# 4 HUMAN HEALTH

## 4.1.3 Risk characterisation <sup>1</sup>

## 4.1.3.1 General aspects

Humans may be exposed to chloroform at workplace from the industrial production of chloroform or indirectly in swimming pools and via the environment. The use of chloroform is limited to professional and industrial applications through regulation (see 4.1.1.1), thus no direct consumer use of chloroform and consequently no direct public exposure is expected (see 4.1.1.3). The indirect consumer exposure results from the formation of chloroform in chlorinated drinking water and swimming pools.

Chloroform is well absorbed, metabolized and eliminated by mammals after oral, inhalation or dermal exposure. Chloroform is hence widely distributed in the entire organism, via blood circulation and, due to its liposolubility, preferentially in fatty tissues and in the brain. Nearly all tissues of the body are capable of metabolizing chloroform, but the rate of metabolism is greatest in liver, kidney cortex, and nasal mucosa.

Chloroform can cross the placenta, transplacental transfer has been reported in mice (Danielsson et al., 1986 in WHO, 1994) and in the fetal blood in rats (Withey and Karpinski, 1985 in WHO, 1994) and it is expected to appear in human colostrum and is excreted in mature breast milk (Lechner et al., 1988; Fisher et al., 1997 in Health Council of the Netherlands, 2000; Davidson *et al.*, 1982 in US EPA, 2004).

The estimated ingestion of chloroform via breast-milk was 0.043 mg, which did not exceed the US EPA non-cancer drinking water ingestion rates for children (Fisher et al., 1997).

Human studies showed that the proportion of chloroform absorbed via inhalation ranged from 76 to 80%. The very high volatility of the substance leads to considerable low retention times of the substance on the skin, consequently dermal adsorption requires submersion or contact with chloroform in liquid form, rather than vapour. Chloroform dermal absorption increases with the temperature and the vehicle used. Human studies have showed total absorbed doses of 7.8 and 1.6% when chloroform was administered in water and ethanol respectively, furthermore the contribution to the total body burden (oral + dermal) of an immersion in bath water containing low chloroform concentrations accounted for 18% at 40°C, 17-6% at 35°C and 1-7% at 30°C. The oral administration of chloroform resulted in almost 100% of the dose absorbed from the gastrointestinal tract.

Considering the data reported, the animal inhalation, dermal and oral absorptions of chloroform are considered to be respectively 80%, 10% and 100%. Data from human studies showed that 80% of the chloroform dose is absorbed via inhalation and 10% via dermal absorption. Oral absorption of chloroform is assumed to be 100% for risk characterisation.

Acute toxicity varies depending upon the strain, sex and vehicle. In mice the oral  $LD_{50}$  values range from 36 to 1366 mg chloroform/kg body weight, whereas for rats, they range from 450

<sup>&</sup>lt;sup>1</sup> Conclusion (i) There is a need for further information and/or testing.

Conclusion (ii) There is at present no need for further information and/or testing and no need for risk reduction measures beyond those which are being applied already.

Conclusion (iii) There is a need for limiting the risks; risk reduction measures which are already being applied shall be taken into account.

to 2000 mg chloroform/kg body weight. Kidney damage induced in male mice are related to very sensitive strain, thus it is not considered relevant for risk characterisation.

Chloroform LC<sub>50</sub> values of 6200 mg/m<sup>3</sup> and 9200 mg/m<sup>3</sup> have been reported for inhalation exposure in mice and rats respectively. Mice are more susceptible than rats to acute chloroform toxicity for both exposure routes. A systemic and local dermal LOAEL of 1.0 g/kg has been reported in rabbits for extensive necrosis of the skin and degenerative changes in the kidney tubules after chloroform exposure under occlusive conditions (Torkelson et al., 1976). An oral NOAEL of 30 mg/kg bw has been reported in rats for serum enzyme changes indicative of liver damage (Keegan *et al.*, 1998). A dose-dependent increase in the LI was present in the kidney of Osborne-Mendel rats given doses of 10 mg/kg (Templin et al., 1996b). The epithelial cells of the proximal tubules of the kidney cortex were the primary target cells for cytotoxicity and regenerative cell proliferation. The mean lethal oral dose for an adult is estimated to be about 45 g, the human inhalation LOAEC based on discomfort is  $\leq$  249 mg/m<sup>3</sup> (Verschueren, 1983 in WHO, 1994), orally a LOAEL <107 mg/kg has been determined on serious illness (WHO, 1994). However, large interindividual differences in susceptibility occur in human. NOAEL(C) and LOAEL(C) selected as starting point for risk characterisation are reported in Table 4.1.

Chloroform is an irritant substance for skin, eye and upper airways. Rabbit dermal studies showed slight to high irritation potency (LOAEL = 1000 mg/kg bw, Torkelson et al., 1976). In man, dermal contact with chloroform caused dermatitis. Severe eye irritation was observed in animals with liquid chloroform, reported effects are various but one rabbit study indicate slight but definitive corneal injury. In man, eye contact with liquid chloroform caused temporary corneal epithelium injury. Mainly repeated dose studies have been reported for irritation, chloroform induced lesion and cell proliferation in the olfactory epithelium but also bone growth. In respiratory tract of mice and rats, inhaled chloroform induced lesions and cell proliferation in the olfactory epithelium and the nasal passage, the LOAEC reported in rats for enhanced bone growth and hypercellularity in the lamina propria of the ethmoid turbinates of the nose at the early time point (4 days) is 10 ppm (50 mg/m<sup>3</sup>, Templin et al., 1996a). A sensitisation test on chloroform was reported (Chiaki et al., 2002). This study was designed to evaluate the skin sensitizing potency of chloroform, and it was performed to further evaluate the differences between Guinea Pig Maximization Test (GPMT) and Local Lymph Node Assay (LLNA, RI Method). No positive reaction was observed in any method for sensitization.

Laboratory animal studies identify the liver kidneys and the nasal cavity as the key target organs of chloroform's toxic potential. The lowest reported oral LOAEL was 15 mg/kg/day in dog livers based on fatty cysts and elevated ALAT levels is a starting point for risk characterisation (Heywood et al., 1979 in US EPA, 2001). For mice, reported oral LOAELs were 50 mg/kg bw/day for the hepatic effects and 37 mg/kg bw for renal effects (mineralization, hyperplasia and cytomegaly) (Condie *et al.*, 1983; Munson *et al.*, 1982 in WHO, 2004). The reported inhalation NOAEC for a 90 days sub-chronic exposure was 25 mg/m<sup>3</sup> (5 ppm) in male mice for the renal effects (vacuolation, basophilic appearance, tubule cell necrosis and enlarged cell nuclei) and a NOAEC of 25 mg/m<sup>3</sup> (5 ppm) was reported in male mice for hepatic effects (vacuolated hepatocytes and necrotic foci) (Templin et al., 1998). A chronic (104 weeks) inhalation NOAEC of 25 mg/m<sup>3</sup> (5ppm) was reported in mice for increased renal cytoplasmic basophilia in both exposed males and females, and increased atypical tubule hyperplasia and nuclear enlargement in the kidneys in the males (Yamamoto et al., 2002). Nasal lesions have also been observed in rats and mice exposed by inhalation or via the oral route. Following a sub-chronic inhalation exposure, the lowest reported effect level

was LOAEC= 9.8 mg/m<sup>3</sup> (2 ppm), which caused cellular degeneration and regenerative hyperplasia in nasal passage tissues of rats. Lesions and cell proliferation in the olfactory epithelium and changes in the nasal passages were observed at LOAEL=34 mg/kg bw/d (Larson et al., 1995). In human, limited data on repeated dose toxicity suggest that the liver and kidneys are the likely target organs. Human studies were poorly reported in the reviews so animal data were selected as the starting point for risk characterisation.

Data on the mutagenicity of chloroform have recently been reviewed and evaluated by several groups: IARC, US EPA, ILSI and WHO. Most of the reviews concluded that chloroform is not a strong mutagen but a weak genotoxic effect was not excluded. Studies presented in this report were chosen based on their reliability (1 or 2) according to Klimish scoring system. Although negative in vivo results are reported, several in vivo tests published in international rewiews demonstrated that chloroform could induce micronuclei and chromosomal aberrations. Positive results are observed in the target organ (kidney) or after at least three administrations in bone marrow cells, which might be consistent with a mechanism of oxidative damage due to glutathione depletion. Besides, it should be noted that MN and CA tests performed in rats were all positive whereas mixed results were observed in mice.

Studies in animals reveal that chloroform can cause an increased incidence of kidney tumors in male rats or mice and an increased incidence of liver tumors in mice of either sex. These induced tumors responses are postulated to be secondary to sustained or repeated cytotoxicity and secondary regenerative hyperplasia, according to the dose levels tested. For the renal effects in male mice the oral NOAEL was 17 mg/kg bw (Roe et al., 1979) and the inhalation NOAEC was 5 ppm (25 mg/m<sup>3</sup>, Yamamoto et al., 2002).

Two studies showed nasal lesion in rats or mice due to chloroform inhalation, for nasal lesions a LOAEC of 5 ppm was determined (Yamamoto et al., 2002). The weight of evidence of chloroform weak genotoxicity is consistent with the hypothesis that the liver and kidney tumors induced depend on persistent cytotoxic and regenerative cell proliferation responses. The persistent cell proliferation presumably would lead to higher probabilities of spontaneous cell mutation and subsequent cancer.

There have been no reported studies of toxicity or cancer incidence in humans chronically exposed to chloroform (alone) via drinking water. Relevant studies contain little information on specific exposure, and it is not possible to attribute any excess risk specifically to chloroform.

Regarding fertility, only one author reported increased mice abnormal sperm following exposure to an air concentration of 400 or 800 ppm chloroform (estimated inhalation LOAEC = 400 ppm, Land *et al.*, 1979-1981). Otherwise, animal findings were epididymal lesions or increased right epipidymis weight (estimated oral NOAEC is 15.9 mg/kg, Chapin et al., 1997). As well, one occupational case study reported asthenospermia in association to chloroform exposure. No other adverse reproductive effect has been evidenced in the 90 days studies.

