Как да се спазва ограничаване 71 на REACH — ръководство за потребители на NMP (1-метил-2-пиролидон)

юли 2019 г.
Отказ от отговорност

Настоящият документ има за цел да помага на потребителите при изпълнение на задълженията им съгласно регламента REACH. Напомняме на потребителите, че текстът на регламента REACH е единственият автентичен нормативен документ за справка и информацията в настоящия документ не представлява правен съвет. В някои точки се прави препратка към задълженията, произтичащи от законодателството на ЕС и националното законодателство в областта на безопасността и здравето при работа (БЗР). Въпреки това прилагането на национално равнище на директивите на ЕС за БЗР може да се различава от посочените в настоящия документ примери. Единствено потребителят носи отговорност за използването на информацията. Европейската агенция по химикали не поема никаква отговорност по отношение на използването на информацията, съдържаща се в настоящия документ.

<table>
<thead>
<tr>
<th>Версия</th>
<th>Промени</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>10.07.2019 г.</td>
</tr>
<tr>
<td></td>
<td>Първо издание</td>
</tr>
</tbody>
</table>

Благодарности

ЕCHA изразява благодарност на следните организации за подкрепата и приноса им за изготвянето на това ръководство: Petrochemicals Europe (сектор на Cefic), BASF SE, NXP Semiconductors, Farmak, LyondellBasell, MicroQuartz, Saft Batteries, Schwering & Hasse Elektrodraht, Teijin Aramid, ESIA (Европейско сдружение в сектора на полупроводниците) и Europacable (Европейско сдружение на производителите на кабели и проводници).

Заглавие: Как да се спазва ограничаване 71 на REACH — ръководство за потребители на NMP (1-метил-2-пиролидон)

Справочен номер: ECHA-19-H-07-BG
Кат. номер: ED-01-19-554-BG-N
DOI: 10.2823/2076
Дата на публикуване: юли 2019 г.
Език: BG

© Европейска агенция по химикали, 2019 г.
Заглавна страница © Европейска агенция по химикали

Ако имате въпроси или коментари, свързани с настоящия документ, изпратете ги (цитирайте справочния номер и датата на издаване), като използвате формуларя за искане на информация. Формуларът за искане на информация може да се намери на страницата за контакти на ECHA на адрес:
http://echa.europa.eu/contact
Европейска агенция по химикали

Пощенски адрес: P.O. Box 400, FI-00121 Helsinki, Финландия
Адрес за посещения: Annankatu 18, Helsinki, Финландия
Съдържание

1. ВЪВЕДЕНИЕ .. 6
 1.1 За кого е предназначено това ръководство? .. 6
 1.2 Ограничаването ... 7
 1.3 Какво представлява NMP? ... 8
 1.4 Опасности ... 9
 1.5 Какво представляват DNEL? .. 11

2. Какво трябва да направите, за да контролирате по подходящ начин риска .. 14
 2.1 Как да проверите дали Вашата употреба се обхваща от получените сценарии на експозиция ... 14
 2.2 Употребата се обхваща от получените сценарии на експозиция .. 16
 2.3 Употребата НЕ се обхваща от получените сценарии на експозиция .. 17
 2.4 Проверка на Вашата употреба: информационен лист за безопасност на смес 17
 2.5 Как (разширенният) информационният лист за безопасност подпомага Вашата оценка на риска на работното място? ... 19

3. Примери на добра практика за контрол на експозицията на NMP ... 22
 3.1 Илюстрирани примери .. 23
 3.1.1 Пълнене и изпразване ... 24
 3.1.2 Операции по прехвърляне .. 25
 3.1.3 Прехвърляне в малък контейнер .. 26
 3.1.4 Съхраняване .. 28
 3.1.5 Вземане на проби ... 28
 3.1.6 Подготвка за поддръжка .. 29
 3.1.7 Почистване на оборудването, използващо NMP ... 30
 3.1.8 Намотка на проводници, пример от сектор ... 30
 3.1.9 Допълнителни материали за добра практика ... 35

4. Наблюдение и проверка на съответствието ... 36

5. ЗАЩО И КОГА ТРЯБВА ДА СЕ СВЪРЖЕТЕ С ДОСТАВЧИКА ... 38

6. ПРЕПРАТКИ И ДОПЪЛНИТЕЛНА ЛИТЕРАТУРА .. 40

7. ПРИЛОЖЕНИЯ .. 41
 7.1 Приложение 1. Схема за илюстрация на взаимодействието между REACH и Директивата за химични агенти ... 41
 7.2 Приложение 2. Потенциални аналитични методи ... 42
 7.3 Приложение 3. Къде се използва NMP: секторни и типични употреби .. 45
Съдържание на таблиците
Таблица 1: Общоприети наименования и основни свойства на 1-метил-2-пирилодон 8
Таблица 2: Хармонизирана класификация на NMP .. 10
Таблица 3: Някои примери на добра практика за контрол на експозицията 22
Таблица 4: Потенциални аналитични методи за наблюдение на експозиция (въздушна) на работно място ... 42
Таблица 5: Потенциални аналитични методи за биологично наблюдение 44
Таблица 6: Текущи европейски стойности за контрол на експозиция 45
Таблица 7: Общ преглед на индустриалните сектори, използващи NMP 46
1. Въведение

1.1 За кого е предназначено това ръководство?

Настоящият документ е предназначен да помогне на тези, които използват 1-метил-2-пиролидон (NMP) или смеси, съдържащи NMP (C ≥ 0,3 %), да спазват изискванията за ограничаване съгласно регламента REACH. Освен това настоящото ръководство може да помогне на органите да разберат какво се очаква и да оценят спазването на дадена площадка.

NMP има хармонизирана класификация като токсичен за репродукцията (токсичност за репродукцията категория 1В) и освен това е дразнител на дихателните пътища, кожата и очите. В Европа NMP е предмет на ограничение 71 от приложение XVII към REACH. Ако се налага да използвате NMP на Вашето работно място, трябва да защитите всяко лице, което би могло да е изложено на въздействието му. Настоящото ръководство е предназначено да Ви помогне да разберете какво трябва да направите, за да спазите условията на това ограничаване сами по себе си, но и на фона на Вашите съществуващи задължения в областта на безопасността и здравето при работа (БЗР).

Общият подход, описан в настоящото ръководство, може да бъде приложен за други аprotични разтворители, подобни на NMP (като DMF и DMAC), ако за други аprotични разтворители са въведени подобни ограничавания от REACH. Някои елементи от настоящото ръководство са специфични за NMP (напр. примери на добра практика, методи за наблюдение, описание на употребите, др.) и следователно може да не са приложими директно за други вещества.

За да се гарантира яснотата на обхвата на ръководството, уместно е да се изясни значението на някои от термините, използвани в документа.

Употреба: както е определена в законодателството на REACH, всяка преработка, формулиране, потребление, съхранение, отговорно пазене, обработка, пълнене в контейнери, прехвърляне от един съд в друг, смесване, производство на изделие или всяка друга употреба.

Потребител на NMP: в настоящото ръководство терминът „потребител“ трябва да се разбира като „краен потребител“, т.е. всеки участник, който използва NMP или смес, съдържаща NMP, в своята индустриална или професионална дейност, но не го доставя по-нататък.

Доставчик на NMP: всеки участник, който доставя NMP или смеси, съдържащ NMP, на други участници. Доставчици на NMP може да са
• Регистранти на NMP (производители или вносители)
• Потребители надолу по веригата, доставящи NMP (напр. тези, които осъществяват повторно пълнене)
• Дистрибутори, доставящи NMP

Доставчици на смеси, съдържащи NMP, може да са
• Регистранти, които формулират и доставят смеси, съдържащи NMP
• Потребители надолу по веригата, които формулират и доставят смеси, съдържащи NMP
• Дистрибутори, доставящи смеси, съдържащи NMP.

Работник: В настоящото ръководство терминът „работник“ трябва да се разбира като всяко лице, наето от работодател, включително обучаващи се работници, с изключение на
домашни помощици⁴ (вж. конвенция № 189 на МОТ), както и специалисти (напр. самостоятелно заети работещи лица).

1.2 Ограничителите

Употребата на NMP беше ограничена от Европейската комисия през април 2018 г. поради опасните му свойства. Вписването на ограничаване 71 на приложение XVII към REACH се прилага за производството, пускането на пазара и употребата на NMP и определя следните изисквания:

1. Не се пуска на пазара като вещество в самостоятелен вид или в смеси в концентрация, равна на или по-голяма от 0,3 %, след 9 май 2020 г., освен ако в съответните доклади за безопасност на химичното вещество и информационни листове за безопасност производителите, вносителите и потребителите надолу по веригата са включили равница за „Получена недействаща концентрация“ (DNEL), отнасящи се до експозицията на работници, в размер на 14,4 mg/m³ за експозиция чрез вдишване и 4,8 mg/kg/ден за дермална експозиция.

На практика параграф 1 изисква доставчитите на NMP или смеси, съдържащи NMP (C ≥ 0,3 % w/w), да направят оценка за безопасност на химичното вещество, като използват задължителните DNEL за работници в размер на 14,4 mg/m³ за експозиция чрез вдишване и 4,8 mg/kg/ден за дермална експозиция. Доставчиките трябва да документират тази оценка в доклад и да съобщат резултатите от оценката (съответните условия на употреба и мерки за управление на риска) в информационния лист за безопасност, който предоставят на своите клиенти. Задължителните DNEL трябва да бъдат съобщени в информационните листове за безопасност независимо от тонажа. Доставчиците на NMP трябва да спазват този параграф от 9 май 2020 г. нататък.

2. Не се произвежда или употребява като вещество в самостоятелен вид или в смеси в концентрация, равна на или по-голяма от 0,3 %, след 9 май 2020 г., освен ако производителите и потребителите надолу по веригата вземат необходимите мерки за управление на риска и осигурят необходимите работни условия, с цел да се гарантира, че експозицията на работниците е по-ниска от DNEL, определени в параграф 1.

На практика параграф 2 изисква производителите, доставчиките и потребителите на NMP да използват NMP или смеси, съдържащи NMP (C ≥ 0,3 % w/w), по начин, който гарантира, че работниките няма да са изложени на експозиция на NMP над посочените в ограничителите DNEL. Производителите и потребителите на NMP трябва да спазват този параграф от 9 май 2020 г. нататък.

3. Чрез дерогация от параграфи 1 и 2, заложените в тях задължения се прилагат от 9 май 2024 г. по отношение на пускането на пазара за употреба или употребата като разтворител или реагент в процеса на нанасяне на покрития на проводници.

