In Silico and Read-Across Mutagenicity and Carcinogenicity Assessment to Close Data Gaps for the Pharmaceutical Intermediate Trans-1,4-dibromobut-2-ene

Gian C. Winkler¹, Phil Bentley², Susanne Glowienke¹ and Ester Lovsin Barle³ ¹Novartis Institutes for Biomedical Research, Preclinical Safety, Basel, Switzerland, ²Toxicodynamix International LLC, Hendersonville, NC, USA, and ³Novartis Pharma AG, Basel, Switzerland

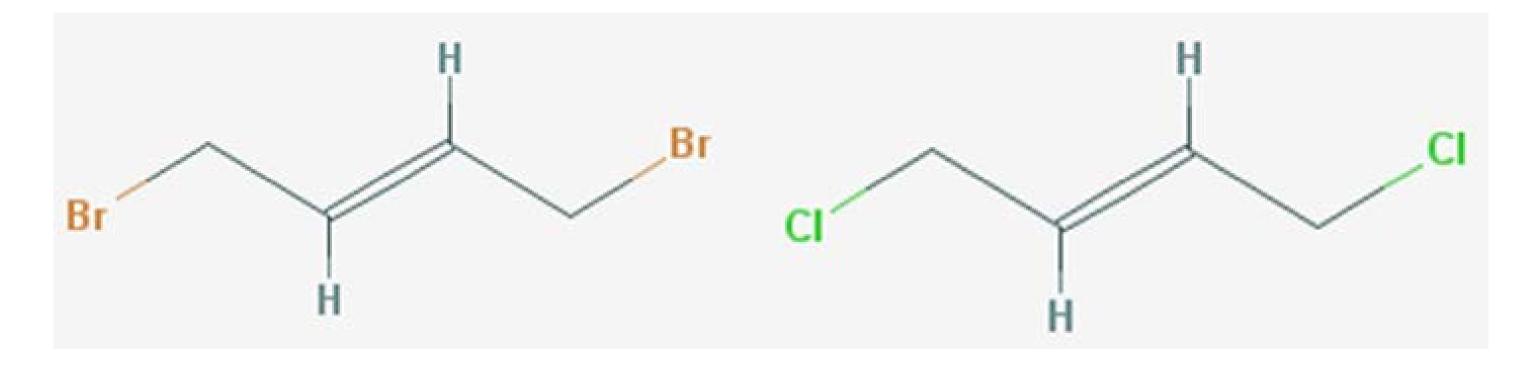


Figure 1. Structures of the target (left) and surrogate (right)

Physico-Chemical Properties			
	Target	Surrogate	Ref.

	QSAR	and Genotoxicity		
	Strains/Species	Target	Surrogate	Ref.
DEREK Nexus 4.1.0 (knowledge based)	QSAR <i>In silico</i>	DEREK: plausible (3)	DEREK: plausible (3)	NVS report Dec-
Sarah Nexus 1.2.0 (statistical) Lhasa Ltd. Leeds UK		Sarah: positive (1)	Sarah: positive (4)	2015
In vitro	TA 100	P: 700 revertants/µmol	P: 9 revertants/µmol	(2)
Ames test	without S9	N: 0 revertants/µmol	N: 1 revertants/µmol	
In vitro	TA1535,1537, 1538	n.a.	Negative	(1)
Ames test	TA100 and 98			
	without S9	positive	n.a.	
• • •		positive	n.a.	
In vitro Ames test	Saccharomyces cerevisiae D4	n.a.	+/-	(1)
	With S9		positive	
SLRL (point muta- tions on X chrom,)	Drosophila melanogaster	Positive	n.a.	(3)
<i>In vivo</i> Sister chromatid exchange assay	Rat, male, i.p. administration of 40 mg/kg	n.a.	(positive) weak mutagen	(1)
<i>In vivo</i> Micronucleus test	Rat, by inhalation of 0.1, 1.0 or 10 ppm	n.a.	Not clastogenic nor aneugenic	(3)

Chemical	Trans-1,4-dibromobut-2-ene	Trans-1,4-dichlorobut-2-ene	(1)
Group	Alkylating agent	Alkylating agent	(2)
Alkylating activity (by S _N -1 reactivity)	54	0.29	(2)
Leaving group potency	Br >> Cl	CI << Br	(2)
Molecular Formula	C4H6Br2	C4H6Cl2	(1)
Molecular weight	213.9	125	(1)
CAS Number	821-06-7	110-57-6	(1)
EINECS Number	212-472-7	203-779-7	
Description	White to light yellow crystal powder	Colorless liquid with a distinct odor	(1)
	•		(1)
REACH	Registered as intermediate	Registered as intermediate	(1)

Introduction

Pharmaceutical companies regularly generate and receive requests for assessment of potential hazards of drugs and intermediates. It is a part of many regulations for pharmaceutical development and good manufacturing practices designed to protect workers from occupational exposure.

Trans-1,4-dibromobut-2-ene (Fig. 1) is a commercially available pharmaceutical intermediate (IM). It is registered by ECHA. Under REACH/GHS regulations pharmaceutical IMs are considered equal to other industrial chemicals. For IMs, health hazard assessment has been traditionally done by animal experiments and laboratory tests. This is increasingly replaced by alternative methods considering animal welfare and resources. It would be especially attractive, if some of the health endpoints could be predicted by grouping and read-across. Since IMs are usually chemically reactive manufacturing components, they may pose a pronounced occupational risk for manufacturing workers.