Concerning developmental toxicity, epidemiological studies of chloroform in drinking water no association was clearly established between exposure to chloroform and reduced fetal weight, stillbirth and cleft defects. Otherwise, we need to keep in mind that many of these epidemiological studies present limitations like the use of water concentration as the measure of exposure, which can lead to exposure misclassification.

By inhalation, the effects of chloroform on the various animals tested include effects on pregnancy rate, resorption rate, litter size and live fetuses. These effects have been observed

with concentrations causing a decrease of maternal weight and food consumption. Other effects as fetal weight and CRL decrease, as well as skeletal and gross abnormalities or variations have been mentioned. An inhalation NOAEC of 10 ppm was based on decreased fetal weight & CRL (Baeder & Hoffman, 1991) and an oral LOAEL of 20 mg/kg/day was based on decreased fetal weight (Thompson et al., 1974).

| Substance name                    | Inhalation (N(L)OAEC)                                                                                   | Dermal (N(L)OAEL)                                                 | Oral (N(L)OAEL)                                                                              |
|-----------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Acute toxicity                    | LOAEC $\leq$ 249 mg/m <sup>3</sup><br>60 min, Man, Verschueren, 1983 in<br>WHO, 1994                    | LOAEL= 1000 mg/kg<br>bw<br>24h, Rabbit, Torkelson<br>et al., 1976 | LOAEL ≤ 107 mg/kg<br>Single administration, Man,<br>Winslow & Gerstner, 1978 in<br>WHO, 1994 |
|                                   |                                                                                                         |                                                                   | LOAEL = 10 mg/kg bw<br>Single administration, Rat,<br>Templin et al., 1996b                  |
| Irritation / corrositivity        | LOAEC= 10 ppm - 50 mg/ m <sup>3</sup><br>Early time pojnts (4 days), 90d, Rat,<br>Templin et al., 1996a | -                                                                 | -                                                                                            |
| Repeated dose toxicity (local)    | LOAEC= 2 ppm - 10 mg/ m <sup>3</sup><br>90d, Rat, Templin et al., 1996a                                 | -                                                                 | LOAEL= 34 mg/kg bw<br>90d, Rat, Larson et al., 1995                                          |
| Repeated dose toxicity (systemic) | NOAEC= 5 ppm - 25mg/ m <sup>3</sup><br>90d, Mouse, Templin et al., 1998;<br>104w, Yamamoto et al., 2002 | -                                                                 | LOAEL= 15 mg/kg bw<br>7.5y, Dog, Heywood et al.,<br>1979                                     |
| Carcinogenicity (local)           | LOAEC= 5 ppm - 25 mg/ m <sup>3</sup><br>104w, Mouse, Yamamoto et al., 2002                              | -                                                                 | -                                                                                            |
| Carcinogenicity                   | NOAEC= 5 ppm - 25 mg/ m <sup>3</sup><br>104w, Mouse, Yamamoto et al., 2002                              | -                                                                 | NOAEL= 17 mg/kg bw<br>80w, Mouse, Roe et al., 1979                                           |
| Fertility impairment              | LOAEC= 400 ppm – 2000 mg/m <sup>3</sup><br>5d, Mouse, Land et al. 1979, in US<br>EPA, 2004              | -                                                                 | NOAEL= 16 mg/kg bw<br>31w, Mouse, Chapin et al.,<br>1997, in US EPA, 2004                    |
| Developmental toxicity            | NOAEC= 10 ppm - 50 mg/m <sup>3</sup><br>GD7-16 Rat, Baeder & Hoffman,<br>1991, in US EPA, 2004          | -                                                                 | LOAEL= 20 mg/kg-day GD6-<br>18, Rabbit, Thompson <i>et al.</i> ,<br>1974, in US EPA, 2004    |

| Table 4.1 Summar | of the selected NOAEL(C)s or LOAEL(C)s |
|------------------|----------------------------------------|
|                  |                                        |

### 4.1.3.2 Workers

Assuming that oral exposure is prevented by personal hygienic measures, the risk characterisation for workers in scenario 3.1 (Swimming instructor/lifeguard in a swimming pool) is limited to the dermal and the inhalation routes of exposure.

| Scenario                                                | RWC Inhalation          | RWC Dermal | RWC Ingestion |
|---------------------------------------------------------|-------------------------|------------|---------------|
|                                                         | exposure                | exposure   | exposure      |
|                                                         |                         |            |               |
| 3.1 Swimming instructor/lifeguard in a<br>swimming pool | 0.027 ppm               | 0          | 0             |
|                                                         | 0.136 mg/m <sup>3</sup> |            |               |
| 3.2 Competitive swimmers                                | 0.042 ppm               | 0.98 mg/l  | 0.98 mg/l     |
|                                                         | 0.206 mg/m <sup>3</sup> |            |               |

| Table 4.2 Summary of Workers Re | asonable Worst Case exposure and | Total systemic dose. |
|---------------------------------|----------------------------------|----------------------|
|---------------------------------|----------------------------------|----------------------|

| Scenario                                            | Systemic dose per  | Systemic dose    | Systemic dose per | Total systemic |
|-----------------------------------------------------|--------------------|------------------|-------------------|----------------|
|                                                     | day via inhalation | per day via skin | day via ingestion | dose           |
|                                                     | (mg/kg/day)        | (mg/kg/day)      | (mg/kg/day)       | (mg/kg/day)    |
| 31 Swimming instructor/lifeguard in a swimming pool | 0.0078             | 0                | 0                 | 0.0078         |
| 3.2 Competitive swimmers                            | 0.0141             | 0.156            | 0.0056            | 0.176          |

## 4.1.3.2.1 Acute toxicity

### **Inhalation**

The human acute inhalation  $LOAEC \le 249 \text{ mg/m}^3$  based on discomfort, (Verschueren, 1983 in WHO, 1994) is compared with exposure estimations for each scenario. Calculated MOSs are reported in Table 4.4 and compared with Reference MOS reported in Table 4.3.

| Table 4.3 Reference | MOS for | acute | toxicity |
|---------------------|---------|-------|----------|
|---------------------|---------|-------|----------|

| Assessment factor criteria   | Value                 |
|------------------------------|-----------------------|
| Interspecies differences     | <b>1</b> <sup>1</sup> |
| Intraspecies differences     | 5 workers             |
| Duration of study            | 2 2                   |
| Type of effect               | 1                     |
| Extrapolation LOAEC to NOAEC | 3                     |
| Reference MOS                | 30                    |

5

1 Human data for oral and inhalation route

2 An assessment factor was added for the differences between exposure (8h) and study (1h) duration. Based on the low severity of the effects observed (discomfort) this factor was set at 2.

For acute toxicity by inhalation, conclusion **ii** is reached for scenario 3.

## Dermal

The rabbit acute dermal LOAEL of 1000 mg/kg bw, was derived from a 24h exposure study under an impermeable plastic cuff (Torkelson et al., 1976). Considering the high volatility of chloroform, the reported effects have been maximised by the occlusive conditions and thus the LOAEL is not relevant for risk assessment.

An internal dose of 3.56 mg/kg has been calculated from the human acute inhalation LOAEC  $\leq 249 \text{ mg/m}^3$  (Verschueren, 1983 in WHO, 1994) considering a respiratory volume of 1.25 mg/m<sup>3</sup> (1.25 mg/m3/h \* 1 hour), a worker body weight of 70 kg and an absorption factor of 80% for inhalation uptake.

249 \* 1.25 \* 0.8 / 70 = 3.56 mg/kg

This internal dose is divided by the systemic dose per day via skin value for each scenario (see Table 4.2) to calculate the MOS. Calculated MOSs are compared with Reference MOS in Table 4.4.

For acute toxicity by dermal route, **conclusion ii** is reached for all scenarios.

## Combined exposure

For combined exposure an internal dose of 3.56 mg/kg has been calculated from the human acute inhalation LOAEC  $\leq 249 \text{ mg/m}^3$  (Verschueren, 1983 in WHO, 1994) considering a respiratory volume of 1.25 mg/m<sup>3</sup> (1.25 mg/m<sup>3</sup>/h \* 1 hour), a worker body weight of 70 kg and an absorption factor of 80% for inhalation uptake.

249 \* 1.25 \* 0.8 / 70 = 3.56 mg/kg

This value is compared with the total systemic dose reported in Table 4.2 to calculate the MOS. Calculated MOSs are compared with Reference MOS in Table 4.4.

For acute toxicity by combined exposure, conclusion **ii** is reached for scenario 3.

|                                                                  |           | Inhal     | ation |            |                      | Der       | mal | -          |                        | Com       | bined | -          |
|------------------------------------------------------------------|-----------|-----------|-------|------------|----------------------|-----------|-----|------------|------------------------|-----------|-------|------------|
|                                                                  | Exposure  | N(L)OAEC  | MOS   | Conclusion | Systemic<br>dose/day | N(L)OAEL  | MOS | Conclusion | Total systemic<br>dose | N(L)OAEL  | MOS   | Conclusion |
|                                                                  | mg/<br>m³ | mg/<br>m³ |       |            | mg/k<br>g            | mg/k<br>g |     |            | mg/k<br>g<br>/day      | mg/k<br>g |       |            |
| Swimming Pool                                                    |           |           |       |            |                      |           |     |            |                        |           |       |            |
| Scenario 3.1: Swimming instructor / lifeguard in a swimming pool | 0.13<br>6 | 249       | 1831  | ii         | 0                    | 3.56      | -   | -          | 0.00<br>78             | 3.56      | 456   | ii         |
| 3.2 Competitive<br>swimmers                                      | 0.20<br>6 | 249       | 1209  | ii         | 0.15<br>6            | 3.56      | 91  | ii         | 0.17<br>6              | 3.56      | 20    | ii         |

## 4.1.3.2.2 Irritation and corrosivity

#### Skin irritation

Given the results of the acute dermal toxicity studies, it is concluded that chloroform is irritating to the skin.

For competitive swimmers no data or occupational case on skin irritation, neither case study on animal and human for skin irritation with water containing chloroform, were reported thus it is not possible to conduct a quantitative or a qualitative risk characterisation.