⁴ Вижте конвенция № 189 на МОТ
Как да се спазва ограничаване 71 на REACH — ръководство за потребители на NMP

На практика параграф 3 предоставя повече време на доставчиците и потребителите на NMP като разтворител или реагент в процеса на нанасяне на покрития на проводници, за да спазят ограничаването. Те трябва да спазват параграфи 1 и 2 от 9 май 2024 г.

Ограничаването е публикувано в Официален вестник на Европейския съюз, а повече информация за досието за ограничаване може да се намери на уебсайта на ECHA.

Настоящото ръководство се фокусира върху спазването на параграф 2 на ограничаването от гледната точка на потребителя. Ситуацията на потребителите на NMP се различава от обичайната ситуация на потребител на вещества или смеси съгласно REACH, тъй като DNEL на NMP сега са задължителни за всички участници и срокът за изпълнение е определен от ограничаването.

1.3 Какво представлява NMP?

NMP е органично химично съединение, идентифицирано с № 212-828-1 на Европейската общност, регистрационен номер по CAS 872-50-4 и от неговата молекулна формула C₅H₉NO. NMP се внася и произвежда в голям обем (20 000 — 30 000 тона на година през 2017—2018 г.) в Европа. Обикновено се използва като разтворител в различни индустрии като нефтохимическата, фармацевтичната или за повърхностна обработка. За повече информация вижте приложение 7.3.

Таблица 1: Общоприети наименования и основни свойства на 1-метил-2-пиролидон.

<table>
<thead>
<tr>
<th>Свойство</th>
<th>Стоимость</th>
</tr>
</thead>
<tbody>
<tr>
<td>Общоприети наименования</td>
<td>NMP, N-метил-2-пиролидон, метил пиролидон, 1-метил пиролидон и N-метил пиролидон</td>
</tr>
<tr>
<td>Външен вид</td>
<td>Течен при стайна температура</td>
</tr>
<tr>
<td>Цвят</td>
<td>Безцветен</td>
</tr>
<tr>
<td>Мириас</td>
<td>Лек мирис на амин (риба)</td>
</tr>
<tr>
<td>Точка на топене/замръзване</td>
<td>-24,2°C при 101 325 Pa</td>
</tr>
<tr>
<td>Точка на кипене</td>
<td>204,1°C при 101 325 Pa</td>
</tr>
<tr>
<td>Плътност</td>
<td>1,03 g/cm³ при 25°C</td>
</tr>
<tr>
<td>Налияване на парите</td>
<td>32 Pa при 20°C</td>
</tr>
<tr>
<td>Разтворимост във вода</td>
<td>Смесва се с вода 1 000 г/л при 20°C</td>
</tr>
<tr>
<td>Точка на запалване</td>
<td>91°C при 101 325 Pa</td>
</tr>
</tbody>
</table>

Биоразграждане във вода | Лесно биоразградим (100 %)

1.4 Опасности

NMP е токсичен за репродукцията (може да увреди плода), причинява сериозно дразнене на очите, причинява дразнене на кожата и може да предизвика дразнене на дихателните пътища. Европейският съюз е признал тези опасни свойства и е предоставил хармонизирана класификация (и етикетиране) съгласно регламента за класифициране, етикетиране и опаковане (CLP). От 1 март 2018 г. NMP притежава представената в Таблица 2 класификация.

В работната среда NMP може да проникне в организма чрез вдишване на пари (или аерозоли) на веществото или в кожата чрез пръски или капки, носене на замърсени лични предпазни средства и докосване на замърсени повърхности. NMP под формата на пари в атмосферата също може да проникне в организма през кожата.
Таблица 2: Хармонизирана класификация на NMP.

| Задължителна хармонизирана класификация на NMP (CLP00, ATP09), индекс № 606-021-00-7 |
|-------------------------------------|-------------------------------------|-------------------------------------|
| Клас на опасност и категория на опасност | Код на и предупреждение за опасност | Описание |
| Репр. 1B | H360D*** | Токсичност за репродукцията, може да увреди плода |
| Дразн. на очите 2 | H319 | Сериозно дразнене на очите, причинява сериозно дразнене на очите |
| Дразн. на кожата 2 | H315 | Дразнене на кожата, причинява дразнене на кожата |
| STOT SE 3 | H335 | Специфична токсичност за определени органи — еднократна експозиция, може да предизвика дразнене на дихателните пътища |

Свързаните с *** H360D означават, че класификацията Репр. 1B е транспонирана от предходното законодателство без някакво по-скооро изследване съгласно CLP. Въпреки това класификацията Репр. 1B е потвърдена в досието за ограничаване.

Забележка:
- За класификацията Репр. 1B — H360D*** се прилага стойност на общата пределна концентрация $C \geq 0,3\%$. При концентрация под тази стойност класификацията Репр. 1B — H360D*** не се прилага.
- За класификацията STOT SE 3 — H335 има стойност на специфична пределна концентрация $C \geq 10\%$. При концентрация под тази стойност класификацията STOT SE 3 — H335 не се прилага.
- За класификацията Дразн. на очите 2 — H319 се прилага стойност на общата пределна концентрация $C \geq 10\%$. При концентрация под тази стойност класификацията Дразн. на очите 2 — H319 не се прилага.
- За класификацията Дразн. на кожата 2 — H315 се прилага стойност на общата пределна концентрация $C \geq 10\%$. При концентрация под тази стойност класификацията Дразн. на кожата 2 — H315 не се прилага.

Следните елементи трябва да са видими на етикета, който се прикрепя към контейнера с/опаковката на NMP.

Опасно

Сигнална дума Опасност за здравето (GHS08) Удивителен знак (GHS07)

За допълнителна информация относно изискванията за класификариране, етикетиране и опаковане направете справка с ръководството относно етикетирането и опаковането в съответствие с Регламент (ЕО) № 1272/2008.

4 Европейската директива за опасните вещества (DSD), която обхваща опасни вещества, беше въведена през 1967 г. с цел защита на общественото здраве, по-специално здравето на работниците, които работят с опасни вещества. Директивата е заменена с нов закон, известен като регламент за класифицирането, етикетирането и опаковането на вещества и смеси (CLP) от 20 юли 2009 г.
5 Ръководство относно етикетирането и опаковането
1.5 Какво представляват DNEL?

Равнищата на получена недействаща доза/концентрация (DNEL) са нивата на експозиция на вещество, под които не се очаква поява на негативни за здравето ефекти при хората. Те се изчисляват от информацията за опасност, генерирана и събрана за регистрация на вещество съгласно REACH, и служат като референтни стойности за оценка за безопасността на химично вещество. Тези нива на недействаща концентрация се получават от регистрантите, т.е. производителите и вносителите на дадено вещество, като част от процеса за регистрация на опасни вещества по REACH. В определени ситуации съгласно REACH, DNEL може да бъдат получени от органи (процедура по ограничаване) или да бъдат препоръчани от Комитета за оценка на риска на ECHA (процедура по разрешаване).

За дадено вещество може да съществува повече от една DNEL, тъй като DNEL е специфична за пътя и ефекта на експозиция. В тези случаи трябва да се отчита и комбинираният риск, когато има множество пътища на експозиция. Дългосрочните/хроничните системни6 DNEL се изчисляват за променяща се дългосрочна експозиция. Следователно те трябва да се използват за оценка на риска при ежедневна средна експозиция над 8 часа.

Когато се извършва оценка за безопасност на химично вещество съгласно REACH, DNEL се използват като референтни стойности за определяне и идентифициране на работните условия7 и съответните мерки за управление на риска8. DNEL се сравняват с експозицията на даден работник (въз основа на измерения или моделирани данни) за специфична употреба или употреби на NMP при подходящи мерки за управление на риска. Ако нивото на експозиция не превишава DNEL, условията на употреба се считат за достатъчни за подобряващ контрол на рисковете. Ако превишава, работните условия и мерките за управление на риска трябва да се преразгледат, докато нивото не експозиция не превишава DNEL. Ако има множество пътища на експозиция (и много DNEL, както е в случая при NMP), тогава трябва да се вземе предвид и комбинираната експозиция от всички пътища при оценката на риска.

Обикновено оценката за безопасност на химично вещество се извършва от регистранта или доставчика. Поради практически причини нивото на експозиция често се оценява от registранта с помощта на инструменти за моделиране на експозиция. Информация за условията на безопасна употреба се предоставя в разширен информационен лист за безопасност.

За NMP, DNEL при вдишване и дермална експозиция са получени от органите като част от процеса на ограничаване по REACH. Тези специфични, задължителни DNEL, свързани с вдишване и дермална експозиция на работници, трябва да се прилагат при оценката за безопасност на химично вещество от всеки производител, вносител и потребител (надолу по веригата), ако се изисква, който използва веществото съгласно условията на ограничаване.

В случая на NMP, DNEL при вдишване са по-ниски от настоящата европейска индикативна гранична стойност на професионална експозиция (14,4 mg/m³ спрямо 40 mg/m³). Тези две стойности произлизат от отделните, но критични нежелани ефекти за здравето — съответно токсичност за репродукцията (развитието) и дразнене на дихателните пътища. Така че от практическа гледна точка спазването на DNEL чрез прилагане на мерките за

6 „Системен ефект“ означава неблагоприятен за здравето ефект, когато вещество се абсорбира в организма, разпространява се и действа върху органи, които са далече от точката на контакт.
7 „Работни условия“ са дейностите на работници, свързани с обхванатите процеси, и продължителността и честотата на тяхната експозиция на веществото.
8 „Мерки за управление на риска“ са мерките за намяляване или избягване на директна или индиректна експозиция на работниците.
управление на риск, описани в сценария на експозиция, приложен към информационния лист за безопасност, трябва да гарантира, че приложимата гранична стойност на експозиция не се превишава. Освен DNEL при вдишване, DNEL при дермална експозиция в размер на 4,8 mg/kg телесно тегло/ден е важен елемент при оценка на комбинирани (системни) ефекти от вдишан и дермално абсорбиран NMP. Ако спазвате сценария(ите) на експозиция, нивото на експозиция трябва да е под всички съответни DNEL.

За NMP и някои други вещества, заедно с DNEL има и гранични стойности на професионална експозиция (OEL). DNEL и OEL се прилагат едновременно към едни и същи работни дейности. На пръв поглед това може да е обяснено ако стойностите са различни. Стойностите на DNEL и OEL обаче произлизат от различни законодателства на EC. И двете стойности са посочени в точка 8.1 на информационния лист за безопасност.

