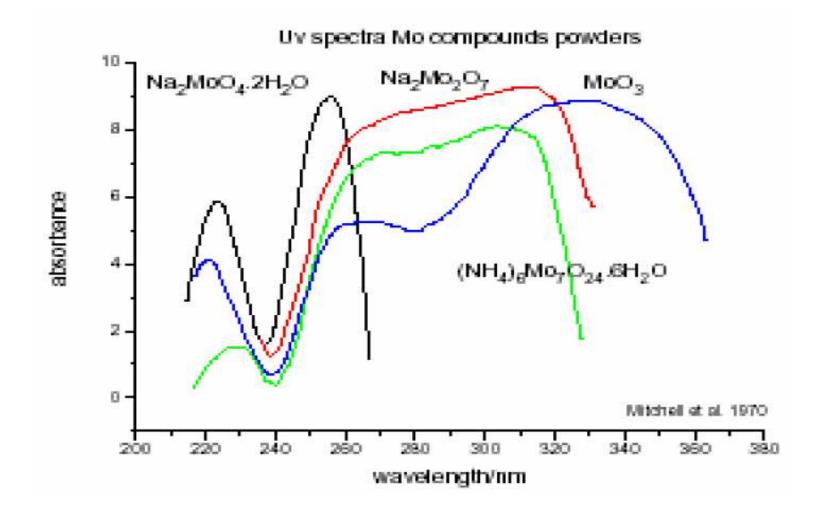
Case Study Read Across Strategy for Molybdenum Compounds

Dr Sylvia Jacobi Albemarle Europe

Presented at ECHA/CEFIC/LRI Experts Workshop on Read-Across Assessment 3rd October, 2012 Helsinki

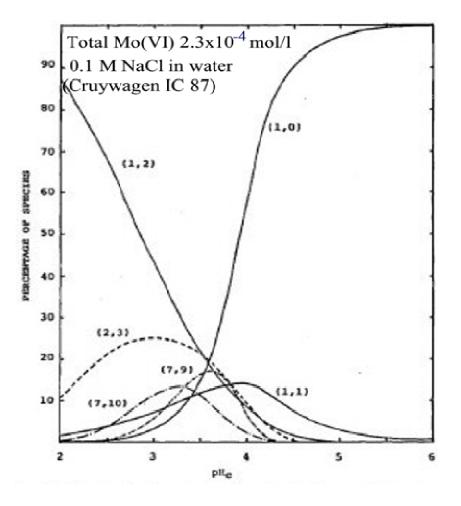
Read across for metal compounds some basic considerations

- 1. Which species is likely to be responsible for the toxicity?
- 2. Look at the metal cation and the possible toxicity of the anion.
- 3. Can complex anions be formed under environmental and physiological conditions?
- 4. Has the metal different oxidation states? If so can it be transformed easily under environmental and physiological conditions?
- 5. Consider stability of different oxidation states.
- 6. Can complexes be formed? Could they be relevant under physiological and environmental conditions and ameliorate toxicity?
- 7. Can unsoluble "polymeric" species be formed under relevant conditions (Al-oxides, hydroxides)?
- 8. What are the relevant species for the compound to look at?
- 9. Define compounds which likely lead to the same toxicologically relevant species.
- 10. Define within that group domaines of bioaccessibility



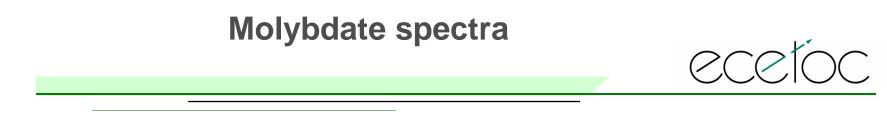
- Molybdenum REACH consortium 11 substances covered in 2010
- Chemically molybdenum has a range of readily interconvertible oxidation states,
- Forms complexes with many inorganic and organic ligands including physiologically important compounds
- Forms binuclear and polynuclear species involving bridging ligands (oxide, hydroxide, sulfide) or direct metal-metal bonds between molybdenum atoms, and compounds in which the molybdenum coordination number ranges from four to eight. (P.C.H. Mitchell, Chemical and Engineering News, 2003, 81, 108)

