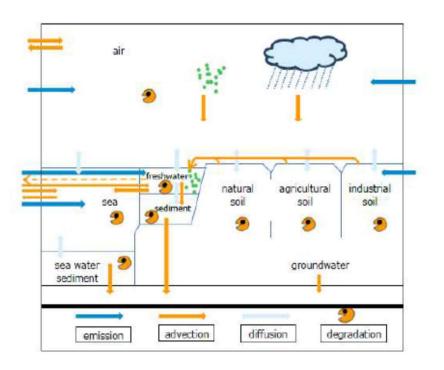



#### Current limitations and update needs identified by workshop organising committee - Part II

EUSES Update workshop 4 June 2018






#### **Sediment/water**

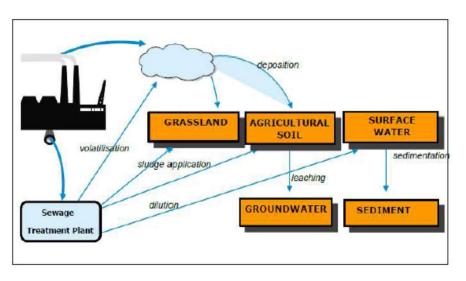
- 14. Marine versus freshwater sediment
- 15. PECregional, sediment
- 16. Nested local scale multimedia model

Frederik Verdonck

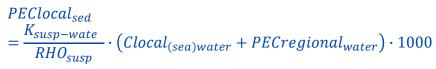


# **Current situation Regional assessment**




• **Kp** is same for freshwater and marine sediment PEC calculation

• Fully interlinked compartments




## **Current situation**

## Local assessment



- **Kp** is same for freshwater and marine sediment PEC calculation
- The regional PECsediment is not used in local PECsediment calculation



• Model concept: "separate" one compartment models



#### Different Kp(susp) and Kp(sed) for seawater and freshwater

- Option 1: Include <u>separate Kp for marine</u> <u>compartment</u> (default: Kp marine = Kp freshw)
- Option 2: Improve the environmental characteristics of the marine water and sediment compartments in order to <u>improve default</u> <u>calculation</u> of the Kp(susp) and Kp(sed) for marine environment



#### Different Kp(susp) and Kp(sed) for seawater and freshwater

| Partition coefficients and bioconcentration factors           |                  |                       |              | <b>Ontion</b>               |
|---------------------------------------------------------------|------------------|-----------------------|--------------|-----------------------------|
| Solids-water Air-water Bioconcentration factors Biota-water   |                  |                       | 1            | <b>Option</b>               |
| Chemical class for Koc-QSAR Non-hydroph                       | obics (default Q | ISAR)                 | ▼ d          | ophobics (default QSAR) 🗾 d |
| Organic carbon-water partition coefficient                    | ??               | <br>[l.kg-1]          | o            | ?? [l.kg-1] o               |
| Solids-water partition coefficient in soil                    | ??               | [l.kg-1]              | o            | ?? [l.kg-1] o               |
| Solids-water partition coefficient in sediment                | ??               | <br>[l.kg-1]          | 0            | ?? [l.kg-1] o               |
| Solids-water partition coefficient suspended matter           | ??               | [l.kg-1]              | o            | ?? [l.kg-1] o               |
| Solids-water partition coefficient in raw sewage sludge       | ??               | <br>[l.kg-1]          | o            |                             |
| Solids-water partition coefficient in settled sewage sludge   | ??               | [l.kg-1]              | o            |                             |
| Solids-water partition coefficient in activated sewage sludge | ??               | [l.kg-1]              | o            | Option 1                    |
| Solids-water partition coefficient in effluent sewage sludge  | ??               | [l.kg-1]              | o            | opnon -                     |
| Soil-water partition coefficient                              | ??               | [m3.m-3]              | o            |                             |
| Suspended matter-water partition coefficient                  | ??               | [m3.m-3]              | o            |                             |
| Sediment-water partition coefficient                          | ??               | [m3.m-3]              | o            |                             |
|                                                               |                  |                       |              |                             |
|                                                               |                  |                       |              |                             |
|                                                               | 1                |                       |              |                             |
| <u>♦ Prev</u> <u>▶ N</u> ext <u>▶ Finish</u> <u>5 Unde</u>    | • X A            | <u>b</u> ort <b>?</b> | <u>H</u> elp |                             |

2



#### Nested local scale multimedia model

- **Option 1**: Improve local scale model by taking improved items from option 2:
  - Two compartment water/sediment model
  - Consideration of additional fate processes
  - Improved air deposition
  - Nesting local scale model
- Option 2: Complete nested local scale
   multimedia model



