

Committee for Risk Assessment RAC

Opinion

proposing harmonised classification and labelling at EU level of

methyl N-(isopropoxycarbonyl)-L-valyl-(3RS)-3-(4-chlorophenyl)-β-alaninate; valifenalate

EC Number: -CAS Number: 283159-90-0

CLH-O-000006928-58-01/F

Adopted 10 December 2020

P.O. Box 400, FI-00121 Helsinki, Finland | Tel. +358 9 686180 | Fax +358 9 68618210 | echa.europa.eu

10 December 2020 CLH-O-0000006928-58-01/F

OPINION OF THE COMMITTEE FOR RISK ASSESSMENT ON A DOSSIER PROPOSING HARMONISED CLASSIFICATION AND LABELLING AT EU LEVEL

In accordance with Article 37 (4) of Regulation (EC) No 1272/2008, the Classification, Labelling and Packaging (CLP) Regulation, the Committee for Risk Assessment (RAC) has adopted an opinion on the proposal for harmonised classification and labelling (CLH) of:

Chemical name: Valifenalate

EC Number:

CAS Number: 283159-90-0

-

The proposal was submitted by Hungary and received by RAC on 14 November 2019.

In this opinion, all classification and labelling elements are given in accordance with the CLP Regulation.

PROCESS FOR ADOPTION OF THE OPINION

Hungary has submitted a CLH dossier containing a proposal together with the justification and background information documented in a CLH report. The CLH report was made publicly available in accordance with the requirements of the CLP Regulation at *http://echa.europa.eu/harmonised-classification-and-labelling-consultation/* on **3 February 2020**. Concerned parties and Member State Competent Authorities (MSCA) were invited to submit comments and contributions by **3 April 2020**.

ADOPTION OF THE OPINION OF RAC

Rapporteur, appointed by RAC: Miguel A. Sogorb

Co-Rapporteur, appointed by RAC: Anja Menard Srpčič

The opinion takes into account the comments provided by MSCAs and concerned parties in accordance with Article 37(4) of the CLP Regulation and the comments received are compiled in Annex 2.

The RAC opinion on the proposed harmonised classification and labelling was adopted on **10 December 2020** by **consensus**.

Classification and labelling in accordance with the CLP Regulation (Regulation (EC) 1272/2008)

	Index No	Chemical name EC No	EC No CAS No Classification	Classification	cation Labelling				Specific	Notes	
					Hazard Class and Category Code(s)	d Class and Hazard Pictogram, Hazard Sup ory Code(s) statement Signal Word statement Haz Code(s) Code(s) Code(s) Code(s) Code(s) Code(s)	Suppl. Hazard statement Code(s)	Conc. Limits, M- factors and ATE			
Current Annex VI entry					No o	current Annex VI e	entry				
Dossier submitters proposal	TBD	methyl N- (isopropoxycarbonyl)- L-valyl-(3RS)-3-(4- chlorophenyl)-β- alaninate; valifenalate		283159- 90-0	Aquatic Chronic 2	H411	GHS09	H411			
RAC opinion	TBD	methyl <i>N</i> - (isopropoxycarbonyl)- L-valyl-(3 <i>RS</i>)-3-(4- chlorophenyl)-β- alaninate; valifenalate		283159- 90-0	Carc. 2 Aquatic Chronic 2	H351 H411	GHS08 GHS09 Wng	H351 H411			
Resulting Annex VI entry if agreed by COM	TBD	methyl N- (isopropoxycarbonyl)- L-valyl-(3RS)-3-(4- chlorophenyl)-β- alaninate; valifenalate		283159- 90-0	Carc. 2 Aquatic Chronic 2	H351 H411	GHS08 GHS09 Wng	H351 H411			

GROUNDS FOR ADOPTION OF THE OPINION

RAC general comment

Valifenalate (methyl *N*-(isopropoxycarbonyl)-L-valyl-(3RS)-3-(4-chlorophenyl)- β -alaninate) is a new active substance in the meaning of Regulation (EU) No 1107/2009 developed as fungicide. It has no previous entry in Annex VI of Regulation EC 1272/2008.

RAC evaluation of physical hazards

Summary of the Dossier Submitter's proposal

The Dossier Submitter (DS) proposed no classification of valifenalate for physical hazards based on the following facts:

- Negative results with an EEC A.14 assay for testing explosive properties;
- Negative results with an EEC A.10 assay for testing flammability;
- Negative results with an EEC A.16 assay for testing self-heating; and,
- Negative results with an EEC A.17 assay for testing oxidising properties.

No data for the following hazards were provided by the DS:

- self-reactivity,
- pyrophoricity,
- capability to emit flammable gases and
- corrosivity to metals.

Comments received during consultation

No comments were received during consultation.

Assessment and comparison with the classification criteria

RAC notes that no test for explosivity was found in the CLH-report since Annex I shows that the A.14 test report was limited to a prediction based on structure. Nevertheless, the molecule of valifenalate does not contain groups associated with explosive properties and therefore no test is needed. Thus, **RAC supports no classification for explosivity.**

With regard to flammability, RAC notes that a preliminary test according to A.10 (equivalent to a preliminary test according to UN N.1) was negative. Thus, RAC supports **no classification for flammability.**

The result of the A.16 test was negative. However, RAC notes that the A.16 test is not the same as that required under CLP criteria (UN N.4) for testing self-heating. Therefore, RAC supports **no** classification for self-heating but in this case, <u>due to inconclusive data</u>.

No test was available for assessing the oxidising capability of valifenalate. However, RAC notes that the molecule contains oxygen and chlorine, but these are bonded only to carbon and therefore no test is need. Thus, **RAC supports no classification for oxidising properties.**

HUMAN HEALTH HAZARD EVALUATION

RAC evaluation of acute toxicity

Summary of the Dossier Submitter's proposal

The DS proposed no classification of valifenalate based on OECD-guideline and GLP compliant tests showing an LD_{50} higher than 5000 mg/kg bw for the oral route and higher than 2000 mg/kg bw for the dermal route, and an LC_{50} higher than 3.1 mg/l for the inhalation route.

Comments received during consultation

One manufacturer/company agreed with the DS's proposal for no classification.

Assessment and comparison with the classification criteria

Table 1 summarised all the available studies for assessment of acute toxicity of valifenalate.

Study	Dose level	Results	Reference
Acute oral toxicity OECD TG 401 GLP Sprague Dawley rats (Crl: CD (SD) BR) 5/sex/group	Valifenalate (IR5885) Purity: 98.9% 5000 mg/kg bw Single dose followed by 14 days observation	No mortalities Transient piloerection in all animals the day after treatment No appreciable macroscopic changes in necropsies of treated animals LD ₅₀ > 5000 mg/kg bw	Confidential study number 62
Acute dermal toxicity OECD TG 402 GLP Sprague Dawley rats (Crl: CD (SD) BR) 5/sex/group	Valifenalate (IR5885) Purity: 98.6% 2000 mg/kg bw 24 h dermal exposure followed by 14 days observation	No mortalities No clinical effects No local irritation No appreciable macroscopic changes in necropsies of treated animals LD ₅₀ > 2000 mg/kg bw	Confidential study number 63
Acute inhalation toxicity OECD TG 403 GLP Wistar Han-Ibm rats 5/sex/group	Valifenalate (IR5885) Purity: 98.6% MMAD: 2.42, 2.45 µm GSD: 2.95, 2.89 Gravimetric concentration: 3.118 mg/l 4 hour nose- only exposure of an aerosol followed by 14 days observation	No mortalities No significant signs of toxicity Slight reduction in body weight between days 1 and 4 No macroscopic changes at termination $LC_{50} > 3.118$ mg/L air (gravimetric mean aerosol concentration) (highest technically achievable concentration)	Confidential study number 11

Table 1: Summary of animal studies on acute toxicity with valifenalate.

Comparison with the criteria

The cut-off point for triggering classification for both acute oral and acute dermal toxicity is 2000 mg/kg bw. Table 1 shows as two reliable OECD-guideline studies conducted observing GLP procedures yielded LD₅₀ values higher than 5000 and 2000 mg/kg bw for oral and dermal toxicity; respectively. Thus, RAC supports the DS's proposal for **no classification of valifenalate for acute oral and dermal toxicity**.

The cut-off point for triggering classification for acute inhalation toxicity of dusts and aerosols is 5 mg/l. Table 1 shows as one reliable OECD-guideline study conducted observing GLP procedures yielded an LC_{50} higher than the maximum achievable concentration (3.1 mg/L). Thus, RAC supports the DS's proposal for **no classification of valifenalate for acute inhalation toxicity**.

RAC evaluation of specific target organ toxicity – single exposure (STOT SE)

Summary of the Dossier Submitter's proposal

The DS proposed no classification of valifenalate based on the absence of specific effects reported in the acute toxicity tests (see Table 1) and the absence of neurotoxicity in one acute neurotoxicity study using doses up to 2000 mg/kg bw.

Comments received during consultation

One manufacturer/company agreed with the DS's proposal for no classification.

Assessment and comparison with the classification criteria

Comparison with the criteria

RAC notes the absence of organ specific effects in the acute studies via oral, dermal and inhalation routes (Table 1). The CLH-report presents also an acute neurotoxicity study performed in rats conducted following OECD TG 424 and observing GLP. On this study, 10 rats/sex/group were treated with single doses of 500, 1000 and 2000 mg/kg bw of valifenalate (purity 98.9%) in 0.5% w/v methylcellulose in water. Animals were further observed for 14 days. Doses lower than 2000 mg/kg bw caused no effects on rats. The top dose (2000 mg/kg bw) caused a slight incidence of axonal degeneration in multiple nerves but without observing a clear dose-response.

Overall, none of the single-dose animal studies contained in the CLH-report provided evidence of organ-specific toxicity; which prevents for classification as STOT SE Cat 1 or 2. Moreover, no narcotic effects or respiratory tract irritation were found in such studies; which prevents for classification as STOT SE Cat 3. Therefore, RAC supports the DS's proposal for **no classification of valifenalate as STOT SE.**

RAC evaluation of skin corrosion/irritation

Summary of the Dossier Submitter's proposal

The DS proposed no classification for skin irritation based on a dermal irritation study showing no signs of irritation in 3/3 New Zealand rabbits.

Comments received during consultation

One manufacturer/company agreed with the DS's proposal for no classification.

Assessment and comparison with the classification criteria

Table 2 summarises the findings in the skin corrosion/irritation study available in the CLH-report. **Table 2:** Summary of the animal study on skin corrosion/irritation with valifenalate.

Study	Dose level	Results	Reference
Acute dermal	Valifenalate (IR5885)	No signs of irritation	Confidential
irritation	Purity: 98.6%		study number
OECD TG 404	0.5 g/animal	<u>Mean scores / animal (24, 48 &</u>	33
GLP	Single 4 hour	<u>72 hours):</u>	
New Zealand White	application		
rabbits	Application sites	Erythema: 0, 0, 0	
3 males	scored at: 1, 24, 48		
	and 72 hours after	Oedema: 0, 0, 0	
	patch removal		
	(Draize scheme)		

Comparison with the criteria

RAC notes that the skin irritation study performed according to OECD TG 404 and GLP showed that valifenalate was not able to irritate skin of rabbits since no erythema and no oedema was found in any of the three treated New Zealand White rabbits (Table 2). Thus, RAC supports the DS proposal for **no classification of valifenalate for skin irritation/corrosion.**

RAC evaluation of serious eye damage/irritation

Summary of the Dossier Submitter's proposal

The DS proposed no classification for eye damage/irritation based on an eye damage study showing light conjunctival redness 1 hour after instillation (fully reversible by 24 hours) but no signs of corneal or iris damage and no signs of conjunctival redness or chemosis by 24 hours and thereafter.

Comments received during consultation

One manufacturer/company agreed with the DS's proposal for no classification.

Assessment and comparison with the classification criteria

Table 3 summarises the findings in the acute eye irritation/corrosion study available in the CLH-report.

Table 3: Summary of the animal study on eye irritation/corrosion with valifenalate	.
--	----------

Study	Dose level	Results	Reference
Acute Eye	Valifenalate (IR5885)	Slight (grade 1), conjunctival	Confidential
Irritation/Corrosion	Purity: 98.6%	redness was seen at the 1 hour	study number
OECD TG 405	0.1 g/animal	examination in 3/3 rabbits (fully	34
GLP	Single instillation	reversed by 24 hours)	
New Zealand White	Eyes scored at: 1,		
rabbits	24, 48 and 72 hours		

3 males	after instillation	Mean Scores / animal (24, 48 &	
		<u>72 hours):</u>	
		Cornea: 0, 0, 0,	
		Iris: 0, 0, 0,	
		Conjunctiva redness: 0, 0, 0.	
		Conjunctiva chemosis: 0, 0, 0.	

Comparison with the criteria

RAC notes that only grade 1 conjunctival redness was seen 1 hour after instillation while no signs of eye damage was seen by 24 hours and thereafter in an OECD TG 405 study conducted observing GLP (Table 3). Thus, RAC supports the DS proposal for **no classification of valifenalate for eye damage/irritation.**

RAC evaluation of respiratory sensitisation

Summary of the Dossier Submitter's proposal

The DS proposed no classification of valifenalate for respiratory sensitisation based on lack of data.

Comments received during consultation

One company manufacturer commented that the conclusion of lack of data is not correct since test for respiratory sensitisation cannot be provided because no formally recognised and validated animal test currently exists. The DS thanked the comment and replied that this hazard was not in the scope of the public consultation, although the provided comments will be brought to consistency with the conclusion.

Assessment and comparison with the classification criteria

Comparison with the criteria

RAC notes that: i) there are no data indicating evidence of respiratory tract irritation with valifenalate; ii) the acute inhalation study showed no evidence of respiratory system impairment; and iii) rabbit dermal and eye irritation studies indicated lack of irritant potential on skin and mucosal membranes. Overall, RAC supports the DS's proposal for **no classification of valifenalate for respiratory sensitisation.**

RAC evaluation of skin sensitisation

Summary of the Dossier Submitter's proposal

The DS proposed no classification of valifenalate for skin sensitisation based on the negative result of a guinea pig maximisation test conducted following OECD TG 406 and observing GLP.

Comments received during consultation

One manufacturer/company agreed with the DS's proposal for no classification.

Assessment and comparison with the classification criteria

Table 4 summarises the findings in the skin sensitisation study available in the CLH-report.