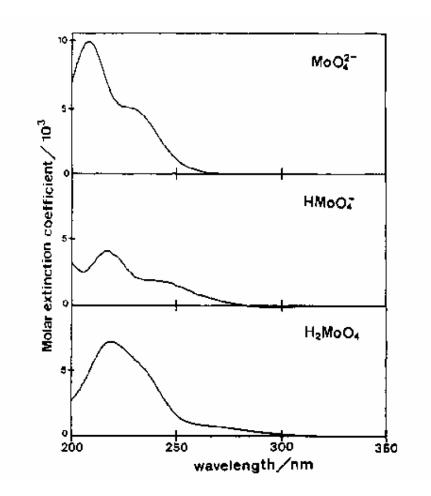
- Water solubility with speciation of the dissolved species
- Dissolution under environmentally relevant conditions and speciation
- Speciation could be determined by UV spectroscopy
 - Species identified by their characteristic UV spectra
 - peak positions
 - peak intensities.
 - The spectra were analysed by decomposition into Gaussian peaks
- In vitro bioaccessibility studies in various physiological fluids



pH dependent UV spectra

• At a total Mo concentration below ca 10^{-3} M (Figure), [MoO₄]^{2–} is the only species at pH ≥ 4.5


J. J. Cruywagen and J. B. B. Heyns, Inorg. Chem. 1987, 26, 2569-2512.


\

UV analysis

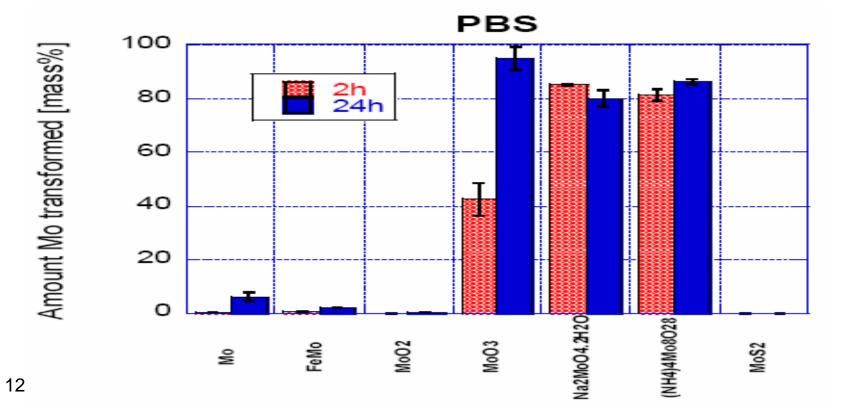
- UV spectra of molybdenum compounds dissolved in water or stirred in suspension in water: identification of molybdenum species in solution.
- Water solutions of soluble molybdates: sodium and ammonium molybdates
- Supernatant solutions of suspensions of poorly soluble molybdenum substances: calcium molybdate, molybdenum metal, ferromolybdenum, molybdenum dioxide, molybdenum trioxide, roasted molybdenum concentrate and molybdenum disulfide.
- Particluar species may be identified by the positions and intensities of peaks in the UV spectra
- Molybdate species in solution were identified by comparison with the literature spectra.
- The species in solutions of sodium molybdate at concentrations 1–10 mg/L and pH ca 7 is the the molybdate ion, [MoO₄]²⁻
- Absorption maximum (peak) at 207–208 nm (48000 cm-1).
- At lower pH [MoO₄]²⁻ ion is protonated to [HMoO₄]⁻ and [H₂MoO₄] species, the peaks in the UVspectra shift to lower energies (longer wavelengths)

Results

- Spectra as data files of wavelengths and intensities
- The spectra consist of overlapping peaks that were analyzed into Gaussian peaks using energy units (cm-1)
- Results:
- The spectra were identical with the reference spectra of sodium molybdate
- The molybdate anion is the species present in aqueous solutions of all compounds
- Concentration- and pH-dependent changes were identical (P.C.H. Mitchell, 2009)

