CARRYING OUT CHEMICAL SAFETY ASSESSMENTS (CSA) USING THE ENES TOOL SET

Gerard Bachler

Step 1: Determine all hazards that require an exposure and/or risk assessment

<table>
<thead>
<tr>
<th>Environment</th>
<th>Workers</th>
<th>Consumers</th>
</tr>
</thead>
</table>
| Phys-chem hazards | Environmental exposure scenarios | Tonnage ERC 13 | Exposure Scenario
| Qualitative hazards | | | |
| Semi-quantitative hazards | | | |
| Quantitative hazards | | | |

Step 2: Create the Life Cycle and determine the respective Use Descriptors

Step 3: Carry out the exposure and/or risk assessment for all identified hazards

- **Phys-chem, Qualitative and Semi-quantitative Hazards**
- **Semi-quantitative and Quantitative Hazards**

Applicability of the ENES tools

<table>
<thead>
<tr>
<th>Tool</th>
<th>Chesar</th>
<th>ESCom</th>
<th>ESComXML</th>
<th>IUCLID</th>
<th>Reach-IT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classic ONE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INIT</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERVICE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIV M</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESG</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional considerations

- **Sector Use Maps** do not consistently apply ESCom phrases
 - Electronic communication along the supply chain is not possible
- **Service Life** is currently not covered by any Use Map
- **Screening** of the LCID method is hazard driven
- Substances that do not contribute to the classification of the mixture are not considered by the formulators, but may be the constituent with the highest risk (e.g. enzymes, alkoxysilanes)

How do develop a Chemical Safety Assessment (CSA)?

Step 1: Determine all hazards that require an exposure and/or risk assessment

Step 2: Create the Life Cycle and determine the respective Use Descriptors

Step 3: Carry out the exposure and/or risk assessment for all identified hazards

Apply ENES tools and other resources to determine the exposure and/or risk of all identified hazards and for all Life Cycle stages.

Available ENES tools for Registrants include:

- **Chesar:** Database which can be used to organise CSA, to communicate CSA to ECHA and to share safe use information with downstream Users
- **Use Maps:** Contain SPERCs, SVEDs and SEEDs that define the typical Conditions of Use (CoU) for the environment, workers and consumers, respectively
- **ESCom phrase library:** Standardised set of phrases that can be used to communicate safe use (the intention is also that in the future this library is available in all official EU languages)
- **ESComXML:** Enables the electronic communication of Exposure Scenarios that contain safe use information

Indicative boundaries quantitative risk assessment using ECETOC TRA

Indicative boundaries quantitative risk assessment using ECETOC TRA when also considering combined exposures

Figure taken from: ECHA (2015) Guidance R.12 – Use description

Pharmacokinetics:

Dermal route: mg/kg/day

Inhalation:

- **V P @ 30° C**
 - AISE – Ind AISE – Pr of EFCC – Pr of FEICA – Ind FEICA – Pr of
 - High > 10 kPa 1970 660 250/2300/66 1400 ...
- **Indoors**
 - 100 g/mol
 - Does not consider exposure via aerosols

Risk Management:

Information
Risk Communication
ESCom
ESComXML
IUCLID
Reach-IT
Sector specific phrases
REACH ...
Semi-quantitative and Quantitative Hazards
*only HH linked with Chesar

Environment:

<table>
<thead>
<tr>
<th>Environment</th>
<th>Workers</th>
<th>Consumers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys-chem hazards</td>
<td>Environmental exposure scenarios</td>
<td>Tonnage ERC 13</td>
</tr>
<tr>
<td>Qualitative hazards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semi-qualitative hazards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantitative hazards</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sector specific guidance documents

- **Chesar Sector**
 - Use Map
 - EFCC
 - Use Map
 - ESIG GES
 - Use Map
 - ESCom
 - ESComXML
 - PHYS-chem hazards
 - Aspiration hazard
 - Skin irritation/Corrosion
 - Other HH qualitative hazards
 - HH: TRA based assessments
 - Respiratory sensitisation

Measured data

- **Env:** EU SES based assessments
- **UV CB**
- **MV E** must be based on EUSES in Chesar

Step 2: Create the Life Cycle and determine the respective Use Descriptors

Step 3: Carry out the exposure and/or risk assessment for all identified hazards

- **Phys-chem:** Qualitative and Semi-quantitative Hazards
- **Semi-quantitative and Quantitative Hazards**

Applicability of the ENES tools

<table>
<thead>
<tr>
<th>Tool</th>
<th>Chesar</th>
<th>ESCom</th>
<th>ESComXML</th>
<th>IUCLID</th>
<th>Reach-IT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classic ONE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INIT</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERVICE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIV M</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESG</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional considerations

- **Sector Use Maps** do not consistently apply ESCom phrases
 - Electronic communication along the supply chain is not possible
- **Service Life** is currently not covered by any Use Map
 - e.g. substances that may remain in dried coatings, adhesives or comparable mixtures after application in/on the article or substances incorporated in buildings, constructions and parts of them
- **Screening** of the LCID method is hazard driven
 - Substances that do not contribute to the classification of the mixture are not considered by the formulators, but may be the constituent with the highest risk (e.g. enzymes, alkoxysilanes)