

Mixtures classification - practical application Mixture classification and communicating safe use of mixtures. Advice for formulators and importers

5 November 2014

Ari Karjalainen Classification Unit European Chemicals Agency

Tiered approach in classification of mixtures

- In general
 - 1. Data available on the mixture itself
- 2. Bridging principles

Most often used:

3. Classification based on hazards of the individual ingredients and their concentrations

Relevant, reliable and adequate data available on the mixture itself → use the data to classify
Note: expert judgement normally needed

2. **Bridging principles** – only where *relevant, reliable and adequate* data are available on similar tested mixtures and individual ingredients

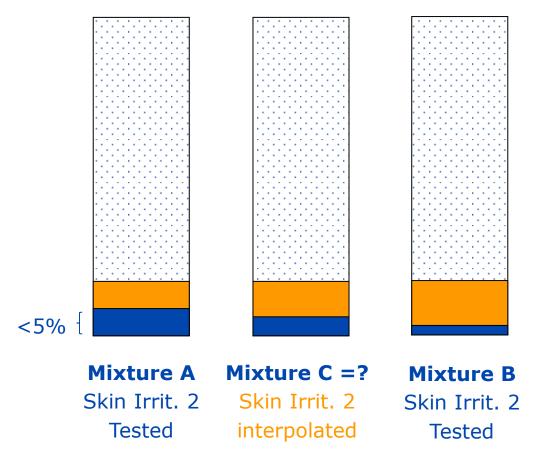
Note:

- Animal studies are to be avoided.
- Available test data on substances and mixtures must be based on studies conducted using methods validated for the purpose.

Most often used:

3. Classification based on hazards of the **individual ingredients** and their concentrations

Bridging principles – human health and environmental hazards only


Bridging principle	Applicability
Dilution Batching A small change in the composition Substantiality similar mixtures	All hazard classes
Aerosols	Not applicable to CMR, aspiration hazard or environmental hazards
Concentration of highly hazardous mixtures Interpolation within one toxicity category	Not applicable to CMR-RS

Simple mixtures or simple changes to a mixture

Interpolation

Orange: Skin Irrit. 2 Blue: Skin Corr . 1B

Tiered approach in classification of mixtures

- In general (but see below)

- 1. Data available on the mixture itself
- 2. Bridging principles

Most often used:

- 3. Classification based on hazards of the **individual ingredients** and their concentrations
 - Generally, the only approach for mixtures containing substances classified for carcinogenicity, mutagenicity or reproductive toxicity, and the only approach for bioaccumulation and biodegradation properties and for hazardous to the ozone layer.
 - In practice, also for mixtures containing sensitisers.

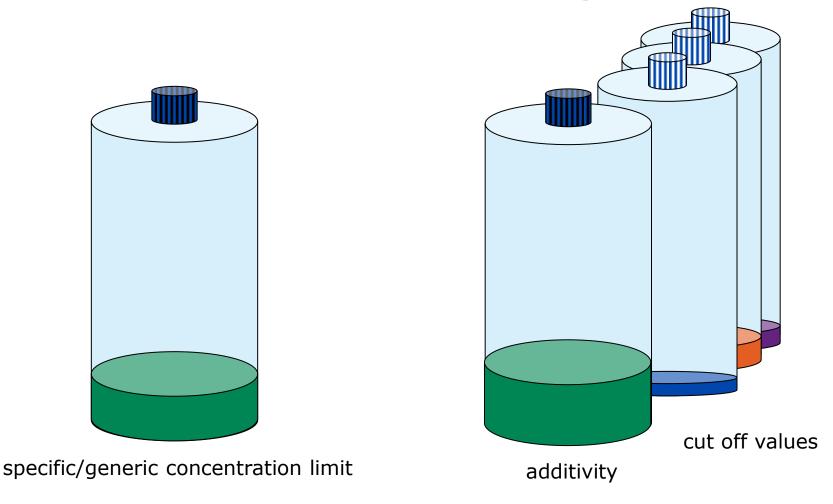
Classification based on ingredients

Specific/Generic Concentration Limits/M-factors

<u>Concentration limits</u>: concentrations of substances in a mixture which trigger classification of the mixture for a particular hazard.

<u>M-factors</u>: established to give increased weight to substances classified as Aquatic Acute 1 or Aquatic Chronic 1 when classifying mixtures for hazardous to aquatic environment.

Generic cut off values


Minimum concentrations for substances *to be taken into account* for classification in a mixture, even if they do NOT trigger classification of the mixture directly.

