

Case study on the different options for mixture (e)SDS

Dr. Achim Kaiser (Wacker Chemie AG) on behalf of VCI PG Safety Data Sheets

Actors are insecure about SDS for mixtures with registered ingredients

- Broad agreement on how to deal with ingredient exposure scenarios...
 - a) forward unmodified ingredient ES as attachment to mixture SDS
 - b) create ES for the whole mixture and attach them to SDS
 - c) integrate consolidated information into main body of mixture SDS
 - (note: options are in accordance with ECHA DU Guidance, although there options are structured differently)
- Yet no experience in consolidation
 - comparability of different options?
 - technical feasability

- Mandate of VCI Project Group "Safety Data Sheets" for preparation of procedural guidelines
 - decision to create a leaflet depicting the different methods based on real ES
- Conditions:
 - leaflet should be rather short for better understanding; no detailed discussion of individual aspects of the mixture
 - leaflet should complement, not replace or repeat existing guidance
 - each (e)SDS option processed by another company, to reveal aspects that depend on the individual point-of-view

2.3	Contributing scenario controlling worker exposure: PROC4; PROC5
	Concentration of substance in preparation/mixture or article:
	<=100% Polyether polyol <=20% Alkylamino carboxamide <=100% 2-Ethylhexanol
	Physical state during application:
	liquid
	Amounts used:
	Not of relevance.
	Duration and frequency of use:
	Exposure time 1–4 h; per day
	Risk management measures related to human health (worker):
	If dermal exposure cannot be excluded, appropriate gloves and protective clothing have to be worn. Wear eye protection if exposure to the eye cannot be excluded, e.g. during spraying, overhead work, or where the face is in close proximity to source of exposure.
	Provide extract ventilation to points where emissios occur. (Effectiveness: 90%)
	Example: Such a detail in option b) would be omitted in option c)

This presentation will not focus on the resulting leaflet, but on the steps we made on our way

Specifications:

- mixture with different ingredients with real eSDS, but not too complex
- ingredients with different classifications, suitable for a DPD+ approach
- no relevant ingredients without exposure scenarios
- ingredients from different suppliers
- ⇒ no suitable real mixture found that suited our needs

Fictitious mixture

Ingredient	Conc.	R-phrases
Polyether polyol	30%	R36
2-Ethylhexanol	19%	R20-36/37/38
Diethyltoluenediamine (DETDA)	10%	R21/22-36-48/22-50/53
Alkylamino carboxamide	1%	R34-43-50/53
Non-classified polyether	40%	-

Step #2: Identified uses

- Uses of mixture vs. intersection of ingredient uses
 - not discussed here, but important for real mixtures
 - intersection may ease SDS generation, but:
 - higher chance of missing some DU uses in the mixture SDS
 - intersection may lead to description of unnecessary PROCs
- Decision to process only one use for the mixture
 - industrial end use (e.g. in coatings); ERC6c; PROC1,3,4,5,8a,8b,9,15

Ingredient	Exposure scenarios (selection)
Polyetherpolyol	 ES2: Formulation ES3: Industrial end uses (ERCs 2,3,5,6c / PROCs 1,2,3,4,5,8a,8b,9,10,13,14,15,21)
2-Ethylhexanol	 ES1: Formulation ES2: Coatings (ERC 4 ⇔ SpERC / PROCs 1,2,3,4,5,7,8a,8b,9,10,13,14,15) ES5: Functional fluids (industrial)
Diethyltoluenediamine (DETDA)	 ES1: Formulation ES2: PUR parts (ERCs 6c,8c,8f / PROCs 1,2,3,4,5,7,8a,8b,9,11,13,14,15) ES3: Coatings (ERCs 6c,8c,8f / PROCs 1,2,3,4,5,7,8a,8b,9,10,11,13,15) ES4. Glues and sealants (ERC 6c,8c,8f / PROCs 1,2,3,4,5,7,8a,8b,9,10,11,13,14,15)
Alkylaminocarboxamide	 ES2: Pormulation (ERC2) ES3: Industrial end uses (ERC 5 with zero emission / PROCs 1,2,3,4,5,8a,8b,9,15,21)
Non-classified polyether	

