
Downstream user chemical safety report Downstream user update

21 October 2015

Bridget Ginnity
European Chemicals Agency

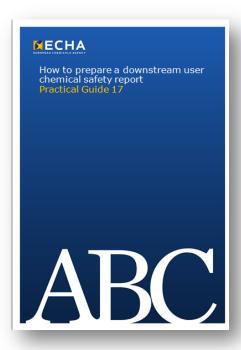
What to do when you receive exposure scenarios

Downstream user chemical safety report (DU CSR)

What it is

A report of the chemical safety assessment for a substance, for the use not covered in the exposure scenario from your supplier

What it's not


As extensive as a registrant chemical safety report

You can use the hazard assessment of the registrant (DNELs/PNECs, etc.)

Recent developments

- Practical guide on how to prepare a DU CSR – published September 2015
- Cross-stakeholder taskforce on DU CSRs (Lead: DUCC)

Before you start

- Check the exemptions that may apply, these include:
 - Use <1 tonne per year;
 - Substance in low concentration in a mixture
- Consider the alternatives to a DU CSR, these include:
 - Contact your supplier
 - Implement the measures recommended in the ES

Initial step – gather substance and hazard information

- Exposure limit values, classification, substance properties etc.
- Primary source is the supplier
- Many other sources available
- Be confident that the information is reliable and trustworthy
- Document the source of information in the DU CSR

Approaches to preparing a DU CSR

Identify use to be assessed

Is your own use included in the supplier ES?

Approach A: Supplier ES

Approach A: Supplier Exposure Scenario

- Base it on supplier ES
- Identify the conditions of use that differ
- Estimate exposure
 - Recalculation/scaling tool or exposure estimation tool
- Check risk is controlled
 - Risk characterisation ratio (RCR) <1
- Similar to checking ES using scaling
- First choice if feasible. Low complexity

Compare use and conditions of use

	Supplier	DU actual
Use	Dipping	Dipping
Duration	Full shift	<4 hours
Engineering	LEV	General
controls		ventilation

Use covered, but conditions of use not covered

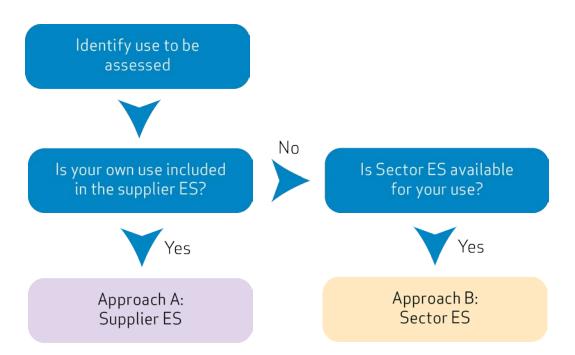
Approach A: supplier exposure scenario

Compare exposure and risk

	Supplier	DU actual
Long-term inhalation	2.5 mg/m3	10.5 mg/m3
exposure		
RCR- long-term	0.49	0.81
inhalation		

Risk characterisation ratio (RCR) = exposure estimate/DNEL (or PNEC) DNEL (inhalation): 25 mg/m³

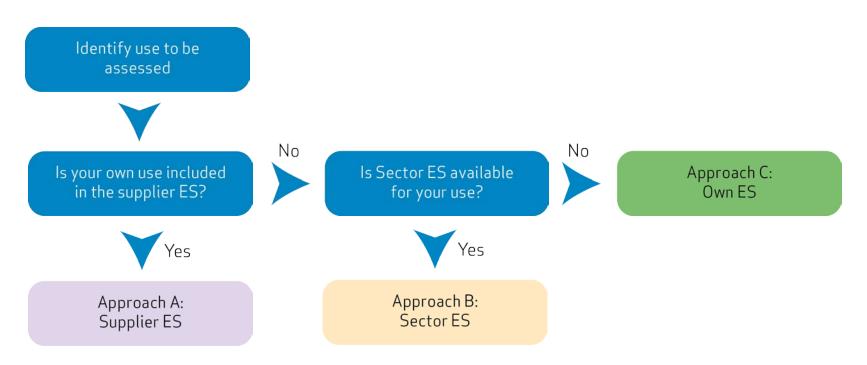
Use recalculation/scaling tool or exposure estimation tool


Approach A: supplier exposure scenario

echa.europa.eu

10

Approaches to preparing a DU CSR



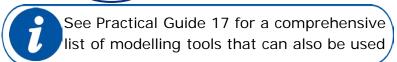
Approach B: Supplier Exposure Scenario

- Base it on sector ES for DU CSR
- Identify the sector CSA/ES that describes your use and conditions of use
- Confirm substance properties/use conditions match yours
- Confirm risk is controlled (RCR<1) using exposure estimate provided
- A suitable generic assessment (ES with exposure estimates) must be available
- To be developed by sector organisations

Approaches to preparing a DU CSR

Approach C: Own Exposure Scenario

- Generate your own ES
 - Describe your conditions of use
- Estimate exposure
 - Measured data or exposure estimation tool
- Check risk is controlled
 - Risk characterisation ratio (RCR) <1
- CSR from "first principles" suitable for all situations
- Likely to draw upon site based risk assessment
- May require greater competence than the other approaches

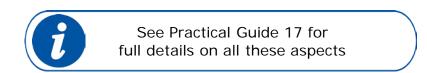


Example: estimating the exposure based on measured data for that use

Year	Report ref.	No. of personal samples	Mean 8 hour TWA mg/m³	Geometric standard deviation	90 th percentile 8 hour TWA mg/m ³
2012	A-12345	9	0.27	2.0	0.56
2013	B-12345	7	0.20	1.9	0.41
2014	C-12345	9	0.18	2.7	0.45
	Overall	25	0.22	2.3	0.49

Risk characterisation ratio (RCR) = exposure estimate/DNEL (or PNEC)

DNEL(inhalation): 25 mg/m^3 ; RCR = 0.49/25 = 0.02



Approach C: own exposure scenario

Before you finish

- Document the DU CSR
- Report to ECHA, if required
- Communicate the outcome to your customers, if relevant

Concluding points

 A DU CSR is typically within the competence of most environmental and health & safety professionals

 Take advantage of synergies with risk assessment under other environmental and health & safety legislation

Thank you!

bridget.ginnity@echa.europa.eu

Subscribe to our news at echa.europa.eu/subscribe

Follow us on Twitter @EU_ECHA

Follow us on Facebook Facebook.com/EUECHA