No reliable repeated dose toxicity study with regard to dermal irritation of chloroform is available and thus it is not possible to make a quantitative risk assessment for local effects after repeated dermal exposure.

#### Eye irritation

In the available animal study, chloroform was found to be irritating to the eyes.

For competitive swimmers no data or occupational case on eye irritation, were reported thus it is not possible to conduct a quantitative risk characterisation. Competitive swimmers usually wear swimming goggles and this equipment should be recommended to prevent eye irritation.

#### Respiratory irritation after single exposure

Given the results of acute inhalation studies, it is concluded that chloroform is irritating to the respiratory tract. No study reported irritating effects on respiratory tract after a single exposure.

In rats, enhanced bone growth and hypercellularity in the lamina propria of the ethmoid turbinates of the nose have been reported at the early time points of the 13 weeks study at concentrations of 50 mg/m<sup>3</sup> (10 ppm, Templin et al., 1996a).

The LOAEC of 50 mg/m<sup>3</sup> is used with exposure estimations to calculate the MOS (Table 4.6) and then compared to Reference MOS reported in Table 4.5.

| Assessment factor criteria   | Value (local)    |
|------------------------------|------------------|
| Interspecies differences     | 2.5 <sup>1</sup> |
| Intraspecies differences     | 5 workers        |
| Duration of study            | 1                |
| Type of effect               | 1                |
| Extrapolation LOAEC to NOAEC | 3                |
| Reference MOS                | 37.5             |

1 For inhalation studies only a factor 2.5 is used, and no correction is made for differences in body size, because extrapolation is based on toxicological equivalence of a concentration of a chemical in the air of experimental animals and humans; animal and humans breathe at a rate depending on their caloric requirements.

#### Table 4.6 Occupational risk assessment for respiratory irritation

| Inhalation |
|------------|
|------------|

|                                                                  | Exposure          | N(L)OAEC | MOS | Conclusion |
|------------------------------------------------------------------|-------------------|----------|-----|------------|
|                                                                  | mg/m <sup>3</sup> | mg/m³    |     |            |
| Swimming pool                                                    |                   |          |     |            |
| Scenario 3.1: Swimming instructor / lifeguard in a swimming pool | 0.136             | 50       | 368 | ii         |
| 3.2 Competitive swimmers                                         | 0.206             | 50       | 243 | ii         |

For respiratory irritation **conclusion ii** is reached for scenario 3.

## 4.1.3.2.3 Sensitisation

No data were available for sensitisation and no occupational case of sensitisation was reported for workers/people exposed to chloroform in human studies. A sensitisation test on chloroform was reported (Chiaki et al., 2002). This study was designed to evaluate the skin sensitizing potency of chloroform, and it was performed to further evaluate the differences between Guinea Pig Maximization Test (GPMT) and Local Lymph Node Assay (LLNA, RI Method). No positive reaction was observed in any method for sensitization.

Conclusion (ii) is drawn for sensitisation.

### 4.1.3.2.4 Repeated dose toxicity

### Inhalation (local)

Effects of atrophy on the upper airways have been observed in rats and a LOAEC of 10  $mg/m^3$  (2 ppm) has been derived from a 13 weeks study (Templin et al., 1996a).

The LOAEC is used with exposure estimations to calculate the MOS (Table 4.9) and then compared to Reference MOS reported in Table 4.7.

#### Table 4.7 Reference MOS for local RDT

| Assessment factor criteria   | Value (local)    |
|------------------------------|------------------|
| Interspecies differences     | 2.5 <sup>1</sup> |
| Intraspecies differences     | 5 workers        |
| Duration of study            | 2                |
| Type of effect               | 1                |
| Extrapolation LOAEC to NOAEC | 3                |
| Reference MOS                | 75               |

1 For inhalation studies only a factor 2.5 is used, and no correction is made for differences in body size, because extrapolation is based on toxicological equivalence of a concentration of a chemical in the air of experimental animals and humans; animal and humans breathe at a rate depending on their caloric requirements.

For local repeated dose toxicity by inhalation, conclusion iii is reached for all scenarios.

#### Inhalation (systemic)

A NOAEC of 25 mg/m<sup>3</sup> (5 ppm) has been derived for induced hepatic cell proliferation in mice and renal histological changes and regenerative cell proliferation in male mice (Templin et al., 1998); renal cytoplasmic basophilia, atypical tubule hyperplasia, nuclear enlargement in the kidneys were observed in mice at the same concentration (Yamamoto et al., 2002). This NOAEC is used for calculation of MOS, the results and comparison to Reference MOS are reported in Table 4.8.

| Assessment factor criteria   | Value (systemic) |
|------------------------------|------------------|
| Interspecies differences     | 2.5 <sup>1</sup> |
| Intraspecies differences     | 5 workers        |
| Duration of study            | 1                |
| Type of effect               | 1                |
| Extrapolation LOAEC to NOAEC | 1                |
| Reference MOS                | 12.5             |

Table 4.8 Reference MOS for systemic RDT

1 For inhalation studies only a factor 2.5 is used, and no correction is made for differences in body size, because extrapolation is based on toxicological equivalence of a concentration of a chemical in the air of experimental animals and humans; animal and humans breathe at a rate depending on their caloric requirements.

For systemic repeated dose toxicity by inhalation **conclusion ii** is reached for scenario 3.

|                                                                  | Inhalation (local) |                   |     |            | Inhalation (systemic) |                   |     |            |
|------------------------------------------------------------------|--------------------|-------------------|-----|------------|-----------------------|-------------------|-----|------------|
|                                                                  | Exposure           | N(L)OAEC          | MOS | Conclusion | Exposure              | N(L)OAEC          | MOS | Conclusion |
|                                                                  | mg/m <sup>3</sup>  | mg/m <sup>3</sup> |     |            | mg/m <sup>3</sup>     | mg/m <sup>3</sup> |     |            |
| Swimming pool                                                    |                    |                   |     |            |                       |                   |     |            |
| Scenario 3.1: Swimming instructor / lifeguard in a swimming pool | 0.136              | 10                | 74  | iii        | 0.136                 | 25                | 184 | ii         |
| 3.2 Competitive swimmers                                         | 0.206              | 10                | 49  | iii        | 0.206                 | 25                | 121 | ii         |

### Dermal

For MOS calculation: the mouse inhalatory NOAEC of 25 mg/m<sup>3</sup> (Templin et al., 1998; Yamamoto et al., 2002) has been converted into dermal NOAEL (in mg/kg bw/day) by using a 6h respiratory volume of 0.41 m<sup>3</sup>/kg bw (45 ml/min / 40g bw = 1.125 l/min/kg bw) for the mouse and a correction for differences in absorption between mouse and humans.

Corrected Dermal N(L)OAEL = inhalatory N(L)OAEC × sRV<sub>mouse</sub> ×  $\frac{ABS_{inh-mouse}}{ABS_{derm-human}}$ 

sRV = standard respiratory volume

ABS  $_{inh-mouse} = 80\%$ 

ABS  $_{derm - Human} = 10\%$ 

25 \* 0.41 \* 80 / 10 = 82 mg/kg bw/day

The dermal NOAEL is converted to internal dose taking into account 10% absorption via skin and compared to the systemic dose per day via skin for each scenario (see Table 4.2) to calculate the MOS.

| Assessment factor criteria   | Value                |
|------------------------------|----------------------|
| Interspecies differences     | 2.5 * 7 (mouse data) |
| Intraspecies differences     | 5 workers            |
| Duration of study            | 1                    |
| Type of effect               | 1                    |
| Extrapolation LOAEL to NOAEL | 1                    |
| Reference MOS                | 87.5                 |

Table 4.10 Reference MOS for dermal RDT

Calculated MOSs are compared with Reference MOS in Table 4.11.

<sup>&</sup>lt;sup>2</sup> TGD 2005 Appendix VIII, part 2 B4

For repeated dose toxicity by dermal route **conclusion iii** is reached for competitive swimmers.

|                                                                     |                      | Dermal   |     |            | Combined               |          |      |            |
|---------------------------------------------------------------------|----------------------|----------|-----|------------|------------------------|----------|------|------------|
|                                                                     | Systemic<br>dose/day | N(L)OAEL | MOS | Conclusion | Total systemic<br>dose | N(L)OAEL | MOS  | Conclusion |
|                                                                     | mg/kg<br>/day        | mg/kg    |     |            | mg/kg<br>/day          | mg/kg    |      |            |
| Swimming pool                                                       |                      |          |     |            |                        |          |      |            |
| Scenario 3.1: Swimming instructor /<br>lifeguard in a swimming pool | 0                    | 8.2      | -   | -          | 0.0078                 | 8.2      | 1051 | ii         |
| 3.2 Competitive swimmers                                            | 0.156                | 8.2      | 53  | iii        | 0.176                  | 8.2      | 47   | iii        |

| Table 4.11 Occupational risk assessment for dermal and combined RDT |
|---------------------------------------------------------------------|
|---------------------------------------------------------------------|

### Combined exposure

For MOS calculation: the mouse inhalatory NOAEC of 25  $mg/m^3$  (Templin et al., 1998; Yamamoto et al., 2002) has been converted in the following formula and compared to the total systemic dose via inhalation, skin and ingestion.

$$MOS = \frac{N(L)OAEC_{inh-mouse} \times sRV_{mouse} \times ABS_{inh-mouse}}{\left[Expo_{inh-human} \times ABS_{inh-human}\right] + \left[Expo_{derm-human} \times ABS_{derm-human}\right] + \left[Expo_{oral-human} \times ABS_{oral-human}\right]}$$
  
6h sRV<sub>mouse</sub> = 0.41 m<sup>3</sup>/kg bw (45 ml/min / 40g bw = 1.125 l/min/kg bw)

 $ABS_{inh-mouse} = 80\%$ 

 $ABS_{inh-human} = 80\%$ 

 $ABS_{derm-human} = 10\%$ 

$$ABS_{oral-human} = 100\%$$

wRV = Respiratory volume light activity for worker (10  $m^3$ /person)

bw = 70 kg (worker body weight)

<sup>&</sup>lt;sup>3</sup> TGD 2005 Appendix VIII, Part 2 B7

| Assessment factor criteria   | Value                |
|------------------------------|----------------------|
| Interspecies differences     | 2.5 * 7 (mouse data) |
| Intraspecies differences     | 5 workers            |
| Duration of study            | 1                    |
| Type of effect               | 1                    |
| Extrapolation LOAEC to NOAEC | 1                    |
| Reference MOS                | 87.5                 |

Table 4.12 Reference MOS for combined RDT

Calculated MOSs are compared with Reference MOS in Table 4.11.