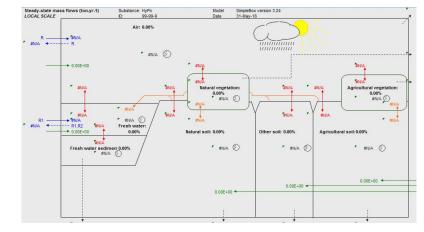
#### **Nested local scale model**

Considerat Change proposed processes

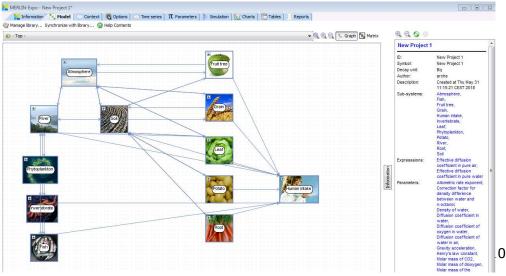
Consideration of additional fate processes

|                                                        | Flowing water body               |        |                                  | 'Static' water body |                                    |
|--------------------------------------------------------|----------------------------------|--------|----------------------------------|---------------------|------------------------------------|
|                                                        | EUSES PT 8 ESD                   |        | PT 8 ESD                         |                     |                                    |
| Fate process                                           | Local scale                      | Tier 1 | Tier 2                           | Tier 1              | Tier 2                             |
| Adsorption/desorptio<br>n suspended matter             | x                                |        | x                                |                     | x                                  |
| Sedimentation and resuspension                         |                                  |        |                                  |                     | To be considered<br>as higher tier |
| Degradation in water<br>(removal from water<br>column) | To be considered as higher tier? | x      | x                                | x                   | x                                  |
| Adsorption/desorptio<br>n sediment                     | (X)                              | (X)    | (X)                              | (X)                 | x                                  |
| Degradation in sediment                                |                                  |        |                                  |                     |                                    |
| Sediment burial                                        | To be considered as higher tier? |        | To be considered as higher tier? |                     | To be considered<br>as higher tier |
| Irreversible binding<br>to minerals = ageing           | To be considered as higher tier? |        | To be considered as higher tier? |                     | To be considered<br>as higher tier |




#### Why to propose change

| Proposed update                       | Benefit                                                                                                    |
|---------------------------------------|------------------------------------------------------------------------------------------------------------|
| Different Kp for<br>freshwater/marine | Allows to differentiate between<br>seawater and freshwater where<br>partitioning behaviour is<br>different |
| PECregional sediment in<br>PEClocal   | Improved local<br>PEC sediment<br>(in case of measured regional<br>PEC sediment)                           |
| Nested local multimedia scale model   | Improved local PEC calculation                                                                             |




#### **Support for implementation**

- ESD PT8
- spreadsheet version
   3.0 of Simplebox



• ERLINE

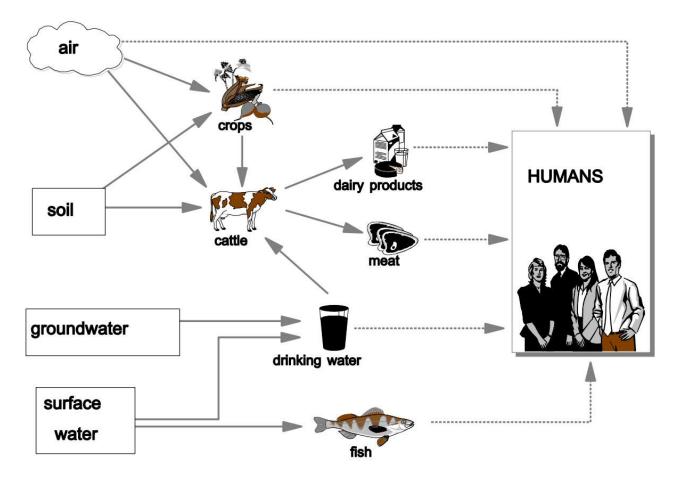




#### Conclusions

| Proposed update                                                | Proposed priority                                   |
|----------------------------------------------------------------|-----------------------------------------------------|
| Different Kp for<br>freshwater/marine                          | Doody / impostopt                                   |
| Option 1: user-input<br>Option 2: QSAR calc                    | Ready / important<br>Not ready / low importance     |
| PECregional sediment in PEClocal                               | Ready / important                                   |
| <b>Nested local scale</b><br>Option 1: light<br>Option 2: full | Not ready / important<br>Not ready / low importance |

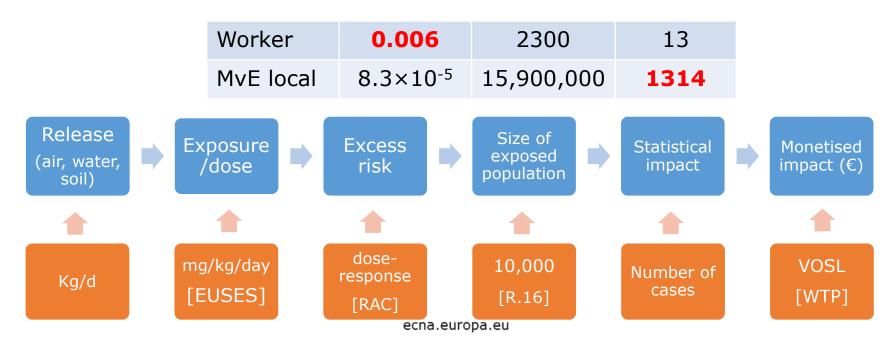



#### Man via the environment

- 17. Man indirectly exposed via the environment
- 18. Man via the environment: alternative model for crop exposure pathway

