RAMBOLL ENVIRON

Development of a rationale for a risk-based approach to Applications for Authorisation for OPnEO

Dr. Thomas Sendor Dr. Martina Vosteen

RAMBOLL ENVIRON

Brussels August 22, 2017

REASONS FOR PNEC DERIVATION FOR OPNEO

- Inclusion of OPnEO in REACH Annex XIV (June 14th, 2017) based on the critical degradation product 4-tert-octylphenol (4-t-OP)
- Application for Authorisation (AfA): Threshold identifiable?

 \rightarrow PNEC (yes/no?) basis for decision making

• No official reference concentration or concentration-response relationship available

⇒ Applicants' responsibility to assess the risks of using OPnEO, including a robust hazard assessment for the identified endocrine disrupting properties

DO THRESHOLDS EXIST FOR ENDOCRINE DISRUPTING SUBSTANCES?

• Conclusion from the SETAC Pellston Workshop (2016)¹:

Environmental risk assessments (ERA) for EDCs is "scientifically sound and sufficiently reliable and protective of the environment"

- Prerequisite: adequate characterisation of
 - → Environmental exposure
 - \rightarrow Effects on relevant taxa
 - \rightarrow Influence on sensitive life stages
 - → Delayed effects
 - \rightarrow Dose-/concentration response incl. consideration of NMDR

OVERALL PRACTICAL APPROACH

- **Step 1**: Data gathering for 4-t-OP (worst case assumption)
 - → Review of "background documents"
 - → Identification of new literature
- Step 2: Review of available information
 - → Reliability (Klimisch scores)?
 - → Relevance?

OVERALL PRACTICAL APPROACH

Step 3: Assignment of data to OECD levels 1 to 5

- OECD level 1: Existing data and non-test information
- OECD level 2: In vitro assays (selected endocrine mechanism pathways)
- OECD level 3: In vivo assays (selected endocrine mechanism pathways)
- OECD level 4: In vivo assays covering endocrine relevant endpoints
- OECD level 5: In vivo assays with more comprehensive data on endocrine endpoints
 - → OECD level 4 & 5 data: Adverse effects on apical endpoints on individual and/or population level, considered relevant for hazard/risk assessment and suitable for PNEC derivation
 - \rightarrow OECD level (2 &) 3 data: mechanistic information, relevant for AOP

GENERAL OVERVIEW OF DATA – OECD LEVEL 3

- Taxonomic groups:
 - → Fish (marine & freshwater)
 - → Invertebrates
 - → Amphibians
- Effects information available:
 - → Biomarker/gene expression level, e.g. VTG in fish
 - → Apical endpoints partially investigated in OECD level 3 studies, e.g. fertility, reproduction and development

However: Screening level data only, low precision of resulting NOEC/EC_x values!

GENERAL OVERVIEW OF DATA – OECD LEVEL 4

Table 1: Most sensitive endpoints affected in OECD level 4 studies

Taxonomic group	Indication of hormonal activity	Apical endpoint
Fish (marine & freshwater)	VTG induction	Weight and body length
	Testis-ova	Sex ratio
Invertebrates	/	Larval malformations
		Embryo numbers
Amphibians	Serum T4 levels;	Growth
	Oestradiol and	Timing of metamorphosis
	testosterone serum concentration	Sexual development

GENERAL OVERVIEW OF DATA – OECD LEVEL 5

- Taxonomic groups:
 - → Fish (freshwater)
 - → Invertebrates
- Effects information available:
 - → Biomarker and other indication of hormone activity: VTG and testis-ova
 - → Reproductive parameters (e.g. fertility, number of eggs in fish; fecundity in invertebrates)

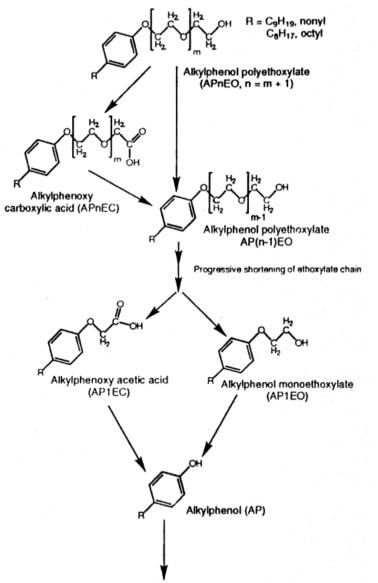
CONSIDERATION OF ADVERSE OUTCOME PATHWAYS (AOP)

- Linking the basic endocrine activity & molecular mechanism to adverse effects on the whole organism
- Comprises:
 - → Molecular initiating events (MIE), e.g. receptor binding
 - \rightarrow MIEs lead to key events (KE), e.g. cellular change
 - → MIE (e.g. VTG induction) & KE (e.g. testis-ova) causally linked to adverse outcome (e.g. infertility)
- Aim of AOP: Reduce uncertainties in decision-making

NON-MONOTONIC DOSE-RESPONSE (NMDR)

- Evidence for NMDR for 4-t-OP?
- One single study indicates U-shaped NMDR in fish
 - \rightarrow VTG induction only
 - → Finding not confirmed by any other fish studies employing the same concentration range
- Other cases of NMDR are reported, but always *inverted* U-shaped dose-response
 - \rightarrow Very unlikely that low-dose effects are missed

DERIVATION OF PREDICTED NO EFFECT CONCENTRATION (PNEC)


- Point of departure:
 - i. NOEC of the most sensitive species and endpoint
 - ii. HC5 from a species sensitivity distribution (SSD)
- Determination of appropriate assessment factors (AF), REACH guidance R.10:
 - i. AF of 10 for long-term results from at least 3 species
 - ii. AF 1-5 for SSD

BIODEGRADATION SCHEME FOR ALKYLPHENOL ETHOXYLATES

RAMBOLL ENVIRON