

Lead substance identification: "CLPplus" by BASF

Dr. Robert Finking, Dr. Christian Bögi, ENES 4, 16-17 May 2013, Helsinki

Exposure information for mixtures: the DPD plus method

- Determination of so-called "Lead substance(s)":
 - Inhalation, Dermal, Eye,
 Oral, Environment
 - Expo info for mixture is based on ES from Lead substance(s) only
- based on Dangerous
 Preparations Directive, 1999/45/EU

REACH: Exposure scenarios for preparations Methodology for the identification of substances that represent he dominant risks to human health and/or the environment and the drivers for risk management measures

cefic

The Chemical Company

June 09: final for publication

Changeover to "CLPplus" required

Year	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019 onwards
CLP timelin		bstances	Classified and pac under DSI is applied well, no labellin packa	ckaged D. If CLP in full as o DSD ng and				D and CLP nder CLP.	ţ	Classifie	d, labelled under C		aged
	N	lixtures	Classified, labelled and packaged under DPD If CLP is applied in full as well, no DPD labelling and packaging										

The Chemical Company

Environment: PNEC approach

- Per component: select lowest PNEC of all compartments (disregard units)
- Per component: Lead Substance Indicator (LSI) = Concentration in mixture / lowest PNEC
- Substance with highest LSI = Lead substance environment

- The PNEC approach is only applicable for mixtures, where PNECs are available for **ALL** ingredients which are classified as hazardous to the environment
- Otherwise, the classification approach should be used (see next page)

Environment: classification approach

Classification	Calculation of LSI (Lead Substance Indicator)
Aquatic Acute 1	Concentration in mixture x M _{acute} x 33
Aquatic Chronic 1	Concentration in mixture x M _{chronic} x 100
Aquatic Chronic 2	Concentration in mixture x 10
Aquatic Chronic 3	Concentration in mixture
Aquatic Chronic 4	Concentration in mixture

Substances classified for acute and chronic hazard: LSI_{total} = LSI_{acute} + LSI_{chronic}

Substance with highest LSI = Lead substance environment

Environment: CLPplus vs DPDplus

LSI DPDplus	Classification	Classification	LSI CLPplus
C _i / (0.25% x 3*)	R50	Aquatic Acute 1	C _i x M _{acute} x 33
C _i / 0.25%	R50/53	Aquatic Chronic 1	C _i x M _{chronic} x 100
C _i / 2.5%	R51/53	Aquatic Chronic 2	C _i x 10
C _i / 25%	R52/53	Aquatic Chronic 3	C _i
C _i / 25%	R53	Aquatic Chronic 4	C _i

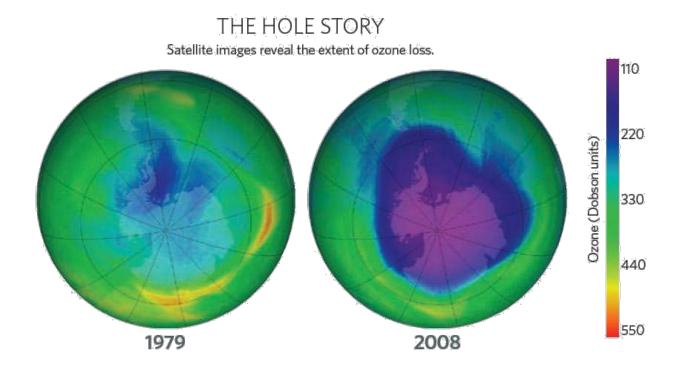
C_i = concentration of substance in mixture

*correction factor of 3: in order to reflect increased removal efficiency of R50 vs R50/53 substances

The Chemical Company

Example: environment

DPDplus


CLPplus

1	2	3	16	17	18					
Substance	Conc'n	Vapour		Aquatio		1				
(Col H)	in prep	press								
	(Col F)	(Col G)	R	Conc'n	LSI	1				
	(%)	(hPa)	phrase	limit	[Col 2/Col			classification	M factor	LSI
			(s)	(Col K or	14;		Ι.			
			(Col J)	M) (%)	If R50:Col 2/			Acute 1	1	990
					(3 X Col 17)]		/	Chronic 1	1	3000
Ethyl Acetate	30.0	103				И		Chronic 1	1	
Cyclo-hexane	30.0	104	R50/53	0.25	120					3990
n-Hexane (Annex	2.5	160	R51/53	2.5	1					
1)								Chronic 2	n.a.	25
Naphtha	20.0	120	R51/53	2.5	8					
hydrotreated light						N		Chronic 2	n.a	200
Rosin	0.5	< 10 ⁻⁶	-	-	-		N			
Polychlorobutiene	17	< 10 ⁻⁶	-	-	-	1				

taken from: DPDplus methodology, Table 3.1: determination of lead substance(s) - Example: Contact adhesive