Frederik Verdonck & Joost Bakker




# Man (indirectly exposed) via the environment scenario





#### **Importance of MvE scenario**

- Standard default scenario REACH / BPR
- Usually environment is driving risk assessment
- More important under REACH Authorization:





#### **Current situation EUSES**

| Predator exposure                                    |    |              |   |
|------------------------------------------------------|----|--------------|---|
| Bioconcentration factor for earthworms               | ?? | [l.kgwwt-1]  | u |
| Human and predator exposure                          |    |              |   |
| Bioconcentration factor for fish                     | ?? | [l.kgwwt-1]  | ο |
| QSAR valid for calculation of BCF-Fish               |    | Yes          | 0 |
| Biomagnification factor in fish                      | 1  |              | o |
| Biomagnification factor in predator                  | 1  |              | 0 |
| Human exposure                                       |    |              |   |
| Partition coefficient between leaves and air         | ?? | [m3.m-3]     | 0 |
| Partition coefficient between plant tissue and water | ?? | [m3.m-3]     | o |
| Transpiration-stream concentration factor            | ?? |              | o |
| Bioaccumulation factor for meat                      | 22 | [d.kg-1]     | o |
| Bioaccumulation factor for milk                      | 25 | <br>[d.kg-1] | o |
| Purification factor for surface water                | 1  | [-]          | 0 |



#### Why needed?

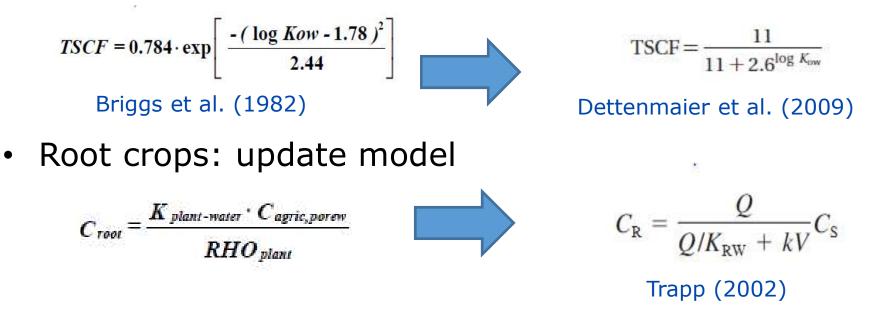
|                                                                                | Current EUSES                                                                                                                                                                      |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Organic, non-ionized,<br>non-dissociating<br>chemicals<br>(log Kow driven)     | <ul> <li>Plant leaves underestimated for<br/>hydrophilic compounds</li> <li>Root crops are overestimated</li> <li>Improved meat/milk estimation<br/>(biotransformation)</li> </ul> |
| Ionized, dissociating<br>chemicals (e.g.<br>metals) (not driven<br>by log Kow) | <ul> <li>Plants and roots: out of<br/>applicability domain</li> </ul>                                                                                                              |



| Kow | drive | n? |
|-----|-------|----|
|     | UIIVE |    |

yes

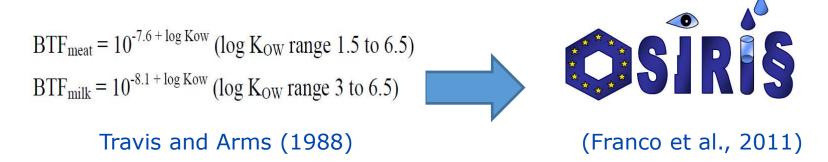
| Predator exposure       |                |                 |        |             |        |
|-------------------------|----------------|-----------------|--------|-------------|--------|
| Bioconcentration fact   | or for earthwo | rms             | ??     | [l.kgwwt-1] | u      |
| Human and predator      | exposure       |                 |        |             |        |
| Bioconcentration fact   | or for fish    |                 | 25     | [l.kgwwt-1] | 0      |
| QSAR valid for calcul   | ation of BCF-F | ish             |        | Yes         | 0      |
| Biomagnification facto  | or in fish     |                 | 1      | [-]         | 0      |
| Biomagnification facto  | or in predator |                 | 1      | [-]         | 0      |
| Human exposure          |                |                 |        |             |        |
| Partition coefficient b | etween leaves  | and air         | 22     | [m3.m-3]    | 0      |
| Partition coefficient b | etween plant t | issue and water | 22     | [m3.m-3]    | 0      |
| Transpiration-stream (  | concentration  | factor          | 22     | [-]         | 0      |
| Bioaccumulation facto   | or for meat    |                 | 22     | [d.kg-1]    | 0      |
| Bioaccumulation facto   | or for milk    |                 | 22     | [d.kg-1]    | 0      |
| Purification factor for | surface water  |                 | 1      | [-]         | 0      |
|                         |                |                 |        |             |        |
| A Prev                  | <u>N</u> ext   | <b>Finish</b>   | 5 Undo | X Abort     | ? Help |