Additivity

Summation of the concentrations of all different ingredients classified for a particular hazard, which may contribute to the classification for some human health and both environmental hazard classes.

Classification based on ingredients

What are the GCLs and SCLs?

GCL – Generic Concentration Limits

- Apply to substances classified as hazardous to the ozone layer and for all human health hazards except acute toxicity.
- The actual GCLs are specified in the CLP Regulation for each applicable hazard.

SCL – Specific Concentration Limits

- SCLs take precedence over the GCLs they *must* be applied for substances listed in Annex VI to CLP.
- SCLs are applicable to most health hazards.
- SCLs need to be set according to the methods outlined in ECHA guidance.
- SCLs lower than the GCLs *have to* be set if data justifies it.
- In **exceptional cases**, SCLs higher than GCLs **may** be set (Article 10).

Generic cut off values

Minimum concentrations for substances to be taken into account for classification of a mixture where additivity applies, even if they do NOT trigger classification of the mixture directly (Table 1.1 of the CLP Regulation).

Hazard class	Hazard category	Generic cut-off values
Acute toxicity	1-3	0,1%
	4	1%
Skin corrosion/ irritation	All	1%*
Serious damage to the eye/eye irritation	All	1%*
Hazardous to the aquatic environment	Acute 1	0,1%#
	Chronic 1	0,1%#
	Chronic 2-4	1%

These minimum concentrations apply, unless there is a presumption that an ingredient present at <1 % (*) or 0.1 % (#) can still be relevant for classifying the mixture

Additivity (1/2)

For some human health and both environmental hazard classes, the concentrations of all different ingredients classified for a particular hazard may contribute to the classification for that hazard

- Generic cut off values to be considered
- Only applicable to some hazard classes for example, not applicable to the CMRs
- Not applicable in all cases for some hazards
 - For example, ingredients whose chemical characteristics make this approach unworkable, and which are classified for skin corrosion or irritation and eye damage or irritation

Additivity (2/2)

Hazard class	Reference in Annex I to CLP
STOT SE 3 (respiratory tract irritation/ narcotic effects only)	3.8.3.4.5
Acute toxicity	3.1.3.6.1
Serious skin corrosion/ irritation	3.2.3.3
Serious eye damage/ eye irritation	3.3.3.2
Aspiration hazards	3.10.3
Aquatic acute and chronic	4.1.3

(Hazards where additivity does not apply)

Ingredient classification			Category	
			1, 1A or 1B	2
Muta	genicity or	1A or 1B	<u>></u> 0,1 %	-
Carc	inogenicity	2	-	\geq 1,0 %
Rep	productive	1A or 1B	<u>></u> 0,3 %	-
t	coxicity	2	-	<u>></u> 3,0 %
TOTS	- (SE & RE)	1	<u>></u> 10 %	1,0 % <u><</u> concentration < 10 %
5101	(SL & KL)	2	-	<u>></u> 10 %
		1A	<u>></u> 0,1 %	-
Docn	solid/ liquid	1, 1B	\geq 1,0 %	-
Resp. Sens.		1A	<u>></u> 0,1 %	-
	gas	1, 1B	<u>></u> 0,2 %	-
Skin s	sensitisation	1A	<u>></u> 0,1 %	-
		1, 1B	<u>></u> 1,0 %	-

Generic concentration limits for skin corrosion/ irritation

(Table 3.2.3, CLP) – where additivity applies

	Concentration triggering classification of the mixture as:		
Sum of ingredients classified as:	Skin corrosive (Cat 1A, 1B or 1C)	Skin irritant (Cat 2)	
Skin corrosive Cat 1A, 1B or 1C	<u>></u> 5 %	<u>></u> 1 % but < 5 %	
Skin irritant Cat 2	-	<u>></u> 10 %	
(10 x Skin corrosive Cat 1A, 1B or 1C) + Skin irritant Cat 2	_	<u>></u> 10 %	

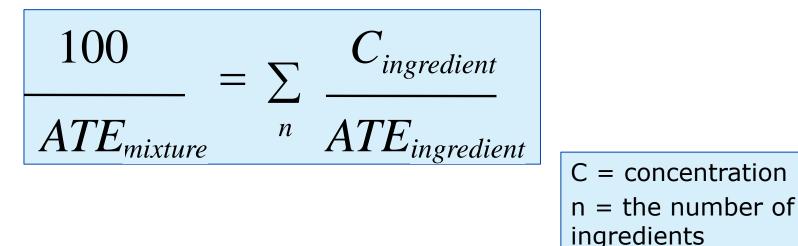
Example: skin corrosive/irritant? Summation method

