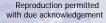

Development of the CONCAWE SCEDs

Arlean Rohde, CONCAWE

ENES4, Helsinki, 16-17 May 2013


Outline

- What are petroleum substances?
- Which petroleum substances are sold for consumer uses ?
 - And what do these uses extend to ?
- ▶ Which CONCAWE SCEDs have been developed?
- What is their basis and format?
- Issues arising during the development
 - Related information needs

Petroleum Substance Composition

- Derived from crude oil
- Not defined in terms of individual constituents
- Contain numerous structures
 - related isomers of different hydrocarbon classes with undefined
 & variable composition, i.e. they are UVCBs
- Produced according to technical performance specifications
- Typically defined by refining process, distillation range, carbon number range, viscosity and hydrocarbon classes, etc.
- Petroleum substances are grouped together into major product categories
 - e.g. kerosines, gas oils, base oils, aromatic extracts, etc.

concawe CONCAWE Petroleum Substance Categories*

- Low Boiling Point Naphthas (Gasolines)
- Kerosines & MK1 diesel fuel
- Cracked Gas Oils
- Straight Run Gas Oils
- Other Gas Oils
- Vacuum Gas Oils /Hydrocracked Gas Oils /Distillate Fuels
- Highly Refined Base Oils
- Other Lubricant Base Oils
- Foots oils

- Unrefined / Acid treated Oils
- Distillate Aromatic Extracts
- Treated Distillate Aromatic Extracts
- Residual Aromatic Extracts
- Heavy Fuel Oil Components
- Petrolatums
- Paraffin and Hydrocarbon waxes
- Slack waxes
- Bitumen & Oxidised asphalt
- Sulphur

Reproduction permitted with due acknowledgement

^{*} Categories with consumer uses shown in blue

concawe Consumer Uses of Petroleum Substances (PSs)

- Many different PSs have common uses
 - Particularly as fuels and lubricants
- ▶ But the general use terms cover a range of specific uses
 - E.g. fuelling a car vs garden machinery vs indoor heater
- And different PSs can also be used very differently for a common use
 - LPG vs diesel vs gasoline in motor vehicles
- Historically, some PSs have also been used as 'general solvents'
- ▶ How many SCEDs are required to cover the range of uses?
- ▶ Are 'repeat SCEDs' required for the similar uses of different products?
- Are the iterable exposure determinants contained in the TRAv3/ChR15 sufficient/appropriate to address PSs?
 - Are consumers really exposed to 70 litres of fuel when re-fuelling?
 - Are both hands coated with lubricants when oiling a bike chain?

Reproduction permitted with due acknowledgement

Scope of Current CONCAWE SCEDs

Product Category	Use Type	Product Type
Fuels	 Consumer re-fuelling of cars and similar vehicles 	GasolineLPGDiesel
	 Garden equipment use 	 Gasoline
	 Home space heating 	KeroseneLPG
	 Recreational vehicles 	 Gasoline
	Lamp oils	Gas oilsFoots oils
Lubricants	Filling passenger vehicle engine	Base oilsKeroseneGas oilsRAEs