For combined exposure **conclusion iii** is reached for scenario 3.2 (Competitive swimmers), **conclusion ii** is reached for scenario 3.1 (Swimming instructor).

## 4.1.3.2.5 Mutagenicity

Data on the mutagenicity of chloroform have recently been reviewed and evaluated by several groups: IARC, US EPA, ILSI and WHO. Most of the reviews concluded that chloroform is not a strong mutagen but a weak genotoxic effect was not excluded. Studies presented in this report were chosen based on their reliability (1 or 2) according to Klimish scoring system. Although negative in vivo results are reported, several in vivo tests published in international rewiews demonstrated that chloroform could induce micronuclei and chromosomal aberrations. Positive results are observed in the target organ (kidney) or after at least three administrations in bone marrow cells, which might be consistent with a mechanism of oxidative damage due to glutathione depletion. Besides, it should be noted that MN and CA tests performed in rats were all positive whereas mixed results were observed in mice.

A test protocol for micronucleus assay in Sprague Dawley rats according to OECD guideline no. 474 was proposed and circulated to Member States (MS). A discussion took place at the Technical Committee on New and Existing Chemicals I'08 (TCNES) on the further information needed for mutagenicity evaluation. Two MS expressed their support on the testing proposal. Three MS were not in favour of the protocol for further testing since they were in favour instead of a classification Category 3 for mutagenicity. One MS and the Rapporteur reminded the TCNES group that further testing was requested to confirm the database and the disputed Fujie et al., (1990) study. One MS answered that a confirmatory study should be a chromosomal aberrations test on bone marrow (BM) following Fujie's protocol instead of the MN test proposed with in addition an exploration in the targeted organs such as liver and kidney. Other MS indicated that if a test should be conducted, a Comet assay should be carried out instead. The Industry justified the choice of the MN based on the sensitivity of this test in comparison to the BM test. It was also stressed that international bodies do not consider chloroform as a non-threshold carcinogen. According to the Industry, the dataset is not sufficient for a classification on mutagenicity, the Industry would like to perform the test as proposed in the protocol and requested a recommendation of the TCNES.

ECB concluded that the majority of the expressed Member States (6) did not support the test proposal.

**Conclusion open** applies with regard to mutagenicity of chloroform following TCNES discussion.

## 4.1.3.2.6 Carcinogenicity

### Inhalation (local)

A LOAEC of 25 mg/m<sup>3</sup> (5 ppm) was determined for nasal lesions including thickening of the bone and atrophy and respiratory metaplasia of the olfactory epithelium in rats of both sexes and female mice (Yamamoto et al., 2002). This LOAEC is used with occupational values to calculate the MOSs, which are compared to Reference MOS given in Table 4.13. Results and conclusions are presented in Table 4.14.

#### Table 4.13 Reference MOS for local carcinogenicity

| Assessment factor criteria   | Value            |
|------------------------------|------------------|
| Interspecies differences     | 2.5 <sup>1</sup> |
| Intraspecies differences     | 5 workers        |
| Duration of study            | 1                |
| Type of effect               | 1                |
| Extrapolation LOAEC to NOAEC | 3                |
| Reference MOS                | 37.5             |

1 For inhalation studies only a factor 2.5 is used, and no correction is made for differences in body size, because extrapolation is based on toxicological equivalence of a concentration of a chemical in the air of experimental animals and humans; animal and humans breathe at a rate depending on their caloric requirements.

|                                                                  | Inhalation (local) |                   |     |            |  |
|------------------------------------------------------------------|--------------------|-------------------|-----|------------|--|
|                                                                  | Exposure           | N(L)OAEC          | MOS | Conclusion |  |
|                                                                  | mg/m <sup>3</sup>  | mg/m <sup>3</sup> |     |            |  |
| Swimming pool                                                    |                    |                   |     |            |  |
| Scenario 3.1: Swimming instructor / lifeguard in a swimming pool | 0.136              | 25                | 184 | ii         |  |
| 3.2 Competitive swimmers                                         | 0.206              | 25                | 121 | ii         |  |

#### Table 4.14 Occupational risk assessment for local carcinogenicity

For inhalation (local) **conclusion ii** is reached for scenario 3.

#### Inhalation (systemic)

The liver and kidney tumors induced by chloroform depend on persistent cytotoxic and regenerative cell proliferation responses. The persistent cell proliferation presumably would lead to higher probabilities of spontaneous cell mutation and subsequent cancer. The weight of the evidence indicates that a mutagenic mode of action via DNA reactivity is not a significant component of the chloroform carcinogenic process (US EPA, 2001).

The risk characterisation for carcinogenicity can be conducted on a threshold basis.

A NOAEC of 25 mg/m<sup>3</sup> was reported in mice for induction of renal adenomas and carcinomas (Yamamoto et al., 2002). This NOAEC is used with occupational values to calculate the MOSs, which are compared to Reference MOS given in Table 4.15. Results and conclusions are presented in Table 4.18.

For inhalation **conclusion ii** is reached for scenario 3.

| j                            |                  |  |
|------------------------------|------------------|--|
| Assessment factor criteria   | Value            |  |
| Interspecies differences     | 2.5 <sup>1</sup> |  |
| Intraspecies differences     | 5 workers        |  |
| Duration of study            | 1                |  |
| Type of effect               | 1                |  |
| Extrapolation LOAEC to NOAEC | 1                |  |
| Reference MOS                | 12.5             |  |

 Table 4.15 Reference MOS for carcinogenicity

1 For inhalation studies only a factor 2.5 is used, and no correction is made for differences in body size, because extrapolation is based on toxicological equivalence of a concentration of a chemical in the air of experimental animals and humans; animal and humans breathe at a rate depending on their caloric requirements.

### Dermal

For MOS calculation: the mouse inhalatory NOAEC of 25 mg/m<sup>3</sup> (Yamamoto et al., 2002) has been converted into dermal NOAEL (in mg/kg bw/day) by using a 6h respiratory volume of 0.41 m<sup>3</sup>/kg bw (45 ml/min / 40g bw = 1.125 l/min/kg bw) for the mouse and a correction for differences in absorption between mice and humans.

corrected dermal N(L)OAEL = inhalatory N(L)OAEC ×  $sRV_{mouse}$  ×  $\frac{ABS_{inh-mouse}}{ABS_{derm-human}}$ <sup>4</sup>

sRV = standard respiratory volume

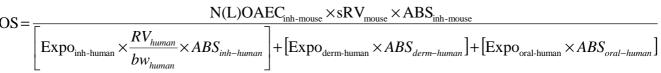
ABS  $_{inh-mouse} = 80\%$ 

ABS  $_{derm - Human} = 10\%$ 

25 \* 0.41 \* 80 / 10 = 82 mg/kg bw/day

The dermal NOAEL is converted to internal dose taking into account 10% absorption via skin and compared to the systemic dose per day via skin for each scenario (see Table 4.2) to calculate the MOS.

#### Table 4.16 Reference MOS for dermal carcinogenicity


| Assessment factor criteria   | Value                |
|------------------------------|----------------------|
| Interspecies differences     | 2.5 * 7 (mouse data) |
| Intraspecies differences     | 5 workers            |
| Duration of study            | 1                    |
| Type of effect               | 1                    |
| Extrapolation LOAEL to NOAEL | 1                    |
| Reference MOS                | 87.5                 |

Calculated MOSs are compared with Reference MOS in Table 4.18.

For dermal route **conclusion iii** is reached for competitive swimmers.

#### Combined exposure

For MOS calculation: the mouse inhalatory NOAEC of 25 mg/m<sup>3</sup> (Yamamoto et al., 2002) has been converted in the following formula and compared to the total systemic dose via inhalation, skin and ingestion.



6h sRV<sub>mouse</sub> =  $0.41 \text{ m}^3/\text{kg}$  bw (45 ml/min / 40g bw = 1.125 l/min/kg bw)

<sup>4</sup> TGD 2005 Appendix VIII, part 2 B4

<sup>&</sup>lt;sup>5</sup> TGD 2005 Appendix VIII, Part 2 B7

# $ABS_{inh-mouse} = 80\%$

 $ABS_{inh-human} = 80\%$ 

 $ABS_{derm-human} = 10\%$ 

 $ABS_{oral-human} = 100\%$ 

wRV = Respiratory volume light activity for worker (10  $m^3$ /person)

bw = 70 kg (worker body weight)

#### Table 4.17 Reference MOS for combined carcinogenicity

| Assessment factor criteria   | Value                |
|------------------------------|----------------------|
| Interspecies differences     | 2.5 * 7 (mouse data) |
| Intraspecies differences     | 5 workers            |
| Duration of study            | 1                    |
| Type of effect               | 1                    |
| Extrapolation LOAEC to NOAEC | 1                    |
| Reference MOS                | 87.5                 |

**Conclusion iii** is reached for scenario 3.2 (Competitive swimmers), **conclusion ii** is reached for scenario 3.1 (Swimming instructor).

| Table 4.18 | Occupational | l risk assessme | nt for | carcinogenicity |
|------------|--------------|-----------------|--------|-----------------|
|------------|--------------|-----------------|--------|-----------------|

|                                                                  | Inhalation        |           |     |            | Dermal               |           |     |            | Combined               |           |      |            |
|------------------------------------------------------------------|-------------------|-----------|-----|------------|----------------------|-----------|-----|------------|------------------------|-----------|------|------------|
|                                                                  | Exposure          | N(L)OAEC  | MOS | Conclusion | Systemic<br>dose/day | N(L)OAEC  | MOS | Conclusion | Total systemic<br>dose | N(L)OAEC  | MOS  | Conclusion |
|                                                                  | mg/m <sup>3</sup> | mg/<br>m³ |     |            | mg/k<br>g/da<br>y    | mg/k<br>g |     |            | mg/kg<br>/day          | mg/k<br>g |      |            |
| Swimming pool                                                    |                   |           |     |            |                      |           |     |            |                        |           |      |            |
| Scenario 3.1: Swimming instructor / lifeguard in a swimming pool | 0.136             | 25        | 184 | ii         | -                    |           |     |            | 0.0078                 | 8.2       | 1051 | ii         |
| 3.2 Competitive swimmers                                         | 0.206             | 25        | 121 | ii         | 0.15<br>6            | 8.2       | 53  | iii        | 0.176                  | 8.2       | 47   | iii        |

## 4.1.3.2.7 Toxicity for reproduction

#### Effects on fertility

#### **Inhalation**

The inhalation LOAEC of 2000 mg/m<sup>3</sup> (400 ppm, Land et al., 1979) was reported in mouse for fertility effects following chloroform exposition.