Помнете!
→ Нивата на получена недействаща доза/концентрация (DNEL) и граничните стойности на професионална експозиция (OEL) допринасят за защита на работниците срещу нежелани ефекти за здравето при химическа експозиция на работното място.
→ Според закона, за NMP трябва да предприемете стъпки за спазване както на DNEL съгласно REACH и OEL за Европейския съюз, приети с въвеждането на Директива 98/24/ЕО за рисковете, свързани с химични агенти, така и на националните гранични стойности.
→ Стойностите на DNEL и OEL са посочени в точка 8.1 на информационния лист за безопасност.
→ Необходим е подходящ контрол (работни условия и мерки за управление на риска), за да се гарантира, че експозицията на работниците е под стойността(ите).
→ За NMP препоръчителните работни условия и мерки за управление на риска са посочени в сценарияте на експозиция, приложени към информационния лист за безопасност.
→ Потребителите надолу по веригата, напр. работодатели, са задължени да оценяват всички рискове, на които са изложени работниците, и да предприемат всички профилактични превантивни и предпазни мерки. Информационният лист за безопасност предоставя много полезна информация в подкрепа на тази дейност.
→ За NMP контролирането на експозиция под DNEL трябва също така да гарантира спазване на повечето национални гранични стойности на професионална експозиция.

Повече за граничните стойности на професионална експозиция
Граничните стойности на професионална експозиция (OEL), успоредно с DNEL, определят границата на претеглената като функция на времето средна стойност на концентрацията на даден химичен агент във въздуха в дихателната зона на даден работник спрямо определен референтен период (обикновено 8 часа на ден). Краткосрочните гранични стойности определят нивото, под което няма вероятност за възникване на нежелан ефект за здравето в рамките на 15-минутна експозиция, доколкото не се превишава 8-часовият среден период. За NMP съществуват както 8-часови, така и краткосрочни индикативни гранични стойности на професионална експозиция (вж. приложение 7.2, Таблица 6).

OEL са национални, подлежащи на директно прилагане гранични стойности, които трябва да бъдат определени от държавите членки с отчитане на граничните стойности на професионална експозиция, произтичащи от рамката на европейските директиви, като Директива 98/24/ЕО за рисковете, свързани с химични агенти.
Даден работник не трябва да се излага на стойност над границата на професионална експозиция. Работодателите носят отговорност за гарантиране на спазването на границите на професионална експозиция и поради това трябва да въведат мерки за управление на риска, за да гарантират, че експозицията на NMP е предотвратена или сведена до минимум, или поне се контролира до ниво под границата на професионална експозиция.

Тъй като поглъщането през кожата е съответният път на експозиция за NMP, индикативната OEL се допълва с обозначение за кожата за ограничаване на общата експозиция на веществото. Биологичните гранични стойности за метаболити на NMP са получени като указание за контрола на потенциалните рискове за здравето.⁹

⁹ Списък на препоръчителните биологични гранични стойности въз основа на здравето на Научния комитет за граници на професионална експозиция (SCOEL), юни 2014 г.
2. How to ensure compliance with the risks

When you purchase NMP, the supplier must provide (expanded) safety information. Information on restriction 71 under REACH can be found in section 15 of the safety data sheet. When exposure scenarios are applied, they describe the working conditions and appropriate measures for risk management for each respective use. From the consumer down the supply chain, it is required to comply with these measures or to take another appropriate action (see section 2.3), to ensure that the level of exposure does not exceed the predicted level of exposure. If you comply with the exposure scenarios, the level of exposure should be below all corresponding DNEL.

Possible situations where you may not receive updated safety data sheets, for example, because your last delivery was more than 12 months before the restriction. As an option, you may have received an updated safety data sheet, but without applied exposure scenarios, for example, because the supplier has registered <10000/15/CT. In these situations, the first thing you should do is contact the supplier and check (see section 5). Remember that the conditions imposed by REACH are still applicable and must be complied with. In practice, this means that you must be able to demonstrate compliance according to national requirements (mainly through exposure monitoring; some member states may accept modeling).

The following four sub-sections describe what you must do according to the requirements of REACH. You must also comply with your obligations in the area of health and safety at work (HSE) (some of these aspects are covered in section 2.5).

The first step is to check if your use of NMP is described in the expanded safety data sheet you received along with the substance.

2.1 How to ensure that your use is covered by the applied exposure scenarios on exposure

You can do this as follows:

1. Check your use(s): see (i) section 1.2 on the safety data sheet about the identified uses and (ii) the title of the applied exposure scenarios. Check if your use(s) is/are described there (remember, it is possible to have multiple uses).

As a good practice, the supplier should provide content to the application with the exposure scenarios, so you can easily identify the scenarios that are most suitable for your use(s).

“Expanded” means that a supplier in your supply chain has registered the substance as produced or imported into the EU in a quantity exceeding 10 tons/year and has applied exposure scenarios (ES) to the safety data sheet. The registration number can be found in section 1 on the safety data sheet.

10 “Expanded” means that a supplier in your supply chain has registered the substance as produced or imported into the EU in a quantity exceeding 10 tons/year and has applied exposure scenarios (ES) to the safety data sheet. The registration number can be found in section 1 on the safety data sheet.
Как да се спазва ограничаване 71 на REACH — ръководство за потребители на NMP

Annex: Exposure Scenarios

1. Use as a Process chemical
 SU3; SU3; ERC4; PROC1, PROC2, PROC3
2. Charging and discharging of substances and mixtures
 SU3; SU3; ERC1, ERC2, ERC4; PROC8a, PROC8b, PROC9
3. Formulation
 SU3; SU3; ERC2, PROC1, PROC2, PROC3, PROC5, PROC14
4. Use in laboratories
 SU3; SU3; ERC4; PROC15
5. Use in laboratories
 SU22; SU22; ERC8a; PROC15
6. Use in construction chemicals
 SU3; SU3; ERC4; PROC10, PROC13, PROC14
7. Use in Coatings
 SU3; SU3; ERC4; PROC7, PROC10, PROC13
8. Use in Coatings
 SU3; SU3; ERC8a, ERC8c, ERC8d, ERC8f; PROC13
9. Use in Cleaning Agents
 SU3; SU3; ERC4, PROC3, PROC4, PROC5, PROC7, PROC10, PROC13
10. Use in Functional Fluids
 SU3; SU3; ERC4, ERC7; PROC17, PROC18

Ако не е предоставено съдържание, тогава трябва да проверите заглавието на всеки сценарий на експозиция, за да определите тези, които съвпадат с Вашите употреби.

2. Short title of exposure scenario
 Charging and discharging of substances and mixtures
 SU3; SU3; ERC1, ERC2, ERC4; PROC8a, PROC8b, PROC9

3. Проверка на Вашите условия на употреба: Сравнете информацията, предоставена в сценария на експозиция, с работните условия и мерките за управление на риската, които прилагате на работното място.

PROC е съкращение на категория на процес, която е начин за кодиране на задачи, техники на приложение или видове процеси от работна гледна точка. Когато се оценява експозиция с инструменти за моделиране, някои PROC са свързани с фактори за намаляване на експозицията. ERC е съкращение на категория на изпускане в околната среда и е начин за характеризиране на дадена употреба и нейния потенциал за изпускане или емисия в околната среда. Категорията „сектор на употреба” (SU) описва в кой сектор на икономиката се използва веществото, напр. сектор за производство на каучук, селско стопанство, горско стопанство, риболов, др. PROC, ERC, SU са елементи на системата за използване на дескриптори.
Ако условията на употреба на работното Ви място се различават от сценария на експозиция на доставчика, все пак може да сте в състояние да демонстрирате, че при Вашите условия на употреба нивата на експозиция (за хората и околната среда) са еквивалентни на или по-ниски от описаните от доставчика условия. При оценка на нивото на експозиция (с използване на моделиращ инструмент) модификация на един фактор може да се компенсира с модификация на друг фактор. Ако е приложимо, доставчикът трябва да Ви предостави информация (напр. инструмент/метод за мащабиране, параметрите, които може да бъдат модифицирани и техните граници) в сценария на експозиция, която да Ви помогне.

2.2 Употребата се обхваща от получените сценарии на експозиция

Ако заключението от Вашата проверка е, че Вашата употреба е обхваната от един от получените сценарии на експозиция и че сте въвели подходящите мерки за управление на риска на работното място, на този етап не се изисква допълнително действие съгласно REACH. Трябва да документирате Вашата проверка и всяко действие, което сте предприели, за да гарантирате съответствие с условията на употреба в сценария на експозиция. Според законосъздателството относно защитата на работниците е възможно да се изисква да наблюдавате експозицията на работниците (т.е. поради съществуването на OEL) и това трябва да се използва за потвърждаване на спазването. Ако наблюдението сочи друго, тогава имате задължение съгласно REACH да информирате доставчика, че съобщените мерки за управление на риска не са подходящи (вж. точка 5).

Взети заедно, прилагането на работните условия и мерките за управление на риска, описани в сценария на експозиция, трябва да гарантират, че експозицията на работниците е под DNEL за неблагоприятни ефекти при вдишване и погълтане през кожата. Ако не сте сигурни, посъветвайте се с компетентно лице, например орган по трудова медицина.
2.3 Употребата НЕ се обхваща от получените сценарии на експозиция

Ако заключението от Вашата проверка е, че Вашата употреба не е обхваната от получените сценарии на експозиция (Вашата употреба не съвпада с някой от сценарите на експозиция или се отклонява значително от тях), тогава имате няколко варианта за избор.12 Има две предвид срока за спазване на ограничаване 71 (май 2020 г.), когато обмисляте следните варианти:

- Съобщете Вашата употреба на доставчика, като целта е тя да стане „идентифицирана употреба" и да бъде включена в оценката за безопасност на химично вещество на доставчика съгласно регламента REACH. След това доставчикът ще Ви предложи актуализиран разширен информационен лист за безопасност/сценарий на експозиция.

- Ако Вашата употреба е включена, но условията на употреба (работни условия и мерки за управление на риска) се различават значително, въведете условията на употреба, които са описани в получените сценарии на експозиция. Може да се наложи да промените Вашия процес или съществуващото оборудване за контрол по някакъв начин, за да съвпада с описаните в сценария на експозиция условия.

- Заменете NMP с различно вещество, за което има сценарий на експозиция, който обхваща Вашите условия на употреба.

- Намерете друг доставчик, който предлага NMP с информационен лист за безопасност и сценарий на експозиция, които обхващат Вашата употреба.