#### Partition coefficients and bioconcentration factors Solids-water Air-water Bioconcentration factors Biota-water Predator exposure u Bioconcentration factor for earthworms ?? [l.kgwwt-1] Human and predator exposure 0 **Bioconcentration factor for fish** ?? [l.kgwwt-1] Yes 0 QSAR valid for calculation of BCF-Fish 0 Biomagnification factor in fish 1 [-] 0 Biomagnification factor in predator 1 [-] Human exposure 0 Partition coefficient between leaves and air ?? [m3.m-3] 0 ?? Partition coefficient between plant tissue and water [m3.m-3] 0 ?? [-] Transpiration-stream concentration factor 0 ?? [d.kg-1] **Bioaccumulation factor for meat** 0 Bioaccumulation factor for milk 22 [d.kg-1] 0 Purification factor for surface water 1 [-] Finish X Abort ? Help Prev Next 😏 Undo

no



# Change proposed (Kow driven)


 Plant leaves: update transpiration stream concentration factor





# Change proposed (Kow driven)

• Meat/milk





# Change proposed (not Kow driven)

• Allow user to input transfer factors

• $TF_{roots,soil}$  is the dwt transfer factor from soil to roots (expressed in  $kg_{soil}$ .  $kg_{roots}^{-1}$ )

•*TF*<sub>*leaves,soil*</sub> is the dwt transfer factor from soil to leaves (expressed in  $kg_{soil}$ .  $kg_{leaves}^{-1}$ )

• $TF_{grass,soil}$  is the dwt transfer factor from soil to grass (expressed in  $kg_{soil}$ . $kg_{grass}^{-1}$ )



# Change proposed (not Kow driven)

Model equations

 $C_{roots} = TF_{roots,soil} \cdot C_{soil}$  $C_{leaves} = TF_{leaves,soil} \cdot C_{soil}$  $C_{grass} = TF_{grass,soil} \cdot C_{soil}$ 



#### Conclusions

| MvE updates                                                                    | Proposed priority |
|--------------------------------------------------------------------------------|-------------------|
| Organic, non-ionized,<br>non-dissociating<br>chemicals<br>(log Kow driven)     | Ready / important |
| Ionized, dissociating<br>chemicals (e.g.<br>metals) (not driven<br>by log Kow) | Ready / important |



#### **19 Secondary poisoning**

Joost Bakker, RIVM



#### **Current situation**

To provide a first indication that secondary poisoning is a critical process three food chains are considered in EUSES:

Water (freshwater and marine environment) => fish => fish-eating predator

Water (marine environment) => fish => fisheating predator => top-predator

Soil => earthworm => worm-eating predator

echa.europa.eu



#### **Current situation**

- For the freshwater and marine environment besides BCFs also biomagnification factors (BMF) must be applied.
- Default values for BMFs can either be based on the available log  $K_{ow}$  or BCF:

| Log Kow  | $\frac{\mathbf{BCF}(\mathbf{fish})}{[m^3.kg_{wwt}^{-1}]}$ | BMF <sub>1</sub> | BMF <sub>2</sub> |
|----------|-----------------------------------------------------------|------------------|------------------|
| < 4.5    | <2                                                        | 1                | 1                |
| 4.5 - <5 | 2-5                                                       | 2                | 2                |
| 5 - 8    | > 5                                                       | 10               | 10               |
| >8-9     | 5-2                                                       | 3                | 3                |
| >9       | < 2                                                       | 1                | 1                |



#### **Proposed change**

1.Modifying aquatic food chain by including an additional trophic level of piscivorous fish and considering fish feeding on plankton as proposed in the OSIRIS project:

Water => plankton => fish => piscivorous fish

Feeding on plankton can also contribute to bioaccumulation and potential biomagnification due extra trophic level is ignored in EUSES



#### **Proposed change**

2. Addition or Extension of terrestrial food chain:

Soil => earthworm => worm-eating predator => top-predator

To promote consistency in the risk assessment the same number of trophic levels as for the aquatic food chain is advocated

BMFs are required for terrestrial top-predators. BMF-Kow relationships or QSAR models needed.



#### **Priority level**

- Medium importance
  - Secondary poisoning particularly relevant for chemicals with log Kow 5-8
- Not ready
  - Proposal for aquatic food chain is documented and verified (OSIRIS proposal). Decide on how to fit in with current food chains in EUSES
  - For the terrestrial food chain default values for BMFs should be provided. Further research needed on availability and whether aquatic BMFs can be used in absence of terrestrial BMFs.