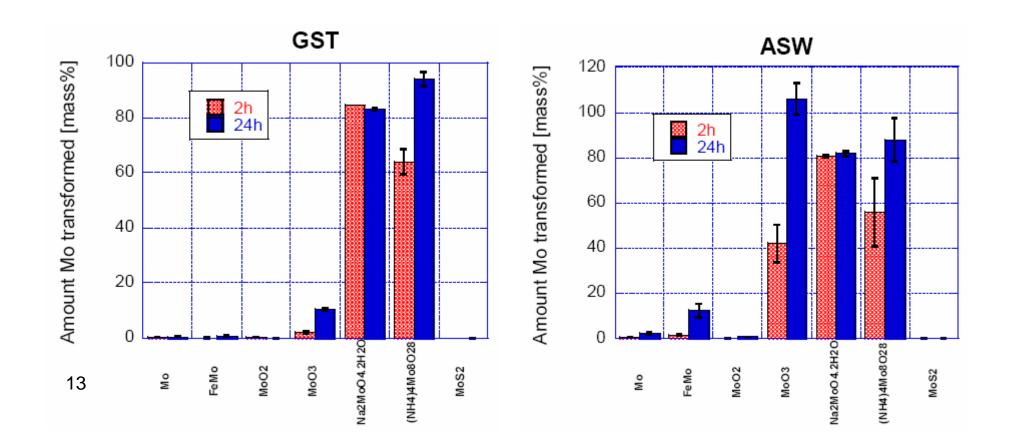
Hypothesis for the analog approach

- Upon dissolution in aqueous solutions at physiologically relevant concentrations and pH conditions, the only aqueous molybdenum species emerging from all considered molybdenum substances is the molybdate [MoO₄]²⁻ anion.
- For systemic toxicity, read-across between all molybdenum substances seems generally justified.
- Highly soluble molydates can be used as source chemicals.
- For poorly soluble Mo species, read-across form highly soluble/highly bioaccessible substances is likely to constitute a conservative overestimate.
- Impurities: separate analysis for every compound



- Based on in vitro bioaccessability studies with artificial body fluids.
 - Loading 0.1 g/L fluid, normalization for particle size distribution, incubation 2 and 24 h.
 - Additional in vivo kinetic data and in vitro dermal absorption studies available.
- Molybdate as only relevant species confirmed.
- Two groups for read across:
 - Highly and moderately bioaccessible molybdenum compounds.
 - Poorly available molybdenum compounds: water solubility well below 10 mg/L, accessibility in physiological media: < 10%.
- Exemption: local inflammatory changes by molybdenum trioxide and species that can liberate H₃O⁺.

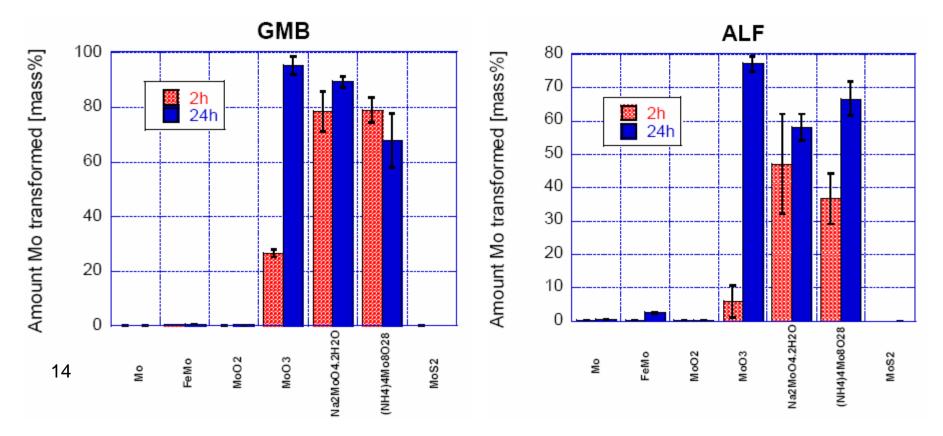
Bioaccessibility – results 1 (IMOA/EBRC 2008)


PBS, Phosphate-buffered saline (pH 7.4), is a <u>standard physiological</u> <u>solution</u> that mimics the ion strength of <u>human blood serum</u>. It is widely used in the research and medical health care community as a reference test solution for comparison of data under simulated physiological conditions.

