

Case study from SEURAT-1 β-Olefinic alcohols: indirect acting toxicant category supported by SEURAT-1 data

Read-Across Case Study Considered in Context of the ECHA RAAF

Andrea Richarz, EC JRC, IHCP

This assessment has been prepared to facilitate the discussion and does not represent ECHA's position or the views and policies of the European Commission.

Joint Research Centre

the European Commission's in-house science service

JRC Science Hub: ec.europa.eu/jrc

The β-Olefinic Alcohols Case Study: Premise

- Short chain (C3 to C6) unsaturated alcohols are indirect-acting toxicants
- Same covalent mechanism of action and similar reactive potency
- Metabolism via alcohol dehydrogenase (ADH)
- Metabolites are electrophilic with *in vivo* potency related to relative thiol reactivity

β-Olefinic Alcohols: Category Members

Source substance:

90 day NOAEL read across from **2-propen-1-ol** (worst case); NO(A)EL driven by liver toxicity

The ECHA Read-Across Assessment Framework (RAAF) Approach

Scientific Assessment of Read-across argument according to scenarios defined by 3 key features:

of substances considered:

- Analogue approach one source and one target
- Category approach multiple source(s) and target(s) (group)

Effect (predicted property) caused by:

- common substance for source(s) and target(s)
- different substances for source(s) and target(s)

For a Category, the predicted property:

- Follows a regular pattern (trend) across source structures
- Does not change across source structures

→ 6 Possible read-across Scenarios

The ECHA Read-Across Assessment Framework (RAAF) Approach

- Scientific Assessment of Read-across argument Possible Scenarios:
- # of substances considered:
- Analogue approach/Common toxicant
- Analogue approach/Different toxicant
- Category approach/Common toxicant/Trend in effect
- Category approach/Different toxicant/Trend in effect
- Category approach/Common toxicant/No Trend in effect
- Category approach/Different toxicant/No Trend in effect

 \rightarrow 6 Possible Read-Across Scenarios

European Commission

The ECHA Read-Across Assessment Framework (RAAF) Approach

Scientific Assessment of Read-across argument according to scenarios defined by 3 key features:

β-Olefinic Alcohols → Scenario #4, category approach: different compounds with same type of effect, difference in effect strength

different substances for source(s) and target

For a Category, the predicted property:

- Follows a regular pattern (trend) across source structures
- Does not change across source structures

 \rightarrow 6 Possible Read-Across Scenarios

The RAAF: Assessment Elements and Assessment Options

Set of Assessment Elements (AE's) per Scenario

- Describing `crucial scientific aspects to judge validity and reliability of read-across for the Scenario'
- For each AE multiple considerations to be included in justification

Assessment Options (AO's):

- Reflect the conclusion on adequacy and scientific robustness of the information provided for the AE
- Scores from 5 to 1
 - ≥3 : information provided is acceptable with just (3) sufficient, (4) medium, (5) high confidence
 - ≤2 : information provided is (1) not acceptable,
 (2) not acceptable in its current form

The RAAF: Assessment Elements

General (Common) Assessment Elements

- C.1 Substance characterisation
- C.2 Structural similarity and category hypothesis
- C.3 Link of structural similarities and structural differences with the proposed regular pattern
- C.4 Consistency of effects in the data matrix
 - order within category/clustering of strength of effects
- C.5 Reliability and adequacy of the source study(ies)
- C.6 Bias that influences the prediction

Scenario-Specific Assessment Elements: Scenario #4

different compounds with same effect, difference in effect strength

- 4.1 Compounds the test organism is exposed to
- 4.2 Common underlying mechanism, qualitative aspects
- 4.3 Common underlying mechanism, quantitative aspects
- 4.4 Exposure to other compounds than to those linked to the prediction
- 4.5 Occurrence of other effects than covered by the hypothesis

