Verifying the efficiency of solvent RMMs

Dr. Susanne Hesse

Dr. Katharina Blümlein

06.11.2015

Project Background

- ECETOC TRA used for solvent CSAs
- Basis = generic exposure scenarios developed by ESIG/ESVOC
- However, RMMs within TRA not sufficient / realistic for solvent scenarios

RMMs / phrases identified by ESIG on basis of CONCAWE report 11/12

- Various levels of containment in combination with ventilation
- Use of drum pumps for filling procedures
- Draining and flushing procedures for maintenance operations
- Lack of experimental data on efficiency

Search and/or generate experimental data

Phrase Description	Phrase Codes	Reduction (estimated %)	Boundary of Application
Minimise exposure by extracted	E61	90 (prof)	All PROCs
full enclosure for the operation or equipment		95 (ind)	
Minimise exposure by partial	E60	80 (prof)	All PROCs except 7 and 11
enclosure of the operation or equipment and provide extract ventilation at openings		90 (ind)	(spray operations)
Restrict area of openings to equipment	E68	80 (all uses)	All PROCs except 7 and 11 (spray operations)
Drain down and flush system prior to equipment break-in or maintenance	E55	90 (ind)	Only maintenance activities (essentially PROC 8a) in industrial settings
Draindownsystempriortoequipmentbreak-inormaintenanceorDrainorremovesubstancefromequipmentpriortobreak-inormaintenance	E65 <u>or</u> E81	80 (all uses)	Only maintenance activities (essentially PROC 8a)
Use drum pumps	E53	80 (all uses)	Only material transfer activities for liquid substances (essentially PROCs 3, 4, 8a and 8b). Moderate volumes (drums, IBCs).

Available literature + further information

- Literature research (WebOfScience, SciFinder, Scopus) on efficiencies:
 - Hardly solvent specific information (dust, mwf, ...)
- Industry (drum pump manufacturers, formulators, adhesives association, ...): Mostly qualitative information

No good database for solvent related scenarios and RMMs
Experimental studies

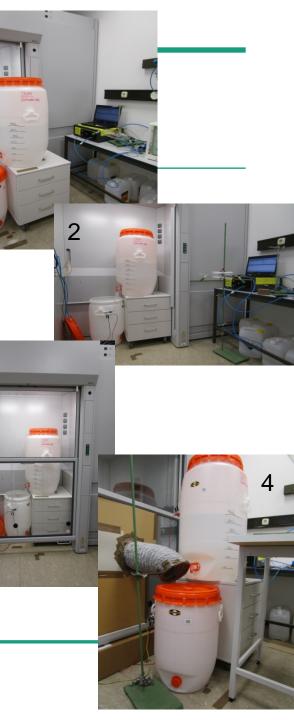
Development of experiments

- All evaluated phrases should be covered with a minimum of experiments
- Tasks should be compatible with the corresponding phrases
 - Tasks should be representative for the solvent sector
- Transfer activities (e.g. PROC8a, 8b) = representative task for most phrases (containment and drum pump phrases)
- "Worst case" task (large surface, spilling possible)
- Flushing and draining: drum = surrogate for generic parts of equipment (flushed vs. just drained)
 - Evaluation of several RMMs with a small number of experiments and a standardised and pragmatic set-up.

Development of experiments

- Discussion of scenario setup + several iterations of refinement
- Experimental pilot study: establishment of experimental set-up, data acquisitions / sampling and evaluation

Main equipment:


- Reservoir and collection containers (120 and 60 L) with removable lids; two openings
- Drum pump set "Solvents"
- Portable IR-Spectrometer
- Antistatica Kit
- Fume hood
- bioethanol

Scenarios

#	Scenario			
	Baseline – Gravity transfer from an open container	1		
1	into another open container with no exhaust and			
	ventilation system in place	T		
Gravity Transfer (splash loading)				
	Open gravity transfer with partial enclosure (inside			
2	open fume cupboard) into a container. Room			
	ventilation and fume cupboard switched on.			
	Open gravity transfer with full enclosure (inside	3		
3	closed fume cupboard) into a container. Room			
	ventilation and fume cupboard switched on.			
	Gravity transfer from an open container into another	0		
	open container – application of a local exhaust	T		
4	system (LEV, elephant trunk) and no enclosure			
	(outside fume cupboard). Room ventilation switched			
	on.	-		

Drum Pump Transfer (submerged loading)

5

9

Drum pump transfer (lids on containers) with no exhaust and no room ventilation

Drum pump transfer (lids on containers) with partial

6 enclosure (inside open fume cupboard). Room ventilation and fume cupboard switched on.

Drum pump transfer (lids on containers), room
ventilation and a local exhaust ventilation system in place (elephant trunk)

Drain and Flush

Base configuration for scenario 9: Drained
container without flushing with no exhaust and ventilation system in place

Flushed container with no exhaust and no room ventilation system in place

Phrase (experimental aspect represented by comparison)	% exp.	% estimated
Gravity transfer		
E60: Minimise exposure by partial enclosure of the operation or equipment and provide extract ventilation at openings (open fume cupboard, switched on, room ventilation)	98.8	80/90
E61: Minimise exposure by extracted full enclosure for the operation or equipment (closed fume cupboard, switched on, room ventilation)	(>99)	90/95
E54: Provide extract ventilation to points where emissions occur; or E66: Ensure material transfers are under containment or extract ventilation (LEV + room ventilation)	97.1	(75-95 LEV, 30/70 GV, ECETOC TRA)
Drum pump transfer		
E53: Use drum pumps; (E68: Restrict area of openings to equipment) (drum pump (with closed container lids))	93.5	80 (E53/ E68)
E53 (E68) and E66 (drum pump (with closed container lids) + open fume cupboard, switched on, room ventilation)	99.5	-
E53 (E68), and E54 or E66 and room ventilation (drum pump (with closed container lids) + LEV + room ventilation)	98.9	-
Draining and flushing		
E55: Drain down and flush system prior to equipment break-in or maintenance (working on flushed equipment)	95.2	90
		ITEM