Bioaccessibility – results 2 (IMOA/EBRC 2008)

ecetoc

GST: gastric juice (pH=1.5-1.6) ASW: Artificial sweat solution (pH 6.5)



Bioaccessibility – results 3 (IMOA/EBRC 2008)

GMB: Gamble's solution (pH 7.4) mimics interstitial fluid within the <u>deep</u> <u>lung under normal health</u> conditions.

ALF: Artificial lysosomal fluid (ALF, pH 4.5) simulates <u>intracellular</u> <u>conditions in lung cells</u> occurring in conjunction with phagocytosis and represents relatively <u>harsh</u> conditions.

- Sodium and ammonium molybdate and MoO₃ dissolved almost completely within 24h in all fluids, with the exception of MoO₃ in gastric juice (only 10% because reaction equilibrium is shifted due to low pH)
- RMC (previous results) also dissolved almost completely within 24h
 - differentiation between MoO₃ and RMC not justified
- Mo metal, FeMo, MoO₂ dissolved to a much lesser degree (~ 0.1 % - 3 %), depending on the medium (one exception: 13% of FeMo dissolved in sweat after 24h)
- MoS₂ was the least bioaccessible compound (<< 0.1 % dissolved)

Read across overview

Substance/Formula	CAS:	Properties 1)	Read-Across-Grouping Long-term effects	Read-Across-Grouping Acute effects
Roasted Molybdenite Concentrate (formula not available)	86089-09-0	<u>soluble</u> molybdenum substances water solubility above ca. 100 mg/L solubility in biological fluids 30-100% "high bioaccessibility"	Grouped based on chemical similarity for long-term, local effects via inhalation (suspected carcinogenicity via inhalation).	Grouped for all acute effects (local and systemic).
Molybdenum Trioxide MoO₃	1313-27-5			
Sodium Molybdate Na₂MoO₄	10102-40-6		Grouped for all long-term, systemic effects (all release MoO₄ ²⁺ ion).	
Ammonium Dimolybdate, (NH ₄) ₂ Mo ₂ O ₇	27546-07-2			
Ammonium Heptamolybdate, (NH₄)₅Mo ₇ O ₂₄	12027-67-7			
Ammonium Octamolybdate, (NH₄)₄Mo₀O₂₅	12411-64-2			
Calcium Molybdate CaMoO₄	7789-82-4			
Iron Molybdate Fe ₂ (MoO ₄) ₃	13769-81-8			
Molybdenum (metal) Mo	7439-98-7	Poorly/hardly soluble molybdenum substances water solubility well below ca. 10 mg/L solubility in biological fluids well below 10% "negligible bioaccessibility"	Grouped for all long-term, systemic effects (all release MoO4 ^{2*} ion). Conservative read-across to "high bioavailability" group above.	Grouped for all acute effects (local and systemic). Conservative read- across to "high bioavailability" group above.
Ferromolybdenum Slags (UVCB, formula not available)	84144-95-6			
Molybdenum Dioxide MoO ₂	18868-43-4			

16

- The read-across strategy was justified by the identification of one species present under relevant physiological conditions in all investigated materials.
- The investigation of the most soluble compound releasing this species was considered a conservative approach.
- Further differentiation was reached considering two basic groups of bioavailability.
- Every endpoint was examined for the appropriateness of read across.
- Exemptions were identified and explained.

Acknowledgement

- Molybdenum REACH consortium
- IMOA
- Prof. Mitchell Univ. Reading
- Kevin Klipsch, EBRC