Study	Dose level	Results	Reference
Maximisation	Valifenalate (IR5885)	Induction	Confidential
test	Purity: 98.6%	Slight, swollen reddish seen 24	study
OECD TG 406	Vehicle: corn seed oil	hours after the intradermal	number 47
GLP		injections with FCA and /or test	
Dunkin	Induction:	material. There were no signs of	
Hartley	Intradermal: 1% in corn	irritation observed following the	
guinea pigs	seed oil, 1% in Freund's	topical induction.	
	Complete Adjuvant (FCA)		
17 males (10	and FCA emulsion (1:1	Challenge: Challenge sites	
test, 5	V/V FCA/water)-day 0.	assessed at 24 and 48 hours. No	
controis, 2	with 0.5 ml 10% sodium	challenge in test or control	
preminary test)	lauryl sulfate in Vaseline	animals	
(est)	oil-day 5		
	Test article (10%) or	No positive reactions at 24 and	
	vehicle applied under an	48 hours. Sensitisation rate:	
	occlusive dressing for 48	0%	
	hours.		
	Challenge	Positive control (2-	
	Test article (10%) and	mercaptobenzothiazole):	
	vehicle applied to the	Sensitisation rate 40%.	
	flanks of all animals under		
	an occlusive dressing for		
	24 hours.		

Table 4: Summary of the animal study on skin sensitisation with pyridalyl.

Comparison with the criteria

The guinea pig maximisation test conducted according to OECD TG 406 Guideline and observing GLP showed no evidence that valifenalate is a dermal sensitiser. RAC notes that the question whether higher concentrations could have been tested using other vehicles remains unresolved and gives uncertainties for the assessment. Overall, RAC supports the DS's proposal for **no classification of valifenalate for skin sensitisation.**

RAC evaluation of specific target organ toxicity – repeated exposure (STOT RE)

Summary of the Dossier Submitter's proposal

The repeated dose toxicity studies with animals showed that valifenalate is able to cause small changes in blood and clinical chemistry parameters as well as hepatocyte hypertrophy in rats, increased relative liver weight and centrilobular hepatocyte hypertrophy in mice, and an increase in alkaline phosphatase (ALP) and hepatocyte hypertrophy in dogs. The DS noted that these effects were generally seen at doses above the guidance cut-off values and were of low severity (i.e. the alterations in blood and clinical chemistry). Other changes (centrilobular hypertrophy and associated increases in liver weight and in the activity of ALP) were considered adaptive in response to administration of valifenalate. The DS proposed no classification of the substance for STOT RE.

Comments received during consultation

One manufacturer/company agreed with the DS's proposal for no classification.

Assessment and comparison with the classification criteria

Tables 5, 6 and 7 summarise the results of the repeated dose toxicity studies in rats, mice and dogs; respectively.

Table 5: Summary of repeated dose toxicity studies in rats with valifenalate. In all cases the effects were statistically different from controls for at least p < 0.05. ND = No statistical differences with control.

				Data
Method	Results			Reference
28-day oral	No treatment-related deaths in any dos	Confidential		
toxicity study				study number
	<u>15000 ppm (1518/1537 mg/kg bw/day</u>	<u>males/fema</u>	<u>lles)</u>	48
Based on OECD				
TG 407 (1995)		males	females	
but no GLP	↓ Body weight gain weeks 0-4	25%	ND-	
compliance	↓ Food consumption weeks 0-4	12%	10%	
claimed	Haematocrit	5%	4%	
	L Haemoglobin	5%	4%	
Preliminary	Total lymphocyte count	22%	34%	
study for a 90	↑ Activated partial thrombonlastin	23%	ND	
day	time	2370		
	↑ Aspartate aminotransferase activity	ND	24%	
Non GLP		3%	5%	
		570	2104	
Oral		-	21%	
(continuous in		3%	7%	
diet)	↑ A/G ratio	-	7%	
,	↓ Absolute thymus weight	32%	14%	
Rat	Thymic lymphocytosis (always slight	2/5 vs	4/5 vs	
	grade)	0/5	2/5	
Han Wistar		controls	controls	
5/sex/group	3000 ppm (311/314 mg/kg bw/day ma	iles/females)		
Valifenalate		males	females	
(IR5885)	↓ Haematocrit	10%	ND	
	↓ Total lymphocyte count	11%	33%	
Purity: 98.9%	↓ Calcium	4%	5%	
	↓ Phosphorous	-	19%	
0, 120, 600,	↓ Total protein	3%	9%	
3000 and 15000	↑ A/G ratio	ND	13%	
ppm	↓ Absolute thymus weight	ND	14%	
	Thymic lymphocytosis (always	4/5 vs 0/5	ND	
Vehicle:	slight grade)	controls		
laboratory animal diet	600 ppm (63/64 mg/kg bw/day males/	females)		
		maloc	fomaloc	
	L Haomatocrit		F04	
			5% ND	
		4%		
		4%	5%	
	↓ Phosphorous	ND	15%	
	↓ Total protein	3%	6%	
	↑ A/G ratio	ND	9%	
	Thymic lymphocytosis (always	3/5 vs 0/5	ND	
	slight grade)	controls		

120 ppm (13 mg/kg bw/day males & females)

No adverse effects.

Conclusion: NOAEL: 311 mg/kg bw/day LOAEL: 1518 mg/kg bw/day

90-day oral toxicity study	There were no deaths or ove group.	ert signs of toxicity	in any dose	Confidential study number 49
4 week	<u>1000 mg/kg bw/day</u>			
recovery period				
		males	females	
OECD GT 408	↓ Haematocrit	5%	ND	
(1998)	↓ Haemoglobin	4%	ND	
	↓ Red blood cell	2%	ND	
GLP	↓ White blood cell	13%	ND	
a 1	↓ Monocyte count	28%	ND	
Oral	↑ Platelet count	7%	ND	
(continuous	↓ Prothrombin time	10%	ND	
in diet)	↓ Neutrophil count	ND	31%	
Dat	↓ Triglycerides	36%	ND	
Kal	↑ Chloride	2%	ND	
Han Wistar	↑ Calcium	ND	3%	
	↑ Urine volume	60%	68%	
10/sex/aroup	↓ Specific gravity	ND	1039 g/l vs	
10/ 500/ 91000			1050 g/l	
5/sex/control &			control	
high dose	↑pH	7.3 vs 6.9	6.4 vs 5.9	
groups for		controls	controls	
recovery phase	↑ Relative liver weight	15%	13%	
	Distended caecum	7/10 vs 0/10	1/10 vs	
Valifenalate		controls	0/10	
(IR5885)			controls	
Purity: 98.9%	<u>150 mg/kg bw/day</u>			
0, 7, 150, 1000		males	females	
mg/kg bw/day	↓ Haematocrit	2%	ND	
	↓ Haemoglobin	3%	ND	
Vehicle:	↓ White blood cell	24%	ND	
laboratory	↓ Monocyte count	24%	ND	
animal diet	↑ Platelet count	11%	ND	
	↓ Prothrombin time	8%	ND	
	↓ Triglycerides	34%	ND	
	↑ Chloride	1%	ND	
	↑pH	7.3 vs 6.9	6.4 vs 5.9	
		controls	controls	

7 mg/kg bw/day

	males	females
↑ pH	7.3 vs 6.9 controls	ND

Recovery from all treatment-related effects occurred in the 4 weeks recovery period.

Conclusion: NOAEL: 150 mg/kg bw/day LOAEL: 1000 mg/kg bw/day

	1000 mg/kg bw/day			Confidential
chronic toxicity		-		study number
(from 2 year		males	females	51
study)	↓ Body weight	9%	ND	
OFCD TG 453		2.5-3.8%	ND	
(1981)	\downarrow Red cell count and mean	1.4-3.5%	ND	
	concentration			
GLP	↑ Platelet count	9-16%	10%	
Qual	↑ APTT time	19-28%	ND	
	↑ Urine volume	ND	75-210%	
diet)	\downarrow Specific gravity	1035-1041 g/l	ND	
		VS 1047-1066		
Rat	↑ Relative liver weights	19%	12%	
	↑ Relative kidney weights	8%	ND	
Han Wistar	Thyroid follicular cell	10 slight + 1	ND	
20/sev/aroun	hypertrophy	moderate vs 3		
20/32/91000		slight controls		
Valifenalate	150			
(IR5885)	<u>150 mg/kg bw/day</u>			
		males	females	
Purity: 99.56%	↓ Mean cell haemoglobin	1.7%	ND	
0 15 150	concentration			
1000 mg/kg	Thyroid follicular cell	5 slight vs 3	ND	
bw/day	hypertrophy	slight controls		
	1E ma/ka hw/day			
Vehicle:	13 mg/kg bw/day			
laboratory		males	females	
animarulet	Thyroid follicular cell	2 slight vs 3	ND	
	hypertrophy	slight controls		
	Conclusion:			
	$NOAEL \cdot 150 ma/ka/day$			
	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day			
	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day			
28-day dermal	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day No treatment-related effects			Confidential
28-day dermal toxicity study	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day No treatment-related effects			Confidential study number
28-day dermal toxicity study	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day No treatment-related effects Conclusion:			Confidential study number 23
28-day dermal toxicity study OECD TG 410 (1981)	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day No treatment-related effects Conclusion: NOEL: 1000 mg/kg bw/day			Confidential study number 23
28-day dermal toxicity study OECD TG 410 (1981)	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day No treatment-related effects Conclusion: NOEL: 1000 mg/kg bw/day			Confidential study number 23
28-day dermal toxicity study OECD TG 410 (1981) GLP	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day No treatment-related effects Conclusion: NOEL: 1000 mg/kg bw/day			Confidential study number 23
28-day dermal toxicity study OECD TG 410 (1981) GLP	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day No treatment-related effects Conclusion: NOEL: 1000 mg/kg bw/day			Confidential study number 23
28-day dermal toxicity study OECD TG 410 (1981) GLP Dermal (6 bours (day)	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day No treatment-related effects Conclusion: NOEL: 1000 mg/kg bw/day			Confidential study number 23
28-day dermal toxicity study OECD TG 410 (1981) GLP Dermal (6 hours/day)	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day No treatment-related effects Conclusion: NOEL: 1000 mg/kg bw/day			Confidential study number 23
28-day dermal toxicity study OECD TG 410 (1981) GLP Dermal (6 hours/day) Rat	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day No treatment-related effects Conclusion: NOEL: 1000 mg/kg bw/day			Confidential study number 23
28-day dermal toxicity study OECD TG 410 (1981) GLP Dermal (6 hours/day) Rat	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day No treatment-related effects Conclusion: NOEL: 1000 mg/kg bw/day			Confidential study number 23
28-day dermal toxicity study OECD TG 410 (1981) GLP Dermal (6 hours/day) Rat Han Wistar	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day No treatment-related effects Conclusion: NOEL: 1000 mg/kg bw/day			Confidential study number 23
28-day dermal toxicity study OECD TG 410 (1981) GLP Dermal (6 hours/day) Rat Han Wistar	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day No treatment-related effects Conclusion: NOEL: 1000 mg/kg bw/day			Confidential study number 23
28-day dermal toxicity study OECD TG 410 (1981) GLP Dermal (6 hours/day) Rat Han Wistar 10/sex/group	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day No treatment-related effects Conclusion: NOEL: 1000 mg/kg bw/day			Confidential study number 23
28-day dermal toxicity study OECD TG 410 (1981) GLP Dermal (6 hours/day) Rat Han Wistar 10/sex/group Valifenalate	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day No treatment-related effects Conclusion: NOEL: 1000 mg/kg bw/day			Confidential study number 23
28-day dermal toxicity study OECD TG 410 (1981) GLP Dermal (6 hours/day) Rat Han Wistar 10/sex/group Valifenalate (IR5885)	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day No treatment-related effects Conclusion: NOEL: 1000 mg/kg bw/day			Confidential study number 23
28-day dermal toxicity study OECD TG 410 (1981) GLP Dermal (6 hours/day) Rat Han Wistar 10/sex/group Valifenalate (IR5885)	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day No treatment-related effects Conclusion: NOEL: 1000 mg/kg bw/day			Confidential study number 23
28-day dermal toxicity study OECD TG 410 (1981) GLP Dermal (6 hours/day) Rat Han Wistar 10/sex/group Valifenalate (IR5885) Purity: 99.6%	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day No treatment-related effects Conclusion: NOEL: 1000 mg/kg bw/day			Confidential study number 23
28-day dermal toxicity study OECD TG 410 (1981) GLP Dermal (6 hours/day) Rat Han Wistar 10/sex/group Valifenalate (IR5885) Purity: 99.6%	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day No treatment-related effects Conclusion: NOEL: 1000 mg/kg bw/day			Confidential study number 23
28-day dermal toxicity study OECD TG 410 (1981) GLP Dermal (6 hours/day) Rat Han Wistar 10/sex/group Valifenalate (IR5885) Purity: 99.6% 0, 1000 mg/kg bw/day	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day No treatment-related effects Conclusion: NOEL: 1000 mg/kg bw/day			Confidential study number 23
28-day dermal toxicity study OECD TG 410 (1981) GLP Dermal (6 hours/day) Rat Han Wistar 10/sex/group Valifenalate (IR5885) Purity: 99.6% 0, 1000 mg/kg bw/day	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day No treatment-related effects Conclusion: NOEL: 1000 mg/kg bw/day			Confidential study number 23
28-day dermal toxicity study OECD TG 410 (1981) GLP Dermal (6 hours/day) Rat Han Wistar 10/sex/group Valifenalate (IR5885) Purity: 99.6% 0, 1000 mg/kg bw/day Vehicle: sterile	NOAEL: 150 mg/kg/day LOAEL: 1000 mg/kg/day No treatment-related effects Conclusion: NOEL: 1000 mg/kg bw/day			Confidential study number 23

Parental toxicity

Two generation reproduction (one litter)

OECD TG 416 (2001)

GLP

Oral (continuous in diet)

Rat

HanBrl:WIST

Valifenalate (IR5885)

Purity: 99.56%

0, 1250, 4300 or 15000 ppm (reduced to 0, 850, 2900 or 10000 ppm during lactation)

Vehicle: laboratory animal diet

ĺ		D		F1		
			-	F	1	
		male	female	male	female	
	↑ Absolute	16%	15%	12%	8%	
	liver weight					
	↑ Relative	20%	11%	14%	10%	
า	liver weight					
	Hepatocellular	15/24	3/24	21/24	21/24	
	hypertrophy	(severity	(severity	(severity	(severity	
		2.4) vs	2.0) vs	2.2) vs	1.9) vs	
		4/24	0/24	2/24	0/24	
		(severity	controls	(severity	controls	
		1.3)		2.0)		
		controls		controls		
	Glycogen	17/24	15/24	19/24	2/24	
0/-	deposition	(severity	(severity	(severity	(severity	
70	liver	1.3) vs	1.3) vs	1.5) vs	1.0) vs	
`		21/24	15/24	23/24	13/24	
		(severity	(severity	(severity	(severity	
1		1.6)	2.3)	2.7)	1.8)	
'		controls	controls	controls	controls	
	Ruffled fur	ND	ND	ND	4/24	
	early lactation					
	↓ Absolute	ND	ND	ND	7%	
	kidney weight					
	↓ Relative	ND	ND	ND	6%	
	kidney weight					
	Thyroid	ND	ND	22/24	19/24	
	follicular			(severity	(severity	
	hypertrophy			2.1) vs	1.6) vs	
				17/24	10/24	
				(severity	(severity	
				1.4)	1.1)	
				controls	controls	