βOA Case Study Considered with the RAAF

AE		AO w/o NAM	AO with NAM	NAM added info	Remaining questions
C.1	Subst. characterisation	N/A	N/A		
C.2	Structural similarity	4	4		 Similarity and category boundaries
C.3	Link structures and regular pattern	4	5	ex vivo perfused liver data link vinyl moiety and effect	• Metabolism mechanism, exclude other than ADH
C.4	Consistency effects in data matrix; clustering	3	4	<i>in chemico/in silico</i> data show clustering of potency	 More details <i>in vivo</i> studies Confirm subcategory reactivity trends
C.5	Reliability/adequacy source study(ies)	3	3		 More details on study design and quality
4.1	Compounds the organism is exposed to, transformation	4	5	ex vivo/in silico: metabolites→toxicants, not tertiary alcohols; also by hepatic organoids	 more (quant.) information: rate/speed of metabolism
4.2	Common mechanism, qualitative aspects	4	5	<i>in chemico/in silico/in vitro</i> data strengthen mechanism evidence , HSC activation markers the MoA to fibrosis	
4.3	Common mechanism, quantitative aspects	3	4	<i>in chemico</i> data: only quant. info. on potency differences supported by <i>in silico/in vitro</i>	 Strengthen proof that source substance is the worst-case
4.4	Exposure to other compounds	4	4		 More details (quant.) kinetics: residual parent/further metabolites & effects
4.5	Occurrence of other effects	4	4		 Rule out other effects / metabolic mechanisms
C.6	Bias influencing prediction	4	4		 Read-across valid for other structural variation members?

RAAF I: Category and Structural Similarity

Identity (C.1)/ Structural Similarity / (Not) Allowed Differences (C.2)/ Link Structures and Effect Pattern (C.3) / Choice of Compounds (Bias) (C.6)

Complexity of the structural variations

- Two scaffoldings: primary (external –OH) / secondary (internal –OH)
- External or internal vinyl group
- Structural similarity complicated by alkyl substituents on the allylic moiety
 - \rightarrow straight-chained or branched

RAAF I: Category and Structural Similarity

Identity (C.1)/ Structural Similarity / (Not) Allowed Differences (C.2)/ Link Structures and Effect Pattern (C.3) **/ Choice of Compounds (Bias)** (C.6)

Complexity of the structural variations

 → Similarity / Inclusion in category / How broad or narrow should a category be?

Not included: acetylenic alcohols (metabolism difference)

- \rightarrow Category valid for other structural variations?
- → Parent structure determines metabolite formed
 → Different reactivity metabolites → potency of effects

RAAF I: Category and Structural Similarity

Identity (C.1)/ Structural Similarity / (Not) Allowed Differences (C.2)/ Link Structures and Effect Pattern (C.3) **/ Choice of Compounds (Bias)** (C.6)

Complexity of the structural variations

- → Similarity / Inclusion in category /
 How broad or narrow should a category be?
 Existing NAM ex vivo liver perfusion:
 Not
 Shows reactivity for different
 → structural variants of βOAs ≠ alkanols
 - \rightarrow Parent structure determines metabolite formed
 - → Different reactivity metabolites = potency of effects

European Commission

RAAF II: Metabolic Transformation to Toxicants

Link Structures and Effect Pattern (C.3) / Compounds to Which Organism Exposed (4.1) / Exposure to Other Compounds? (4.4)

Metabolites are the definitive toxicants

RAAF II: Metabolic Transformation to Toxicants

Link Structures and Effect Pattern (C.3) / Compounds to Which Organism Exposed (4.1) / Exposure to Other Compounds? (4.4)

Metabolites are the definitive toxicants

- Mechanism and kinetics of transformation \rightarrow any other than metabolism by ADH?
- Further metabolism pathway of aldehydes and ketones different → metabolic similarity?
 - \rightarrow more quantitative kinetics information needed, relative efficiency of biotransformation
 - → residual parents, further metabolites present with possible reactivity?