- Ако нито един от горните варианти не е наличен или приложим, подгответе доклад за безопасност на химично вещество на потребител надолу по веригата и информирайте ЕСНА. Помнете, че наложението от ограничаване 71 на REACH е още е оценка с приложени и трябва да се спазват. Проверете дали някакви изключения са приложими по отношение на доклада за безопасност на химичното вещество на потребител надолу по веригата, т.е. ако използвате NMP в количества под 1 тон на година или за целите научноизследователска и развойна дейност, свързана с продукти и процеси (НИРДССП). Практическото ръководство 17 на ЕСНА13 подкрепя изготвянето на доклад за безопасност на химичното вещество на потребител надолу по веригата и включва пример за начина на използване на измерените данни за доказване, че рискът се контролира по подходящ начин.

2.4 Проверка на Вашата употреба: информационен лист за безопасност на смес

Ако сте закупили и използвате NMP в смес, със съответния информационен лист за безопасност на смес, прилагат се същите задължения, като за вещество. Въпреки това може да е по-трудно да идентифицирате Вашата употреба и условията на употреба (работни условия и мерки за управление на риска), тъй като информацията може да е включена само по себе си в информационния лист за безопасност, а не приложена към него под формата на приложение. Все пак ще трябва да направите описаните по-горе проверки, но този път може да се наложи да прегледате основната част на информационния лист за безопасност, за да получите подходящата информация. В този случай трябва да проверите идентифицираните употреби в точка 1.2 и да видите дали има някакви приложения към информацияния лист за безопасност, в които са

описани условията на употреба. Ако няма приложения, тогава трябва да прегледате различните точки в основната част на информационния лист за безопаснност за информация относно работните условия и мерките за управление на риска, това например най-вероятно са точки 7.3 и 8.2. Ако стигнете до заключението, че Вашата употреба не е обхваната, тогава точките от списъка в точка 2.3 по-горе ще се прилагат за Вас. Помнете, че условията, наложени от ограничаване 71 на REACH, също са приложими и трябва да се спазват.
2.5 Как (разширените) информационния лист за безопасност подпомага Вашия оценка на риска на работното място?

Ако използвате NMP на Вашето работно място, трябва да определяте какви мерки и оборудване трябва да се въведат за управление на рисковете, които са в съответствие с описания в (разширените) информационен лист за безопасност условия на употреба и същевременно отговарят на условията на ограничаването. В националното законодателство за защита на здравето и безопасността на работниките от рискове, свързани с химични агенти (като NMP) на работното място, се изисква също да направите оценка на риска на работното място. Тази оценка на риска трябва да документира какви специфични превантивни мерки се изискват за намаляване на риска. По-специално към целевата популяция/ grupa се отнасят бременните работници предвид нежеланите ефекти, които NMP оказва върху здравето на плода, и трябва да се предприемат мерки за избягване на експозиция с цел спазване на националните изисквания за защита на бременните работници.14 Информацията, която се съдържа в информационния лист за безопасност на доставчика, трябва да се вземе предвид при оценката на риска и Вие трябва да определите дали можете да спазите описаните в него условия. Оценката и въвеждането на превантивните мерки трябва да се направи преди започването на нова дейност с NMP и ако има някаква промяна в съществуващите работни условия. Ако смятате, че информацията в информационния лист за безопасност не е достатъчна, за да оцените риска за здравето и безопасността на работниките, който произтича от употребата на NMP, по-специално точка 8.2.1 на информационния лист за безопасност относно подходящите технически средства за контрол, съвржете се с доставчика (като е описано в точка 5).

Според регламента REACH доставчикът трябва без забавяне да актуализира информацияния лист за безопасност след въвеждане на ограничаване, като го идентифицира като „Редакция: (дата)” и предоставя новата версия на всички предишни получатели, на които е правил доставки през предходните 12 месеца. С получаването на нов информационен лист за безопасност от доставчика трябва да се започне преглед на организацията на Вашето работно място по отношение на контрол на експозицията на Вашите работници на NMP. Трябва да определяте какви промени на работните условия и мерките за управление на риска са описани сега за Вашата(ите) употреба(и) в сценарните на експозиция и какви промени са необходими във Вашето съществуващо оборудване за контрол на експозицията на работното място и подпомагащите системи за управление.

Според законодателството за защита на работниците йерархията на контролните мерки означава, че трябва да се фокусирате върху предотвратяването на експозицията на Вашите работници (чрез всички пътища, напр. вдишване, контакт с кожата, перорално) като приоритет, т.е. да замените с по-безопасно вещество или технологичен процес. Ако все пак може да възникне експозиция, трябва да се предприемат технически или инженерни мерки за контрол, за да се сведе до минимум рискът и експозицията при вдишване и поглъщане през кожата (директен контакт с кожата или пари) при източника, например чрез затваряне на процеса или задачите, напр. чрез подходящо проектиран контейнер и съзрена локална смукателна вентилация15, като това трябва да е допълнено с организационни мерки, напр. намаляване на броя на работниците, изложени на експозиция (или избягване на специални целеви популации/ групи), или продължителността на тяхната експозиция. Едва след като тези подходи са изчерпани и ако има остатъчен риск, трябва да се обмисли използването на лични предпазни средства.

14 Директива 1992/85/ЕИО на Съвета от 19 октомври 1992 година за въвеждане на мерки за насърчаване подобряването на безопасността и здравето по време на работа на бременни работници и на работници родилки или кърмачки.

15 Правилният монтаж и работа на локалната смукателна вентилация са изключително важни, за да се гарантира контрол на експозицията; за указания вижте http://www.hse.gov.uk/lev/employers.htm
Ако въз основа на оценката на риска на работното място имате съмнения относно целесъобразността на мерките за управление на риска, съобщени в (разширен) информационния лист за безопасност, трябва да се свържете с доставчика (вж. точка 5).

Помните, че личните предпазни средства са само за един ползвател и поради това може да се изиска повече от един вид/тип лични предпазни средства (предпазни средства за дишане 16, ръкавици 17 или предпазно облекло) за Вашия персонал. Всички въведените мерки за контрол на експозицията, техният избор, монтажът, обучението на работниците, работата/употребата и поддръжката трябва да се ръководят правилно от Вас. Повече подробности за принцип С.Т.О.Р. — замяна, технически мерки, организационни мерки, лична защита — може да се намерят на уебсайта на европейската агенция за безопасност и здраве при работа EU-O SHA 18, 19. Съществува тенденция за приемане на стратегии, които разчитат предимно на лични предпазни средства за контрол на дермална експозиция. Това е неправильно. Стратегията за управление на риска при дермална експозиция трябва да следва същата философия като тази за експозиция при вдишване. Йерархията на контрол се прилага еднакво за всички пътища на експозиция. При дермална експозиция трябва да се обмислят технически мерки като автоматизация, бариери, разработка на инструменти преди използване на лична защита. Ако рискът не може да бъде контролиран в достатъчна степен от технически/организационни мерки, тогава единствената оставаща стратегия може да е използването на лични предпазни средства.

Въведените от Вас мерки за контрол на експозиция, както са определени от съществуващия доклад за оценка на химичния риск на Вашето работно място, би трябвало да се базират на предишните сценарии на експозиция, предоставени от Вашия(те) доставчик(ци), и да отчита съществуващите национални гранични стойности (т.е. гранични стойности на професионална експозиция и, в някои случаи, национални биологични гранични стойности). Ограничаването на NMP въвежда нова, хармонизирана стойност без нежелани ефекти за здравето на европейските работници, която е по-ниска от съществуващите гранични стойности на професионална експозиция, които все пак трябва да се спазват. Спазването на условията, описани в сценария(ите) на експозиция за Вашата(ите) употреба(и) на NMP, трябва да Ви помогне да постигнете експозиция, по-ниска от националните гранични стойности. При прилагането на тези условия трябва да спазвате йерархията на контролните мерки (вж. по-горе). За NMP съществуват както 8-часови, така и краткосрочни индикативни гранични стойности на професионална експозиция (OEL) успоредно с DNEL (вж. приложение 7.2, Таблица 6). Необходим е подходящ контрол, за да се гарантира, че експозицията на работниците е под тези стойности.

В приложение 7.1 е представена диаграма, която илюстрира стъпките, решенията и действията, които трябва да предприемете. Допълнителен съвет може да получите от Вашия национален орган.

17 За добра практика при избор на ръкавици и управление на ръкавици вижте http://www.hse.gov.uk/skin/employ/gloves.htm
Помнете!

→ NMP е токсичен за репродукцията и употребата му в Европа е ограничена.

→ Ограничаването на NMP би трябвало да предизвика преглед на информационния лист за безопасност на веществото (и на съдържащите го смеси), предоставен от Вашия(те) доставчик(ци). По-специално трябва да се въведат препоръчителните работни условия и мерки за управление на риска, тъй като мерките за контрол на експозиция може да са се променили. Ако сте получили доставка през последните 12 месеца, но не сте получили актуализиран информационен лист за безопасност, а смятате, че е трябвало, свържете се с доставчика.

→ Прегледайте Вашата собствена употреба(и) на NMP спрямо ревизирана (разширен) информационен лист за безопасност на доставчика, модифицирайте Вашия процес и/или оборудването за контрол, където е необходимо, запишете Вашите решения и инструктирайте Вашия персонал.

→ Спазвайте йерархията на мерките за контрол (принципа S.T.O.R.) на Вашето(ите) работно(и) място(мества).
3. Примери на добра практика за контрол на експозицията на NMP

Контролът на експозиция по време на индустриални процеси, в които се използва NMP, ще изисква разработване и внедряване на мерки за управление на риска за всяка стъпка (или задача), при която се използва веществото и има възможност за експозиция. Въпреки че NMP се използва в голем брой сектори и среди, много дейности или задачи са общи за индустриалните сектори. Таблица 3 по-долу предоставя обща предимства на някои общи за индустриалните сектори. Таблица 3 по-долу предоставя общ предимства на някои общи за индустриалните сектори.

Предоставените в тази точка примери и препоръки за работа нямат за цел да освободят всеки работодател от отговорността му да оцени и управлява рисковете на собствената му площадка в съответствие с приложимите национални изисквания и указания.

Таблица 3: Някои примери на добра практика за контрол на експозицията.