4300 ppm (2900 ppm) – 277/318 mg/kg bw/day, males/ females (P generation - pre-pairing)

	P		F	1
	male	female	male	female
↑ Absolute liver weight	6%	ND	6%	ND
↑ Relative liver weight	9%	ND	8%	ND
Hepatocellular hypertrophy	7/24 (severity 1.3) vs 4/24 (severity 1.3) controls	ND	17/24 (severity 2.3) vs 2/24 (severity 2.0) controls	ND
Glycogen deposition liver	17/24 (severity 1.3) vs 21/24 (severity 1.6) controls	17/24 (severity 1.8) vs 15/24 (severity 2.3) controls	23/24 (severity 1.9) vs 23/24 (severity 2.7) controls	7/24 (severity 1.4) vs 13/24 (severity 1.8) controls
Ruffled fur early lactation	ND	ND	ND	4/24

Confidential study number 27

15000 ppm (10000 ppm) – 986/1150 mg/kg bw/day, males/ females (P generation - pre-pairing)

Thyroid ND N follicular hypertrophy	D 16, (sev 1.8 4/ (sev 1.	/24 16/2 /erity (seven 3) vs 1.8) /24 17/2 /erity (seven .3) 1.7 trols contr	:4 vs :4 rity) ols
---	--	--	------------------------------------

1250 ppm (850 ppm) – 80/92 mg/kg bw/day, males/ females (P generation - pre-pairing)

No treatment related effects in both P and F1 generations

Conclusion: NOAEL parental toxicity: 80 mg/kg bw/day LOAEL parental toxicity: 318 mg/kg bw/day

The 28-days, 90-days and 53-weeks repeated dose toxicity studies in rats showed that valifenalate was able to induce minor changes in blood and clinical chemistry (Table 5). Although these changes were consistent among different studies, the severity is relatively low. The CLH-report provides historical control data (HCD) showing that the minor differences between treated and control animals were of no toxicological relevance because the records of the altered parameters were within the HCD. Therefore, RAC notes that the changes in blood and clinical chemistry found in the repeated dose toxicity studies in rat do not support a classification as STOT RE.

The repeated dose toxicity studies in rat suggest that thymus is a potential target organ of valifenalate. Indeed, decreases in absolute thymus weight and increases in thymic lymphocytosis were used for setting the LOAEL of the 28-days repeated dose toxicity study (Table 5).

Thyroid follicular cell hypertrophy was reported in the 52-weeks repeated toxicity study and in the F1 generation of the 2-generation reproduction toxicity study (Table 5), although in the latter the meaning of this effect is unclear because no clear dose response was found and high background incidence was noted. Overall, RAC notes that these thyroid effects could support a potential classification as STOT RE.

The incidence of distended caecum was also clearly increased in males versus controls in the 90days repeated dose toxicity study (Table 5). The toxicological significance of this effect is still unclear but RAC notes that it could support a potential classification as STOT RE.

The repeated dose toxicity studies in rat suggest that also liver is a target organ of valifenalate. Increases in liver weight were reported in the 90-days, 52-weeks and 2-generation oral toxicity studies (Table 5). RAC notes that these increases in liver weight were moderate and can be an adaptive response to valifenalate administration and therefore cannot be considered for setting classification as STOT RE. A dose-dependent hepatocellular hypertrophy was reported in both P and F1 generations in the 2-generation study (Table 5). However, liver hypertrophy is cited in the Guidance on the Application of the CLP Criteria as an adaptive (compensatory) response that is generally reversible with no adverse consequences on cessation of exposure. Thus, the observed liver hypertrophy does not warrant classification as STOT RE.

Glycogen deposition in liver was reported in the 2-generation toxicity study (Table 5). However, RAC notes that no clear dose-response was observed and there was also a high incidence in control groups. Thus, the observed glycogen deposition in liver does not warrant a potential classification as STOT RE.

Table 6: Summary of repeated dose toxicity studies in mice with valifenalate. In all cases the effects
were statistically different from controls for at least p<0.05. ND = No statistical differences with
control.,MethodResultsReference

Method	Results			Reference
28-day oral	7000 ppm (1105/1536 mg/kc	<u>g bw/day males/fe</u>	<u>emales)</u>	Confidential
toxicity study				study number
		males	females	48
Based on OECD	↓ Haematocrit	10%	ND	
TG 407 (1995)	↓ Haemoglobin	11%	ND	
but no	↓ Red blood cell	10%	ND	
compliance	↑ Glucose	39%	31%	
claimed	↓ Triglycerides	ND	71%	
	↑ Cholesterol	31%	ND	
Preliminary	↑ Potassium	15%	19%	
study for a 90	↓ Sodium	ND	2%	
uay	↓ Chloride	ND	3%	
Valifonalato	↓ Total protein	ND	10%	
(ID5885 batch	↓ Albumin	ND	7%	
r_{no} FCF/T/180-	↑ A/G ratio	ND	4%	
00 (ex 71068)	↑ Relative liver weight	52%	41%	
00 (02 21000)	↑ Relative adrenal weights	45%	ND	
Purity: 98.9%	Centrilobular hepatocytic	4 slight + 2	5 (slight) vs	
	hypertrophy	moderate vs	1 slight	
0,110,440,		0/6 controls	control	
1750 and 7000				
ppm	<u>1750 ppm (266/402 mg/kg b</u>	w/day males/fem	<u>ales)</u>	
Vehicle		males	females	
laboratory	↓ Haematocrit	4%	ND	
animal	↓ Haemoglobin	6%	ND	
	↓ Red blood cell	5%	ND	

↓ Haemoglobin	6%	ND
↓ Red blood cell	5%	ND
↑ Glucose	38%	32%
↓ Triglycerides	ND	44%
↑ Potassium	ND	2%
↓ Chloride	ND	3.5%
↓ Total protein	ND	4%
↓ Albumin	ND	3%
↑ A/G ratio	ND	2%
↑ Relative liver weight	31%	14%
Centrilobular hepatocytic	6 slight vs 0/6	2 moderate
hypertrophy	controls	vs 1 slight
		control

440 ppm (68/96 mg/kg bw/day males/females)

	males	females
↑ Relative liver weight	ND	10%
Centrilobular hepatocytic	6 slight vs 0/6	ND
hypertrophy	controls	

110 ppm (18/27 mg/kg bw/day males/females)

No treatment-related effects

Conclusion: NOAEL: 68 mg/kg bw/day LOAEL: 266 mg/kg bw/day

90-day oral toxicity study	7000 ppm (995/1144 mg/kg bw/day males/females)			Confidential study number
		males	females	50
Based on OECD	↓ Body weight gain weeks 0-13	26%	ND	
TG 408 (1998)	↓ Haematocrit	4%	5%	
but no	↓ Haemoglobin	4%	3%	