RAAF II: Metabolic Transformation to Toxicants

Link Structures and Effect Pattern (C.3) / Compounds to Which Organism Exposed (4.1) / Exposure to Other Compounds? (4.4)

Metabolites are the definitive toxicants

Mechanism and kinetics of transformation
Existing NAM ex vivo liver perfusion
and in silico:
• Link toxicity to metabolic transformation
• Link toxicity to metabolic transformation
• Electrophilic reactivity aldehydes/ketones
relative efficiency of biotransformation
Also confirmed by SEURAT-1 hepatic organoids

possible reactivity?

RAAF III: Available (In Vivo) Data

Consistency Data Matrix (C.4) / Reliability and Adequacy of (*In Vivo*) Data (C.5) / Choice of NOAEL to Read Across

Details and quality of *in vivo* **studies**

NTP study used for read-across

Rats and Mice: NOAEL 6 (m) and 25 (f) mg/kg bw/d for rats. Relating to toxicity in the liver.

RAAF III: Available (In Vivo) Data

Consistency Data Matrix (C.4) / Reliability and Adequacy of (*In Vivo*) Data (C.5) / Choice of NOAEL to Read Across

Details and quality of *in vivo* **studies**

- More information on study design and quality needed \rightarrow selection of NAOEL to read across
- → guidance/ specific matrix needed for providing study details for RAAF?
- \rightarrow also for NAM: how to evaluate new assay quality?

RAAF III: Available (In Vivo) Data

Consistency Data Matrix (C.4) / Reliability and Adequacy of (*In Vivo*) Data (C.5) / Choice of NOAEL to Read Across

Details and quality of *in vivo* **studies**

- More information on study design and guality needed Overall existing and SEURAT-1 NAM *in vivo / in vitro / in silico* data
- →give a consistent picture eded for providing (differences in strength of effects)
- → also for NAM: how to evaluate new assay quality?

RAAF IV: Mechanism of Toxicity

Mechanism of toxicity (qualitative) (4.2) / Other effects? (4.5)

Electrophilic reactivity (Michael addition mechanism), binding to proteins \rightarrow adverse effects

RAAF IV: Mechanism of Toxicity

Mechanism of toxicity (qualitative) (4.2) / Other effects? (4.5)

Electrophilic reactivity (Michael addition mechanism), binding to proteins \rightarrow **adverse effects**

- More information needed (also kinetics) to exclude any other mechanisms (by other compounds present)
- Hypothesis of fibrosis as adverse effect

RAAF IV: Mechanism of Toxicity

Mechanism of toxicity (qualitative) (4.2) / Other effects? (4.5)

Electrophilic reactivity (Michael addition mechanism), binding to proteins \rightarrow **adverse effects**

In silico/in chemico/SEURAT-1 in vitro NAM (hepatic organoids with HSC activation markers; stress response activation in HepG2) yothesis of fibrosis as adverse effect add mechanistic plausibility,

in particular the HSC activation markers strengthen the hypothesis of MoA leading to fibrosis (not supported by rat data)

AOP for Liver Fibrosis (from Landesmann et al 2012)

RAAF V: Mechanism of Reactivity and Trends in Effect Potency

Clustering of Effects / Order of Reactivity (C.4)/ Quantitative Aspects of Mechanism and Strength of Effects (4.3) / Source is Worst Case (C.6)

Clustering of potency of effects according to chemical reactivity

 Quantitative reactivity data only from *in chemico* GSH assay supported by *in silico* predictions