MOS calculated for inhalation are presented in Table 4.22 and compared to Reference MOS given in Table 4.19.

Conclusion ii is reached for all occupational scenarios.

|                              | •                |
|------------------------------|------------------|
| Assessment factor criteria   | Value            |
| Interspecies differences     | 2.5 <sup>1</sup> |
| Intraspecies differences     | 5 workers        |
| Duration of study            | 2                |
| Type of effect               | 1                |
| Extrapolation LOAEC to NOAEC | 3                |
| Reference MOS                | 75               |

Table 4.19 Reference MOS for inhalation effects on fertility

1 For inhalation studies only a factor 2.5 is used, and no correction is made for differences in body size, because extrapolation is based on toxicological equivalence of a concentration of a chemical in the air of experimental animals and humans; animal and humans breathe at a rate depending on their caloric requirements.

### Dermal

For MOS calculation: the mouse oral NOAEL of 16 mg/kg (Chapin et al., 1997) has been converted into dermal NOAEL (in mg/kg bw/day) by using a correction for differences in absorption between mice and humans.

corrected dermal N(L)OAEL = oral N(L)OAEL 
$$\times \frac{ABS_{oral-mouse}}{ABS_{derm-human}}$$

ABS  $_{oral-mouse} = 100\%$ 

ABS  $_{derm-Human} = 10\%$ 

16 / 0.1 = 160 mg/kg bw/day

The dermal NOAEL is converted to internal dose taking into account 10% absorption via skin and compared to the systemic dose per day via skin for each scenario (see Table 4.2) to calculate the MOS.

<sup>&</sup>lt;sup>6</sup> TGD 2005 Appendix VIII, Part 2 B5

| Assessment factor criteria   | Value                |
|------------------------------|----------------------|
| Interspecies differences     | 2.5 * 7 (mouse data) |
| Intraspecies differences     | 5 workers            |
| Duration of study            | 1                    |
| Type of effect               | 1                    |
| Extrapolation LOAEL to NOAEL | 1                    |
| Reference MOS                | 87.5                 |

Calculated MOSs are compared with Reference MOS in Table 4.22.

For fertility toxicity by dermal route, **conclusion ii** is reached for all scenarios.

### Combined exposure

For MOS calculation: the mouse oral NOAEL of 16 mg/kg (Chapin et al., 1997) has been converted in the following formula and compared to the total systemic dose via inhalation, skin and ingestion.

$$MOS = \frac{N(L)OAEL_{oral-mouse} \times ABS_{oral-mouse}}{\left[ Expo_{inh-human} \times \frac{RV_{human}}{bw_{human}} \times ABS_{inh-human} \right] + \left[ Expo_{derm-human} \times ABS_{derm-human} \right] + \left[ Expo_{oral-human} \times ABS_{oral-human} \right]}$$

$$ABS_{oral-mouse} = 100\%$$

$$ABS_{derm-human} = 80\%$$

$$ABS_{derm-human} = 10\%$$

$$ABS_{oral-human} = 100\%$$

$$wRV = Respiratory volume light activity for worker (10 m3/person)$$

bw = 70 kg (worker body weight)

<sup>&</sup>lt;sup>7</sup> TGD 2005 Appendix VIII, Part 2 B7

| Assessment factor criteria   | Value                |
|------------------------------|----------------------|
| Interspecies differences     | 2.5 * 7 (mouse data) |
| Intraspecies differences     | 5 workers            |
| Duration of study            | 1                    |
| Type of effect               | 1                    |
| Extrapolation LOAEC to NOAEC | 1                    |
| Reference MOS                | 87.5                 |

Table 4.21 Reference MOS for combined effects on fertility

**Conclusion ii** is reached for scenario 3.

### Table 4.22 Occupational risk assessment for effects on fertility

|                                                                  | Inhalation        |           |       |            | Dermal               |           |     |            | Combined               |           |      |            |
|------------------------------------------------------------------|-------------------|-----------|-------|------------|----------------------|-----------|-----|------------|------------------------|-----------|------|------------|
|                                                                  | Exposure          | N(L)OAEC  | MOS   | Conclusion | Systemic<br>dose/day | N(L)OAEC  | MOS | Conclusion | Total systemic<br>dose | N(L)OAEC  | MOS  | Conclusion |
|                                                                  | mg/m <sup>3</sup> | mg/<br>m³ |       |            | mg/k<br>g            | mg/k<br>g |     |            | mg/kg<br>/day          | mg/k<br>g |      |            |
| Swimming pool                                                    | Swimming pool     |           |       |            |                      |           |     |            |                        |           |      |            |
| Scenario 3.1: Swimming instructor / lifeguard in a swimming pool | 0.136             | 2000      | 14706 | ii         | -                    | 16        |     |            | 0.0078                 | 16        | 2051 | ii         |
| 3.2 Competitive swimmers                                         | 0.206             | 2000      | 9709  | ii         | 0.156                | 16        | 103 | ii         | 0.176                  | 16        | 91   | ii         |

### **Developmental toxicity**

#### **Inhalation**

The inhalation NOAEC of 50 mg/m<sup>3</sup> (10 ppm, Baeder & Hoffman, 1991) was reported in rat for developmental effects following chloroform exposition.

MOS calculated for inhalation are presented in Table 4.26 and compared to Reference MOS given in Table 4.23.

| Assessment factor criteria   | Value            |
|------------------------------|------------------|
| Interspecies differences     | 2.5 <sup>1</sup> |
| Intraspecies differences     | 5 workers        |
| Duration of study            | 1                |
| Type of effect               | 1                |
| Extrapolation LOAEC to NOAEC | 1                |
| Reference MOS                | 12.5             |

1 For inhalation studies only a factor 2.5 is used, and no correction is made for differences in body size, because extrapolation is based on toxicological equivalence of a concentration of a chemical in the air of experimental animals and humans; animal and humans breathe at a rate depending on their caloric requirements.

For inhalation conclusion ii is reached for scenario 3.

#### Dermal

For MOS calculation: the rat inhalatory NOAEC of 50 mg/m<sup>3</sup> (Baeder & Hoffman, 1991) has been converted into dermal NOAEL (in mg/kg bw/day) by using a 7h respiratory volume of 0.34 m<sup>3</sup>/kg bw (200 ml/min / 250g bw = 0.8 l/min/kg bw) for the rat and a correction for differences in absorption between rats and humans.

corrected dermal N(L)OAEL = inhalatory N(L)OAEC × sRV<sub>rat</sub> × 
$$\frac{ABS_{inh-rat}}{ABS_{derm-human}}$$

sRV = standard respiratory volume

ABS  $_{inh-rat} = 80\%$ 

ABS  $_{derm - Human} = 10\%$ 

50 \* 0.34 \* 80 / 10 = 136 mg/kg bw/day

The dermal NOAEL is converted to internal dose taking into account 10% absorption via skin and compared to the systemic dose per day via skin for each scenario (see Table 4.2) to calculate the MOS.

| Assessment factor criteria   | Value              |
|------------------------------|--------------------|
| Interspecies differences     | 2.5 * 4 (rat data) |
| Intraspecies differences     | 5 workers          |
| Duration of study            | 1                  |
| Type of effect               | 1                  |
| Extrapolation LOAEL to NOAEL | 1                  |
| Reference MOS                | 50                 |

Calculated MOSs are compared with Reference MOS in Table 4.26.

For developmental toxicity by dermal route, conclusion ii is reached for all scenarios.

### Combined exposure

For MOS calculation: the rat inhalatory NOAEC of 50  $\text{mg/m}^3$  (Baeder & Hoffman, 1991) has been converted in the following formula and compared to the total systemic dose via inhalation, skin and ingestion.

$$MOS = \frac{N(L)OAEC_{inh-rat} \times sRV_{rat} \times ABS_{inh-rat}}{\left[Expo_{inh-human} \times \frac{RV_{human}}{bw_{human}} \times ABS_{inh-human}\right] + \left[Expo_{derm-human} \times ABS_{derm-human}\right] + \left[Expo_{oral-human} \times ABS_{oral-human}\right]}$$

7h sRV<sub>rat</sub> = 0.34 m<sup>3</sup>/kg bw (200 ml/min / 250g bw = 0.8 l/min/kg bw)

 $ABS_{inh-rat} = 80\%$ 

 $ABS_{inh-human} = 80\%$ 

 $ABS_{derm-human} = 10\%$ 

 $ABS_{oral-human} = 100\%$ 

wRV = Respiratory volume light activity for worker (10  $m^3$ /person)

bw = 70 kg (worker body weight)

<sup>&</sup>lt;sup>8</sup> TGD 2005 Appendix VIII, Part 2 B7

| Assessment factor criteria   | Value              |
|------------------------------|--------------------|
| Interspecies differences     | 2.5 * 4 (rat data) |
| Intraspecies differences     | 5 workers          |
| Duration of study            | 1                  |
| Type of effect               | 1                  |
| Extrapolation LOAEC to NOAEC | 1                  |
| Reference MOS                | 50                 |