Sum concentrations of corrosive ingredients	x 10
Sum concentration skin irritants	x 1

Mixture with two ingredients, one classified as skin irritant, the other presumed to be skin corrosive at concentrations lower than the generic cut off value

	Concentration	Classification	Weighting	Summation
Ingredient A	7 %	Skin Irrit. 2	x1	7 %
Ingredient B	0.5 %	Skin Corrosive	x10	5 %
Total hazardous ingredients 12				12 %

(\geq 10 %, the GCL for Skin Irrit. 2)

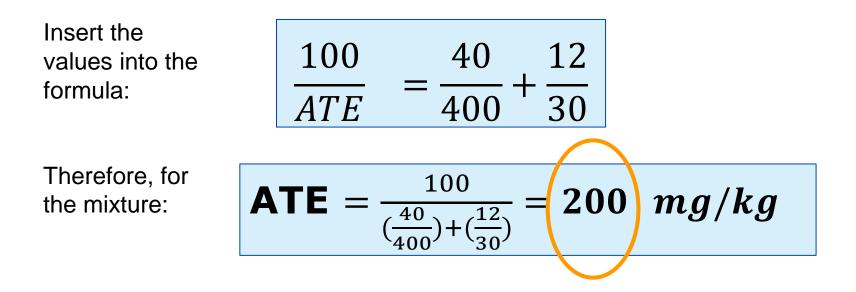

Generic concentration limits for eye damage/ irritation (Table 3.3.3, CLP) – where additivity applies

	Concentration triggering classification of the mixture for effects on the eye:			
Sum of ingredients classified as:	Irreversible eye effects Cat 1	Reversible eye effects Cat 2		
Eye effects Cat 1 or Skin corrosive Cat 1A, 1B or 1C	<u>></u> 3 %	<u>></u> 1 % but < 3 %		
Eye effects Cat 2	-	<u>></u> 10 %		
(10 x Eye effects Cat 1) + Eye effects Cat 2	-	<u>></u> 10 %		
(Skin corrosive Cat 1A, 1B or 1C) + Eye effects Cat 2	<u>></u> 3 %	<u>></u> 1 % but < 3 %		
10 x (Skin corrosive Cat 1A, 1B or 1C + Eye effects Cat 1) + Eye effects Cat 2	_	<u>></u> 10 %		

Additivity formula for acute toxicity

- The **ATE** is the **A**cute **T**oxicity **E**stimate which is
 - 1. an LD_{50} or LC_{50} -value, or (if not known)
 - converted value (point estimate) for acute toxicity from Table 3.1.2 in Annex I, either from a range test or from a classification category
- The ATE of a mixture is determined by calculation from the ATE values for the relevant ingredients (for all three routes of exposure)

Example 1: Additivity for acute toxicity (1/2)


Mixture with two hazardous ingredients

It is assumed that the mixture contains no other acutely hazardous ingredients, and that the LD50 values have been derived using the oral route.

	Concentration	LD50 (mg/kg)	Classification
Ingredient 1	40%	400	Acute Tox 4
Ingredient 2	12%	30	Acute Tox 2

Example 1: Additivity for acute toxicity (2/2)

Result: Since the resulting ATE value for the mixture by the oral route is within the range $50 < ATE \le 300 \text{ (mg/kg)}$, the mixture is classified as **Acute Tox 3; H301**

Example 2: Additivity for acute toxicity (1/2)

Mixture with two hazardous ingredients

It is assumed that the mixture contains no other hazardous ingredients, and that the LD50 values by the oral route are not known.

	Concentration	LD50 (mg/kg)	Classification	Converted ATE (mg/kg)
Ingredient 1	40%	?	Acute Tox 4	500
Ingredient 2	12%	?	Acute Tox 2	5

Example 2: Additivity for acute toxicity (2/2)

In the event that the LD50 values are *not* known, insert the converted ATE values into the formula:

$$\frac{100}{ATE} = \frac{40}{500} + \frac{12}{5}$$

Therefore, for the mixture:

$$\mathbf{ATE} = \frac{100}{\left(\frac{40}{500}\right) + \left(\frac{12}{5}\right)} = \mathbf{40} \ mg/kg$$

Result: Since the resulting ATE value for the mixture by the oral route is within the range $5 < ATE \le 50 \text{ (mg/kg)}$, the mixture is classified as **Acute To**: **2;H300**

What about a mixture within a mixture?