Reactivity In Chemico and In Silico

	Subcateg	ory	Compound	Metabolite	<i>In Chemic</i> o reactivity GSH RC _{E0} ¹	Protein binding potency ²	<i>In silico</i> protein binding ^{2,3}
1		primary: external OH, external =	2-propen-1-ol	2-Propenal (acrolein)	0.085	Extremely reactive	MA, SBF
2		primary:	2-buten-1-ol	2-Butenal (crotonaldehyde)	0.22	Highly reactive	MA, SBF
3		external OH,	2-penten-1-ol	trans-2-Pentenal	0.35	Highly reactive	MA, SBF
4	Straight		2-hexen-1-ol	trans-2-Hexenal	0.42	Highly reactive	MA, SBF
5	chain	secondary:	1-buten-3-ol	Methyl vinyl ketone	0.070	Extremely reactive	MA
6		internal OH,	1-penten-3-ol	Ethyl vinyl ketone	0.051	Extremely reactive	MA
7		external =	1-hexen-3-ol	Propyl vinyl ketone	0.059	Extremely reactive	MA
8		secondary:	3-penten-2-ol	3-Penten-2-one	0.15	Highly reactive	MA
9		internal OH,	3-hexen-2-ol	3-Hexen-2-one	not tested	Highly reactive	MA
10		internal =	A lickett-3-01	4-Hexen-4-one	0.34	Highly reactive	MA
11			2-methyl-2-propen-1-ol	2-Methyl acrolein	not tested	Moderately reactive	MA, SBF
12		primary:	2-methyl-2-buten-1-ol	2-Methyl-2-butenal	12	Moderately reactive	MA, SBF
13		external OH, internal = ed	2-methyl-2-penten-1-ol	2-Methyl-2-pentenal	21	Moderately reactive	MA, SBF
14	Branched		3-methyl-2-buten-1-ol	3-Methyl-2-butenal	13	Moderately reactive	SBF no MA
15		secondary: internal OH.	3-methyl-3-penten-2-ol	3-Methyl-3-penten-2-one	10	Highly reactive	MA
16		internal =	4-methyl-3-penten-2-ol	4-Methyl-3-penten-2-one	26	Highly reactive	No alert

¹ in mmol/I; ² OECD QSAR Toolbox; ³ MA: Michael addition, SBF: Schiff base formers;

RAAF V: Mechanism of Reactivity and Trends in Effect Potency

Clustering of Effects / Order of Reactivity (C.4)/ Quantitative Aspects of Mechanism and Strength of Effects (4.3) / Source is Worst Case (C.6)

Clustering of potency of effects according to chemical reactivity

- Strengthen use of 2-propen-1-ol as source substance
- \rightarrow How to prove a worst case?
- → suitability of *in chemico* assay for quantitative ranking (variability; relevance)?
- \rightarrow confirm subcategory reactivity trends with testing of more (different) substances

RAAF V: Mechanism of Reactivity and Trends in Effect Potency

Clustering of Effects / Order of Reactivity (C.4)/ Quantitative Aspects of Mechanism and Strength of Effects (4.3) / Source is Worst Case (C.6)

Clustering of potency of effects according to chemical reactivity

St Reactivity trend mostly relying on existing NAM in chemico data of reactivity potency clustering, supported by in silico and SEURAT-1 in vitro NAM of more (different) substances

βOA Case Study Considered with the RAAF

AE		AO w/o NAM	AO with NAM	NAM added info	Remaining questions
C.1	Subst. characterisation	N/A	N/A		
C.2	Structural similarity	4	4		 Similarity and category boundaries
C.3	Link structures and regular pattern	4	5	ex vivo perfused liver data link vinyl moiety and effect	• Metabolism mechanism, exclude other than ADH
C.4	Consistency effects in data matrix; clustering	3	4	<i>in chemico/in silico</i> data show clustering of potency	 More details <i>in vivo</i> studies Confirm subcategory reactivity trends
C.5	Reliability/adequacy source study(ies)	3	3		 More details on study design and quality
4.1	Compounds the organism is exposed to, transformation	4	5	ex vivo/in silico: metabolites→toxicants, not tertiary alcohols; also by hepatic organoids	 more (quant.) information: rate/speed of metabolism
4.2	Common mechanism, qualitative aspects	4	5	<i>in chemico/in silico/in vitro</i> data strengthen mechanism evidence , HSC activation markers the MoA to fibrosis	
4.3	Common mechanism, quantitative aspects	3	4	<i>in chemico</i> data: only quant. info. on potency differences supported by <i>in silico/in vitro</i>	 Strengthen proof that source substance is the worst-case
4.4	Exposure to other compounds	4	4		 More details (quant.) kinetics: residual parent/further metabolites & effects
4.5	Occurrence of other effects	4	4		 Rule out other effects / metabolic mechanisms
C.6	Bias influencing prediction	4	4		 Read-across valid for other structural variation members?

