concentration values	Not applicable	
4.4.2	Mass balance	Not applicable	
4.4.3	k ^c _p	The overall hydroxyl radical rate is $4.77 \times 10^{-12} \text{ cm}^3/\text{molecule} \times \text{sec}$ (2.3854 × 10 ⁻¹² for each of the pyrithione rings).	
4.4.4	Kinetic order	Not reported	x
4.4.5	k^{c}_{p}/k^{a}_{p}	Not applicable	
4.4.6	Reaction quantum yield (ϕ^{c}_{E})	Not applicable	
4.4 .7	k _{pE}	Not applicable	
4.4.8	Half-life (t _{1/2E})	26.9 h, equivalent to 2.24 day-light periods	х
4.5	Specification of the transformation products	Not applicable	x
		5 APPLICANT'S SUMMARY AND CONCLUSION	
5.1	Materials and methods	The SETAC Europe Guideline and the EU Directive 95/36/EEC were followed	х
5.2	Results and discussion	The reaction with hydroxyl radicals is the only route of decay during daylight (since no olefinic or acetylenic bonds are present). However,	x

Section A7.3.1 Phototransformation in air (estimation method)

		when copper pyrithione is degraded in e.g. water before being volatilised into the air, the reaction rate in the air is increased very much.	
5.2.1	k ^c _p	The overall hydroxyl radical rate is $4.77 \times 10-12 \text{ cm}^3/\text{molecule} \times \text{sec}$ (2.3854 × 10 ⁻¹² for each of the pyrithione rings).	Х
5.2.2	K _{pE}	Not applicable	
5.2.3	$\phi^{c}{}_{E}$	Not applicable	
5.2.4	t _{1/2E}	26.9 h, equivalent to 2.24 day-light periods	х
5.3	Conclusion	Validity criteria can be considered as fulfilled. Copper pyrithione is expected to degrade rapidly by phototransformation in air.	х
5.3.1	Reliability	1	
5.3.2	Deficiencies	No	

API Corporation RMS: Sweden	Copper Pyrithione, PT 21 December 2010	CAR Doc IIIA 7.1–7.3 Fate
Remarks		
Section 7.3.2 Annex Point IIIA XII 3	Fate and behaviour in air, further studies	
---	---	----------------------
	JUSTIFICATION FOR NON-SUBMISSION OF DATA	Official use only
Other existing data []	Technically not feasible [] Scientifically unjustified [X]	
Limited exposure []	Other justification []	
Detailed justification:	As the active substance is not to be used in preparations for fumigants and it causes no risk to the atmospheric environment, such a study does not seem to be necessary.	X
Undertaking of intended data submission []		
	Evaluation by Competent Authorities	
	EVALUATION BY RAPPORTEUR MEMBER STATE	
Date		
Evaluation of applicant's		
justification		ss
		102
Conclusion		
Remarks		