Example: What is the classification of Mixture A?

Details:

- Mixture A contains 1% mixture B and 99% mixture C
- Mixture C is not hazardous. Mixture B is classified Carc. 1B because 1% of it is an impurity classified as Carc. 1B, with no SCL assigned. The GCL for Carc. 1B is 0.1%.
- Other components of mixture B are known not to be carcinogenic.

Classification:

Since mixture A only contains 0.01% of the Carc. 1B substance, it need not be classified

Environmental classification M-factors

	Annex I: Table 4.1.3				
Multipl	ying facto	ors for highly toxic componen	ts of mixtures		
Acute toxicity M Chronic toxicity M factor					
L(E)C ₅₀ value NOEC value NRD ^a				RD ^b compo nents	
$0,1 < L(E)C_{50} \le 1$	1	0,01 < NOEC ≤ 0,1	1	-	
$0,01 < L(E)C_{50} \le 0,1$	10	0,001 < NOEC ≤ 0,01	10	1	
$0,001 < L(E)C_{50} \le 0,01$	100 0,0001 < NOEC ≤ 0,001 100		10		
0,0001 < L(E)C ₅₀ ≤ 0,001	1000	0,00001 < NOEC ≤ 0,0001	1000	100	
$0,00001 < L(E)C_{50} \le 0,0001$	10000	0,000001 < NOEC ≤ 0,00001	10000	1000	
(continue in factor 10 intervals) (continue in factor 10 intervals)					
	Non-rapidly degradable.				

Example: Additivity for environmental classification (1/3)

Summation method

INFORMATION ON INGREDIENTS CLASSIFICATION AND CONCENTRATION

	Acute aquatic hazard	Μ	Long-term aquatic hazard	М	C (%)
Astralamid	Acute 1	10	Chronic 1	10	1
Bastralamid	Acute 1	1	Chronic 2	-	3
Castralamid	Not classified	-	Chronic 2	-	10
Dastralamid	Not classified	-	Chronic 3	-	10
Estralamid	Not classified	-	Not classified	-	10
Festralamid	Not classified	-	Not classified	-	66

M = M-factor; C = Concentration

(Example from CLP Guidance)

Example: Additivity for environmental classification (2/3)

Acute aquatic hazard – summation method

- Information on classification including associated M-factors and the % of the components in the mixture are available.
- Classify for acute hazard if: Σ (Acute 1 × M) \ge 25%

Conclusion on classification for acute aquatic hazard

Using the classification of the components of the mixture: $(1 \times 10) + (3 \times 1) = 13$ (which is < 25%).

Hence, **no classification for acute aquatic hazard** is warranted.

Example: Additivity for environmental classification (3/3)

Long-term aquatic hazard: Summation method

- Step 1: Classify as Chronic 1 if: Σ (Chronic 1 × M) ≥ 25% (if not, then go to Step 2).
- Step 2: Classify as Chronic 2 if: Σ (10 × Chronic 1 × M) + Σ (Chronic 2) ≥ 25% (if not, then go to Step 3).
- Step 3: Classify as Chronic 3 if: Σ (100 × Chronic 1 × M) + Σ (10 × Chronic 2) + Σ (Chronic 3) ≥ 25% (if not, then go to Step 4).
- Step 4: Classify as Chronic 4 if: Σ (Chronic 1) + Σ (Chronic 2) + Σ (Chronic 3) + Σ (Chronic 4) $\geq 25\%$

Conclusion on classification for chronic aquatic hazard

Using the classification of the components of the mixture: Step 1: $(1 \times 10) = 10$ (which is <25%), therefore \rightarrow Step 2. Step 2: $(10 \times 1 \times 10) + 3+10 = 113$ (which is >25%). Hence, **classify as Aquatic Chronic 2**.

Summary

- Use the systematic approach for classification of mixtures in CLP.
- Consider all the available information.
- In most cases, classification of the mixture is based on hazards of the individual ingredients and their concentrations.
- Utilise available guidance and resources.

Appropriate classification, labelling and packaging of the mixtures are intended to ensure their safe use

Thank you

ari.karjalainen@echa.europa.eu

Subscribe to our news at echa.europa.eu/subscribe

Follow us on Twitter @EU_ECHA

Follow us on Facebook Facebook.com/EUECHA