Summary + conclusion

- Selected RMMs / phrases were evaluted: ventilation, enclosure, drum pumps
- \blacksquare Limited information available in literature \rightarrow experimental studies
- Assessed situation and all exposure parameters have to be considered in order to ensure that the expected exposure reductions will be met.
- Efficiency results for the evaluted RMMs are only valid for the specific process of solvent transfer (not removal of drum pump etc.)
- New experimental data seem to support ESIG suggestions (all comparisons with worst case baseline result in >90%)
- Even higher efficiencies may be reached when the task is undertaken in a wellcontrolled setting
- Ventilated containment (fume cupboard) and drum pump can both give high efficiency for transfer activities → suitable alternatives for LEV

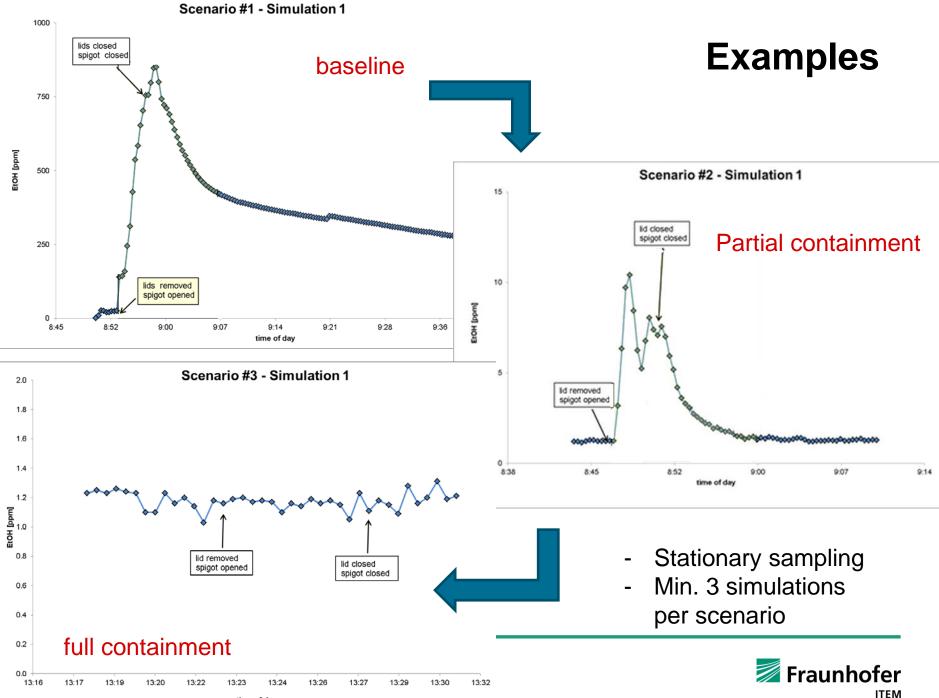
Lessons learnt during this project

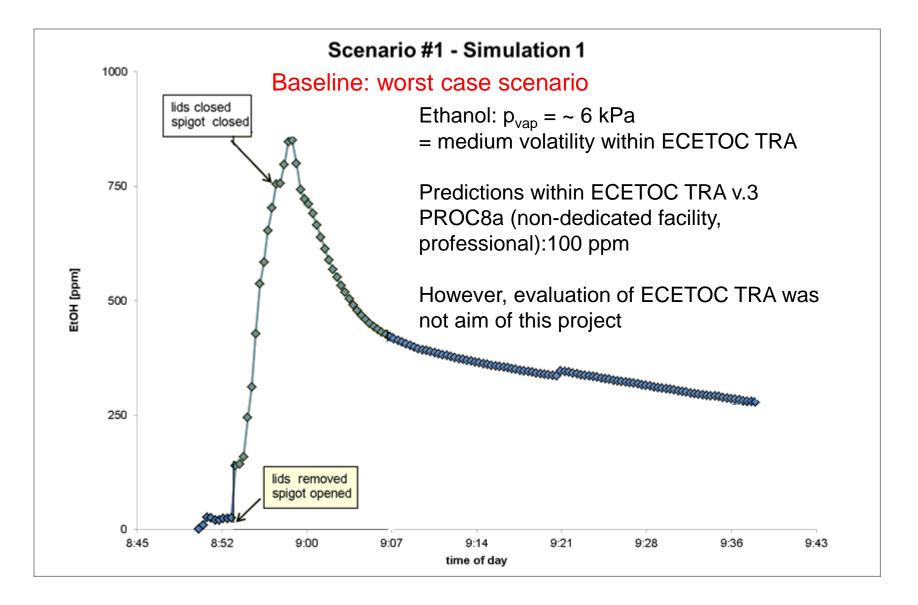
- Careful design of experimental setup:
 - Clear definitions and assignments of phrases
 - Technical details
- Choice of baseline scenario:
 - Realistic and relevant worst case
- Data evaluation and sampling:
 - Personal sampling vs static sampling
 - Peak concentration, average …

Thank you very much for your attention!

Acknowledgements:

ESIG - European Solvents Industry Group


Dr. Susanne Hesse susanne.hesse@item.fraunhofer.de


Dr. Katharina Blümlein katharina.bluemlein@item.fraunhofer.de

Fraunhofer Institute for Toxicology and Experimental Medicine Nikolai-Fuchs-Str. 1 30625 Hannover