compliance	↓ Mean cell haemoglobin	5%)	3%	
claimed	↓ Mean cell volume	5%)	4%	
	↑ Relative liver weight	51%	6	35%	
Prelim	Centrilobular hepatocellu	lar 4 slight	: + 4	ND	
carcinogenicity	vacuolation	moderat	e vs 1		
study		minima	1 + 1		
		slight co	ntrols		
GLP	Perinortal henatocellular	1 minim	$ral \pm 1$	ND	
	vacualation		u + ⊥ □ 1	ND	
Oral	vacuolation	Silyin			
(continuous in		Inouera			
diet)		0/1	0		
alecy					
Mouse	<u>900 ppm (133/147 mg/kg</u>	bw/day males/fei	<u>maies)</u>		
House					1
CD-1		m	ales	females	
CD-1	Relative liver weight	1	2%	ND	
10/cov/aroup					
10/sex/group	<u>110 ppm (15/16 mg/kg bv</u>	v/day males/fema	<u>les)</u>		
Valifenalate	No treatment-related effect	ts			
(IR5885, batch					
no. FCF/1/180-	Conclusion:				
00 (ex ZI068)	NOAEL: 133 mg/kg bw/	'dav			
	LOAEL: 995 mg/kg bw/	dav			
Purity: 98.9%	,				
0, 110, 900 and					
7000 ppm					
Vehicle:					
laboratory					
laboratory animal diet					
laboratory animal diet					
laboratory animal diet Carcinogenicity	Non-neoplastic findings				Confidential
laboratory animal diet Carcinogenicity (1.5-year)	Non-neoplastic findings				Confidential
laboratory animal diet Carcinogenicity (1.5-year) study	Non-neoplastic findings	n bw/day)			Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study	Non-neoplastic findings 5000 ppm (657/756 mg/kg	g bw/day)			Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451	Non-neoplastic findings 5000 ppm (657/756 mg/k	g bw/day) males	fe	males	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451	Non-neoplastic findings 5000 ppm (657/756 mg/kg	g bw/day) males	fe	males	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451	Non-neoplastic findings 5000 ppm (657/756 mg/k Body weight	g bw/day) males 22%	fe	males ND	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse	Non-neoplastic findings 5000 ppm (657/756 mg/ku ↓ Body weight ↑ Relative liver weight	g bw/day) males 22% 97%	fe	males ND 23%	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse	Non-neoplastic findings 5000 ppm (657/756 mg/km ↓ Body weight ↑ Relative liver weight ↑ Relative kidney	<u>g bw/day)</u> males 22% 97% ND	fe	males ND 23% 12%	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse Crl: CD-1 [™] (ICD) PD	Non-neoplastic findings 5000 ppm (657/756 mg/km ↓ Body weight ↑ Relative liver weight ↑ Relative kidney weight	<u>g bw/day)</u> males 22% 97% ND	fe	males ND 23% 12%	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse Crl: CD-1 [™] (ICR) BR	Non-neoplastic findings 5000 ppm (657/756 mg/km ↓ Body weight ↑ Relative liver weight ↑ Relative kidney weight ↑ Centrilobular	<u>g bw/day)</u> males 22% 97% ND ND	fe 22 sl	males ND 23% 12% light + 3	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse Crl: CD-1 [™] (ICR) BR	Non-neoplastic findings 5000 ppm (657/756 mg/km ↓ Body weight ↑ Relative liver weight ↑ Relative kidney weight ↑ Centrilobular hepatocyte	<u>g bw/day)</u> males 22% 97% ND ND	fe 22 sl mod	males ND 23% 12% light + 3 erate vs	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse Crl: CD-1 [™] (ICR) BR 50/sex/group	Non-neoplastic findings 5000 ppm (657/756 mg/km ↓ Body weight ↑ Relative liver weight ↑ Relative kidney weight ↑ Centrilobular hepatocyte hypertrophy	g bw/day) males 22% 97% ND ND	fe 22 sl mod 5 sli	males ND 23% 12% light + 3 erate vs ight + 2	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse Crl: CD-1 [™] (ICR) BR 50/sex/group	Non-neoplastic findings 5000 ppm (657/756 mg/km ↓ Body weight ↑ Relative liver weight ↑ Relative kidney weight ↑ Centrilobular hepatocyte hypertrophy	<u>g bw/day)</u> males 22% 97% ND ND	22 sl mod 5 sli mode	males ND 23% 12% light + 3 erate vs ight + 2 erate + 1	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse Crl: CD-1 [™] (ICR) BR 50/sex/group Valifenalate	Non-neoplastic findings 5000 ppm (657/756 mg/km ↓ Body weight ↑ Relative liver weight ↑ Relative kidney weight ↑ Centrilobular hepatocyte hypertrophy	g bw/day) males 22% 97% ND ND	22 sl mod 5 sli mode m	males ND 23% 12% light + 3 erate vs ight + 2 erate + 1 arked	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse Crl: CD-1 [™] (ICR) BR 50/sex/group Valifenalate (IR5885)	Non-neoplastic findings 5000 ppm (657/756 mg/km ↓ Body weight ↑ Relative liver weight ↑ Relative kidney weight ↑ Centrilobular hepatocyte hypertrophy	g bw/day) males 22% 97% ND ND	22 sl mod 5 sli mode m co	males ND 23% 12% light + 3 erate vs ight + 2 erate + 1 arked ontrols	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse Crl: CD-1 [™] (ICR) BR 50/sex/group Valifenalate (IR5885)	Non-neoplastic findings 5000 ppm (657/756 mg/kd ↓ Body weight ↑ Relative liver weight ↑ Relative kidney weight ↑ Centrilobular hepatocyte hypertrophy Generalised hepatocyte	<u>g bw/day)</u> <u>males</u> 22% 97% ND ND ND 18 slight + 11	22 sl mod 5 sli mode m co	males ND 23% 12% light + 3 erate vs ight + 2 erate + 1 arked ontrols ND	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse Crl: CD-1 [™] (ICR) BR 50/sex/group Valifenalate (IR5885) Purity: 99.56%	Non-neoplastic findings 5000 ppm (657/756 mg/kd ↓ Body weight ↑ Relative liver weight ↑ Relative kidney weight ↑ Centrilobular hepatocyte hypertrophy Generalised hepatocyte hypertrophy	g bw/day) males 22% 97% ND ND ND 18 slight + 11 moderate vs 3	22 sl mod 5 sli mode m co	males ND 23% 12% light + 3 erate vs ight + 2 erate + 1 arked introls ND	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse Crl: CD-1 [™] (ICR) BR 50/sex/group Valifenalate (IR5885) Purity: 99.56%	Non-neoplastic findings 5000 ppm (657/756 mg/kd ↓ Body weight ↑ Relative liver weight ↑ Relative kidney weight ↑ Centrilobular hepatocyte hypertrophy Generalised hepatocyte hypertrophy	g bw/day) males 22% 97% ND ND ND 18 slight + 11 moderate vs 3 slight controls	22 sl mod 5 sli mode m co	males ND 23% 12% light + 3 erate vs ight + 2 erate + 1 arked introls ND	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse Crl: CD-1 [™] (ICR) BR 50/sex/group Valifenalate (IR5885) Purity: 99.56% 0, 150, 850,	Non-neoplastic findings 5000 ppm (657/756 mg/kd ↓ Body weight ↑ Relative liver weight ↑ Relative kidney weight ↑ Centrilobular hepatocyte hypertrophy Generalised hepatocyte hypertrophy Centrilobular	g bw/day) males 22% 97% ND ND ND 18 slight + 11 moderate vs 3 slight controls 11 slight + 20	22 sl mod 5 sli mode m co	males ND 23% 12% light + 3 erate vs ight + 2 erate + 1 arked introls ND	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse Crl: CD-1 [™] (ICR) BR 50/sex/group Valifenalate (IR5885) Purity: 99.56% 0, 150, 850, 5000 ppm	Non-neoplastic findings 5000 ppm (657/756 mg/kd ↓ Body weight ↑ Relative liver weight ↑ Relative kidney weight ↑ Centrilobular hepatocyte hypertrophy Generalised hepatocyte hypertrophy Centrilobular hepatocyte vacuolation	g bw/day) males 22% 97% ND ND ND 18 slight + 11 moderate vs 3 slight controls 11 slight + 20 moderate + 1	22 sl mod 5 sli mode m co	males ND 23% 12% light + 3 erate vs ight + 2 erate + 1 arked introls ND	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse Crl: CD-1 [™] (ICR) BR 50/sex/group Valifenalate (IR5885) Purity: 99.56% 0, 150, 850, 5000 ppm	Non-neoplastic findings 5000 ppm (657/756 mg/kg ↓ Body weight ↑ Relative liver weight ↑ Relative kidney weight ↑ Centrilobular hepatocyte hypertrophy Generalised hepatocyte hypertrophy Centrilobular hepatocyte vacuolation	g bw/day) males 22% 97% ND ND ND 18 slight + 11 moderate vs 3 slight controls 11 slight + 20 moderate + 1 marked vs 3	22 sl mod 5 sli mode m co	males ND 23% 12% light + 3 erate vs ight + 2 erate + 1 arked introls ND	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse Crl: CD-1 [™] (ICR) BR 50/sex/group Valifenalate (IR5885) Purity: 99.56% 0, 150, 850, 5000 ppm Continuous	Non-neoplastic findings 5000 ppm (657/756 mg/kg ↓ Body weight ↑ Relative liver weight ↑ Relative kidney weight ↑ Centrilobular hepatocyte hypertrophy Generalised hepatocyte hypertrophy Centrilobular hepatocyte vacuolation	g bw/day) males 22% 97% ND ND ND 18 slight + 11 moderate vs 3 slight controls 11 slight + 20 moderate + 1 marked vs 3 minimal + 7	22 sl mod 5 sli mode m co	males ND 23% 12% light + 3 erate vs ight + 2 erate + 1 arked introls ND	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse Crl: CD-1 [™] (ICR) BR 50/sex/group Valifenalate (IR5885) Purity: 99.56% 0, 150, 850, 5000 ppm Continuous dietary	Non-neoplastic findings 5000 ppm (657/756 mg/kg ↓ Body weight ↑ Relative liver weight ↑ Relative kidney weight ↑ Centrilobular hepatocyte hypertrophy Generalised hepatocyte hypertrophy Centrilobular hepatocyte vacuolation	g bw/day) males 22% 97% ND ND 18 slight + 11 moderate vs 3 slight controls 11 slight + 20 moderate + 1 marked vs 3 minimal + 7 slight + 1	22 sl mod 5 sli mode m co	males ND 23% 12% light + 3 erate vs ight + 2 erate + 1 arked introls ND	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse Crl: CD-1 [™] (ICR) BR 50/sex/group Valifenalate (IR5885) Purity: 99.56% 0, 150, 850, 5000 ppm Continuous dietary administration	Non-neoplastic findings 5000 ppm (657/756 mg/kg ↓ Body weight ↑ Relative liver weight ↑ Relative kidney weight ↑ Centrilobular hepatocyte hypertrophy Generalised hepatocyte hypertrophy Centrilobular hepatocyte vacuolation	g bw/day) males 22% 97% ND ND ND 18 slight + 11 moderate vs 3 slight controls 11 slight + 20 moderate + 1 marked vs 3 minimal + 7 slight + 1 moderate	22 sl mod 5 sli mode m co	males ND 23% 12% light + 3 erate vs ight + 2 erate + 1 arked introls ND	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse Crl: CD-1 [™] (ICR) BR 50/sex/group Valifenalate (IR5885) Purity: 99.56% 0, 150, 850, 5000 ppm Continuous dietary administration for 78 weeks	Non-neoplastic findings 5000 ppm (657/756 mg/kg ↓ Body weight ↑ Relative liver weight ↑ Relative kidney weight ↑ Centrilobular hepatocyte hypertrophy Generalised hepatocyte hypertrophy Centrilobular hepatocyte vacuolation	g bw/day) males 22% 97% ND ND ND 18 slight + 11 moderate vs 3 slight controls 11 slight + 20 moderate + 1 marked vs 3 minimal + 7 slight + 1 moderate controls	22 sl mod 5 sli mode m co	males ND 23% 12% light + 3 erate vs ight + 2 erate + 1 arked introls ND	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse Crl: CD-1 [™] (ICR) BR 50/sex/group Valifenalate (IR5885) Purity: 99.56% 0, 150, 850, 5000 ppm Continuous dietary administration for 78 weeks	Non-neoplastic findings 5000 ppm (657/756 mg/kg ↓ Body weight ↑ Relative liver weight ↑ Relative kidney weight ↑ Centrilobular hepatocyte hypertrophy Generalised hepatocyte hypertrophy Centrilobular hepatocyte vacuolation	g bw/day) males 22% 97% ND ND ND 18 slight + 11 moderate vs 3 slight controls 11 slight + 20 moderate + 1 marked vs 3 minimal + 7 slight + 1 moderate controls	22 sl mod 5 sli mode m co	males ND 23% 12% light + 3 erate vs ight + 2 erate + 1 arked ontrols ND ND	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse Crl: CD-1 [™] (ICR) BR 50/sex/group Valifenalate (IR5885) Purity: 99.56% 0, 150, 850, 5000 ppm Continuous dietary administration for 78 weeks Achieved doses	Non-neoplastic findings 5000 ppm (657/756 mg/kg ↓ Body weight ↑ Relative liver weight ↑ Relative liver weight ↑ Relative kidney weight ↑ Centrilobular hepatocyte hypertrophy Generalised hepatocyte hypertrophy Centrilobular hepatocyte vacuolation	g bw/day) males 22% 97% ND ND ND 18 slight + 11 moderate vs 3 slight controls 11 slight + 20 moderate + 1 marked vs 3 minimal + 7 slight + 1 moderate controls 29/50 vs 0/50	22 sl mod 5 sli mode m co	males ND 23% 12% light + 3 erate vs ight + 2 erate + 1 arked ontrols ND ND	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse Crl: CD-1 [™] (ICR) BR 50/sex/group Valifenalate (IR5885) Purity: 99.56% 0, 150, 850, 5000 ppm Continuous dietary administration for 78 weeks Achieved doses 16.8, 97.2 and	Non-neoplastic findings 5000 ppm (657/756 mg/kg ↓ Body weight ↑ Relative liver weight ↑ Relative liver weight ↑ Relative kidney weight ↑ Centrilobular hepatocyte hypertrophy Generalised hepatocyte hypertrophy Centrilobular hepatocyte vacuolation Cytoplasmic eosinophilia in hepatocyte	g bw/day) males 22% 97% ND ND ND 18 slight + 11 moderate vs 3 slight controls 11 slight + 20 moderate + 1 marked vs 3 minimal + 7 slight + 1 moderate controls 29/50 vs 0/50 controls	fe 22 sl mod 5 sli mode m co	males ND 23% 12% light + 3 erate vs ight + 2 erate + 1 arked ontrols ND ND	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse Crl: CD-1 [™] (ICR) BR 50/sex/group Valifenalate (IR5885) Purity: 99.56% 0, 150, 850, 5000 ppm Continuous dietary administration for 78 weeks Achieved doses 16.8, 97.2 and 657 mg/kg/day	Non-neoplastic findings 5000 ppm (657/756 mg/kg ↓ Body weight ↑ Relative liver weight ↑ Relative liver weight ↑ Relative kidney weight ↑ Centrilobular hepatocyte hypertrophy Generalised hepatocyte hypertrophy Centrilobular hepatocyte vacuolation Cytoplasmic eosinophilia in hepatocytes	g bw/day) males 22% 97% ND ND ND 18 slight + 11 moderate vs 3 slight controls 11 slight + 20 moderate + 1 marked vs 3 minimal + 7 slight + 1 moderate controls 29/50 vs 0/50 controls	fe 22 sl mod 5 sli mode m co	males ND 23% 12% light + 3 erate vs ight + 2 erate + 1 arked ontrols ND ND	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse Crl: CD-1 [™] (ICR) BR 50/sex/group Valifenalate (IR5885) Purity: 99.56% 0, 150, 850, 5000 ppm Continuous dietary administration for 78 weeks Achieved doses 16.8, 97.2 and 657 mg/kg/day for males and	Non-neoplastic findings 5000 ppm (657/756 mg/kg ↓ Body weight ↑ Relative liver weight ↑ Relative kidney weight ↑ Centrilobular hepatocyte hypertrophy Generalised hepatocyte hypertrophy Centrilobular hepatocyte vacuolation Cytoplasmic eosinophilia in hepatocytes Pigment in hepatocytes	g bw/day) males 22% 97% ND ND ND 18 slight + 11 moderate vs 3 slight controls 11 slight + 20 moderate + 1 marked vs 3 minimal + 7 slight + 1 moderate controls 29/50 vs 0/50 controls 18/50 vs 0/50	fe 22 sl mod 5 sli mode m co	males ND 23% 12% light + 3 erate vs ight + 2 erate + 1 arked ontrols ND ND ND	Confidential study number 52
laboratory animal diet Carcinogenicity (1.5-year) study OECD TG 451 Mouse Crl: CD-1 [™] (ICR) BR 50/sex/group Valifenalate (IR5885) Purity: 99.56% 0, 150, 850, 5000 ppm Continuous dietary administration for 78 weeks Achieved doses 16.8, 97.2 and 657 mg/kg/day for males and 21.6, 124 and	Non-neoplastic findings 5000 ppm (657/756 mg/kg ↓ Body weight ↑ Relative liver weight ↑ Relative kidney weight ↑ Centrilobular hepatocyte hypertrophy Generalised hepatocyte hypertrophy Centrilobular hepatocyte vacuolation Cytoplasmic eosinophilia in hepatocytes Pigment in hepatocytes	g bw/day) males 22% 97% ND ND ND 18 slight + 11 moderate vs 3 slight controls 11 slight + 20 moderate + 1 marked vs 3 minimal + 7 slight + 1 moderate controls 29/50 vs 0/50 controls 18/50 vs 0/50 controls	fe 22 sl mod 5 sli mode m co	males ND 23% 12% light + 3 erate vs ight + 2 erate + 1 arked ontrols ND ND ND	Confidential study number 52

756 mg/kg/day	Pigment in hepatocyte	12/50 vs 1/50	31/50 vs	
for females	macrophages	controls	12/50	
			controls	
	Gall bladder choleliths	ND	8/45 vs 1/47	

850 ppm (97.2/124 mg/kg bw/day)

	males	females
↑ Relative liver weight	29%	ND
Centrilobular hepatocyte	2 minimal +	ND
vacuolation	11 slight + 22	
	moderate vs 3	
	minimal + 7	
	slight + 1	
	moderate	
	controls	

150 ppm (17/22 mg/kg bw/day)

	males	females
Centrilobular hepatocyte	21 slight + 13	ND
vacuolation	moderate vs 3	
	minimal + 7	
	slight + 1	
	moderate	
	controls	

Conclusion: NOAEL: 17 mg/kg bw/day LOAEL: 97 mg/kg bw/day

The effects reported in mice (Table 6) were consistent with the effects reported in rats (Table 5). Moderate alterations of blood and clinical values were reported in the 28-days and 90-days repeated toxicity studies (Table 6). The incidence of these alterations were relatively moderate and, in concordance with changes reported in rats, RAC does not consider these effects enough robust for supporting a STOT RE classification.

The studies in mice also highlight liver as target organ of valifenalate. Moderate increases in relative liver weight (up to 50%) were noted in the 28-days and 90-days repeated dose toxicity studies (Table 6). This increase was more notable (around 100%) in the carcinogenicity study (Table 6). Histopathological alterations in liver were noted in several studies in mice. These alterations include mainly hepatocyte hypertrophy and vacuolation, cytoplasmic eosinophilia and hepatocyte and macrophage pigmentation (Table 6). RAC notes that all these changes in liver are indeed adaptive responses by the same reason outlined in the case of rat studies and therefore should be considered for setting classification as STOT RE.

Other effects were also described in these repeated dose toxicity studies in mice as 45% increase in adrenal weight, 12% increase in relative kidney weight and increases in incidences of gall bladder choleliths (Table 6). However, RAC notes that these effects were not consistently reported among different studies in mice and were not noted in rat and dog studies and therefore RAC does not consider these effects for classification as STOT RE.

control.,				
Method	Results			Reference
28-day oral	<u>1000 mg/kg bw/day</u>			Confidential
toxicity study		I		study number 7
		males	females	
OECD TG 409	↑ Pale faeces	3/3	2/3	
(1998)	↓ Cholesterol	60%	67%	
	↓ Phospholipid	53%	61%	
GLP	↑ Alkaline phosphatase	203%	ND	
	↑ Gamma glutamyl-	80%	ND	
Oral (capsule)	transferase			
5	↑ Total protein	13%	18%	
Dog	↓ Albumin	20%	23%	
Decelo	↓ Calcium	8%	11%	
beagle	↓ Magnesium	10%	ND	
2/cov/aroup	↑ Phosphorous	18%	ND	
S/Sex/group	↑ Absolute liver weight	66%	33%	
Valifonalato	Hepatocellular glycogen	0/3 vs 2/5	1/3	
(IR5885)	content	(severity	(severity	
(1000)		2.5) controls	1.0) vs 3/3	
Purity: 98 9			(severity	
1 difty: 50.5			3.0) controls	
0, 250, 500 and	Hepatocellular hypertrophy	3/3 (severity	3/3	
1000 ma/ka		4.0) vs 1/3	(severity	
bw/day		(severity	3.3) vs 0/3	
2.11, 44,		1.0) controls	controls	
Vehicle:	Liver eosinophilic	3/3 (severity	2/3	
gelatine capsule	cytoplasmic inclusions	2.3) vs 0/3	(severity	
5		controls	3.0) vs 0/3	
			controls	
	Liver single cell necrosis	3/3 (severity	1/3	
		1.0) vs 0/3	(severity	
		controls	0.33) vs 0/3	
			controls	
	Liver apoptosis	1/3 (severity	ND	
		0.6) vs 0/3		
		controls		

Table 7: Summary of repeated dose toxicity studies in dogs with valifenalate. In all cases the effects were statistically different from controls for at least p<0.05. ND = No statistical differences with control.,

	males	females
↑ Pale faeces	3/3	ND
↓ Cholesterol	41%	52%
↓ Phospholipid	38%	44%
↑ Total protein	9%	14%
↓ Albumin	18%	21%
↓ Calcium	ND	10%
↑ Absolute liver weight	49%	42%
Hepatocellular glycogen	3/3 (severity	3/3 (severity
content	2.0) vs 2/3	2.0) vs 3/3
	(severity	(severity
	2.5) controls	3.0) controls