Carcinogenicity					
	Species, route	Target	Surrogate	Ref.	
Carcinogenicity study	Mouse ICR/HA Swiss, female	n.a.		(4)	
(duration 537 days)	Skin , 3 times/week, 1 mg in 0.1 ml acetone		No tumors at admin. site		
	s.c. , weekly, 0.05 mg in 0.05 ml tricaprylin		3/30 with local sarcoma		
	i.p. , weekly, 0.05 mg in 0.05 ml tricaprylin		2/30 with local sarcoma		
			No increased incidence of any other tumors.		
Carcinogenicity study (duration 24 months for 0.5 ppm; 7 months at	CD®Rats, 140 males and 140 females, 6 hr/d, 5 d/week by inhalation	n.a.	0.5 ppm: Malignant nasal tumors in m [↑] , benign tumors in m and f [↑]	(5)	
5 ppm and 5 months at 2.5 ppm followed by 12 months recovery)	Histopathology of respiratory tract, cervical lymphnodes and brain.		5/2.5 ppm: Mortality m and f ↑ Malignant nasal tumors↑		
Carcinogenicity study (duration 24 months, 19 months treatment)	CD®Rats, 128-160 males per dose group of 0, 0.1, 0.3 or 1.0 ppm, 6 hr/d, 5 d/week by inhalation,	n.a. GHS: H350: May cause cancer	 Benign nasal tumors ↑ in all dose groups, malignant nasal tumors↑ in 1.0 ppm group. Histopath. of respiratory tract, cervical lymphnodes, brain. 	(3)	
			GHS: none (data lacking)		

Acute Toxicity				
	Species	Target	Surrogate	Ref.
Acute oral	Rat, male	75 mg/kg GHS: H301	414 mg/kg GHS: H301	(1)
Acute inhalation	Rat	Read-across GHS: H330	LC = 3.93 mg/L air, degenerative changes in liver and other organs GHS: H331	(1)
Skin irritation	Rabbit	Irritant, corrosive GHS: H314	Corrosive GHS: H314	(1)
LLNA (GLP)	Mouse	Skin sensitization GHS: H317	n.a.	(1)

Results From Acute Toxicity, QSAR and Genotoxicity

- Both, trans-1,4-dibromobut-2-ene and trans-1,4-dichlorobut-2-ene are corrosive to skin
- A relatively low dose of 3.93 mg/L air of surragate leads to degenerative organ changes by inhalation and should be considered by read-across for the target
- QSAR studies confirmed the likely mutagenicity attributed to Br and CI alkylating groups
- Both, target and surrogate are mutagens (but not clastogen as demonstrated in the

Read-across Results

The two genotoxic alkylating agents analysed in this read-across study appear structurally very similar. Consequently, read-across and classification for possible carcinogenicity of the target appears adequate. However, it cannot be argued definitely, if the observed nasal tumors were triggered by the mutagenicity or by the corrosivity of the surrogate or by rat-specific susceptibility of mucous membranes in the airways.

surrogate). Mutagenic activity has been shown to be greater in trans-1,4-dibromobut-2ene, probably because of the higher alkylating activity of the Br leaving group. The mechanism is attributed to nucleophilic substitution (S_N -1 reactivity).

Results From Carcinogenicity Studies

- Rat carcinogenicity studies were conducted by inhalation of the (corrosive) surrogate trans-1,4-dichlorobut-2-ene
- Incidence of benign nasal tumors were increased in all dose groups, incidence of malignant nasal tumors only in the highest dose group. Mortality was greater in the highest dose group
- Whereas all rats were necropsied, histopathology was only done with respiratory tract, cervical lymphnodes and brain tissues. Only nasal tumors were classified
- Rats are known for there susceptibility to nasal tumors
- In the mouse study with different routes of administration, there were no tumors, except for some injection site sarcomas
- Following the precautionary principle, carcinogenicity of the surrogate and the target are suspected by read-across

Open Questions

- Are genotoxic alkylating agents a separate group/category of chemicals with similar properties (S_N-1 reactivity) for the purpose of read-across (Seurat-1) (6)
- Why is the target agent classified as H350: May cause cancer (read-across), whereas the surrogate agent trans-1,4-dichlorobut-2-ene is not classified for carcinogenicity, although the carcinogenicity studies have been conducted with the surrogate? Does the higher leaving group potency of Br have an impact?

References

- European Chemicals Agency. Trans-1,4-dibromobut-2-ene <u>http://echa.europa.eu/registration-dossier/-/registered-dossier/13126/4/9</u> accessed February 28, 2016
- 2. Eder E, Schiffmann D, Dornbusch K, Kütt W and Hoffmann C: Fd Chem Toxic 24 (6/7), pp. 667-673, 1986
- 3. Mullin LS, Kennedy GL jr. and Wood CK: Drug Chem Toxicol 23(3), pp. 403-417, 2000
- 4. Van Duuren BL, Goldschmidt BM and Seidman I: Cancer Res 35, pp. 2553-2557, 1975
- 5. Mullin LS, Chiu T and Kennedy GL: Drug Chem Toxicol 25(2), pp. 227-230, 2002
- 6. Berggren E, Amcoff P, Benigni R et al.: EHP 123(12), 1232-1240, 2015