<table>
<thead>
<tr>
<th>Задача</th>
<th>Възможни PROC</th>
<th>Добри практики за контрол на експозицията</th>
<th>Пример за употреба</th>
</tr>
</thead>
<tbody>
<tr>
<td>Товарене, разтоварване</td>
<td>8B, 9</td>
<td>Система за улавяне на парите Постоянни (полу-)затворени системи като тръби и специални маркучи (или ръце) за товарене и разтоварване</td>
<td>Формулиране, химични процеси, нанасяне на покрития. Когато вещество или смес се доставя в големи количества (канион).</td>
</tr>
<tr>
<td>Съхраняване</td>
<td>0 - друго</td>
<td>Специално предназначена област Затворени контейнери Интегрирана система за улавяне, предназначена за улавяне на всеки разлив</td>
<td>Повечето употреби ще включват съхраняване</td>
</tr>
<tr>
<td>Прехвърляне</td>
<td>8B, 9</td>
<td>Постоянни и (полу-)затворени системи, като тръби, за редовни прехвърления, където е възможно Смукателен шкаф Локална смукателна вентилация</td>
<td>Повечето употреби ще съдържат някои операции по прехвърляне</td>
</tr>
<tr>
<td>Смесване</td>
<td>5, 19</td>
<td>Затворени системи, където е възможно Локална смукателна вентилация</td>
<td>Формулиране, химични процеси, почистване, нанасяне на покрития</td>
</tr>
<tr>
<td>Вземане на проби</td>
<td>1, 2, 3, 4, 9*</td>
<td>Затворени клапани за вземане на пробы, където е възможно Локална смукателна вентилация</td>
<td>Формулиране, химични процеси, нанасяне на покрития</td>
</tr>
<tr>
<td>Напълзване</td>
<td>7, 11</td>
<td>Автоматизация Изцяло затворена система</td>
<td>Почистване, нанасяне на покрития</td>
</tr>
<tr>
<td>Избърсване (нанасяне с валяк или с четка)</td>
<td>10</td>
<td>Смукателен шкаф Локална смукателна вентилация</td>
<td>Почистване, нанасяне на покрития</td>
</tr>
<tr>
<td>Потапяне/напълзване</td>
<td>13</td>
<td>Автоматизация Затворени системи, където е възможно Изцяло затворена система Закрити резервоари за потапяне Локална смукателна вентилация</td>
<td>Почистване, нанасяне на покрития</td>
</tr>
<tr>
<td>Лабораторни дейности</td>
<td>15</td>
<td>Смукателен шкаф</td>
<td>Лабораторна употреба, качествен контрол на проби</td>
</tr>
</tbody>
</table>
Техническите мерки, напр. инженерен контрол, имат за цел затваряне (изцяло или частично) и отстраняване на парите от задачите, при които се използва NMP, и ще помогнат за контрол на експозицията при вдишване и поглъщане през кожата. Организационните мерки, напр. специални работни методи (стандартни оперативни процедури, писмен инструкции за работа, разрешения за работа, др.) имат за цел да отделят работника от опасността (ограничен достъп), намалят временето на експозиция (чрез дизайн, ергономична организация, осигуряване на подходящи лични предпазни средства) и гарантират, че работниките са запознати с риска и са подходящо обучени да прилагат правилно технически мерки, да прилагат специфични мерки и да използват лични предпазни средства, където се изисква (монтаж, носене, отстраняване и поддръжка).

Ако има открити задачи, наличието на най-добратата възможна и добре поддържана смукателна вентилация, добрите практики на стопанисване и професионална хигиена, както и правилната употреба на лични предпазни средства, са изключително важни, за да се контролира експозицията. Особено внимание трябва да се обръща на предотвратяването на замърсяване на повърхността и разлив.

3.1 Илюстрирани примери

Конкретни и илюстрирани примери на някои мерки за управление на риска, изброени в Таблица 3, са предоставени по-долу. Тези примери не са изчерпателни, но илюстрират вида на оборудването, което някои дружества използват за контрол на експозицията при различни задачи. Трябва да се знае, че дадено оборудване за контрол на експозиция може да е специфично само за някои индустриални сектори. Включението по-долу примери са предоставени с любезното съгласие на някои от заинтересованите страни, споменати в благодарностите.

Елементи за отчитане от оценката/моделирането на експозицията на работниците съгласно REACH.

Допълнителни мерки за безопасност (не задължително за контрол на експозицията на опасни вещества).
3.1.1 Пълнене и изпразване

Насипен: автоцистерна/камион или друга цистерна контейнер

Пълнене и изпразване на стопански резервоар или буферен резервоар в случай на непрекъснат производствен процес (PROC 8b).

| Горе: Цистерна контейнер в станция за пълнене (на открито) | Снимката показва въвеждането на тръбата за пълнене и мерките за свеждане на риска до минимум. Ръчна задача: закачане и откачане |
| Долу: Отваряне на купола |

Персонално вземане на пробы, представлява експозиция по време на нормална смяна при операции със стопански резервоар/станция за пълнене (пример от дружество) с измерени концентрации в размер на 0,003 — 0,12 mg/m³. Освен това пет от дванадесет резултата са под LoD или LoQ.

Стандартни лични предпазни средства за работника: ръкавици, очила за ръчна работа при възможна експозиция (напр. вземане на пробы), работно облекло, предпазни обувки, каска).

Има специални задачи, които изискват допълнителни мерки, напр. товарене и разтоварване от вагони (предпазна защита срещу пръски), поддръжка, др.

Изискванията за допълнителните мерки за безопасност са определени в оценката на риска на работното място от местния консултант по безопасност на труда, който познава конкретната работна среда.
3.1.2 Операции по прехвърляне

Стандартен IBC — контейнер (междинен контейнер за насипни товари, IBC)

Полуавтоматично пълнене на IBC (PROC 8b)

| Доставка на продукта и тръби за отходен газ |
| Локална смукателна вентилация с улавящ абсорбатор |
| Тръба за пълнене |
| Електрическо заземяване |

Задачата се изпълнява на закрито, с усъвършенствана вентилация.
За поставяне на IBC под станцията за пълнене се използва вилков повдигач. Тръбата за пълнене се въвежда автоматично и пълненето се извършва автоматично. Ръчни задачи с възможна експозиция: затваряне на IBC с капак.

Стандартни лични предпазни средства за работник (не са показани): ръкавици, очила, работно облекло, предпазни обувки.

Персоналното вземане на проби, представлящо експозиция по време на нормална смяна, показва концентрации на NMP в размер на 0,023 — 0,046 mg/m³.

Стандартен варел

Устройство за полуавтоматично пълнене на варели (PROC 8b)

| Доставка на продукта |
| Локална смукателна вентилация |
| Тръба за пълнене |

Детайлите на устройството са малко или много идентични с детайлите на устройството за пълнене на автоматична линия за пълнене.

Стандартни лични предпазни средства за работник (не са показани): ръкавици, очила, работно облекло, предпазни обувки.

Персоналното вземане на проби, представлящо експозиция по време на нормална смяна, показва концентрации на NMP в размер на 0,003 — 0,064 mg/m³. Сравнимо измерване без локална смукателна вентилация води до откриваема концентрация 0,11 mg/m³.
Устройство за автоматично пълнене на варели

| Зареждане на празни варели за автоматично пълнене | Външен контрол на автоматичното пълнене в затворена камера |
| Задачата за пълнене и затваряне на варела с капак се извършва автоматично в затворената камера. |
| Стандартни лични предпазни средства за работника: ръкавици, очила, работно облекло, предпазни обувки, каска. |
| Тъй като целият контейнер се пълни с NMP в затворена камера, не съществува възможност за експозиция на работника. |

3.1.3 Прехвърляне в малък контейнер

Извършете прехвърлянето на обем в смукателен шкаф

Използвайте подвижни крила (хоризонтални и вертикални) за покриване на неизползваните площи с цел оптимизиране на въздушния поток в смукателния шкаф -> минимизирана работна площ

За предпочитане са малки контейнери за съхранение (тук 10 литра) -> едно лице може да работи с него безопасно и ергономично, без изискващо пространство оборудване, и да изправи контейнера отново след употреба -> не е възможно изтичане

За предпочитане е да се използват кранове за източване с компенсация на налягането (изтичането на течността навън и влизащето на въздушния поток в контейнера се осъществява едновременно по контролиран начин -> равномерен поток на течност)

Носете предпазно работно облекло съгласно ИЛБ: обувки, лабораторна престилка, ръкавици, защита на очите/лицето

Използвайте пластмасови бутилки, които са подходящи за Вашето приложение
<table>
<thead>
<tr>
<th>Поставете съд за събиране на капки отдолу и почистете след употреба -> чист и сух под</th>
</tr>
</thead>
</table>

Въпреки това няма налични данни за наблюдение, моделирането на експозиция със Stoffenmanager оценява нивата явно под границите.

<table>
<thead>
<tr>
<th>Задача: пълнене на малки контейнери за допълнителен анализ в лабораторна среда. След приключване на прехвърлянето етикетите се прикрепят към бутилките.</th>
</tr>
</thead>
</table>

Задачата се извършва в смукателен шкаф, специфициран в съответствие с DIN EN 14175, с вертикално крило, което се отваря само частично по време на задачата.

Стандартни лични предпазни средства за работника: ръкавици, очила, работно облекло, предпазни обувки.

Персоналното вземане на проби, представлящо експозиция по време на нормална смяна, показва концентрации на NMP в размер на 0,022 — 0,27 mg/m³.
3.1.4 Съхраняване

Специально предназначена област

Интегрирано улавяне

Контейнерът непрекъснато е подложен на система за вентилация и климатизиране на въздуха, снабдена с датчици за откриване на пламък и температура

Няма специфични ЛПС за работниците (само работа със затворени IBC)

3.1.5 Вземане на проби

Полузатворено вземане на проби

Линия, съдържаща продукта

Фиксиран конектор

Линия за отходен газ

Бутилка за проба

Стандартните операции, като вземане на проби, изискват лични предпазни средства: ръкавици, очила за ръчна работа с възможна експозиция, работно облекло, предпазни обувки, каска (извън сградата).