Hepatocellular hypertrophy	3/3 (severity	3/3 (severity	
	3.0) vs 1/3	2.7) vs 0/3	
	(severity	controls	
	1.0) controls		
Liver eosinophilic	3/3 (severity	2/3 (severity	
cytoplasmic inclusions	2.0) vs 0/3	1.5) vs 0/3	
	controls	controls	

<u>250 mg/kg bw/day</u>

	males	females
↓ Cholesterol	42%	19%
↓ Phospholipid	40%	ND
↑ Total protein	8%	ND
↓ Albumin	23%	ND
Hepatocellular glycogen	3/3 (severity	3/3 (severity
content	2.7) vs 2/3	1.3) vs 3/3
	(severity	(severity
	2.5) controls	2.0) controls
Liver eosinophilic	2/3 (severity	1/3 (severity
cytoplasmic inclusions	1.5) vs 0/3	1.0) vs 0/3
	controls	controls

Conclusion: NOAEL: 500 mg/kg bw/day LOAEL: 1000 mg/kg bw/day

90-day oral	750 mg/kg bw/day			Confidential
toxicity study	1 formale taken off does after	7 weeks due to	waight loss	study number
	advorse laboratory results an	d rotained until t	he and of the	12
(1008)	study			
(1990)	study			
GLP	White discoloured faeces or w	vhite/vellow powo	ler in faeces	
-	from day 3, 7/8 dogs			
Oral (capsule)	, <u>-</u>			
		males	females	
Dog	↓ Body weight gain	48%	33%	
	\downarrow Food consumption	12%	12%	
Beagle	↑ Platelets	Up to 33%	Up to 74%	
	↓ RBC	8%	9%	
4/sex/group	↑ MCH	9%	10%	
Valifonalata	↑ MCV	7%	ND	
Valifenalate	↓ Reticulocytes	50%	Up to 60%	
(183885)	↑ ALP	Up to 517%	Up to 446%	
Durity: 08 56%	↑ ALT	Up to 109%	Up to 303%	
Fully: 90.30%	↑ GGT	Up to 133%	Up to 133%	
0 50 250 and	↓ Cholesterol	Up to 60%	Up to 69%	
750 ma/ka	↓ Total protein	Up to 18%	Up to 17%	
bw/day	↓ Albumin	Up to 23%	Up to 28%	
	↑ AST	28%	24%	
Vehicle:	↑ Glucose	12%	22%	
gelatine capsule	↑ Relative liver weight	60%	70%	
	↑ Relative	64%	ND	
	thyroid/parathyroid			
	weights			

\downarrow Prostate weight	64%	ND
\downarrow Testis weight	28%	ND
↑ Epididymis weight	14%	ND
Hepatocyte hypertrophy	4 moderate vs	3 moderate
	0/4 controls	vs 0/4
		controls
Hepatocytes pale	2 slight + 2	3 moderate
cytoplasm, peripheral	moderate vs	vs 0/4
clumping	0/4 controls	controls
Eosinophilic	2 slight + 2	1 slight + 2
intracytoplasmic inclusions	moderate vs	moderate vs
in hepatocytes	0/4 controls	0/4 controls
Thyroid follicular	1 minimal + 1	2 minimal vs
hypertrophy	slight vs 0/4 controls	0/4 controls

 \uparrow white discoloured faeces or white/yellow powder in faeces from day 10, 5/8 dogs

	males	females
↓ Body weight gain	21%	ND
↑ Platelets	Up to 42%	ND
↓ Reticulocytes	31%	39%
↑ ALP	Up to 430%	Up to 194%
↑ ALT	ND	42%
↑ GGT	33%	33%
↓ Cholesterol	Up to 47%	Up to 36%
↓ Total protein	Up to 13%	Up to 11%
↓ Albumin	Up to 20%	Up to 13%
↑ AST	ND	29%
↑ Relative liver weight	44%	34%
↑ Relative	61%	ND
thyroid/parathyroid		
weights		
Hepatocyte	2 slight + 2	1 minimal + 1
hypertrophy	moderate vs	slight + 2
	0/4 controls	moderate vs
		0/4 controls
Hepatocytes pale	2 slight + 2	1 minimal + 1
cytoplasm, peripheral	moderate vs	slight + 2
clumping	0/4 controls	moderate vs
		0/4 controls
Eosinophilic	2 slight + 2	3 minimal + 1
intracytoplasmic	moderate vs	slight vs 0/4
inclusions in	0/4 controls	controls
hepatocytes		
Thyroid follicular	1 minimal vs	2 slight vs
hypertrophy	0/4 controls	0/4 controls

	males	females
↑ ALP	Up to 142%	Up to 134%
↑ Relative liver weight	-	33%
Hepatocyte	3 minimal + 1	2 minimal + 2
hypertrophy	slight vs 0/4	slight vs 0/4
	controls	controls
Thyroid follicular	ND	1 slight vs
hypertrophy		0/4 controls

Conclusion: NOAEL: 250 mg/kg bw/day LOAEL: 750 mg/kg bw/day

52-week	250 mg/kg bw/day			Confidential
emonie toxicity		males	females	65
Additionally 13	↑ Platelets	Up to 74%	ND	
weeks sub-	↑ ALP	Up to 1360%	Up to 746%	
chronic toxicity	↓ Cholesterol	28%	25%	
with 8 week	↓ Total protein	Up to 13%	Up to 10%	
recovery	↓ Albumin	Up to 19%	Up to 16%	
	↑ Triglycerides	91%	ND	
OECD TG 452	↓ Calcium ions	Up to 8%	ND	
(1981)	↑ Relative liver weight	61%	36%	
	↑ Relative	31%	ND	
GLP	thyroid/parathyroid			
Oral (canculo)	↓ Relative prostate	29%	ND	
	weight			
Dog	↓ Relative ovary weights	ND	57%	
Dog	Hepatocyte hypertrophy	3 slight + 1	3 slight + 1	
Beagle		moderate vs	moderate vs	
2009.0		0/4 controls	0/4 controls	
4/sex/group	Hepatocytes with pale	4 minimal vs	3 minimal vs	
//5	cytoplasm and peripheral	0/4 controls	0/4 controls	
Valifenalate	clumping hypertrophy			
(IR5885)				
	<u>50 mg/kg bw/day</u>			
Purity: 99.56%			C	1
		males	females	
0, 1, 7, 50 and	↑ ALP	Up to 217%	Up to 398%	
250 mg/kg	↓ Relative ovary weights	-	48%	
bw/day	Hepatocyte hypertrophy	2 minimal + 2	3 minimal + 1	
		slight VS 0/4	slight VS 0/4	
Vehicle:	Lienete entre with reals	Controis		
gelatine capsule	Hepatocytes with pale	ND	1 minimai vs	
			0/4 CONTROLS	
	ciumping hypercrophy			l

<u>7 mg/kg bw/day</u>

	males	females
↑ ALP	165%	150%
Hepatocyte hypertrophy	1 minimal vs 0/4 controls	1 minimal + 1 slight vs 0/4
		controls

	males	females
↑ ALP	ND	55%

Conclusion: NOAEL: 50 mg/kg bw/day LOAEL: 250 mg/kg bw/day

The database with dogs shows a scenario consistent with information obtained with rats and mice. Alterations in clinical and blood chemistry were noted in the three available studies. However, most of these changes were of low magnitude; the largest changes reported were the high increase of transaminase activities (ALP and ALT) (Table 7). RAC notes that the changes in transaminases are secondary to liver response and therefore should not be considered as supporting for classification as STOT RE.

The assessment of the dog studies shows again the liver as target organ of valifenalate. Indeed, increases in relative liver weight, hepatocellular hypertrophy and liver eosinophilic cytoplasmic inclusions were consistently reported through the whole database. Again, as in the case of rats and mice, RAC noted that at exposure levels below the guidance values, these changes are adaptive responses rather than adverse effects and therefore cannot be used as basis for supporting a classification. However, RAC notes certain incidences of liver single cell necrosis in the 28-day study. On the opposite to hypertrophy, necrosis is a non-reversible event that might notably alter the performance of liver and therefore should be taken into consideration for classification as STOT RE.

Some changes were noted in reproductive organs (reductions in prostate, testis and ovary weight and increases in epididymis weight) (Table 7). However, these alterations will be assessed within the reproductive toxicity hazard class and not for STOT RE. The thyroid, in the mice studies, exhibited certain alterations after valifenalate exposure. These changes were mainly reduction in relative thyroid/parathyroid and thyroid follicular hypertrophy (Table 7). However, RAC noted that these effects were not reported in all studies and no dose-response was observed in the case of thyroid follicular hypertrophy (Table 7). Overall, RAC does not consider the effects in thyroid robust enough for supporting a potential classification as STOT RE.

Comparison with the criteria

Table 8 summarises all findings of Tables 5, 6 and 7 on adverse effects relevant for STOT-RE classification that were consistently observed in available repeated toxicity studies.

to those effects that appear	those effects that appear at doses relevant for classification as STOT RE.		
Effect	Study	Lowest reported dose (mg/kg bw/day)	Guidance value for STOT-RE classification Cat 1/Cat 2 (mg/kg bw/day)
↓ Absolute thymus weight, thymic lymphocytosis, distended caecum	28-day study (rats)	1518	30/300
Thyroid follicular cell hypertrophy	52-week (rats)	1000	2.5/25
Thyroid follicular cell hypertrophy	2-generation reproduction (rats)	277	8.9/89 (assuming 112 days of exposure)
Liver single cell necrosis	28-days study (dogs)	1000	30/300

Table 8: Adverse effects of valifenalate relevant for STOT-RE classification. **Bolded text** refers to those effects that appear at doses relevant for classification as STOT RE.

Table 8 shows as none of the effects considered for supporting a classification as STOT RE appear at concentrations within the corresponding guidance values. Therefore, RAC supports **no classification of valifenalate for STOT RE** based on the observed effects.

RAC evaluation of germ cell mutagenicity

Summary of the Dossier Submitter's proposal

The DS proposed no classification of valifenalate for germ cell mutagenicity based on three *in vitro* and one *in vivo* negative studies.

Comments received during consultation

One company-manufacturer agreed with the DS's proposal for no classification.

Assessment and comparison with the classification criteria

Tables 9 and 10 summarise the results of the mutagenicity/genotoxicity assays contained in the CLH-report.

Method	Tested concentrations	Results	Reference
In vitro bacterial	Valifenalate (IR5885)	+S9: Negative	Confidential
gene mutation	Purity: 98.9%	-S9: Negative	study
Ames test	Positive controls: sodium azide; 4-nitro-		number 53
OECD TG 471	o-phenylene-diamine; methyl methane		
GLP	sulfonate and 2-aminoanthracene		
Strains: TA98,	Solvent: Dimethyl sulfoxide (DMSO)		
TA100, TA102,	Concentrations : 33, 100, 333, 1000,		
TA1535, TA1537	2500 and 5000 valifenalate µg/plate		
of Salmonella			
typhimurium			
In vitro	Valifenalate (IR5885)	+S9: Negative	Confidential
clastogenicity in	Purity: 98.9%	-S9: Negative	study
mammalian cells	Positive controls: ethylmethane		number 41
Chromosome	sulfonate and cyclophosphamide		
aberration test	Solvent: Dimethylsulfoxide (DMSO)		
OECD TG 473			
GLP	Concentrations :		
Chinese Hamster	Experiment 1: Concentrations of up to		
Ovary (CHO/D1)	1600 μ g /mL (with and without S9 mix)		
cells			
	Experiment 2: Concentrations of up to		
	200 µg /mL (without S9 mix) and up to		
	1600 µg /mL (with S9 mix)		
In vitro	Valifenalate (IR5885)	+S9: Negative	Confidential
mammalian	Purity: 98.9%	-S9: Negative	study
gene mutation	Positive controls: 3-methyl		number 54
OECD TG 476	chloranthracene and methyl methane		
GLP	sulfonate		
L5178Y mouse	Solvent: Dimethyl sulfoxide (DMSO)		
lymphoma cells	Concentrations :		

Table 9: Summary of mutagenicity/genotoxicity in vitro studies with valifenalate.

Experiment 1: 12.5, 25, 50, 100, 200
and 400 µg/mL (with and without S9
mix)
Experiment 2: 25, 50, 100, 200, 400 &
800 μg/mL (without S9 mix)

Table 10: Summary of the mutagenicity/genotoxicity in vivo study with valifenalate.

Method	Tested concentrations	Results	Reference
In vivo mouse	Valifenalate (IR5885)	Negative	Confidential
micronucleus	Purity: 99.56%		study
OECD TG 474	Positive control: cyclophosphamide		number 20
GLP	Vehicle: corn oil		
NMRI mouse	24 hours preparation interval groups dosed at: 0, 500,		
6/sex/group	1000 or 2000 mg/kg bw valifenalate plus positive		
	control group		
	48 hours preparation interval: an additional group		
	dosed at 2000 mg/kg bw		

Comparison with the criteria

The genotoxicity of valifenalate was tested in three *in vitro* and one *in vivo* tests. The results of all studies were negative with positive and negative controls demonstrating the validity of the tests. Thus, RAC supports the DS's proposal for **no classification of valifenalate for germ cell mutagenicity.**

RAC evaluation of carcinogenicity

Summary of the Dossier Submitter's proposal

The CLH-report contains two carcinogenicity studies. That in rats showed no neoplastic findings, while the study in mice showed increased incidence over control and historical control data (HCD) of hepatocellular adenomas in both sexes at 850 and 5000 ppm and increases of hepatocellular carcinoma in males at 5000 ppm. The CLH-report also provides some mechanistic studies for demonstrating that the carcinogenicity in mouse liver is triggered by a mechanism based on a key event consisting in activation of multiple nuclear receptors, followed by a key event consisting in an increase in the DNA replicative synthesis which, in turn, is followed by the last key event, consisting in the formation of the hepatocellular injury. The DS proposed no classification of valifenalate for carcinogenicity based on the lack of relevance for humans of the proposed mechanism of action.

Comments received during consultation

One MSCA questioned the results and conclusions derived from the confidential study number 69 on the basis of: i) inappropriate comparison between strains; ii) a weak induction of peroxisome proliferator-activated receptor (PPAR-a) in the knock-out model; and iii) lack of positive control in this experiment. This same MSCA also questioned the lack of experiments with constitutive androstane receptor (CAR)/pregnane X receptor (PXR) knockout mice in the database in order to clarify the role of these receptors in the hepatocarcinogenesis. Finally, the MSCA also questioned why valifenalate was not able to activate nuclear receptors while positive controls did. Overall, this MSCA considered the receptor activation by valifenalate to be demonstrated but not the lack of relevance for humans because alternative mechanisms of action were not addressed

and they therefore supported classification as Carc. 2 H351. The DS replied to these comments as follows:

- Providing an additional historical control data (HCD) from Charles River Laboratories showing that hepatocellular adenoma incidences in males were almost covered and the incidence in females were covered by these new HCD records.
- Highlighting the arguments presented in Annex 2 of the CLH report (and summarised below; see "Supplemental Information") and considering that: i) the "Bradford Hill Considerations" of the WHO International Programme on Chemical Safety support the proposed mechanism of action based on nuclear receptor activation; ii) the lack of relevance for humans, since neither CAR/PXR nor the PPAR-a are regarded as relevant to humans; and iii) evidences that carcinogenicity in liver in this case is not based on alternative mechanisms of action such as genotoxicity, cytotoxicity, aryl hydrocarbon receptor (AhR)- or oestrogen receptor (ER)-mediated mechanism.