Step #3: Lead substances (LS)

- Identification of lead substances required to reduce complexity
 - DPD+ chosen as most appropriate method
 - oral route: not relevant for industrial use

Route	DPD+ lead substances
inhalation	carboxamide; 2-ethylhexanol
dermal	carboxamide; 2-ethylhexanol
еуе	polyetherpolyol
aquatic env.	DETDA

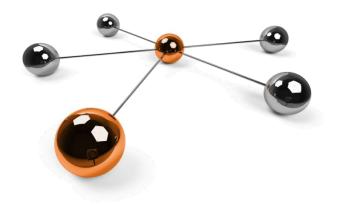
- Considerations beyond DPD+
 - inhalation:

STOT RE 2 classification of DETDA indicates a low inhalative DNEL. Indeed the value of 0.13 mg/m³ is the lowest.

aquatic:

carboxamide is not lead substance, but would lead to a classification.

Additional ES check showed that relevant measures are typically covered by lead substances


Some issues that caught the eye:

- Gloves
 - materials/details typically only given in Section 8
 - no efficiency given for dermal lead substance
- LEV for one substance only required for higher temperatures
- Emission factors: zero emission beats ERC defaults
 - communication should be in form of RMM, especially for option c)
 - "surfaces must be sealed"; "emergency plans for spill/leakage/storm water required": necessary RMM or just best practice?
- Conditions described in ES of non-lead substances
 - e.g. carboxamide would have most restrictive env. RMM for a different use
 - inconsistencies could be neglected, since ES of different ingredients were not prepared for a common use in our fictitious mixture
- Amounts used per day/year may be converted for the mixture

Step #5: Adaptions for a reduced complexity

- Reduction of number of forwarded substance ES in option a)
 - no quantitative assessment for eye exposure inclusion of RMM only in main body
 - measures of 2-ethylhexanol cover both inhalative and dermal exposure phylicity neglection of scenario of carboxamide
 - only one full exposure scenario by use of contributing scenarios (DETDA for environment; 2-ethylhexanol for worker)
- Harmonization of measures
 - exposure time 1–4 h (high concentration) could be adapted to match >4 h (low concentration); ⇒ alignment with RMM of other LS

Step #6: Level of detail

- Level of information varies
 - <u>option a</u>) full information in forwarded substance ES
 - <u>option b</u>) selected information in mixture ES (see below)
 - <u>option c</u>) only OC/RMM without efficiencies in main body, plus selected DNEL/PNEC

- Selection of exposure estimates, RCR, DNEL/PNEC for option b)
 - exposure values can hardly be scaled to the mixture ⇒ only for substances
 - for clarity, only most critical RCR should be communicated
 - RCRs for non-LS may be higher than those for LS in original scenario (but are usually lower when scaled with the conditions for the LS)
 - DNEL/PNEC should be restricted to substances for which conditions are communicated (i.e. mainly the lead substances)

Summary: Lessons learned

- Identification of lead substances helps to reduce complexity
 DPD+ gives a suitable picture
- Basic scaling useful for consolidation
 - sometimes parameters of "neighbour" scenarios can be adopted
- OC/RMM wording may differ between ES of different substances
 - alignment of different wording for same measure is possible
 - usage of standard phrases is recommended for better harmonization
- Specific experience on ES required for the process, especially to determine relevance of information
- High effort with little improvement of safety information
 - OC/RMM comparison and harmonization takes up most of the time
 - RMM can typically be reduced to a few "classic" types: shorter exposure duration, PPE, LEV
 - often measures will not differ from those already given in the mixture SDS
 - no big difference for the three options

Outlook: Issues that should be further pursued

- Strategies for a high throughput in revision of mixture SDS
 - acceptance of lead substance approaches, e.g. DPD+
 - no unnecessary hurdles like flagging of ES information in main body
- Separation of mandatory RMM and best practice advices
 - overview on basic RMM of common assessment tools
 - acceptance of expert judgement
- Harmonization of different RMM combinations with similar protection
 - concentrations much lower than described in the ES
 - different and complicated descriptions for the same basic measure
- More flexibility for expert amendments without DU CSR duty