Персоналното вземане на проби, представлява експозиция по време на нормална смяна, показва концентрации на NMP в размер на 0,004 — 0,083 mg/m³.
Как да се спазва ограничаване 71 на REACH — ръководство за потребители на NMP

Точка на пробовземане

| Двоен блокиращ клапан (1: шибър, 2: игла на клапана) |
| Система за отвеждане на разлив |
| Налигане: 14 бара, температура: 36 °C |

Проба се взема 3 пъти дневно (по една на смяна). Задачата отнема около 5 минути.
ЛПС: обикновени ЛПС (вкл. очила) и допълнително устойчиви на NMP ръкавици

3.1.6 Подготовка за поддръжка

Подробно описание на подготовките, през които оборудване от рода на филтри, помпи или къси тръби трябва да премине, преди да бъде изпратено за поддръжка. Първата стъпка е да се получи разрешение за работа.
1. Блокирайте тръбите в посока нагоре и надолу, ако е възможно с двоен блокиращ и изпускателен клапан.
2. Източете оборудването за NMP в съд/контейнер за отпадъци, който за предпочитане е свързан към колона за по-леките компоненти на въглеводородната фракция. Отпадъкът се възстановява и връща в процеса или се изхвърля от сертифицирана фирма за изхвърляне на отпадъци. Ако няма свързване към колона, поставете съда/контейнера в безопасно място с вентилация за предотвратяване на експозицията на работниците.
3. За предпочитане е съдът/контейнерът за отпадъци да се промие с вода, в биопречистителна станция или да се изхвърли. Промиването се извършва, докато оборудването все още е затворено. Водата за промиване се подава в оборудването чрез специално предназначени за целта дюзи.
4. Обдухайте съда/контейнера с азот или го изхвърлете на безопасно място или в биопречистителна станция.
5. Поставете заглушки в местата на свързване с оборудването, които все още са под налягане (за предотвратяване на разлив в случай на теч от клапаните).
6. Демонтирайте/отворете оборудването за окончателно почистване.
7. Промийте детайлите на оборудване с водоструйка на обекта или в специално предназначено място.
8. Предайте го за поддръжка или на обслужващия персонал за извършване на поддръжка.

ЛПС:
• За отворена система (напр. миене със струя): устойчиви на NMP ръкавици, химично устойчива маска за лице и цялостна защита.
• При поставянето на заглушките се използват предпазни средства за дихателните пътища (стъпка 5).
• За затворена система: високи обувки, огнеупорно облекло, ръкавици, каска и очила.

3.1.7 Почистване на оборудването, използвашо NMP

Задача: почистване на големи индустриални миксери с рециклиран NMP. Задачата отнема 2–3 часа и се провежда максимум 15–20 пъти седмично.

3.1.8 Намотка на проводници, пример от сектор

Показан е за илюстрация пример на нов вид машина за емаиляране за серийно производство на намотки на проводници (източник: MAG Maschinen- und Apparatebau AG). Операциите по намотка на проводници с този вид машина може да са свъзани с PROC 2. Замерванията на въздуха съгласно трудовата медицина (персонално вземане на проби) показва типични стойности на вдишване <1 mg/m³ в близост до машината.
A. Доставка на емайл

Емайлът е смес, която обикновено съдържа 20–50 % NMP. Сместа може да се доставя в големи количества с автоцистерна или в IBC (междинен контейнер за насипни товари).

Пример за разтоварване на емайл от автоцистерна в цистерни за съхранение в отдела за емайлните. Тази операция се провежда ежеседмично в отдела и отнема максимум един час.

→ Обозначение на посоката на потока.

Улавяне на парите от цистерната за емайл към автоцистерната

Допълнителни тръби за разтоварване (тук не се използват)

Тръби за разтоварване за прехвърляне на емайл от автоцистерната в цистерната за съхранение на емайл
Б. Централно съхранение на емайл

Съдържащият NMP емайл, както всички други емайли, се съхранява в специално предназначено място с контрол на достъп. Тук е показан пример за помещение, в което се доставя емайл и се съхранява в междинни контейнери за насипни товари (IBC).

Контейнерите са свързани към затворен централен тръбопровод и емайлът се изпомпва автоматично в машината за нанасяне на емайлирано покритие. При нормално производство на машината не е необходима ръчна работа с емайл.
В. Доставка на емайл в машината за емайлиране

Обозначение на посоката на потока.

Доставка на емайл от цистерната за съхранение на емайл

Доставка на емайл към устройството за нанасяне

Устройство за нанасяне на емайл

斯特аничен резервоар за емайлиране

Връщане на излишния емайл
Г. Устройство за нанасяне на емайл

Един проводник минава няколко пъти през пещта за емайлиране (на снимката долу същият проводник може да се види намотан няколко пъти). При всяко преминаване през устройството за нанасяне върху проводника се нанася тънък слой емайл. Емайлът се избутва бавно и постоянно през малка тръба, проводникът минава през емайла в края на тръбата. След това тя минава през матрица, която остъргва излишния емайл от проводника. След това проводникът влиза в пещта за изпечење. Излишният емайл се възстановява и отново циркулира в затворена система (вж. доставка на емайл в машината за емайлиране по-горе).

Капаците на устройства за нанасяне са винаги затворени по време на процеса. В камерата за емайлиране на входа на пещта се поддържа отрицателно налягане за улавяне на емисиите от системата за доставка на емайл и задържане на всички продукти на разпад или горене от навлизане във въздуха на работното място. Вентилацията е част от регулационната система на машината за емайлиране и се наблюдава.

Комбинацията от матрицата и отрицателното налягане от пещта измуква парите, генерирани по време на процеса, в пещта, където изгарят с помощта на катализатор.
Д. Процес на почистване

Почистване на страничния резервоар за емайлиране

Ръчно почистване на страничния резервоар, използващ NMP, се извършва рядко, само в затворено помещение с евакуация на въздуха. Работата се извършва върху специално предназначена за целта маса.

Операторът е защитен с предпазни очила, химично устойчиви ръкавици и други средства като престилка и защита за горната част на ръцете. Освен това операторът използва защита за дихателните пътища.

3.1.9 Допълнителни материали за добра практика

Материал на Европейската група за разтворители (ESIG) за насърчаване на отговорната и безопасна работа с разтворители на работното място: https://www.esig.org/product-stewardship/solventswork/
4. Наблюдение и проверка на съответствието

Според ограничаването съгласно REACH основното задължение на потребителя на NMP, за да гарантира, че експозицията на работниците е под DNEL, е да спазва мерките за управление на риска, които са описани в сценария на експозиция, приложени към или интегрирани в основния текст на информационния лист за безопасност. Съгласно законодателството за защита на работниците, принципите S.T.O.P. (вж. точка 2.5) и минимизация трябва да се спазват с цел съответствие с определената за NMP OEL, за да се поддържа експозицията не само под граничната стойност, но и възможно най-ниска, в съответствие с принцип ALARA,20 който се прилага за вещества, които не са канцерогенни или мутагенни. Въпреки това дружествата трябва да проверят дали държавите членки, в които те работят, не са въвели по-строго законодателство за вещества, които са токсични за репродукцията. Важен аспект на добрата практика на контрол с цел спазване на стойностите на DNEL и OEL за NMP е да се гарантира, че работниците са правилно обучени, целостна на процеса се поддържа с подходящите технически или инженерни мерки за контрол и лични защитни средства се използват и поддържат правилно.

Според законодателството за защита на работниците работодателят трябва да оцени рисковете и да предприеме необходимите превантивни мерки, за да гарантира правилно управление на експозицията на опасни химикали. Това може да включва някои видове измервания или моделиране на експозиция в съответствие с националните изисквания. Обикновено измерванията на експозицията са за предпочитане пред моделирането. В някои държави членки наблюдението на експозицията се изисква по закон, когато дадено вещество има гранична стойност на експозиция. То може да включва вземане на проби от въздуха и/или биологично наблюдение на работниците като част от наблюдението на здравето. Оценката на риска на работното място може да определи по-подробно какъв вид наблюдение е необходим и как трябва да се извършва. Уравнението в точка 7.2 на приложение 2 предоставя метод за изчисляване на експозиция при работна смяна, пореда от осем часа.

Потребителите на NMP често проверяват нивата на експозиция чрез наблюдение на въздуха на работното място според определен признат стандарт. Вземането на проби от въздуха е установена практика за проверка на експозицията при вдишване остава под националната гранична стойност на професионална експозиция. За вещества, които лесно се абсорбират през кожата, като NMP, оценката на експозицията при вдишване може да недооцени поглъщането от организма. В този случай роля може да изиграе биологичното наблюдение чрез валидиран метод, който предоставя информация за общата експозиция на NMP (вдишване и абсорбиране през кожата), ако се изисква от националното законодателство. Пример на метод за биологично наблюдение, който използва анализ на урина, е представен в точка 7.2 на приложение 2.

Дори ако целта на наблюденето на експозицията обикновено е да се провери съответствието на OEL, производителите и потребителите на NMP може да използват и данните от наблюденето, за да докажат, че съобщените в сценария на експозиция мерки за управление на риска осигуряват спазване на ограничаването на NMP при специфичните за тяхната площадка работни условия. Предлаганите методологии за наблюдение включват EN-68921 или негов национален еквивалент, който осигурява методологична рамка за наблюдение на експозицията при вдишване. Другите методи

20 На възможно най-ниско разумно достижимо ниво
21 Откъс от EN 689 https://oem.bmj.com/content/75/Suppl_2/A199.3
включват BOHS/насоки на NVvA22, френската (INRS NMP M-1523) и германската (TRGS 40224) методологии. Раздел R.14 на ръководството на ECHA относно изискванията за информация и оценката на безопасността на химичните вещества25 също предоставя съвет за определяне на експозицията (включително използването на измервания) в раздел R.14.6. В приложение 2 може да се намерят няколко примера на аналитични техники с потенциал за спазване на изискванията за експозиция на работното място. Органите за безопасни и здравословни условия на труд или доставчиците на услуги може да разполагат с информация за местните изисквания и предлаганите методологии.

Контролът за прилагането на спазването на ограничаването на NMP може да се извършва от националните инспектори по труда и/или органите за прилагане на REACH, в зависимост от държавата членка. За съвет относно местните изисквания потребителите на NMP трябва да се свържат със съответните национални органи.

5. Защо и кога трябва да се свържете с доставчика

Според ограничаването новите стойности на DNEL трябва да бъдат сообщени на потребителя на NMP в информационния лист за безопасност и потребителяте на NMP трябва да въведат съответните мерки за управление на риска и да осигурят съответните работни условия, за да гарантират, че експозицията на работниците е под тези стойности на DNEL. Определенияят срок за спазване на тези изисквания е 9 май 2020 г. (9 май 2024 г. при употреба като разтворител или реагент в процеса на нанасяне на покрития на проводници).

Всеки потребител надолу по веригата играе важна роля за осъществяването на този преход. Като поддържате активен контакт с Вашите доставчици на NMP, можете да сте сигурни, че те са запознати с Вашите употреби и може своевременно да Ви предоставят необходимата информация.

Има специфични ситуации, в които е важно да се свържете с Вашата верига на доставка. Например:

- След като е наложено ограничаване, доставчиките трябва да добавят информацията за ограничаването в техния информационен лист за безопасност без неоправдано забавяне. Освен това те трябва да изпратят актуализиран документ на клиентите, на които са правили доставки през последните 12 месеца преди актуализацията. Ако все още не сте получили актуализиран документ, свържете се с доставчика и изяснете кога можете да очаквате получаването на актуализиран информационен лист за безопасност.