One company-manufacturer supported the DS's proposal for no classification.

Assessment and comparison with the classification criteria

A summary of the information contained in the Annex 2 of the CLH-report entitled "Valifenalate: Mode of Action Analysis using the WHO/IPCS Mode of Action Framework" is presented in the Background Document.

Table 11 summarises the results of the two carcinogenicity studies found in the CLH-report. **Table 11:** Summary of carcinogenicity studies with valifenalate.

TADIE 11: Suiting	ary of carcinogenicity studies with valuenalate.	
Method	Results	Reference
2-year combined	Non-neoplastic findings	Confidential study number
toxicity and	See Table 5 for effects at 52 weeks	51
study	Effects at week 104: 1000 mg/kg bw/day	
OECD TG 453	No effects on body weight, haematology and urine analysis	
GLP	Increases of relative liver weight of 9.9% ($p<0.01$) (males) and 7.6% ($p<0.01$) (females)	
Rat	Effects at week 104: 150 mg/kg hw/day	
HsdBrl Han	Litects at week 104. 150 mg/kg bw/day	
Wistar	Reduction of 8% in male body weight	
50/sex/group: 104 weeks	Effects at week 104: 15 mg/kg bw/day	
20/sex/group	No toxicologically significant treatment-related effects	
52 weeks	Neoplastic findings	
Valifenalate (IR5885)	No treatment-related changes in neoplastic findings at any dose level	
Purity: 99.56%		
0,15,150, 1000 mg/kg bw/day		
Continuous dietary administration		
Carcinogenicity study	Non-neoplastic findings	Confidential study number
,	See Table 6	52

OECD TG 451

Neoplastic findings

Mouse

<u>Males</u>

Crl: CD-1™ (ICR) BR

50/sex/group

Valifenalate (IR5885)

Purity: 99.56%

0, 150, 850, 5000 ppm mg/kg bw/day

Continuous dietary administration for 78 weeks

Achieved doses 16.8, 97.2 and 657 mg/kg/day for males and 21.6, 124 and 756 mg/kg/day for females

	Dieta	iry concer	ntration (j	opm)	
	0	150	850	5000	HCD (%) ^{\$}
No. Examined	50	50	50	50	-
Hepatocellul ar Adenoma (%)	7 (14)	2 (4)	14 (28)	16* (32)	7.8- 21.2
Hepatocellul ar carcinoma (%)	2 (4)	4 (8)	4 (8)	10* (20)	1.9- 8.0
Combined adenoma + carcinoma* * (%)	9 (18)	6 (12)	18 (36)	26 (52)	-
*p ≤ 0.05 compared with control group **Estimated by RAC, not provided by the DS, no available statistical analysis * No contextual information about this HCD was provided					

<u>Females</u>

	Dietary concentration (ppm)				
	0	150	850	5000	HCD (%) ^{\$}
No. Examined	50	50	50	50	
Hepatocellul	0	0	2	5*	0.0-
ar	(0)	(0)	(4)	(10)	1.9
adenoma					
Hepatocellul	0	1	0	0	0.0-
ar	(0)	(2)	(0)	(0)	0.0
carcinoma					
Combined	0	1	2	5	
adenoma +	(0)	(2)	(4)	(10)	
carcinoma*					
*					
*p \leq 0.05 compared with control group					
**Estimated by RAC, not provided by the DS, no available					
statistical analysis					
^{\$} No contextual information about this HCD was provided					

In Han Wistar rats there was no evidence of valifenalate-related carcinogenicity up to and including the limit dose level for carcinogenicity studies of 1000 mg/kg/day (Table 11). In CD-1 mice valifenalate induced hepatocellular adenomas and carcinomas in males. The incidence of these tumours in males and females given 850 or 5000 ppm exceeded the background range in studies performed at this facility (Table 11). For males, at 850 ppm the incidence of adenoma and carcinoma was 28 and 8% respectively, and at 5000 ppm the incidences were 32 and 20%, respectively. The incidences of adenomas exceeded the historical control range at both dose levels. However, the incidence of carcinomas in males at 850 ppm was within the reported historical control incidence. In female mice, valifenalate appeared to be less potent with a smaller, but statistically significant, increase in adenomas only being reported at a dose level of 5000

ppm. The incidence of adenoma was 4 and 10% at 850 and 5000 ppm, respectively. At both dose levels, this incidence was outside the historical control incidence.

Investigative study: Comparison of C57BL/6 mice and CD1 mice to determine if C57BL/6 mice are a suitable strain for a subsequent study in peroxisome proliferatoractivated receptor-alpha (PPARa) knock out mice derived from C57BL/6 strain (confidential study number 68)

Two strains of mice (5 males/group) were fed with 7000 ppm valifenalate (purity 99.68%) in diet during days. Several hepatic parameters were determined and compared with controls of respective strain non-exposed to valifenalate. The results are shown below:

	CD1	C57BI/
		6
Absolute Liver weight	↑ 19.5%	↑ 13.8%
Relative liver weight	↑ 21%	↑ 16%
PCoA oxidation	↑ 1.6 fold	↑ 1.9
		fold
Hepatic pentoxyresorufin-O-depentylation (PROD)	↑ 2.1 fold	↑ 3.4
		fold
Hepatic 12-hydroxylauric acid	↑ 4.9 fold	↑ 7.1 fold

Overall, the DS concluded that the response in both strains was very similar. It was concluded that the C57BL/6 mouse strain is an appropriate background strain for further investigations using the PPARa knockout model

Investigative study: Comparison of response in PPARa knockout mice with wild type controls (confidential study number 69)

C57BL/6 wild type and PPARa knock out CD1 mice (10 males/group) were fed with 7000 ppm valifenalate (purity 99.68%) in diet during 7 and 14 days. Several hepatic parameters were determined and compared with controls of respective strains non-exposed to valifenalate. The results are shown below:

	C57BL/6 \	wild type	PPARa knock out CD1	
	7 days	14 days	7 days	14 days
S-phase	↑ 8.2 fold	↑ 3.5 fold	↑ 5.4 fold	↑ 1.9 fold
Liver pathology:		Tota		
↑ minimal to mild centrilobular hypertrophy	10/10	-	2/10	-
moderate centrilobular hypertrophy	-	10/10	-	-
increased mitosis	-	6/10	-	-
PCoA oxidation	-	↑ 2.0 fold	-	\uparrow 1.3 fold
Acox1 mRNA	-	↑ 1.8 fold	-	↑ 1.3 fold
12-hydroxylauric acid levels	-	↑ 7.7 fold	-	↑ 4.0 fold
Cyp2b10 mRNA level	-	↑ 50 fold	-	↑ 50 fold
PROD activity	-	↑ 6.0 fold	-	↑ 7.1 fold
Cyp3a11 mRNA levels	-	↑ 6.3 fold	-	↑ 8.5 fold

Overall, the DS concluded that PPARa pathway is responsible for a portion of the hepatic response, and additional mechanisms mediated by CAR and PXR activation are also involved. RAC also notes that, despite hepatocellular hypertrophy was clearly lower in knock-out mice than in wild mice, there was no significant differences between the wild type and knock out mice in the level of expression of the biomarker of activation of PPAR receptor (Acox1 mRNA level). Moreover, RAC also notes that the level of activation of CAR (Cyp2b10 mRNA level) and PXR (Cyp3a11 mRNA levels) was quite comparable.

Investigative study: Investigate the potential of valifenalate to activate CAR and/or PPARa nuclear hormone receptors and stimulate cell proliferation in isolated hepatocytes (confidential study number 70)

Mouse hepatocytes from CD1 strain were exposed to valifenalate (purity 99.68%), phenobarbital and WY-14.643 as positive controls. Valifenalate 300 μ M (a concentration able to reduce the ATP levels by 74%) and also 100 μ M (a non-cytotoxic concentration) caused no impact on any of the biochemical marker assessed. However, the positive controls increased DNA synthesis, the mRNA levels of Cyp2b10, Cyp4a10, Cyp4a14c, Cyp4a10, Cyp4a14, Cyp2b10 and Acox1, PCoA oxidation and PROD activity.

Overall, the DS concluded that valifenalate does not activate either mouse CAR or PPARa when assessed *in vitro* as demonstrated by the lack of hypertrophic and hyperplasic responses in the CD-1 mouse hepatocytes.

Investigative study: Investigation of mechanism of possible liver toxicity. Assessments included cell proliferation, CYP enzymes (activity and/or mRNA expression), peroxisomal β -oxidation, catalase histochemistry and oxidative stress (TBARS) (confidential study number 66)

Crl:CD-1 mice (18 males/group) were dosed with 21, 249 and 1050 mg/kg bw/day valifenalate (purity 97.83%) or phenobarbital as positive control during 14 days. Several hepatic parameters were determined and compared with controls of respective strains non-exposed to valifenalate. The results are shown below:

	Dose valifenalate (mg/kg bw/day)		
	21	249	1050
Cyp4a-1 enzyme sub family (Lauric acid 12-	No effects	↑ 408%	↑ 1106%
hydroxylase)			
Peroxisomal β-oxidation	No effects	↑ 208%	↑ 308%
Relative liver weight	No effects	↑ 13%	↑ 35%
Hepatocellular hypertrophy	No effects	4/6	6/6
Cyp1a1 mRNA level	↓ 0.8 fold	↑ 1.2 fold	↑ 1.2
			fold
Cyp1a2 mRNA level	↓ 0.7 fold	↓ 0.8	↓ 0.3
		fold	fold
Cyp2b10 mRNA level	↑ 1.6 fold	16.2 fold	120
Cyp3a11 mRNA level	↑ 1.1 fold	↑ 6.1 fold	19.5 fold
Catalase	↑ 6% fold	↑ 12%	↑ 16%

	Dose phenobarbital (mg/kg bw/day)
	130
Cyp 2B10 mRNA level	↑223 fold
Cyp3a11 mRNA level	12 fold
Cyp1a1 mRNA level	13.6 fold
Cyp1a2 mRNA level	↑2.9 fold
Peroxisomal β-oxidation	No increase
Relative liver weight relative to body weight	\uparrow 55% by day 3, 37% by day 14
Hepatocellular hypertrophy	\uparrow 6/6 after 3 and 14 days, severity
	more marked after 14 days
Catalase	No increase

Overall, the DS concluded that valifenalate appears as moderate and dose dependent liver enzyme inducer of the peroxisomal-proliferator type and that the mode of action as a liver enzyme inducer of the polycyclic aromatic hydrocarbon-, steroid-, or phenobarbital-type can be excluded.

Summary of mechanistic studies on liver effects

The data from these studies have been considered in detail by the DS (see Annex II to the CLHreport) and were summarised below in the section Supplemental information. These mechanistic studies allowed considering a mode of action for the carcinogenic effects of valifenalate with an initiating event based on the co-activation of multiple nuclear receptors, CAR/PXR/PPARa, and as a direct consequence, the associated induction of gene expression and enzyme activity of Cyp2b10, Cyp3a11 and Cyp4a.

The second key event is the increased hepatocellular proliferation and is also initiated in CD-1 mice exposed to valifenalate, on a time scale not dissimilar to the appearance of induction of the hepatic metabolising enzymes.

The final key event is the longer-term formation of carcinomas via the development of altered, hyperplastic, hepatic, foci and the subsequent development of benign and, ultimately, malignant hepatocellular neoplasms.

Comparison with the criteria

Classification in category 1A concerns substances known to have carcinogenic potential for humans and is largely based on human evidence. Since there are no human data it cannot be concluded that valifenalate has known carcinogenic potential for humans; therefore Category 1A is not applicable.

Category 1B is for substances with sufficient evidence of carcinogenic potential for humans. For that, increases incidences of malignant neoplasms or an appropriate combination of benign and malignant neoplasms in (a) two or more species of animals or (b) two or more independent studies in one species carried out at different times or in different laboratories or under different protocols. An increased incidence of tumours in both sexes of a single species in a well-conducted study, ideally conducted under GLP, can also provide sufficient evidence. In the case of valifenalate, the database contains one study showing increment of malignant lesions in a single species and sex and therefore the conditions for category 1B are not met.

Category 2 is reserved for substances with evidences of carcinogenicity not sufficiently convincing to place the substance in Category 1A or 1B and can be set if the evidence of carcinogenicity is restricted to a single experiment, as is the case of valifenalate.

A full range of investigative studies was included in the CLH-dossier to determine the mode of action of valifenalate in the mouse. These experiments show that liver effects are initiated by activation of receptors CAR, PXR and PPARa and it was concluded that these effects were not likely to occur in humans on a quantitative basis.

RAC recognises that the mechanism of action proposed by the DS (nuclear receptor activation \rightarrow increase of replicative DNA synthesis \rightarrow hypertrophy \rightarrow carcinogenesis) is plausible. However, RAC also notes that the database is not robust enough for rule out the relevance of valifenalate-induced hepatocarcinomas in humans. RAC notes the following concerns:

• Weak (up to 3.6 times) increases in the expression of Cyp1a1 and Cyp1a2 were reported after dosing CD-1 mice for 14 days with 850 ppm valifenalate (Table A1 in Annex 2 to the CLH-report); while the level of expression of these Cyp at 7000 ppm (dose at which most of other mechanistic studies were performed) is unknown. It suggests that a potential role of AhR in the mechanism of action cannot be totally ruled out.

- Inconsistencies detected in the study with PPAR-a mice, where, moreover, lack of positive control was detected
- Lack of data with CAR/PXR knock-out mice
- Lack of data with human hepatocytes
- Fails in the valifenalate to induce *in vitro* changes in biochemistry of hepatocytes without evidences that hepatocytes were not metabolically competent
- Cytoplasmic eosinophilia in hepatocytes in the 1.5-year study in mouse, in the 28-days and 90-days toxicity studies in dogs; hepatocyte and liver macrophage pigmentation in the 1.5-year study in mouse; liver cell necrosis in the 28-day study in dogs and pale cytoplasm in dog hepatocytes in the in the 90-day study and 52-week study suggest cytotoxicity; which could be a carcinogenic mode of action alternative to the proposed PPAR activation.