The beta OA Case Study: AO's and NAM

			AO with NAM	NAM added info	Remaining questions
C.1	Subst. characterisation	N/A	N/A		
C.2	Structural similarity	4	4		 Similarity and category boundaries
C.3	Link structures and regular pattern	4	5	<i>ex vivo</i> perfused liver data link vinyl moiety and effect	 Metabolism mechanism, exclude other than ADH
C.4	Consistency effects in data matrix; clustering	3	4	<i>in chemico/in silico</i> data show clustering of potency	 More details in vivo studies Confirm subcategory reactivity trends
C.5	Reliability/adequacy source study	rall		0′s ≥ 3	 More details on study design and quality
4.1	Compounds the organism is expContended to, transformation	fide SE	enc	ex vivo/in silico: ecincreased by not tertiary alconois; AT_y1eNiAMoreasu	• more (quant.) information: rate/speed EXISTING mount residual parents/other metabolites
4.2	Common mechanism, qualitative aspects	4	5	<i>in chemico/in silico/in vitro</i> data strengthen mechanism evidence , HSC activation markers the MoA to fibrosis	
4.3	Common mechanism, quantitative aspects	3	4	<i>in chemico</i> data: only quant. info. on potency differences supported by <i>in silico/in vitro</i>	 Strengthen proof that source substance is the worst-case
4.4	Exposure to other compounds	4	4		 More details (quant.) kinetics: residual parent/further metabolites & effects
4.5	Occurrence of other effects	4	4		 Rule out other effects / metabolic mechanisms
C.6	Bias influencing prediction	4	4		 Read-across valid for other structural variation members?

Information Added and Uncertainties Reduced by NAM

- Metabolism of βOAs to toxicant, reactivity of metabolites as opposed to parent compounds, link with structure (*ex vivo* perfused liver, *in silico, in chemico*)
- *in chemico* data: only quantitative data available to show
 clustering of reactivity potency (supported by *in silico/in vitro*)
- Mechanism of adverse effect evidence strengthened by in chemico/in silico/ SEURAT-1 in vitro data
- in particular: HSC activation markers in hepatic organoids confirm MoA hypothesis of metabolic-mediated fibrosis

Major Uncertainties

- Complexity of structures
 → Similarity / category boundaries and members
- Details on study design / quality of *in vivo* data, choice of NOAEL
- Potency of effects, order of reactivity
- \rightarrow Proving the worst case for source compound
- Transformation mechanism (other than via ADH) / rates?
 → Reactivity potency vs kinetics
- Variation of metabolic pathways (aldehydes/ketones)
- \rightarrow Possible other effects via further metabolites present (kinetics of transformations)
- Toxic reactivity mechanism? Map on AOP?

Possible further elucidation by NAM

- Complexity of structures \rightarrow Similarity / category boundaries and members
- Details on study design / quality of *in vivo* data, choice of NOAEL
 Test more substances in the GSH
- Potency of effectivity in chemico assay
- \rightarrow Proving the worst case for source compound
- Transformatio Any other activation of transformation \rightarrow Reactivity phan by ADH? \rightarrow omics?
- Variation of metabolic devices of the second second
- Toxic reactivity mechanism? Map on AOP

Conclusions

- βOA case study especially features
 - High structural complexity
 - Mechanistic aspects related to structures important for considered effect
- RAAF guides systematically through checking of all important points being covered and documented in sufficient detail for regulatory assessment, highlights kinetics issues
- NAM help in reducing uncertainties in particular related to mechanism
- Uncertainties remaining
 - in particular more (quantitative) kinetics/metabolism pathway data needed as highlighted by RAAF
 - \rightarrow more targeted NAM testing?

Stay in touch

JRC Science Hub: ec.europa.eu/jrc

Twitter and Facebook: @EU_ScienceHub

LinkedIn: european-commission-joint-research-centre