- Възможно е да сте получили актуализиран информационен лист за безопасност, но без приложени сценарии на експозиция, напр. защото доставчикът е регистрирал <10 тона/година. Ако имате съмнения, свържете се с доставчика, за да се изясни този въпрос.

- Ако имате информация, която показва, че условията на употреба, описани в получения от доставчика информационен лист за безопасност не са подходящи, трябва да информирате доставчика. Например, ако имате резултати от вземане на проби от въздуха (статични или персонални) за NMP, които показват, че нивата на експозиция на работното място са над стойността на DNEL за вдишване, макар че работните условия и мерките за управление на риска на място отговарят на описани в информационен лист за безопасност. Това е важна информация, която трябва да споделяте с Вашите доставчици, за да могат те да прегледат препоръките, предоставени в разширен информационен лист за безопасност.

- Възможно е да се снабдявате с NMP от няколко доставчици. Ако забележите, че работните условия и мерките за управление на риска, описани в разширен информационен лист за безопасност за същата употреба, се различават при различните доставчици, препоръчително е да се свържете с Вашите доставчици. По този начин доставчиците могат да обяснят причината за разликата или дори да стигнат до съгласуван набор от работни условия и мерки за управление на риска за употребата.

Приложима ли е информацията в информационния лист за безопасност за Вашата собствена употреба? Ако начинът, по който използвате NMP, не е описан или се различава от описания в разширен информационен лист за безопасност, който сте получили от доставчика, важно е да изяснете ситуацията с доставчика.

- Ако Вашата употреба или условия на употреба не са обхванати от нищо един от сценарийте на експозиция, получени от Вашите доставчици, един от вариантите е да помолите доставчика да включи Вашата употреба/условия на употреба в
неговия доклад за безопасност на химичното вещество и да Ви предостави сценарий на експозиция за тях (вж. точка 2.4). Трябва да предоставите достатъчно информация на доставчика си, за да може той да направи такава оценка. Вашата секторна организация може да е разработила карта на секторната употреба като удобен начин за общ преглед на съответните употреби и свързаните условия на употреба специално за Вашия сектор.

- Ако описаните мерки за управление на риска противоречат на йерархията на мерките за контрол или е трудно да се разбере дали сте въвели всички мерки за управление на риска с правилната ефикасност, която е необходима за безопасна употреба (например ефикасност на вентилацията или ръкавиците), свържете се с доставчика за изясняване на ситуацията.

- Ако използвате смес, съдържаща NMP, има вероятност към информационния лист за безопасност, който получавате от доставчика, да не е приложен сценарий на експозиция. Може да е трудно да се разбере дали информацията на сценария на експозиция е включена в основния текст на документа. Ако имате съмнения, свържете се с доставчика, за да се изясни този въпрос.

И накрая, но не на последно място по важност, доставчиците на NMP може да са запознати с алтернативни вещества или технологии за някои употреби на NMP, които може да са подходящи за Вашия процес и може да Ви позволят да замените NMP.

26 Картата на употребите е концепция, разработена с цел подобряване на качеството на информацията за употребите и условията на употреба, която се предава от потребителите надолу по веригата на доставчиците, и ефикасността на този комуникационен процес. Вижте https://echa.europa.eu/csr-es-roadmap/use-maps/concept
6. Препратки и допълнителна литература

Вътрешно ръководство за национални инспектори по труда относно начина на използване на гранични стойности на професионална експозиция (OEL), нива на получена недействаща доза/концентрация (DNEL) и нива на получена минимална действаща доза/концентрация (DMEL) при оценка на ефективния контрол на експозиция на химикали на работното място; SLIC WG Chemex, 2015 http://ec.europa.eu/social/BlobServlet?docId=15614&langId=en

Ръководство за национални инспектори по труда относно взаимодействието между регламента за регистрация, оценка, разрешаване и ограничаване на химикали (REACH) (Регламент (ЕО) № 1907/2006), Директивата за химичните агенти (CAD) и Директивата за канцерогени и мутагени (CMD); SLIC, 2013 г. http://ec.europa.eu/social/BlobServlet?docId=11812&langId=en

7. Приложения

7.1 Приложение 1. Схема за илюстрация на взаимодействието между REACH и Директивата за химични агенти

1. Safety data sheet received
 REACH Articles 31(9), 31(11)
 SDS Section 15 gives details and provisions of the restriction.

2. Use within exposure scenario
 REACH 3(4), 3(1), 3(5)
 Is the use an unidentified use within the conditions in any exposure scenario, or consistent with the advice of the supplier?

3. Perform/Review existing workplace chemical risk assessment
 CAD Article 4
 Taking into account the following requirements from REACH and 98/24/EC.

 - Can exposure be prevented (e.g. by substitution)?
 - Substitute for safer alternative process or substance (less hazardous).
 - Identify all appropriate risk management measures from SDS/exposure scenario or the user's own chemical safety report.
 - Identify other control measures, if any, that CAD or national guidance requires.

4. Apply/Implement control measures
 REACH Article 37(5)
 Apply/monitor all controls identified by chemical risk assessments and ensure their effective operation CAD Article 6.

5. Hierarchy of control measures
 CAD Articles 5 & 6
 Apply the control measures identified in step 3 above in the order of priority specified in Articles 5 & 6.

6. Principles of good practice
 CAD Article 5
 Do the control measures applied reflect the principles of good practice?

7. Other requirements of national guidance and CAD
 Comply with other requirements of national guidance and Articles 7 to 11 (e.g. maintenance). If these have not already been addressed by steps 3 & 4.

8. Record
 REACH Article 37(7)
 Record the assessment CAD Article 4.

9. Keep information
 REACH Article 36
 Keep information in accordance with REACH and national timescales CAD Article 8.

10. Review
 REACH Article 37(7)
 Keep your own chemical safety report up to date. If supplier sends new SDS and/or exposure scenario, check for changes and repeat all steps.

Also:

- REACH
- Council Directive 98/24/EC on chemical agents at work (CAD) or national guidance

Схемата е адаптирана от ръководството на Комитета на старшите инспектори по труда за националните инспектори по труда относно взаимодействието между REACH и Директивата за химичните агенти..., ноември 2013 г. (вж. връзката в точка 6).
7.2 Приложение 2. Потенциални аналитични методи

Методите за вземане на проби и анализ, които се използват за сравняване на концентрациите на експозиция с грачича сстойност, трябва да отговарят на определени изисквания по отношение на несигурността и диапазона на измерване измежду другите параметри.

Стандартът EN 482 „Експозиция на работното място. Общи изисквания за изпълнението на процедурите за измерване на химични агенти“ предоставя изисквания за методите на вземане на проби и анализ, които се използват за сравняване на концентрации на експозиция с грачична сстойност. По отношение на диапазоните на измерване методът трябва да е в състояние да измери нива 0,1—2 пъти над грачичната сстойност на професионална експозиция за 8-часова претеглена във времето средна сстойност (TWA).

Включените в Таблица 4 по-долу методи имат валидиращи данни, които доказват съответствие с изискванията на стандарта EN 482 или потенциал за спазване на тези изисквания за сстойността на DNEL. Списъкът на методите, с помощта на които може да се наблюдава NMP във въздуха на работното място, не е изчерпателен и цели само да илюстрира, че е възможно да се измерят концентрации с цел доказване на съответствието с DNEL.

Справка за валидиращите данни може да се направи в листовете с методи, предоставени от Gestis — база данни на аналитични методи27 или в действителния аналитичен метод.

Таблица 4: Потенциални аналитични методи за наблюдение на експозиция (въздушна) на работно място

<table>
<thead>
<tr>
<th>Метод/вид на вземане на проби</th>
<th>Технологии за анализ</th>
<th>Граница на количествено определяне LOQ и (обем на проба и/или време)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIOSH метод 1302 (епруветка с активен въглен)</td>
<td>GC/NPD(1)</td>
<td>0,16 mg/m³ (120 l)</td>
</tr>
<tr>
<td></td>
<td>GC/ FID(2)</td>
<td>2,4 mg/m³ (120 l)</td>
</tr>
<tr>
<td>OSHA PV2043 (епруветка с активен въглен)</td>
<td>GC/FID</td>
<td>0,2 mg/m³ (10 l, 50 минути)</td>
</tr>
<tr>
<td>MAK метод 1 (Rosenberger et al., 2014)</td>
<td>GC/MS</td>
<td>0,15 mg/m³ (40 l, 2 часа)</td>
</tr>
<tr>
<td>MAK метод 2 (Breuer et al. 2015)28</td>
<td>MS/N-FID</td>
<td>0,42 mg/m³ (40 l, 2 часа)</td>
</tr>
</tbody>
</table>

(1) Газова хроматография — детектор на азот и фосфор
(2) Газова хроматография — пламъчно-йонизационен детектор

Изчисляване на експозиция при работна смяна над 8 часа

Не е необичайно работник да има по-дълга от 8 часа работна смяна на ден. Съществуват методи на изчисляване, при които експозицията на работник за всеки един 24-часов период може да се третира като еквивалентна на еднократна равномерна експозиция за 8 часа, 8-часовата претеглена във времето средна стойност (TWA) на експозицията.

\[\frac{C_1T_1 + C_2T_2 + \cdots + C_nT_n}{8} \]

Общата формула за изчисляване на дневната експозиция е:

където \(C_i \) е професионалната експозиция, а \(T_i \) е свързаното време на експозиция в часове за всеки един 24-часов период. Този подход може да се прилага и за осигуряване на същата защита на работници с удължена работна смяна, каквато се осигурява на тези с обикновена работна смяна. Европейският стандарт EN:689 приложение G Експозиция на работното място — Измерване на експозиция при вдишване на химични агенти — Стратегия за проверка на съответствието с граничните стойности на професионална експозиция дава няколко примера за приложение на този метод за изчисляване; на национално равнище съществуват други методи.

