SEURAT-1 Proof-of-Concept Read-Across Case Study for Repeated-Dose Toxicity

Andrea-N Richarz¹, Elisabet Berggren¹, Martina Klaric², Catherine Mahony³, Terry W Schultz⁴

¹ European Commission Joint Research Centre, JRCP, Ispra, Italy; ² Cosmetics Europe, Brussels, Belgium; ³ Procter & Gamble, Egham, UK; ⁴ The University of Tennessee, College of Veterinary Medicine, Knoxville, TN, USA

Introduction and Aim

The SEURAT-1 Research Initiative with the long-term goal of achieving "Safety Evaluation Ultimately Replacing Animal Testing" aimed at finding alternative approaches for the safety assessment for repeated-dose toxicity. Within the framework of proof-of-concept case studies for applied safety assessment, SEURAT-1 investigated the practical application of the read-across approach for repeated-dose toxicity. The concept of category formation, chemical grouping, and read-across is used to support chemical safety assessment by filling data gaps. It is based on the inference of properties of a chemical substance, including its toxicity, from similar chemicals with known properties.

With particular reference to regulatory submissions, the category formation and read-across process has to be transparent, reproducible and clearly documented; key principles of biological and chemical similarity need to be supported by scientific literature and data. While there can be an over-arching rationale for grouping organic substances based on molecular structure and chemical properties, further information is often required to justify the chemical grouping and read-across prediction, including considerations of bioavailability, metabolism and mechanistic plausibility. Sources of uncertainty must be addressed and include a variety of elements divided into two main issues: uncertainty associated with the similarity justification and completeness of the read-across argument.

Read-Across Strategy

In a first step, a strategy for structuring and reporting read-across for repeated-dose toxicity predictions was developed (Schultz et al 2015). Templates guide the user through the collection of data for building the chemical category and constructing the similarity argument and support the transparent documentation. Emphasis was given to the description and assessment of the uncertainty of the similarity rationale, the read-across data and the overall approach and conclusion, in order to make an informed decision about the read-across prediction result.

SEURAT-1 Read-Across Case Study Scenarios

Based on the outcome of a SEURAT-1 initiated workshop with external experts, case studies were conceived for four chemical similarity scenarios (Berggren et al 2015) to evaluate the practical application of the read-across strategy and uncertainty assessment, and in particular appraise the possibility of reducing uncertainty by taking into consideration "new approach" data. The case studies focussed on repeated-dose liver toxicity, where applicable.

The four scenarios consider similar chemicals:

- not requiring/undergoing metabolism to exert a potential adverse effect
- metabolised to the same/similar toxicant (metabolite)
- with general low or no toxicity
- with markedly different potency or effects

The case studies took into account available chemical, mechanistic, existing in vivo and non-test information, and carefully assessed the uncertainty, both for the category similarity and the overall read-across prediction. Furthermore, "new approach" data such as in vitro and in silico data from the SEURAT-1 initiative, as well as ToxCast, were evaluated for their ability to reduce the uncertainty and strengthen the read-across argument.

Factors Affecting Uncertainty: Mechanistic Relevance and Read-Across Completeness

1. What is the level of complexity of the read across endpoint? What is the purpose of the exercise? What is the over-arching premise and scenario?
2. Number of source chemicals and their relative applicability domain(s); is it an analogue or category-based read-across?
3. Absence/presence of toxicity and relevant mechanisms, e.g. whether mechanisms can be defined for non/low toxicity compounds.
4. Quality of the in vivo/apical endpoint data read across, performance (e.g. reliability, accuracy, precision, repeatability and reproducibility). Is the data to be read across sufficient to meet the purpose of the exercise?
5. Consistency in the severity of the apical in vivo hazard, consistent among the source chemicals?
6. Robustness of the (in chemico, in vitro and/or other) data sets. How extensive are the relevant events empirically measured/modelled? What is the method performance (reliability, reproducibility)?
7. Concordance of the in chemico, in vitro and/or other data with regard to the intermediate and apical effects and potency data. What is the temporal and dose-response relationship between mechanistically-relevant endpoints?
8. The overall Weight-of-Evidence (WoE) supporting the prediction. How many and how large are the mechanistically-related data gaps?

Findings to Date and Conclusions

- Read-across potentially provides a solution to prediction of "complex" toxicities.
- Assessment of quality and quantity of the endpoint data is critical.
- Similarity must be assessed based on chemical, toxicokinetic and toxicodynamic considerations.
- Toxicodynamic uncertainty may be addressed by new methods information.
- Toxicokinetic uncertainty, especially metabolism, is often the limiting factor.
- SEURAT-1 contributed to developing read-across predictions:
 - A strategy and workflow/templates to support documentation
 - Case studies using "new approach" data to reduce uncertainty.

Templates guiding the user through

- the collection of data necessary to build and underpin the similar categories
- a systematic uncertainty assessment, both for the category similarity and the overall uncertainty of the read-across prediction.

Uncertainty of read-across predictions can be reduced by added value in the form of increased WoE. This added value may come from suggestions of how targeted testing and "new approach" data, using the logic of the SEURAT-1 conceptual framework, may be used to improve the read-across justification.