Table 4.25 Reference MOS for combined developmental toxicity

### **Conclusion ii** is reached for scenario 3.

Table 4.26 Occupational risk assessment for developmental toxicity

|                                                                  |           | Inhalation |     |            |                      | Der       | mal |            | Combined               |           |      |            |
|------------------------------------------------------------------|-----------|------------|-----|------------|----------------------|-----------|-----|------------|------------------------|-----------|------|------------|
|                                                                  | Exposure  | N(L)OAEC   | MOS | Conclusion | Systemic<br>dose/day | N(L)OAEC  | MOS | Conclusion | Total systemic<br>dose | N(L)OAEC  | MOS  | Conclusion |
|                                                                  | mg/<br>m³ | mg/<br>m³  |     |            | mg/k<br>g            | mg/k<br>g |     |            | mg/k<br>g<br>/day      | mg/k<br>g |      |            |
| Swimming pool                                                    |           |            |     |            |                      |           |     |            |                        |           |      |            |
| Scenario 3.1: Swimming instructor / lifeguard in a swimming pool | 0.13<br>6 | 50         | 368 | ii         | -                    |           |     |            | 0.00<br>78             | 13.6      | 1744 | ii         |
| 3.2 Competitive swimmers                                         | 0.20<br>6 | 50         | 243 | ii         | 0.15<br>6            | 13.6      | 87  | ii         | 0.17<br>6              | 13.6      | 77   | ii         |

## 4.1.3.2.8 Summary of risk characterisation for workers

|                                                                                  |        | Ac             | Acute toxicity |              | Local toxicity after single or<br>repeated exposure |        | Sensiti Repe<br>sation | Repeated dose toxicity<br>Systemic |                             | Muta<br>genic | Carcino<br>genicity | Toxicity for<br>reproduction, |                                                   |                                 |                                       |
|----------------------------------------------------------------------------------|--------|----------------|----------------|--------------|-----------------------------------------------------|--------|------------------------|------------------------------------|-----------------------------|---------------|---------------------|-------------------------------|---------------------------------------------------|---------------------------------|---------------------------------------|
|                                                                                  |        | Inhal<br>ation | Derm<br>al     | Com<br>bined | Inhalation                                          | Dermal | Eye                    |                                    | Inhalation                  | Dermal        | Combine<br>d        | ity                           |                                                   | Fertility                       | Develo<br>ppment                      |
| Scenario 3.1: MOS<br>Swimming<br>instructor /<br>lifeguard in a<br>swimming pool | MOS    | 1831           | -              | 3654         | 456                                                 | -      |                        |                                    | 74 (local)<br>184<br>(syst) | -             | 1051                |                               | 184<br>-<br>1051                                  | 14706<br>-<br>2051              | 368<br>-<br>1744                      |
|                                                                                  | Concl. | ii             | -              | ii           | ii                                                  | -      |                        | ii                                 | iii (local)<br>ii (syst)    | -             | ii                  | i                             | ii inh local<br>ii inh<br>ii combi                | ii inh<br>ii combi              | ii inh<br>ii<br>combi                 |
| 3.2 Competitive swimmers                                                         | MOS    | 1209           | 91             | 162          | 20                                                  |        |                        |                                    | 49 (local)<br>121<br>(syst) | 53            | 47                  |                               | 121<br>53<br>47                                   | 9709<br>103<br>91               | 243<br>87<br>77                       |
|                                                                                  | Concl. | ii             | ii             | ii           | ii                                                  |        |                        | ii                                 | iii (local)<br>ii (syst)    | iii           | iii                 | i                             | ii inh local<br>ii inh<br>iii dermal<br>iii combi | ii inh<br>ii dermal<br>ii combi | ii inh<br>ii<br>dermal<br>ii<br>combi |

23

EU RISK ASSESSMENT - CHLOROFORM CAS 67-66-3

## 4.1.3.3 Consumers

As the use of chloroform is limited to professional and industrial applications through regulation, there is no direct consumer use of chloroform and consequently no direct public exposure is expected.

A physiologically based pharmacokinetic (PBPK) model was developed for a lactating woman to estimate the amount of chemical that a nursing infant ingests for a given nursing schedule (24h) and maternal occupational exposure (10 ppm for an intermittent exposition of 6.5h on a 8h period). The estimated ingestion of chloroform via breast-milk was 0.043 mg, which did not exceed the US EPA non-cancer drinking water ingestion rates for children (Fisher et al., 1997).

During their presence in the swimming pool, child swimmers and adult swimmers remain in contact with water and air containing chloroform. The calculations of systemic doses for child swimmers and adult swimmers are done according the worst case and moderate exposure scenarios detailed in the part 4.1.1.2.3 "Scenario 3: exposure of workers to chloroform in swimming pools".

The systemic doses per day via inhalation, skin and ingestion (4.1.1.3) are presented in the following table:

| Scenario                | RWC Inhalation                       | RWC Dermal | RWC Ingestion |
|-------------------------|--------------------------------------|------------|---------------|
|                         | exposure                             | exposure   | exposure      |
| Child or Adult swimmers | 0.042 ppm<br>0.206 mg/m <sup>3</sup> | 0.980 mg/l | 0.980 mg/l    |

| Scenario                         | Systemic dose per<br>day via inhalation<br>(mg/kg/day) | Systemic dose<br>per day via skin<br>(mg/kg/day) | Systemic dose per<br>day via ingestion<br>(mg/kg/day) | Total<br>systemic dose<br>(mg/kg/day) |
|----------------------------------|--------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|---------------------------------------|
| Child<br>swimmers:<br>Worst case | 0.00059                                                | 0.0101                                           | 0.0007                                                | 0.0114                                |
| Adult<br>swimmers:<br>Worst case | 0.00117                                                | 0.0196                                           | 0.0007                                                | 0.0215                                |

The risk assessment for the consumer in swimming pool will be done only for the worst case.

## 4.1.3.3.1 Acute toxicity

### Combined exposure

In a pragmatic approach, the risk characterisation for systemic effects was conducted for combined exposure only.

For combined exposure an internal dose has been calculated from the human acute inhalation LOAEC  $\leq 249 \text{ mg/m}^3$  (Verschueren, 1983) considering a respiratory volume of 0.5 m<sup>3</sup>/h for 1h/day, a body weight of 10 kg for child or a respiratory volume of 1 m<sup>3</sup>/h for 1h/day, a body weight of 60 kg for an adult with an absorption factor of 80% for inhalation uptake.

249 \* 0.5 \* 0.8 / 10 = 9.96 mg/kg for child

249 \* 1 \* 0.8 / 60 = 3.32 mg/kg for adult

Calculated MOSs are reported in Table 4.28 and compared with Reference MOS reported in Table 4.27.

| lab | le 4.27 | Reference | MOS for | acute | toxicity |  |
|-----|---------|-----------|---------|-------|----------|--|
|     |         |           |         |       |          |  |

| Assessment factor criteria   | Value          |
|------------------------------|----------------|
| Interspecies differences     | 1 <sup>1</sup> |
| Intraspecies differences     | 10             |
| Duration of study            | 2              |
| Type of effect               | 1              |
| Extrapolation LOAEL to NOAEL | 3              |
| Reference MOS                | 60             |

1 Human data for oral and inhalation route

2 An assessment factor was added for the differences between exposure (8h) and study (1h) duration. Based on the low severity of the effects observed (discomfort) this factor was set at 2.

|                | Combined               |          |     |            |  |  |  |
|----------------|------------------------|----------|-----|------------|--|--|--|
|                | Total systemic<br>dose | N(L)OAEL | MOS | Conclusion |  |  |  |
|                | mg/kg<br>/day          | mg/kg    |     |            |  |  |  |
| Swimming pool  |                        |          |     |            |  |  |  |
| Child swimmers | 0.0114                 | 9.96     | 874 | ii         |  |  |  |
| Adult swimmers | 0.0215                 | 3.32     | 154 | ii         |  |  |  |

Table 4.28 Consumer risk assessment for acute toxicity

For acute toxicity via combined exposure, **conclusion ii** is reached for all scenarios.

## 4.1.3.3.2 Irritation and corrosivity

As the use of chloroform is limited to professional and industrial applications through regulation, there is no direct consumer use of chloroform and consequently no direct public exposure is expected. During their presence in the swimming pool, child swimmers and adult swimmers remain in contact with water containing chloroform at a concentration assumed to be 980  $\mu$ g/litre for the worst case exposure (the highest concentration measured; Lahl et al., 1981).

#### Skin irritation

No data or case study was reported on animal and human for skin irritation with water containing chloroform. For consumers, the risk for skin irritation caused by water containing chloroform is considered to be low (**conclusion ii**).

#### Eye irritation

No data or case study was reported on animal and human for eye irritation with water containing chloroform. For consumers, the risk for eye irritation caused by water containing chloroform might be anticipated to be low due to the high dilution of chloroform in water (conclusion ii).

#### Respiratory irritation after single exposure

Given the results of acute inhalation studies, it is concluded that chloroform is irritating to the respiratory tract. No study reported irritating effects on respiratory tract after a single exposure.

In rats, enhanced bone growth and hypercellularity in the lamina propria of the ethmoid turbinates of the nose have been reported at the early time points of the 13 weeks study at concentrations of  $50 \text{ mg/m}^3$  (10 ppm, Templin et al., 1996a).

For MOS calculation: the rat inhalatory LOAEC of 50 mg/m<sup>3</sup> has been compared to the inhalation reasonable worst case in swimming pools (concentration in the air is assumed to be  $0.206 \text{ mg/m}^3$  for a swimmer 20 cm above the water surface, see 4.1.1.3).