#### 20. Nanomaterials (chemicals in solid state/particulates)

Joris Quik (RIVM)



National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport



#### **Current situation in EUSES**

- Distribution over gas, liquid and solid media by thermodynamic equilibrium (partitioning)
- Not applicable to nanomaterials/particulates
  - 1. Thermodynamically unstable
  - 2. Dissolution as removal
  - 3. Transformation products





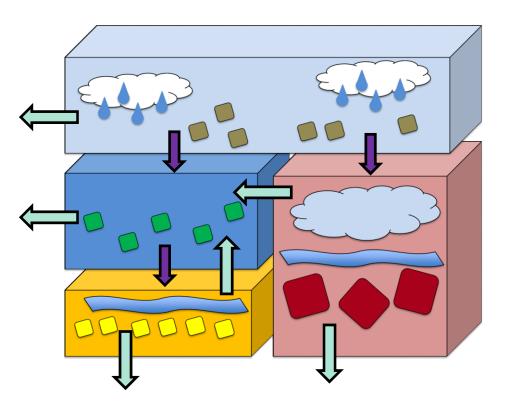
#### Proposed change (1)





Deposition Dissolution

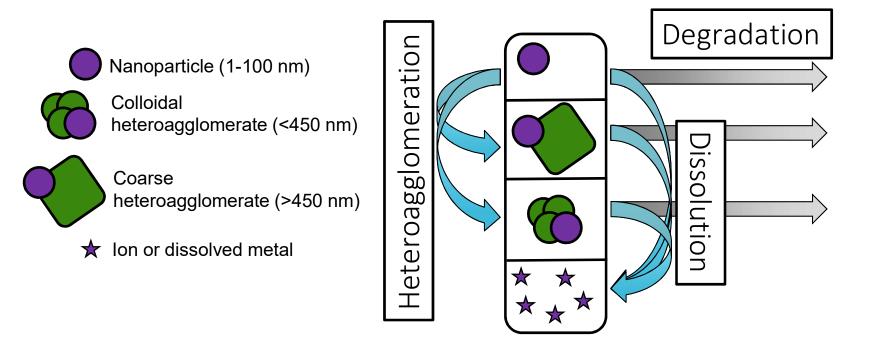
Attachment to natural particles


Use of process rate constants!





## **Proposed change (2)**


- Transport processes
  - Deposition
  - Advection
  - No evaporation





## **Proposed change (3)**

• Transformation processes included:





#### **Proposed change**

#### Output concentrations:

• Free:



- Bioavailable: + (< 450 nm)
- Total: + + +



#### **Priority level**

- High importance
  - Technically ready with respect to fate modelling of nanomaterials at regional scale
  - Modelling approach facilitates other improvements:
    - Metal species and microplastics
  - REACH Annexes adapted for nanomaterials
    - Indicating specific requirements, come into effect 1-1-2020
  - Not ready for implementation
    - Related to other EUSES modules: emission, local scale, etc



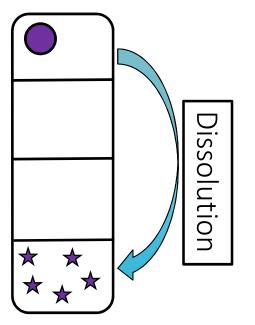
# 21. Release and fate of sparingly soluble chemicals

Joris Quik (RIVM)



#### **Current status in EUSES**

- Enable EUSES to consider in the exposure estimation the dissolution of solid substances.
- This particularly affects substances emitted in solid form, particularly metals




# **Proposed change/way forward**

Dissolution rate constant •



Nanoparticle (1-100 nm)



★ Ion or dissolved metal



# **Priority level**

- Suggested priority: Not ready/ low importance
  - Affects all sparingly soluble chemicals
  - Proposed method similar to implementation for nanomaterials
  - Impact on exposure can be large.
  - New data requirement
    - OECD 29 (7 days) for metals is not directly a testing requirement but can replace the water solubility endpoint for metals and metal compounds.
    - Other OECD TG's in development for estimating dissolution rate in relation to nanomaterials.



#### 22-24 Metals

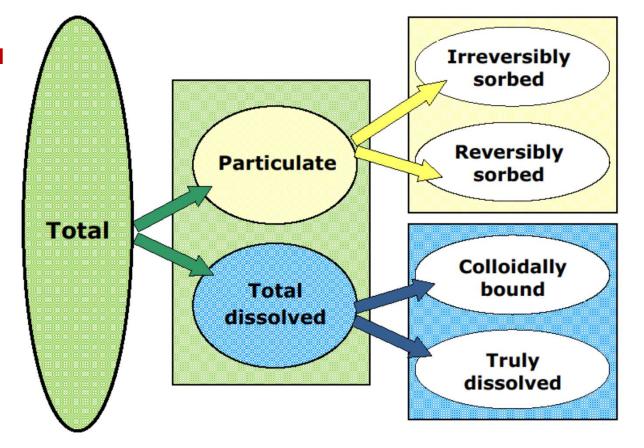
Anna Hadam Frederik Verdonck



# **Gaps for metals**

| Current situation in EUSES                            | Problems identified for metals                                                 |
|-------------------------------------------------------|--------------------------------------------------------------------------------|
| Primarily developed for neutral organic substances    | Numerous inadequate assumptions for metals                                     |
| Only the total dissolved<br>and particulate fractions | Overestimation of the actual (bio)availability and toxicity                    |
| Kd values:                                            |                                                                                |
| calculated based on the log Kow                       | Kd measured values needed                                                      |
| independent on the environmental chemistry            | posteriori bio-availability correction outside EUSES (for both PECs and PNECs) |
| Mackay level III model                                | Longer-term / additional specific fate<br>processes not taken into account     |
| No possibilities for the Added Risk<br>Approach       | Manual calculations outside EUSES                                              |