Overall, there is insufficient evidence to support the non-relevance of the observed liver tumours for humans and therefore RAC supports the **classification of valifenalate as Carc. 2, H351;** "Suspected of causing cancer".

RAC evaluation of reproductive toxicity

Summary of the Dossier Submitter's proposal

DS proposed no classification of valifenalate for sexual function and fertility, development and lactation based on lack of effects detected in a 2-generation reproduction toxicity study, one developmental toxicity study in rats and one developmental toxicity study in rabbits.

Comments received during consultation

One MSCA supported the proposal of no classification for adverse effect on sexual function and fertility, development and lactation but demanded discussion about the effects on reproductive organs found in some of the repeated dose toxicity studies. The DS provided such discussion and the arguments (supported by RAC) are incorporated into the discussion below.

This same MSCA also requested discussion about the lack of *corpora lutea* and decreased absolute and ovary/brain ratio seen in the F1 parental generation from the high dose of the OECD TG 416 study. The DS replied that the lack of corpora lutea in the parental F1 generation of the 2generation rat study cannot be confirmed because no difference between the high dose and control group occurred, which indicates a no test item-related effect. Likewise, the mentioned decreased absolute and ovary/brain ratios in the F1 parental generation from the high-dose group cannot be confirmed since the organ/body weight ratios of the ovaries were 0.021, 0.020, 0.022 and 0.020 (ovaries right) and the organ/brain weight ratios 3.177, 2.830, 3.039 and 2.854 (ovaries right) in the order of the ascending doses. They were clearly not affected by the treatment.

A second MSCA also commented that the exclusion of the litter with total loss of pups is not justified. This same MSCA demanded to incorporate into the CLH-report the incidence of the findings "no milk in stomach" as reported in the Annex 1. Finally, this MSCA also raised the opinion that a need for classification regarding developmental toxicity effects or effects on/via lactation because of reduced pup survival. The DS provided the data from litter with total loss (incorporated in the discussion below) and indicated that this data were initially removed because the incidence of dams with total litter loss were not dose-related; which suggests that a relationship with the treatment is very unlikely. Nevertheless, the inclusion of this data (see

below) does not alter the main conclusion since no dose-response was observed for all assessed parameters and in most of the cases, the results at the top dose were covered by the HCD. As regard the finding "no milk in stomach" the DS highlighted that no clear dose-response in this parameter was noted with regard to the litter incidence and therefore these findings can be included within the biological variability. Overall, the DS considered that the discussed viability and weaning indices of the F1 generation would be within the HCD and is unlikely that the treatment had an effect on these parameters, especially considering the fact that no effects were detected in the P generation. Thus, the DS maintained the proposal of no classification for reproductive toxicity.

One manufacturer/company agreed with the DS's proposal for no classification.

Assessment and comparison with the classification criteria

Fertility and sexual function

The reproductive toxicity of valifenalate was investigated in a 2-generation reproduction toxicity study in rats. Additionally, some data about effects on sexual organs were reported in several repeated dose toxicity studies.

2-generation reproduction toxicity study in rats (Confidential study number 27)

The study was conducted according current OECD TG 416 and observing GLP. Rats (24/sex/group) were treated with 0, 1250, 4300 or 15000 ppm (reduced to 0, 850, 2900 or 10000 ppm during lactation) valifenalate in laboratory animal diet. Mean achieved test item intakes were as shown below:

		1250 ppm (mg/kg bw/day)	4300 ppm (mg/kg bw/day)	15000 ppm (mg/kg bw/day)
P generation				
Males	Pre-pairing	80.8	277.4	986.3
	After pairing	61.4	216.1	757.9
Females	Pre-pairing	92.7	318.8	1150.3
	Lactation	79.2	273.2	992.8
	Lactation	123.9	408.4	1384.0
F1 generation				
Males	Pre-pairing	83.5	294.2	1024.8
	After pairing	63.8	216.3	763.8
Females	Pre-pairing	93.0	326.1	1145.6
	Gestation	84.1	295.5	1030.8
	Lactation	129.2	429.3	1383.3

The main results and observations in this study are discussed below.

Parental toxicity

See Table 5 above. The main remarkable effects were increases in relative liver weight and liver and thyroid hypertrophy in both P and F1 together with slight clinical signs (ruffled fur) on F1.

Offspring toxicity

No treatment related effects on F1a at any dose were noted.

No treatment related effects at the lowest dose were noted on F2a. The main effects on this F2a at higher doses were:

	4300 ppm ((2900 ppm)	15000 ppm	(10000 ppm)	
	М	F	М	F	
Pup weight gain (days 0-21)	↓ 9%	↓ 9%	↓ 8%	↓ 8%	
Absolute spleen weights (no histological correlate)	↓ 26%	↓ 26%	↓ 18%	↓ 23%	
Relative spleen weights (no histological correlate)	↓ 20%	↓ 17%	↓ 12%	↓ 17%	
Glycogen deposition liver	16/19	14/18	18/22	14/21	
	(severity 2.1)	(severity 1.6)	(severity 1.5)	(severity 1.3)	
	vs 20/20	vs 20/21	vs 20/20	vs 20/21	
	(severity 2.5) controls	(severity 1.7) controls	(severity 2.5) controls	(severity 1.7) controls	

RAC noted that glycogen deposition liver was not dose-related and therefore cannot be considered treatment related. No histopathological alterations were noted in spleen and therefore the alterations in spleen weight were not considered relevant.

Reproductive toxicity

No reproductive effects were noted on P generation.

In F1, three dams of the mid dose and one dam of the top dose suffered total litter loss. Next table offers an overview of relevant parameters in regard to pup mortality and survival:

	Dose (ppm)				
Parameter	0	1250/850	4300/2900	15000/10000	HCD ¹
All dams					
Pup loss days 0-4 p.p. (total	18	8	35	39	0-23
number)					
Pup loss days 0-4 p.p. (% of living	7.4	3.2	14.8	15.2	0-8.5
pups)					
Mean no. postnatal loss/litter days	0.9	0.3	1.5	1.7	0-1.0
0-4 p.p.					
Mean living pups/litter day 4 p.p.	7.7	7.7	6.7	7.1	7.1-8.0
Mean living pups/litter day 21 p.p.	7.5	7.7	6.3	6.7	6.8-8.0
Mean pup loss/litter day 21	0.19	0.04	0.39	0.43	0-1.2
Without dams with total litter loss					
Pup loss days 0-4 p.p. (total	18	8	11	25	0-23
number)					
Pup loss days 0-4 p.p. (% of living	7.4	3.2	5.5	9.6	0-8.5
pups)					
Mean no. postnatal loss/litter days	0.9	0.3	0.6	1.7	0-1.0
0-4 p.p.					
Mean living pups/litter day 4 p.p.	7.7	7.7	7.8	7.5	7.1-8.0
Mean living pups/litter day 21 p.p.	7.5	7.7	7.7	7.0	6.8-8.0
Mean pup loss/litter day 21	0.19	0.04	0.10	0.43	0-1.2
% Viability index	92.6	96.8*	95.5	90.4	91.5-100
% Weaning index	97.5	99.4	98.6	93.9	84.5-100

¹ Historical control data from 10 studies conducted from May 2002 to December 2007 (current study started November 2002)

RAC noted that no dose-response was observed in the effect total litter loss (no incidence at the lowest dose, 3 dams at the mid dose and 1 dam at the top dose). It suggests that this effect can be incidental and not treatment related.

When all dams were considered, the total number of pup loss on days 0-4, percentage of living pups on days 0-4 and mean number of post-natal loss on days 0-4 in the mid and top dose was higher than HCD. These parameters were higher than HCD only at the top dose when dams with total litter loss were removed. Nevertheless, RAC noted that dose-response was not observed in these parameters since the increment of dose of 3.4 times between mid and high dose barely has effect on incidence. By the other hand, no negative effects on survival is evident since the records for mean living pups/litter day on days 4 and 21 and mean pup loss/litter day 21 were (in both cases with all dams and without dams with total litter loss) were covered by the HCD.

Effects on sexual organs in the repeated dose toxicity studies

Repeated dose toxicity studies in dogs showed certain effects on sexual organs (Table 7). These effects were mainly immaturity in prostate gland and reductions in weights of testis, epididymis and ovaries.

The findings on prostate glands are relatively common in short-term studies in dogs. Reductions in prostate gland weights were reported in all three studies in dogs. However, these reductions were noted in some cases also in control group or even in all animals of all groups. These findings, together with the small group size (3-4 animals/group) that bias the assessment of dose-response and the lack of alteration with histopathological correlation in the 52-week study suggest that prostate gland alterations cannot be addressed to valifenalate effects.

Reductions in testis, ovary and epididymis weights were also reported in these studies in dogs. However, these reductions were not correlated with histopathological changes and therefore are not considered by RAC as toxicologically relevant, especially considering that these effects were not reported in mice and rats.

Development

Table 12 summarises the available developmental toxicity studies with valifenalate.

Method	Results	Reference
Developmental toxicity	Maternal toxicity	Confidential
		study
OECD TG 414 (2001)	1000 mg/kg bw/day: No treatment related adverse	number 9
	effects at any dose	
GLP		
	<u>Developmental toxicity</u>	
Oral (gavage)	No two should be lated a durance offersta	
Dat	No treatment related adverse effects.	
και	Incidences of corners lutes, implantations, pro-	
	implantation losses nost implantation losses mean	
CITED (SD) DIC	foetal weight, foetuses with external malformations.	
25 mated	foetuses with skeletal malformations and foetuses with	
females/group	visceral malformations in all cases not statistically	
	different from concurrent controls and within HCD	
Valifenalate (IR5885)		
Purity: 98.9%		

Table 12: Summary for animal studies on developmental toxicity with valifenalate.

0, 100, 300 and 1000 mg/kg bw/day		
Dosing on gestation days 6-19		
Vehicle: 0.5% MC		
Developmental toxicity	Maternal toxicity	Confidential study
OECD 414 (2001)	1000 mg/kg bw/day: No treatment related adverse effects	number 10
GLP		
Oral (gavage)	Developmental toxicity	
Rabbit	No treatment related adverse effects.	
NZW (HY/CR)	Incidences of corpora lutea, implantations, pre- implantation losses, post implantation losses, dead	
22 mated females/group	malformations, foetuses with skeletal malformations, and foetuses with visceral malformations in all cases	
Valifenalate (IR5885)	within HCD	
Purity: 98.9%		
0, 100, 300 and 1000 mg/kg bw/day		
Dosing on gestation days 6-28		

Lactation

The two-generation study of valifenalate in rats has already been described. The dietary concentrations were lowered for the lactation period as an attempt to maintain the level of test item intake. Nevertheless, mean achieved dose levels were increased above pre-pairing levels (approximately 124, 408 and 1384 mg/kg bw/day in the low, mid and high dose groups respectively cf. 80, 277 and 986 mg/kg bw/day). Parental toxicity was observed at mid and high doses in all generations. Increased neonatal loss, reduced viability indices and increased pup mortality was seen in the F1 litters in the mid and high dose. There were no other treatment related adverse effects on the offspring.

The incidence of the finding 'no milk in stomach' was increased in the mid dose and high dose groups, but with regard to the litter incidences 1/21, 1/23, 6/23 and 4/23 in ascending order of doses. No clear relationship with doses could be established and this was most likely due to variability. Such findings, including cannibalism are background findings, which often occur in reproductive toxicity studies as non-treatment-related phenomenon. It is consistent with the fact that this observation was also made in the control group in this study and it occurred mainly in the litters with the mentioned losses, where the possibility of milk uptake by pups was apparently limited. There is no evidence of treatment-related impairment of the nursing behaviour of the dams.

The discussed viability and weaning indices of the F1 generation would be within the HCD if the dams with total litter loss were taken out of the evaluation, as can be seen in the table above.

Therefore, the treatment has unlikely had an effect on these parameters, which is further supported by the fact that no effects on these parameters occurred in the P generation.

Comparison with the criteria

Sexual function and fertility

No effects on reproductive performance parameters and reproductive performance could be attributed to valifenalate. Therefore, RAC supports the DS's proposal for **no classification of valifenalate for adverse effects on sexual function and fertility.**

Development

In rat and rabbit prenatal developmental toxicity studies of valifenalate, no treatment related maternal toxicity was demonstrated at the limit dose of 1000 mg/kg bw/day and there was no evidence of developmental toxicity or of teratogenicity in either species. There were no treatment related effects on development of the offspring in the 2-generation toxicity study in rats rat to warrant classification of valifenalate as a known, presumed or suspected human reproductive toxicant, especially considering that the effects on pup loss days 0-4 are not considered by RAC robust enough because they were not noted in P litters. Therefore, RAC supports the DS's proposal for **no classification of valifenalate for development.**

Adverse effects on or via lactation

There was no indication of impaired nursing behaviour during lactation. The results of the study do not indicate any direct, primary adverse effect on the offspring due to transfer of the chemical via the milk or to the quality of the milk. Thus, RAC supports the DS's proposal for **no** classification of valifenalate for adverse effects on or via lactation.

RAC evaluation of aspiration toxicity

Summary of the Dossier Submitter's proposal

DS proposed no classification of valifenalate for aspiration toxicity based on data lacking.

Comments received during consultation

No comments were received during consultation.

Assessment and comparison with the classification criteria

RAC notes that the hazard class aspiration toxicity is not relevant for solids and therefore **supports no classification for valifenalate**.

ENVIRONMENTAL HAZARD EVALUATION

RAC evaluation of aquatic hazards (acute and chronic)

Summary of the Dossier Submitter's proposal

The Dossier Submitter (DS) proposed to classify the substance as Aquatic Chronic 2; H411 based on lack of rapid degradation and a 96h nominal NOEC value of 0.106 mg/L for the marine diatom *Skeletonema costatum*.

Degradation

A hydrolysis study according to OECD TG 111 and in compliance with GLP was run at pH 4, 7 and 9 in the dark in aqueous buffered solutions. Valifenalate was stable at pH 4 (50°C), while at pH 7 and pH 9 a pseudo-first order kinetic hydrolysis reaction was observed. The following DT₅₀ values of 90.94 d (25°C), 7.62 d (50°C), 5.21 d (55°C) and 2.09 d (65°C) at pH 7 and 4.15 d (25°C) and 0.33 d (50°C) at pH 9 were determined. The hydrolytic degradation of valifenalate increased with higher pH values. Two main compounds found were the unchanged parent substance valifenalate and IR5839 (3-(4-chlorophenyl)-3-({(2S)-2-[(isopropoxycarbonyl) amino]-3-methylbutanoyl} amino) propanoic acid, also referred to as IR5885 acid). For both of the compounds the diasteroisomeric ratio (S,R/S,S) was approximately 1:1.

Photochemical degradation in water was not expected to be significant since the molar absorption coefficient (ϵ) is <10 M-1 × cm-1 at λ >290 nm.