MOS calculated are presented in Table 4.30 and compared to Reference MOS given in Table 4.29.

| Assessment factor criteria   | Value (local)    |
|------------------------------|------------------|
| Interspecies differences     | 2.5 <sup>1</sup> |
| Intraspecies differences     | 10               |
| Duration of study            | 1                |
| Type of effect               | 1                |
| Extrapolation LOAEL to NOAEL | 3                |
| Reference MOS                | 75               |

| Table 4.29 Reference MOS | 6 for respiratory irritation |
|--------------------------|------------------------------|
|--------------------------|------------------------------|

1 For inhalation studies only a factor 2.5 is used, and no correction is made for differences in body size, because extrapolation is based on toxicological equivalence of a concentration of a chemical in the air of experimental animals and humans; animal and humans breathe at a rate depending on their caloric requirements.

|                | Inhalation        |                   |     |            |  |  |  |
|----------------|-------------------|-------------------|-----|------------|--|--|--|
|                | Exposure          | N(L)OAEL          | MOS | Conclusion |  |  |  |
|                | mg/m <sup>3</sup> | mg/m <sup>3</sup> |     |            |  |  |  |
| Swimming pool  |                   |                   |     |            |  |  |  |
| Child swimmers | 0.206             | 50                | 243 | ii         |  |  |  |
| Adult swimmers | 0.206             | 50                | 243 | ii         |  |  |  |

Table 4.30 Occupational risk assessment for respiratory irritation

For respiratory irritation **conclusion ii** is reached for adult and child swimmers.

## 4.1.3.3.3 Sensitisation

No data were available for sensitisation and no occupational case of sensitisation was reported for workers/people exposed to chloroform in human studies. A sensitisation test on chloroform was reported (Chiaki et al., 2002). This study was designed to evaluate the skin sensitizing potency of chloroform, and it was performed to further evaluate the differences between Guinea Pig Maximization Test (GPMT) and Local Lymph Node Assay (LLNA, RI Method). No positive reaction was observed in any method for sensitization.

Moreover, the limitation to professional and industrial applications use of chloroform lowers the concern for sensitisation.

**Conclusion ii** is drawn for sensitisation.

### 4.1.3.3.4 Repeated dose toxicity

#### Inhalation (local)

Effects of atrophy on the upper airways have been observed in rats and a LOAEC of 10  $mg/m^3$  (2 ppm) has been derived from a 13 weeks study (Templin et al., 1996a).

The LOAEC is used with exposure estimations to calculate the MOS (Table 4.31) and then compared to Reference MOS reported in Table 4.32.

#### Table 4.31 Reference MOS for local RDT

| Assessment factor criteria   | Value (local)    |
|------------------------------|------------------|
| Interspecies differences     | 2.5 <sup>1</sup> |
| Intraspecies differences     | 10               |
| Duration of study            | 2                |
| Type of effect               | 1                |
| Extrapolation LOAEC to NOAEC | 3                |
| Reference MOS                | 150              |

1 For inhalation studies only a factor 2.5 is used, and no correction is made for differences in body size, because extrapolation is based on toxicological equivalence of a concentration of a chemical in the air of experimental animals and humans; animal and humans breathe at a rate depending on their caloric requirements.

|                | Inhalation (local) |                   |     |            |
|----------------|--------------------|-------------------|-----|------------|
|                | Exposure           | N(L)OAEC          | MOS | Conclusion |
|                | mg/m <sup>3</sup>  | mg/m <sup>3</sup> |     |            |
| Swimming pool  |                    |                   |     |            |
| Child swimmers | 0.206              | 10                | 49  | iii        |
| Adult swimmers | 0.206              | 10                | 49  | iii        |

 Table 4.32 Consumer risk assessment for repeated dose toxicity by inhalation

For local repeated dose toxicity by inhalation, **conclusion iii** is reached for adult and child swimmers.

#### Combined exposure

In a pragmatic approach, the risk characterisation for systemic effects was conducted for combined exposure only.

For MOS calculation: the mouse inhalatory NOAEC of 25  $mg/m^3$  (Templin et al., 1998; Yamamoto et al., 2002) has been converted in the following formula and compared to the total systemic dose via inhalation, skin and ingestion.

$$MOS = \frac{N(L)OAEC_{inh-mouse} \times sRV_{mouse} \times ABS_{inh-mouse}}{\left[Expo_{inh-human} \times \frac{RV_{human}}{bw_{human}} \times ABS_{inh-human}\right] + \left[Expo_{derm-human} \times ABS_{derm-human}\right] + \left[Expo_{oral-human} \times ABS_{oral-human}\right]}$$

\_ \_ \_ \_

6h sRV<sub>mouse</sub> =  $0.41 \text{ m}^3/\text{kg}$  bw (45 ml/min / 40g bw = 1.125 l/min/kg bw)

----

<sup>&</sup>lt;sup>9</sup> TGD 2005 Appendix VIII, Part 2 B7

 $ABS_{inh-mouse} = 80\%$   $ABS_{inh-human} = 80\%$  $ABS_{derm-human} = 10\%$ 

 $ABS_{oral-human} = 100\%$ 

wRV = Respiratory volume for child or adult

bw = child or adult body weight

Calculated MOSs are reported in Table 4.34 and compared with Reference MOS reported in Table 4.33.

| Table 4.33 | Reference    | MOS for  | combined RDT |
|------------|--------------|----------|--------------|
| 10010 4.00 | I CICICITO C | 1000 101 |              |

| Assessment factor criteria   | Value                |
|------------------------------|----------------------|
| Interspecies differences     | 2.5 * 7 (mouse data) |
| Intraspecies differences     | 10                   |
| Duration of study            | 1                    |
| Type of effect               | 1                    |
| Extrapolation LOAEL to NOAEL | 1                    |
| Reference MOS                | 175                  |

|                | Combined               |          |     |            |
|----------------|------------------------|----------|-----|------------|
|                | Total systemic<br>dose | N(L)OAEL | MOS | Conclusion |
|                | mg/kg<br>/day          | mg/kg    |     |            |
| Swimming pool  |                        |          |     |            |
| Child swimmers | 0.0114                 | 8.2      | 719 | ii         |
| Adult swimmers | 0.0215                 | 8.2      | 381 | ii         |

For RDT via combined exposure conclusion ii is reached for adult and child swimmers.

### 4.1.3.3.5 Mutagenicity

Data on the mutagenicity of chloroform have recently been reviewed and evaluated by several groups: IARC, US EPA, ILSI and WHO. Most of the reviews concluded that chloroform is not a strong mutagen but a weak genotoxic effect was not excluded. Studies presented in this report were chosen based on their reliability (1 or 2) according to Klimish scoring system.

Although negative in vivo results are reported, several in vivo tests published in international rewiews demonstrated that chloroform could induce micronuclei and chromosomal aberrations. Positive results are observed in the target organ (kidney) or after at least three administrations in bone marrow cells, which might be consistent with a mechanism of oxidative damage due to glutathione depletion. Besides, it should be noted that MN and CA tests performed in rats were all positive whereas mixed results were observed in mice.

A test protocol for micronucleus assay in Sprague Dawley rats according to OECD guideline no. 474 was proposed and circulated to Member States (MS). A discussion took place at the Technical Committee on New and Existing Chemicals I'08 (TCNES) on the further information needed for mutagenicity evaluation. Two MS expressed their support on the testing proposal. Three MS were not in favour of the protocol for further testing since they were in favour instead of a classification Category 3 for mutagenicity. One MS and the Rapporteur reminded the TCNES group that further testing was requested to confirm the database and the disputed Fujie et al., (1990) study. One MS answered that a confirmatory study should be a chromosomal aberrations test on bone marrow (BM) following Fujie's protocol instead of the MN test proposed with in addition an exploration in the targeted organs such as liver and kidney. Other MS indicated that if a test should be conducted, a Comet assay should be carried out instead. The Industry justified the choice of the MN based on the sensitivity of this test in comparison to the BM test. It was also stressed that international bodies do not consider chloroform as a non-threshold carcinogen. According to the Industry, the dataset is not sufficient for a classification on mutagenicity, the Industry would like to perform the test as proposed in the protocol and requested a recommendation of the TCNES.

ECB concluded that the majority of the expressed Member States (6) did not support the test proposal.

**Conclusion open** applies with regard to mutagenicity of chloroform following TCNES discussion.

## 4.1.3.3.6 Carcinogenicity

### Inhalation (local)

A LOAEC of 25 mg/m<sup>3</sup> (5 ppm) was determined for nasal lesions including thickening of the bone and atrophy and respiratory metaplasia of the olfactory epithelium in rats of both sexes and female mice (Yamamoto et al., 2002). This LOAEC is used with occupational values to calculate the MOSs, which are compared to Reference MOS given in Table 4.35. Results and conclusions are presented in Table 4.36.

Table 4.35 Reference MOS for local carcinogenicity

| Assessment factor criteria   | Value            |
|------------------------------|------------------|
| Interspecies differences     | 2.5 <sup>1</sup> |
| Intraspecies differences     | 10               |
| Duration of study            | 1                |
| Type of effect               | 1                |
| Extrapolation LOAEC to NOAEC | 3                |
| Reference MOS                | 75               |

1 For inhalation studies only a factor 2.5 is used, and no correction is made for differences in body size, because extrapolation is based on toxicological equivalence of a concentration of a chemical in the air of experimental animals and humans; animal and humans breathe at a rate depending on their caloric requirements.

|                | Inhalation (local) |                   |          |            |
|----------------|--------------------|-------------------|----------|------------|
|                | Exposure           | N(L)OAEC          | MOS      | Conclusion |
|                | mg/m <sup>3</sup>  | mg/m <sup>3</sup> |          |            |
| Swimming pool  |                    | •<br>•            | <u>.</u> |            |
| Child swimmers | 0.206              | 25                | 121      | ii         |
| Adult swimmers | 0.206              | 25                | 121      | ii         |

Table 4.36 Occupational risk assessment for local carcinogenicity

For inhalation (local), conclusion ii is reached for adult and child swimmers.

### Combined exposure

In a pragmatic approach, the risk characterisation for systemic effects was conducted for combined exposure only.