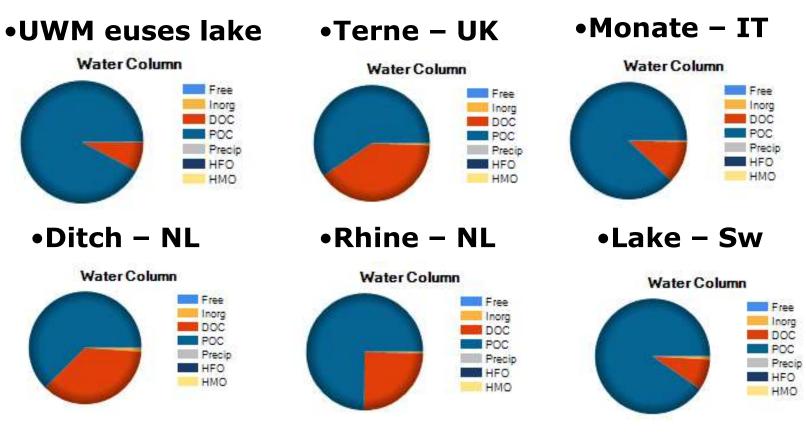





- metals bioavailability
- PECs refinement
- metal-specific fate processes
- natural background concentration



#### **Truly dissolved form**


•(e.g.) WHAM



#### •Site-specific chemical conditions (pH, DOC, cations & anions ...)

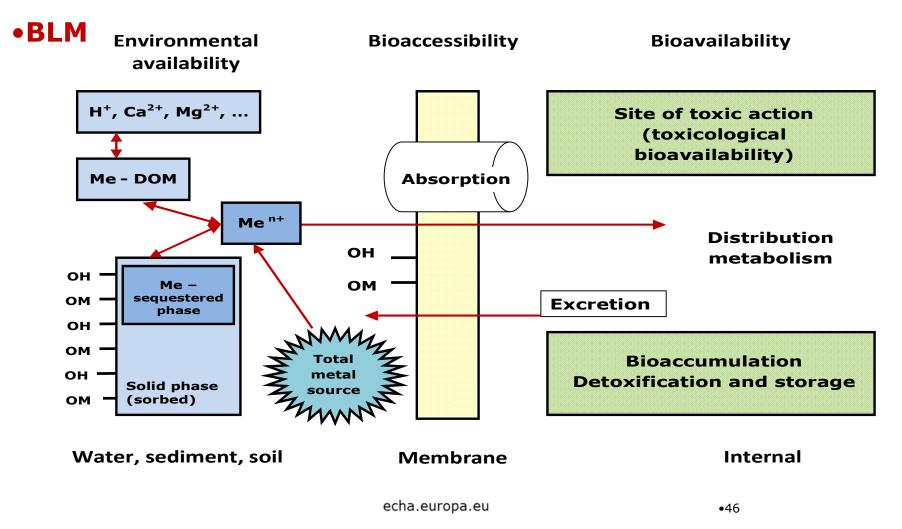


#### **Ecoregion impact on Cu speciation in surface water**



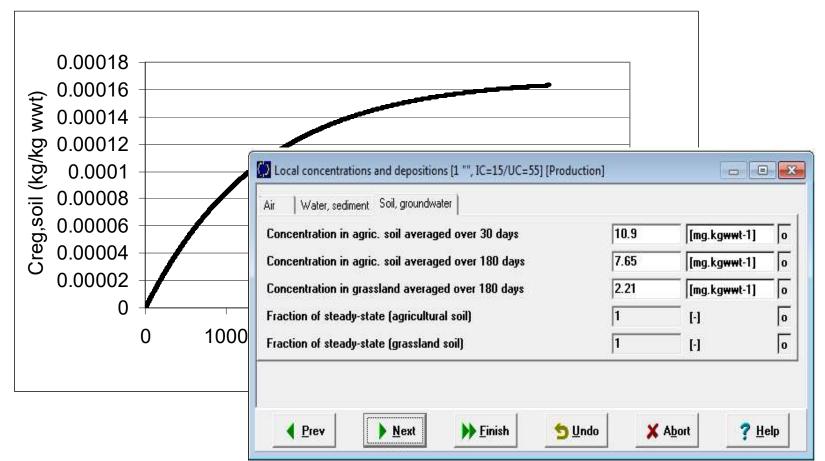


### **Impact of Kd on exposure**


#### •Big impact on dissolved water concentration

| EUSES                          | PEC freshwater  |                     | PEC sediment         |
|--------------------------------|-----------------|---------------------|----------------------|
|                                | Total<br>(ug/L) | Dissolved<br>(ug/L) | Total<br>(ug/kg wwt) |
| Cu Kd, suspended matter        |                 |                     |                      |
| 10th percentile = 5,752 L/kg   | 0.25            | 0.23                | 516                  |
| 50th percentile = 30,246 L/kg  | 0.15            | 0.1                 | 1209                 |
| 90th percentile = 194,228 L/kg | 0.08            | 0.02                | 1653                 |