Components classified as hazardous to the ozone layer

- Components classified as hazardous to the ozone layer category 1:
 LSI = Concentration in mixture
- Substance with highest LSI = Lead substance ozone layer

The Chemical Company

Acute toxicity

 $LSI = \frac{concentration in mixture}{LD_{50}, LC_{50} \text{ or ATE}}$

Acute/ long term/ reproductive toxicity; STOT SE/ RE Cat. 1&2

LSI =
concentration in mixture

DNEL

Local Effects qualitative or

LSI = <u>concentration in mixture</u> spec./ generic conc. limit

Human Health Considerations

- A DNEL is always superior to a concentration limit
- Carcinogenic/ mutagenic substances determine the exposure scenarios of the mixture
- Long term supersedes acute exposure in cases where there is more than one lead substance per route
- Acute lead substances are ignored if a long term systemic DNEL is available for the same substance because long term effects are thought to be of higher relevance
- Respiratory sensitizers are always considered
- STOT SE Cat. 3 are only considered if no inhalation lead substance is available

Example: Human Health

		In	halation		Ingestion						
Substance	Conc in prep [%]		Conc limit [%] or DNEL	LSI		Conc limit [%]	LSI				
Ethyl Acetate	30.00	STOT SE 3	20	1.50							
Cyclohexane	30.00	STOT SE 3	20	1.50	Aspiration 1	10	3				
n-Hexane	2.50	STOT SE 3	5	0.50							
	2.50	STOT RE 2	93	0.03	Aspiration 1	5	0.5				
	2.50	Repr 2	93	0.03							
Naphtha,											
hydrotreated light	20.00	STOT SE 3	20	1.00	Aspiration 1	10	2				
Rosin	0.50										
Polychlorobutiene	17.00										

taken from: DPDplus methodology, Table 3.1: determination of lead substance(s) - Example: Contact adhesive

THANK YOU for your attention!

BASF The Chemical Company

DPDplus - example

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Substance	Conc'n	Vapour		Inhalation			Dermal			Eyes			Ingestion			Aquatio	
(Col H)	in prep	press															
	(Col F)	(Col G)	R phrase	Conc'n	LSI	R	Conc'n	LSI	R	Conc'n	LSI	R	Conc'n	LSI	R	Conc'n	LSI
	(%)	(hPa)	(s)	limit	[Col 3 x	phrase	limit	[Col 2/	phrase	limit	[Col 2/	phrase	limit	[Col 2/	phrase	limit	[Col 2/Col
			(Col J)	(Col K or	Col 2/Col	(s)	(Col K or	Col 8]	(s)	(Col K or	Col 11]	(s)	(Col K or	Col 14]	(s)	(Col K or	14;
				M) (%)	5]	(Col J)	M) (%)		(Col J)	M) (%)		(Col J)	M) (%)		(Col J)	M) (%)	If R50:Col 2/
																	(3 X Col 17)]
Ethyl Acetate	30.0	103	R67	25	124	R66	20	1.5	R36	20	1.5						
Cyclo-hexane	30.0	104	R67	25	125	R38	20	1.5			1.5	R65			R50/53	0.25	120
n-Hexane (Annex	2.5	160	R48/20	5	80	R38	20	0.125				R65			R51/53	2.5	1
1)			R62	5	80	R48/20	20	0.125									
			R67	25	16	R62	5	0.5									
Naphtha	20.0	120	R67	25	96	R66	20	1				R65			R51/53	2.5	8
hydrotreated light																	
Rosin	0.5	< 10 ⁻⁶	-	-	-	R43	-								-	-	-
Polychlorobutiene	17	< 10 ⁻⁶	-	-	-	-	-								-	-	-

Example: Human Health

			Inhalation			Dermal			Eyes		Ingestion				
	Conc														
	in														
	prep	Conc limit				Conc limit									
Substance	[%]		[%] or DNEL	LSI		[%] or DNEL	LSI		Conc limit [%]	LSI		Conc limit [%]	LSI		
Ethyl															
Acetate	30.00	STOT SE 3	20	1.50				Irritant 2A	10	3					
Cyclohexane	30.00	STOT SE 3	20	1.50	Skin irritation 2	10	3.00				Aspiration 1	10	3		
n-Hexane	2.50	STOT SE 3	5	0.50											
	2.50	STOT RE 2	93	0.03	STOT RE	13	0.19				Aspiration 1	5	0.5		
	2.50	Repr 2	93	0.03	Repr 2	13	0.19								
	2.50				Skin irritation 2	5	0.50								
Naphtha,															
hydrotreated															
light	20.00	STOT SE 3	20	1.00							Aspiration 1	10	2		
Rosin	0.50				Sens 1	1	0.50								
Polychlorobu															
tiene	17.00														