There was one ready biodegradability test available for valifenalate following EEC method C.4-D (1992) and OECD TG 301F (Manometric Respirometry) and in compliance with GLP using domestic activated sludge (adaptation not specified) that resulted in 3% (based on ThOD_{NH4}) and 2% (based on ThOD_{NO3}) degradation after 28 days.

A water/sediment study carried out according to OECD TG 308 and in compliance with GLP, was conducted using two aquatic systems (Pond and River systems) for 22 days. The radioactivity in the surface water decreased during all the study and it was 40.84% (Pond) and 43.74% (River) of applied radioactivity (AR) at the end of incubation period. The radioactivity in the sediment increased throughout the study reaching 50.64% AR (Pond) and 45.51% AR (River) at the end of incubation period. Valifenalate degraded in both aquatic systems: after 22 days it accounted for 5.92% AR (Pond) and 5.51% AR (River). In the whole system, the DT_{50} values were 4.5 days (Pond) and 4.71 days (River) and DT₉₀ values, 14.9 days (Pond) and 15.64 days (River). Six compounds were found in the surface water and in the sediment extracts. The main degradation products were S2 and S3: S2 reached 52.80% AR (Pond) and 56.34% AR (River). S2 was identified as 3-(4-chlorophenyl)-3-({(2S)-2-[(isopropoxycarbonyl) amino]-3-methylbutanoyl} amino) propanoic acid (also referred to as IR5839 or IR5885 acid). The compound S3, that increased up to a maximum of 13.77% AR (Pond) and 8.16% AR (River), was identified as 4chlorobenzoic acid (also referred to as PCBA). The fraction S6 slowly increased reaching 8.93% AR and 8.04% AR. It was represented by a pool of 4 compounds and none of these reached values higher than 3.13% AR. None of the other compounds, S4 and S5, ever reached levels higher than 5% AR. The non-extractable radioactivity (bound residue) increased to 8.99% AR (Pond) and 16.24% AR (River). The radioactivity in the ¹⁴C-CO₂ traps was always lower than the detection limit in both the systems except at the last three sampling times when it reached values ranging between 0.77% AR and 1.24% AR. The ¹⁴C-Mass Balance was always higher than 90% AR and ranged from 90.61% to 104.12% AR for Pond system and from 90.49% to 107.96% AR for River system.

In conclusion, the DS considered valifenalate not to be rapidly degradable for classification purposes.

Bioaccumulation

A bioconcentration study (OECD TG 305, GLP) was available for valifenalate. Rainbow trout (*Oncorhynchus mykiss*) was exposed to concentrations (93.5 and 893.5 μ g/L) of the radiolabelled valifenalate for 14 days in a flow-through system, followed by 14-day depuration period in clean water. Due to the extremely low accumulation of valifenalate in fish at both dose levels, no relevant plateau levels and consequently no half-lives or accumulation/depuration kinetics could be determined. Based on the total radioactivity concentration in the exposure water and the residual radioactivity found in fish parts, ratios between fish and water (BCF) amounted to 1.3, 3.0 and 2.3 for edibles, non-edibles and whole fish, respectively, indicating lack of bioconcentration at both dose levels. The kinetic BCF (growth corrected and lipid-normalized) was < 4 for whole fish. Analyses of radioactivity of the test water showed mainly the presence of the parent compound at both dose levels throughout the entire exposure period. Besides the constant levels of parent compound ranging on average from 96.2 to 98.0% of the radioactivity recovered).

Furthermore, the measured octanol-water partition coefficient (log K_{OW}) determined according to OECD TG 117 (HPLC method) is 3.05 – 3.11 at 20°C and pH 7.

The DS concluded that valifenalate has a low potential to bioconcentrate and is therefore not considered a bioaccumulative substance for classification purposes.

Aquatic Toxicity

The DS provided aquatic toxicity data for the active substance regarded as reliable in the CLP Report, and a summary of the relevant information on aquatic toxicity is provided in the following table (the key endpoints used in hazard classification are highlighted in bold).

Data for sediment-dwelling invertebrates (marine amphipod *Leptocheirus plumulosus* and freshwater midge *Chironomus dilutes*) were reported in CLH report but were not used for classification because the endpoint values were presented in relation to sediment concentrations of valifenalate (mg/kg).

Method	Species	Endpoint	Toxicity value (mg/L)	Reference		
Short-term toxicity						
OECD TG 203	Oncorhynchus mykiss	96h LC ₅₀ (mortality)	>100 nom	Anonymous (2003b), final results: Anonymous (2003a)		
OECD TG 203	Brachydanio rerio	96h LC ₅₀ (mortality)	>100 nom	Anonymous (2003), final results: Anonymous (2003)		
US EPA OPPTS 850.1075	Cyprinodon variegatus	96h LC ₅₀ (mortality)	>15 mm	Anonymous (2005a)		
US EPA OPPTS 850.1075	Lepomis macrochirus	96h LC ₅₀ (mortality)	>40 nom	Anonymous (2015a)		

Table: Summary of relevant information on aquatic toxicity of valifenalate

Method	Species	Endpoint	Toxicity value (mg/L)	Reference	
OECD TG 202	Daphnia magna	48h EC₅₀ (immobilization)	>100 nom	Anonymous (2002), final results: Anonymous (2002)	
US EPA OPPTS 850.1035	Americamysis bahia	96h LC 50 (mortality)	2.8 mm	Anonymous (2005c)	
US EPA OPPTS 850.1025	Crassostrea virginica	96h EC ₅₀ (shell deposition)	3.1 mm	Anonymous (2005d)	
OECD TG 201	<i>Scenedesmus subspicatus</i>	72h E _b C ₅₀ 72h E _r C ₅₀ (growth)	>100 nom >100 nom	Anonymous (2002b), final results: Anonymous (2002)	
US EPA OCSPP 850.4500	Skeletonema costatum	96h I _b C ₅₀ 96h I _r C ₅₀ 96h I _y C ₅₀ (growth)	>9.48 gmm >9.48 gmm >9.48 gmm	Hicks (2015b)	
US EPA OCSPP 850.4500	Navicula pelliculosa	96h I_bC_{50} 96h I_rC_{50} 96h I_yC_{50} (growth)	>5.45 gmm >5.45 gmm >5.45 gmm	Bergfield (2015a)	
US EPA OCSPP 850.4550	Anabaena flos- aquae	96h I_bC_{50} 96h I_rC_{50} 96h I_yC_{50} (growth)	>4.13 gmm >4.13 gmm >4.13 gmm	Aufderheide (2015b)	
US EPA OCSPP 850.4400	Lemna gibba	7d EC ₅₀ (growth)	>5.02 gmm	Bergfield (2015b)	
Long-term toxicity					
OECD TG 215	Oncorhynchus mykiss	28d NOEC (growth)	≥100 nom	Anonymous (2003c), final results: Anonymous (2003b)	
EPA OPPTS 850.1400	Pimephales promelas	33d NOEC (growth)	12 nom	Anonymous (2005b)	
OECD TG 211	Daphnia magna	22d NOEC (reproduction) 22d NOEC (mortality)	3.2 nom 10 nom	Anonymous (2003d), final results: Anonymous (2002)	
OECD TG 201	Scenedesmus subspicatus	72h NOEC (growth)	≥100 n	Anonymous (2002b), final results: Anonymous (2002)	
US EPA OCSPP 850.4500	Skeletonema costatum	96h NOEC (growth)	0.106 gmm	Hicks (2015b)	
US EPA OCSPP 850.4500	Navicula pelliculosa	96h NOEC (growth)	5.45 gmm	Bergfield (2015a)	

Method	Species	Endpoint	Toxicity value (mg/L)	Reference
US EPA OCSPP 850.4550	Anabaena flos- aquae	96h NOEC (growth)	2.15 gmm	Aufderheide (2015b)
US EPA OCSPP 850.4400	Lemna gibba	7d NOEC 7d EC ₁₀ (growth)	5.02 gmm > 5.02 gmm	Bergfield (2015b)

Note: nom – nominal concentrations; mm – mean measured concentrations; gmm - geometric mean measured concentrations;

Acute toxicity

For acute aquatic toxicity, reliable toxicity data for the active substance were reported for fish, invertebrates, algae and aquatic plants, with invertebrates being the most sensitive trophic level. The lowest acute toxicity value is the 96h mean measured LC_{50} of 2.8 mg/L for saltwater mysid shrimp *Americamysis bahia* which is above the classification threshold value of 1 mg/L. Therefore, the DS proposed **not to classify** the valifenalate as acutely hazardous to the aquatic environment.

Chronic toxicity

For chronic aquatic toxicity, reliable toxicity data for the active substance were reported for fish, invertebrates, algae and aquatic plants, with algae being the most chronically sensitive group. The lowest chronic toxicity value is the 96h nominal NOEC of 0.106 mg/L for marine diatom *Skeletonema costatum.* The DS proposed to classify the substance as **Aquatic Chronic 2** based on the lowest chronic endpoint for algae and considering that the substance is not rapidly degradable and has low potential for bioaccumulation.

Comments received during consultation

Comments were received from three Member States (MS) and one company-manufacturer. Two MSs and the company-manufacturer agreed with DS proposal to classify the substance as Aquatic Chronic 2. The third MS agreed with the proposed classification but based on a different interpretation of the data. The MS pointed out the limitations of the key chronic toxicity study on algae *Skeletonema costatum* (Hicks, 2015) and that, due to these limitations of the key study, the MS was of the opinion that the study does not support the proposed classification. In the view of the MS, the classification should be based on the surrogate approach for the most acutely sensitive endpoints (saltwater mysid *Americamysis bahia*), which would result in the same classification as proposed by DS. The DS disagreed with the commenting MS and is of the opinion that the algae study should be used for classification. As regards the application of the surrogate approach, the view of the DS is that this approach is not warranted since a sufficient set of chronic studies is available.

Assessment and comparison with the classification criteria

Degradation

RAC agrees with the DS's proposal to consider valifenalate as not rapidly degradable. Valifenalate is hydrolytically stable at pH 4 but it undergoes hydrolysis with increasing alkalinity. Hydrolysis DT_{50} values at pH 7 are 90.94 d (25°C), 7.62 d (50°C), 5.21 d (55°C) and 2.09 d (65°C) and pH 9 are 4.15 d (25°C) and 0.33 d (50°C). Two main compounds were found, unchanged parent substance and IR5839. Data on hydrolysis might be considered for classification purposes only when the longest half-life determined within the pH range 4-9 is less than 16 days (corresponding to a degradation of > 70% within 28 days). Accordingly, valifenalate is hydrolytically stable.

In a 28-day ready biodegradability study following OECD TG 301F (GLP), 3% degradation was observed, indicating that valifenalate is not readily biodegradable.

The results of the aerobic water/sediment simulation study showed degradation of the valifenalate in both aquatic systems (5.92% AR (Pond) and 5.51% AR (River) after 22 days). In addition, rapid loss of the valifenalate from the whole system was observed (DT_{50} values were 4.5 days (Pond) and 4.71 days (River) and DT_{90} values, 14.9 days (Pond) and 15.64 days (River)). Six degradation products were formed in water and sediment. The main metabolites were IR5839, PCBA and fraction S6. No information on toxicity of the metabolites to allow classification of the metabolites is available in the CLH report.

Overall, although valifenalate degrades quickly in the whole system of the water/sediment study, the substance does not pass the ready biodegradability test, the available abiotic and biotic degradation information does not indicate that valifenalate is ultimately degraded (> 70%) within 28 days (equivalent to a half-life < 16 days) or transformed to non-classifiable metabolites. Consequently, RAC considers the substance to be not rapidly degradable for the purposes of environmental classification.

Bioaccumulation

RAC agrees with the DS that valifenalate has a low potential to bioaccumulate in aquatic organisms. The basis for this is that measured BCF values of < 4 is below the CLP criterion of 500 and the measured log K_{ow} value of 3.05 – 3.11 is below the CLP criterion of 4.

Acute toxicity

RAC is of the opinion that adequate acute toxicity data are available for fish, invertebrates, algae and aquatic plants. Invertebrates are the most sensitive group and the lowest result is a 96h EC_{50} value of 2.8 mg/L for mysid shrimp *Americamysis bahia*. RAC notes that all acute toxicity endpoints (L(E)C_{50s} and IC₅₀) for fish, invertebrates, algae and aquatic plants (see table) are above the threshold value of 1 mg/L. Consequently, RAC concludes that **valifenalate does not warrant classification for acute aquatic toxicity**.

Chronic toxicity

RAC is of the opinion that reliable long-term aquatic toxicity data are available for all three trophic levels. The lowest chronic effect value corresponds to a test with *Skeletonema costatum* with a 96h NOEC of 0.106 mg/L. As the value is >0.1 but <1 mg/L and the substance is considered not rapidly degradable, RAC concludes that following table 4.1.0(b)(i) of CLP, a classification as Aquatic Chronic 2 (H411) is warranted.

RAC notes that no chronic toxicity test data are available for the most sensitive species under acute testing (*Americamysis bahia*). Using table 4.1.0(b)(iii) of CLP, considering that Valifenalte

is not rapidly degradable, the 96h LC_{50} of 2.8 mg/L indicates classification as Aquatic Chronic 2, which supports the outcome derived using chronic data.

In summary, RAC agrees with the DS that **valifenalate warrants classification as Aquatic Chronic 2 (H411).**

RAC evaluation of hazards to the ozone layer

Summary of the Dossier Submitter's proposal

Pure valifenalate has a vapour pressure of 9.6×10^{-8} Pa (20°C) and water solubility of 24.1 mg/L (20°C) resulting in a calculated Henry's Law constant of 1.6×10^{-6} Pa m³/mol (20°C, pH 5.4 ± 0.5). This combination of properties indicates no volatilisation and, thus, no significant amounts of valifenalate are to be expected in air. The Atkinson calculated oxidative photochemical degradation half-life is 7.5 hours assuming a hydroxyl radical concentration of 5 × 10⁵ molecules/cm³ (Fisk, 2003).

Comments received during consultation

One comment was received from company-manufacturer which agreed with DS proposal not to classify the substance as hazardous to the ozone layer.

Assessment and comparison with the classification criteria

Transport of valifenalate in air is considered to be negligible due to its very low vapor pressure and Henry's constant, whilst its photochemical oxidative degradation in air is expected to be rapid. Therefore, exposure of stratospheric ozone to valifenalate is expected to be negligible.

Thus, RAC agrees with the DS's proposal that **no classification is warranted for this hazard class.**

ANNEXES:

- Annex 1 The Background Document (BD) gives the detailed scientific grounds for the opinion. The BD is based on the CLH report prepared by the Dossier Submitter; the evaluation performed by RAC is contained in 'RAC boxes'.
- Annex 2 Comments received on the CLH report, response to comments provided by the Dossier Submitter and RAC (excluding confidential information).