•10x




# **Bioavailability concept**

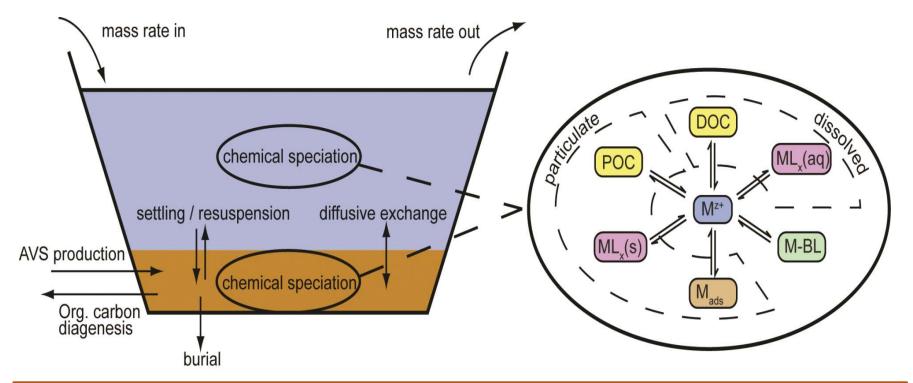




# **PECs refinement (regional scale)**






# **Comparison metal fate and transport processes**

|                                                                                                                              | EUSES | TICKET-UWM |
|------------------------------------------------------------------------------------------------------------------------------|-------|------------|
| adsorption to particulate organic carbon (POC)                                                                               | (X)   | X          |
| dissolved and particulate phase transport between water and sediment                                                         | X     | x          |
| metal binding to inorganic ligands, DOC and POC (using WHAM V), hydrous ferric oxide (HFO) and hydrous manganese oxide (HMO) | (X)   | x          |
| metal binding to biological receptors (using BLM)                                                                            |       | X          |
| metal precipitation as (hydr)oxides, carbonates and sulphides (using MINEQL+)                                                |       | x          |
| dissolution kinetics for metal powders, massives, etc.                                                                       |       | X          |
| average annual cycling of organic matter and sulphide production                                                             |       | X          |



#### **Additional metal-specific fate processes**

•TICKET – UWM »>>> water and sediment



•metal binding, metal precipitation, dissolution kinetics, cycling of organic matter, sulphide production



#### **Additional metal-specific fate processes**

#### •IDMM»»» soil

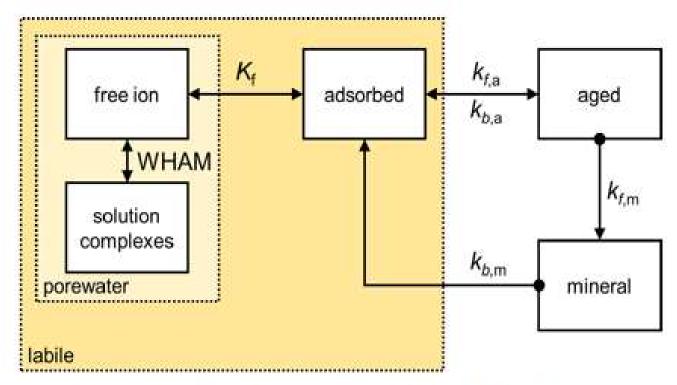
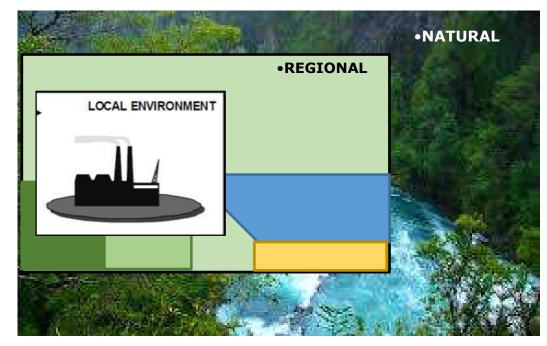



Figure 2. Schematic diagram of metal transformations in soils. Large K denotes an equilibrium transformation parameter, small k denotes a kinetic transformation parameter.