Reproduction permitted with due acknowledgement

concawe

Format of CONCAWE SCEDs

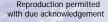
Auto-re	fuelling	with	gasoline

	uto-retuening with gasonine				
Exposure Descriptor or	Value	Justification			
Determinant					
Use description	Consumer re-fuelling	of cars and similar vehicles			
	Filling motor vehicle of	outdoors with a full tank of fuel every week			
Product/Article Use Category	PC13				
PC/AC Subcategory	None	Automobile refuelling with gasoline			
Product Characteristics	Volatility	69000 Pa at 34 °C (EM MSDS)			
Product Ingredient Fraction (by	1	Increased above ECETOC TRA default (0.5)			
weight)		for fuel – liquids [1]			
Frequency of Use (events/day,	0.14	Once/week; consistent with the 90th			
and for an infrequently used		percentile of 5 times per month (0.17) and			
product also provide days/year)		average of 3.1 times per month (0.1) [2].			
		These data suggest lower values than the			
		TRA default of 1 (daily refuelling) [1]			
Relevant Route(s) of Exposure	dermal / inhalation	Oral exposure is not considered relevant for			
		this use			
Dermal Specific Parameters					
Skin Contact Area (ci 12)	210	Palm of one hand as only one hand holds			
		the fuel nozzle. Survey data indicated that			
		90% of respondents indicated that on no			
		occasion or only sometimes did they have			
		skin contact during refuelling [2]. These			
		observations suggest a lower value than the			
		TRA default of 857.5 cm² [1]			
Skin Transfer Factor	0.002	Estimated conservative value for gasoline.			
		This value is greater (more conservative)			
		than the 75th percentile of 0.00005 for hand			
		contamination during pouring from a			
		pesticide container [3]			
Inhalation Specific Parameters					
Amount of Product used per	37500	Based on 50 L and density of 750 g/L. Value			
application (g)		is consistent with reported refuelling			
		amounts: 90th percentile of 53 L and			
		average of 30 L [2] and 6-60 L [4] and 3.6-			
		85.1 L [5]. This value is increased from the			
		TRA default of 5000 g [1].			
Exposure Time (br.)	0.05	Set it to be greater than the 97th percentile			
		value for refuelling time [5]. Generally			
		consistent with reported refuelling time			
		ranging from 0.3-3.5 mins, with an average			
		of 1 min [4] and self-recall survey estimates			
		based upon 2 mins ranges indicating			
		refuelling time 7 mins (90 th percentiles) and			

	4 mins (average) [2]. These observations indicate a value lower than the TRA default of 4 hr [1].
Outdoor use	
100	100 m³ used as a conservative default volume for an outdoors scenario (consistent with Stoffenmanager) [6]. The TRA default is 20m³[1].
0.6	TRA default [1]
0.002	Evaporative losses during refuelling are expected to be <0.002: measured emissions of 4 – 10.4 g VOC emitted per gallon of gasoline during vehicle refueling converts to an inhalation factor of 0.001 – 0.004 for automobiles without vapor recovery systems [7] and applying the recovery system default value of 98% efficiency [8] to Quigley's data gives an estimated emission of 0.0001-0.0003 weight fraction; loss from refuelling without vapour recovery system was <0.002 at 25 °C [9]; refuelling loss of about 0.0027 was indicated [10].
n/a	
n/a	
CONCAWE	Arlean Rohde (<u>Arlean.rohde@concawe.be</u>)
	0.6 0.002

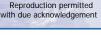
Scenario justification:

Self-service customers can be exposed to gasoline through inhalation from vapour evaporation/displacement or dermal contact from spillage when they are refuelling their cars or similar vehicles. Specific changes to the TRA defaults to better represent the scenarioin reality while maintaining a conservative exposure prediction included the increase of the producting redient and use amount from ECETOC TRA defaults and assumptions of weekly fueling a full tank in a location designed to be conservative for an outdoor scenario. Considering use of a vapour recovery system can further reduce the exposure concentration.



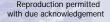
Issues Identified

- Need SCEDs to describe major differences in substance characteristics for different PS types used in the same application
 - Values for key determinants can differ markedly
 - ▶ Is the TRAv3 'sufficiently' for certain product types?
- Need for additional justification beyond that available in the SCED template?
 - ▶ E.g. is it sufficient to just quote a reference or is something more substantive advisable? How to address non-peer review sources?
- Supporting process required for obtaining stakeholder support for SCED content
 - ▶ Not all PSs are used as fuels/lubricants (and vice versa)
 - ▶ Both industry and non-industry stakeholders



Impact of SCED Application

The information within the SCED is critical for enabling more realistic estimates of exposure to be obtained


Automotive Refueling 1000000 orders of 100000 magnitude Air concentration more conservative 10000 1000 100 10 ConsExpo Measured, Measured, TRAv2 **EGRET** typical worst case

Summary

- ▶ 13 SCEDs have been developed by CONCAWE
- ► TRAv3 Appendix F used as their basis
 - ▶ But include additional information to explain why the scenario and SCED values are considered appropriate
- ▶ Developing the SCEDs is a resource intensive exercise
 - Which highlights the relative strengths of understandings on the nature of consumer exposures
 - ▶ And where the collection of further data may be appropriate
- CONCAWE has now initiated research to reduce uncertainties for key exposure determinants
- ▶ CONCAWE will develop further SCEDs if and when the need arises

Questions?