For MOS calculation: the mouse inhalatory NOAEC of 25  $mg/m^3$  (Yamamoto et al., 2002) has been converted in the following formula and compared to the total systemic dose via inhalation, skin and ingestion.

$$MOS = \frac{N(L)OAEC_{inh-mouse} \times sRV_{mouse} \times ABS_{inh-mouse}}{\left[Expo_{inh-human} \times \frac{RV_{human}}{bw_{human}} \times ABS_{inh-human}\right] + \left[Expo_{derm-human} \times ABS_{derm-human}\right] + \left[Expo_{oral-human} \times ABS_{oral-human}\right]}$$

6h sRV<sub>mouse</sub> =  $0.41 \text{ m}^3/\text{kg}$  bw (45 ml/min / 40g bw = 1.125 l/min/kg bw)

 $ABS_{inh-mouse} = 80\%$ 

<sup>&</sup>lt;sup>10</sup> TGD 2005 Appendix VIII, Part 2 B7

 $ABS_{inh-human} = 80\%$ 

 $ABS_{derm-human} = 10\%$ 

 $ABS_{oral-human} = 100\%$ 

wRV = Respiratory volume for child or adult

bw = child or adult body weight

Calculated MOSs are reported in Table 4.38 and compared with Reference MOS reported in Table 4.37.

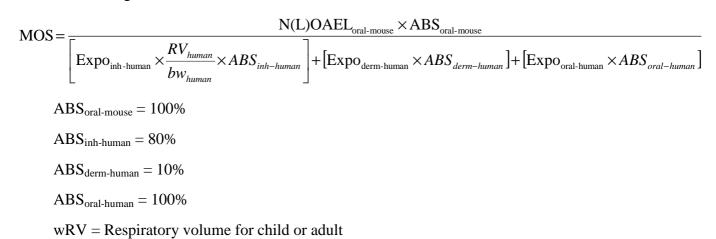
#### Table 4.37 Reference MOS for combined carcinogenicity

| Assessment factor criteria   | Value                |
|------------------------------|----------------------|
| Interspecies differences     | 2.5 * 7 (mouse data) |
| Intraspecies differences     | 10                   |
| Duration of study            | 1                    |
| Type of effect               | 1                    |
| Extrapolation LOAEL to NOAEL | 1                    |
| Reference MOS                | 175                  |

#### Table 4.38 Consumer risk assessment for carcinogenicity

|                |                        | Combined |     |            |
|----------------|------------------------|----------|-----|------------|
|                | Total systemic<br>dose | N(L)OAEL | MOS | Conclusion |
|                | mg/kg<br>/day          | mg/kg    |     |            |
| Swimming pool  |                        |          |     |            |
| Child swimmers | 0.0114                 | 8.2      | 719 | ii         |
| Adult swimmers | 0.0215                 | 8.2      | 381 | ii         |

For carcinogenicity via combined exposure **conclusion ii** is reached for child and adult swimmers.


### 4.1.3.3.7 Toxicity for reproduction

#### Effects on fertility

#### Combined exposure

In a pragmatic approach, the risk characterisation was conducted for combined exposure only.

For MOS calculation: the mouse oral NOAEL of 16 mg/kg (Chapin et al., 1997) has been converted in the following formula and compared to the total systemic dose via inhalation, skin and ingestion.



bw = child or adult body weight

Calculated MOSs are reported in Table 4.40 and compared with Reference MOS reported in Table 4.39.

| Table 4.39 Refer | ence MOS for com | nbined effects on fertility | / |
|------------------|------------------|-----------------------------|---|
|------------------|------------------|-----------------------------|---|

| Assessment factor criteria   | Value                |
|------------------------------|----------------------|
| Interspecies differences     | 2.5 * 7 (mouse data) |
| Intraspecies differences     | 10                   |
| Duration of study            | 1                    |
| Type of effect               | 1                    |
| Extrapolation LOAEL to NOAEL | 1                    |
| Reference MOS                | 175                  |

#### Table 4.40 Consumer risk assessment for effects on fertility

|                | Combined               |          |      |            |  |  |  |  |  |
|----------------|------------------------|----------|------|------------|--|--|--|--|--|
|                | Total systemic<br>dose | N(L)OAEL | MOS  | Conclusion |  |  |  |  |  |
|                | mg/kg<br>/day          | mg/kg    |      |            |  |  |  |  |  |
| Swimming pool  |                        |          |      |            |  |  |  |  |  |
| Child swimmers | 0.0114                 | 16       | 1404 | ii         |  |  |  |  |  |
| Adult swimmers | 0.0215                 | 16       | 744  | ii         |  |  |  |  |  |

<sup>&</sup>lt;sup>11</sup> TGD 2005 Appendix VIII, Part 2 B7

For effects on fertility via combined exposure **conclusion ii** is reached for child and adult swimmers.

#### Developmental toxicity

#### Combined exposure

In a pragmatic approach, the risk characterisation was conducted for combined exposure only.

For MOS calculation: the rat inhalatory NOAEC of 50  $\text{mg/m}^3$  (Baeder & Hoffman, 1991) has been converted in the following formula and compared to the total systemic dose via inhalation, skin and ingestion.

$$MOS = \frac{N(L)OAEC_{inh-rat} \times sRV_{rat} \times ABS_{inh-rat}}{\left[Expo_{inh-human} \times \frac{RV_{human}}{bw_{human}} \times ABS_{inh-human}\right] + \left[Expo_{derm-human} \times ABS_{derm-human}\right] + \left[Expo_{oral-human} \times ABS_{oral-human}\right]}$$

7h sRV<sub>rat</sub> =  $0.34 \text{ m}^3/\text{kg}$  bw (200 ml/min / 250g bw = 0.8 l/min/kg bw)

 $ABS_{inh-rat} = 80\%$ 

 $ABS_{inh-human} = 80\%$ 

 $ABS_{derm-human} = 10\%$ 

 $ABS_{oral-human} = 100\%$ 

wRV = Respiratory volume for child or adult

bw = child or adult body weight

Calculated MOSs are reported in Table 4.42 and compared with Reference MOS reported in Table 4.41.

| Assessment factor criteria   | Value              |  |  |  |  |  |
|------------------------------|--------------------|--|--|--|--|--|
| Interspecies differences     | 2.5 * 4 (rat data) |  |  |  |  |  |
| Intraspecies differences     | 10                 |  |  |  |  |  |
| Duration of study            | 1                  |  |  |  |  |  |
| Type of effect               | 1                  |  |  |  |  |  |
| Extrapolation LOAEL to NOAEL | 1                  |  |  |  |  |  |
| Reference MOS                | 100                |  |  |  |  |  |

| Table 4.41 Referenc | e MOS for combine | d developmental | toxicity |
|---------------------|-------------------|-----------------|----------|
|---------------------|-------------------|-----------------|----------|

<sup>&</sup>lt;sup>12</sup> TGD 2005 Appendix VIII, Part 2 B7

|                | Combined               |          |      |            |  |  |  |  |  |
|----------------|------------------------|----------|------|------------|--|--|--|--|--|
|                | Total systemic<br>dose | N(L)OAEL | MOS  | Conclusion |  |  |  |  |  |
|                | mg/kg<br>/day          | mg/kg    |      |            |  |  |  |  |  |
| Swimming pool  |                        |          |      |            |  |  |  |  |  |
| Child swimmers | 0.0114                 | 13.6     | 1193 | ii         |  |  |  |  |  |
| Adult swimmers | 0.0215                 | 13.6     | 633  | ii         |  |  |  |  |  |

#### Table 4.42 Consumer risk assessment for developmental toxicity

For effects on development via combined exposure **conclusion ii** is reached for child and adult swimmers.

# 4.1.3.3.8 Summary of risk characterisation for consumers

|                | Acute |            | Acute |            | Irritation RDT<br>local |            | RDT |            | Carcinogen<br>icity local |            | Carcinogen<br>icity |            | Effects on<br>fertility |            | Developme<br>ntal toxicity |            |
|----------------|-------|------------|-------|------------|-------------------------|------------|-----|------------|---------------------------|------------|---------------------|------------|-------------------------|------------|----------------------------|------------|
|                | MOS   | Conclusion | MOS   | Conclusion | MOS                     | Conclusion | MOS | Conclusion | MOS                       | Conclusion | MOS                 | Conclusion | MOS                     | Conclusion | MOS                        | Conclusion |
| Child swimmers | 874   | ii         | 243   | ii         | 49                      | iii        | 719 | ii         | 121                       | ii         | 719                 | ii         | 1404                    | ii         | 1193                       | ii         |
| Adult swimmers | 154   | ii         | 243   | ii         | 49                      | iii        | 381 | ii         | 121                       | ii         | 381                 | ii         | 744                     | ii         | 633                        | ii         |

## 5 **RESULTS**<sup>13</sup>

- 5.1 INTRODUCTION
- 5.2 ENVIRONMENT
- 5.3 HUMAN HEALTH
- 5.3.1 Human health (toxicity)
- 5.3.1.1 Workers
- **Conclusion** (ii) There is at present no need for further information and/or testing and no need for risk reduction measures beyond those which are being applied already.

Conclusion (ii) applies to:

- Scenario 3, Swimming pools for acute toxicity, sensitisation, irritation, RDT (inhalation systemic, combined for swimming instructors), carcinogenicity (swimming instructor, inhalation for competitive swimmers), fertility and development (dermal).

**Conclusion (iii)** There is a need for limiting the risks; risk reduction measures which are already being applied shall be taken into account.

Conclusion (iii) applies to:

- Scenario 3, Swimming pools for RDT (inhalation local, dermal and combined for competitive swimmers), carcinogenicity (dermal and combined for competitive swimmers).

#### 5.3.1.2 Consumers

**Conclusion** (ii) There is at present no need for further information and/or testing and no need for risk reduction measures beyond those which are being applied already.

Conclusion (ii) applies to:

- Child and Adult swimmers for acute toxicity, irritation, RDT, carcinogenicity, fertility and development.
- **Conclusion (iii)** There is a need for limiting the risks; risk reduction measures which are already being applied shall be taken into account.

 $<sup>^{13}</sup>$  Conclusion (i) There is a need for further information and/or testing.

Conclusion (ii) There is at present no need for further information and/or testing and no need for risk reduction measures beyond those which are being applied already.

Conclusion (iii) There is a need for limiting the risks; risk reduction measures which are already being applied shall be taken into account.

Conclusion (iii) applies to:

- Child and Adult swimmers for RDT (local).