#### **Natural background concentration**

• Total Risk Approach

•PECIocal <sub>compartment, total</sub> =

•PEClocal <sub>compartment</sub>, added + PECregional <sub>compartment</sub> + PEC natural/pristine <sub>compartment</sub>





#### Conclusions

| Proposed change                  | Proposed priority                                 |
|----------------------------------|---------------------------------------------------|
| Bioavailability concept          | Not ready (long-term project)<br>Highly important |
| PECs refinement                  | Ready<br>Highly important                         |
| Additional fate processes        | Not ready (long-term project)<br>Highly important |
| Natural background concentration | Ready<br>Highly important                         |



# **Considerations for the future**

- choice of the average /worst-case biochemical regions for each kind of metal/ in the UE (representative pH, DOC, alkalinity, etc. of the environmental compartments; number of representative regions);
- validation and agreement on the choice of geochemical speciation (e.g. WHAM) and BLM models;
- method of EUSES update (Kp and PNEC values derivation outside EUSES or implementation of the agreed tools into EUSES)
- addition of long-term metal mineralisation (insolubilization) fate process



FS1

25. Parallel assessment (for multi-constituent substances and for substances transforming on use/ in STP)

Heike Schimmepfennig

Slide 54

#### FS1 just few little correction to you draft FRATTINI Stefano, 29/05/2018



# **Current situation in EUSES**

- Hydrocarbon Block Method (HBM) module
  - enables parallel exposure and hazard assessments of defined "blocks".
  - developed to support the assessment of multiconstituent chemicals (initially hydrocarbons)
- Locked for biocides assessment on local scale!



# Proposed change (1)

- Parallel assessment concept applicable to other cases than hydrocarbons:
  - Assessment of multi-constituents chemicals (or UVCBs)
  - Assessment of several substances part of a mixture
  - Assessment of substance and its transformation product
- Similar to risk assessment approach implemented in Chesar (for REACH)
  - "Assessment Entities" for multi-constituent/UVCB substances and transformation products
  - Logic in line with HBM module



# **Proposed change (2)**

- Functioning of assessment entities in Chesar
  - Introducing separate properties data sets => Data sets of various constituents of a substance or transformation product(s) and/or parent substance
  - Proportion for each element to be set by assessor
- $\rightarrow$  HBM module in EUSES to be used in same way
  - Note: static parallel assessment only possible where no temporal variations taken into account



#### **Proposed way forward**

- Unlock HBM for biocides and adapt it to biocides specific emission estimation
- Rename it more generically to reflect its usability for UVCB substances, mixtures, etc. falling under REACH and biocides regulations



# Priority level IE4

- High importance
  - Possibility for parallel exposure/risk assessment not available for biocides assessment
  - Assessment of multi-constituent and UVCB substances, mixtures, several active substances/substances of concern in biocidal products, parent substance and transformation products (or substances generated in situ with precursors) legally required
  - Ready for implementation

**TE4** shall we present the suggested priority level using the same structure as described in the introduction BD and Anna's presentation ? TSITSIOU Eleni, 30/05/2018



#### **26. Assessment of substance transforming in the environment**

Heike Schimmelpfennig



# **Current situation in EUSES**

- No module available in EUSES enabling exposure/risk assessment for transformation products and/or parent substance, taking into account degradation/transformation processes
  - As e.g. implemented in FOCUS models (PEARL, PELMO, GOCUS Surface water)



### **Proposed change/way forward**

- Explore the need for refining the assessment methods when substances are transformed in the environment for REACH substances and biocides
- Information available
  - Multi-species mass balance modelling implemented by Van Zelm et al. (2008)
  - OSIRIS project, documented by Ng et al. (2011)



# **Priority level**

- Medium importance
  - Need for further validation of available principles and methodology of modelling + regulatory relevance and acceptance of it needs
  - Update would affect limited number of substances transforming in the environment into products of concern
  - Not ready for implementation



# **27. Aggregate local exposure assessment (biocides)**

Heike Schimmelpfennig



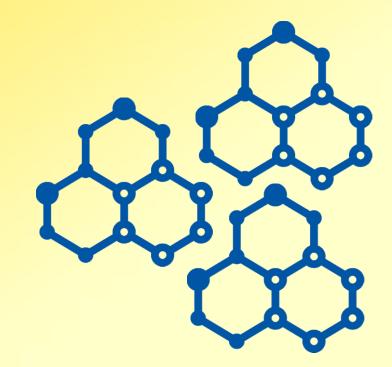
#### **Current situation**

- BPR: Within the process of evaluation of dossiers for biocidal products, possibility of aggregated exposure must be taken into account (BPR Annex VI, Article 8(3) and Article 19, 2(c))
  - Specific guidance currently under preparation, decision tree already available
- EUSES: Exposure assessments for biocides per single use => aggregated exposure assessment performed outside EUSES



#### **Proposed change/way forward**

- Implement in EUSES possibility to assess several uses for same active substance in one assessment (within one PT + between different PTs)
- Note: Chesar already supports local assessment of sum of all widespread uses
  - But: simultaneous use at a given site not yet supported in current Chesar version




# **Priority level**

- High importance
  - for biocides according to ECHA
  - reservations from ECETOC
  - Nearly ready for implementation



#### Thank you!