Биологично наблюдение

NMP лесно се абсорбира през кожата и поради това се счита, че дермалната експозиция допринася в голяма степен за вътрешната доза NMP. В ограничаването съгласно REACH за NMP няма правоизискаване за извършване на биологично наблюдение. Въпреки това биологичното наблюдение може да е много полезна допълнителна техника за наблюдение на въздуха. Биологично наблюдение е измерването и оценката на опасни вещества или техните метаболити в тъкани, секреции, екскременти или издишан въздух, или всяка комбинация от тях на изложени на експозиция работници. Измерванията отразяват абсорбцията на вещество чрез всички пътища (вдишване, дермална или перорална експозиция). Този подход е обобщен от SCOEL в неговите препоръки за NMP (SCOEL, 2016). Всяко биологично наблюдение, предприето във връзка с ориентировъчна стойност, трябва да се провежда доброволно, т.е. с пълното информирано съгласие на всички засегнати лица. Ориентировъчните стойности са предназначени за използване като инструменти за гарантиране постигането на достатъчен контрол на експозицията. Когато дадена стойност е превищена, това не означава задължително, че всеки съответен стандарт за въздух е превишен или че ще възникне заболяване. Тя е индикация за необходимостта от изследване на текущите мерки за контрол и работните практики.

Препоръката на SCOEL (SCOEL, 2016) предоставя биологични гранични стойности (BLV) за метаболитите на NMP въз основа на индикативната гранична стойност на професионална експозиция в размер на 40 mg/m³, която може да се използва като общ количествен биомаркер за експозиция на NMP. Когато дадена индустрия извършва биологично наблюдение, данните може да се сравняват с биологичните гранични стойности, но може да се използват и за определяне на общата експозиция на NMP на работника, използващ NMP.

29 EN689:2018, CEN
30 Health and Safety Executive, EH40/2005, 2018 Calculation methods, p.33
Как да се спазва ограничаване 71 на REACH — ръководство за потребители на NMP

Като се има предвид, че ограничаването съгласно REACH за NMP въвежда стойност на DNEL за работници в размер на 14,4 mg/m³ за експозиция при вдишване, в следващата точка се описва биомаркерът за NMP, който отговаря на DNEL. Когато дадена индустрия извършва биологично наблюдение, данните може да се сравняват с биомаркера, за да е сигурно, че мерките за управление на риска са достатъчни.

Предложен подход за биологично наблюдение на NMP

5-хидрокси-N-метил-2-пиролидон (5-HNMP) и 2-хидрокси-N-сукициннимид (2-HMSI) са основните метаболити в урината и препоръчаните биомаркери на експозиция. Биохимичният полуживот на 5-HNMP и 2-HMSI след експозиция при вдишване е съответно 6—8 часа и 16—28 часа (SCOEL, 2016). Понастоящем 5-HNMP е едно от най-често използваните в търговските лаборатории в Европа вещества. Ако се очаква дермална експозиция, 2-HMSI може да е по-добър биомаркер, отколкото 5-HNMP, поради неговия по-дълъг полуживот.

Оптималното време за вземане на проба за 5-HNMP е 2—4 часа след работната смяна, а за метаболитите с по-дълъг полуживот 2-HMSI времето за вземане на проба е 16 часа след експозицията (на сутринта след 8-часова работна смяна). Трябва да се отбележи, че поради по-дългия полуживот на 2-HMSI е възможно да настъпи известно натрупване по време на работата. Това може да доведе до по-високи нива в края на работната седмица в сравнение с пробите, взети на втората сутрин от работната седмица.

Въз основа на данни на Bader et al. (2007), може да се получат концентрации на метаболитите в урината, които отговарят на настоящата DNEL при вдишване в размер на 14,4 mg/m³. Тъй като стойността 10 mg/m³ във въздуха е най-ниска, тествана в проучването на Bader, не се изисква екстраполиране до по-ниски концентрации, което би могло да създаде известна несигурност.

Предлагат се следните биомаркери за NMP:

5-HNMP: 25 mg/g креатинин (проба след смяна)

2-HMSI: 8 mg/g креатинин (проба на следващата сутрин).

Съществуват системи за аналитично измерване за определяне на биомаркерите за NMP с подходящо ниво на прецизност и точност (вж. Таблица 5). Границата на количествено определяне (LOQ) на аналитичния метод трябва да е по-малка от референтното ниво.

Таблица 5: Потенциални аналитични методи за биологично наблюдение

<table>
<thead>
<tr>
<th>Метод/вид на вземане на проби</th>
<th>Технологии за анализ</th>
<th>Граница на количествено определяне LOQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Уринна проба (Ulrich et al., 2018)</td>
<td>GC/MS(1)</td>
<td>2,5 µg/l за 5-HNMP 2 µg/l за 2-HMSI</td>
</tr>
</tbody>
</table>

Как да се спазва ограничаване 71 на REACH — ръководство за потребители на NMP

<table>
<thead>
<tr>
<th>Уринна проба (Meier et al., 2013)</th>
<th>GC/MS</th>
<th>69 µg/l за 5-HNMP* 45 µg/l за 2-HMSI*</th>
</tr>
</thead>
</table>
| Уринна проба. **(Meier et al., 2013)**

<table>
<thead>
<tr>
<th align="center">(1) Газова хроматография — массспектрометрия</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">* Границата на количество определяне (LOQ) е преобразувана от границата на откриване (LOD) въз основа на LOQ ~ 3 x LOD.</td>
</tr>
</tbody>
</table>

В Таблица 6 по-долу са обобщени текущите европейски стойности/препоръки за контрол на експозиция за 1-метил-2-пиролидон.

<table>
<thead>
<tr>
<th align="center">Таблица 6: Текущи европейски стойности за контрол на експозиция</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">Експозиция при вдишване</td>
</tr>
<tr>
<td align="center">14.4 mg/m³ (DNEL) REACH</td>
</tr>
<tr>
<td align="center">40 mg/m³ (iOELV, 8-часова TWA)* Директива за химичните агенти</td>
</tr>
<tr>
<td align="center">80 mg/m³ (iOELV, 15-минутен STEL)* Директива за химичните агенти</td>
</tr>
<tr>
<td align="center">Дермална експозиция</td>
</tr>
<tr>
<td align="center">4.8 mg/kg/ден (DNEL) REACH</td>
</tr>
<tr>
<td align="center">Обозначение във връзка с кожата</td>
</tr>
<tr>
<td align="center">Директива за химичните агенти</td>
</tr>
<tr>
<td align="center">Критичен неблагоприятен за здравето ефект</td>
</tr>
<tr>
<td align="center">Репродуктивна токсичност</td>
</tr>
<tr>
<td align="center">Дразнене на дихателните пътища/хемосензорни ефекти</td>
</tr>
</tbody>
</table>

* индикативна гранична стойност на професионална експозиция (iOELV), препоръчана от SCOEL. Определените от държавите членки национални стойности може да варират в отделните държави и да бъдат над или под тази iOELV (вж. документа RMOA в точка 6)

7.3 Приложение 3. Къде се използва NMP: секторни и типични употреби

NMP се използва предимно като разтворител в индустриалното производство на други химикали и в индустриалното производство на изделия. При повечето употреби NMP не е част от крайния продукт, тъй като се отстранява по време по производствения процес или се рециклира или се изхвърля като отпадък.

В производството на химикали NMP има много висока мощ за разтваряне на високопроизводителни полимери като полиуретан (PU), полианилин (PANI), полиамидйейдим (PAI), полилимид (PI), поливинилленов флурорид (PVDF), полисулфон (PFS) и политетерсуфон (PES), както и в приготвянето на полипарафенилетерефталамид (PPTA), полифениленов сулфид (PPS) и други високопроизводителни термопластични вещества (HPTP). При производството на изделия NMP се използва за нанасяне на тънък слой полимер върху повърхност (покритие), за премахване на полимер от повърхност (почистване) или за придване на специална форма на полимер, напр. при производството на мембрани или влакна.

https://doi.org/10.1007/s00420-018-1347-y

https://dx.doi.org/10.1093/annhyg/mes111
Таблица 7: Общ преглед на индустриалните сектори, използващи NMP

<table>
<thead>
<tr>
<th>Кратко описание на употребата</th>
<th>Информация относно веригата на стойността</th>
<th>Типични процеси</th>
</tr>
</thead>
<tbody>
<tr>
<td>Химикали с голям обем — процеси на екстракция за производството на химикали с голямо значение като бутадиен, ацетилен и ароматни вещества. Бутадиен е суровина за синтетичен каучук, необходим за производството на гуми и други каучукови изделия за ежедневието.</td>
<td>→ Индустриална среда. Екстракция.</td>
<td></td>
</tr>
<tr>
<td>Нефтен и газови продукти — процеси на екстракция за почистването на нефтенi и газови продукти и емисии от тяхното производство. Примери за процеси, изискващи NMP, са десулфуриране, отстраняване на CO₂, COS (карбонил сулфид) и H₂S</td>
<td>→ Индустриална среда. Екстракция.</td>
<td></td>
</tr>
<tr>
<td>Други химикали — разтворители за химически синтез при производството на други химикали. Това включва например производството на насилини и фини химикали, фармацевтични продукти и агрохимикали. Веригите на стойност включват много високопроизводители пластмаси/полимери и влакна, както и витамини, и други специални продукти.</td>
<td>→ Индустриална среда. Предимно затворени системи. Възможни са повишени температури на обработка.</td>
<td></td>
</tr>
<tr>
<td>Като разтворител в индустриалното производство на изделия</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Батерии — NMP се използва както в литиево-йонни батерии, така и в други хибриди батерии, използвайки никел, манган или кобалтови литириани батерии. В литиево-йонните батерии се използва в производството на катода. Освен това NMP се използва като почистващ агент на оборудването за обработка.</td>
<td>→ Индустриална среда.</td>
<td></td>
</tr>
<tr>
<td>Микропроцесори и полупроводници — като разтворител в електронната индустрия и за производството на печатни платки. В полупроводници NMP се използва като разтворител-носител в специални формули и формули на покрития и като помощно средство в производствения процес за почистване на пластини.</td>
<td>→ Индустриална среда. Средна на “чиста стая”. Високо ниво на съдържание и автоматизация.</td>
<td></td>
</tr>
</tbody>
</table>

От: Документ за обосновка към досието за ограничаване и източници от индустрията
<table>
<thead>
<tr>
<th>Кратко описание на употребата</th>
<th>Информация относно веригата на стойността</th>
<th>Типични процеси</th>
</tr>
</thead>
<tbody>
<tr>
<td>Мембрани — като разтворител за филтриране при производството на питейна вода или диализа, напр. в оборудване за гражданска защита и военно медицинско оборудване</td>
<td></td>
<td>Индустриална среда, стандарт на химическа индустрия</td>
</tr>
<tr>
<td>Защитни влакна — като разтворител при производството на дрехи/влакна на база полимер, например за каски, бронежилетки, др., използвани в оборудване за гражданска защита и военномедицинско оборудване</td>
<td></td>
<td>Индустриална среда, стандарт на химическа индустрия</td>
</tr>
<tr>
<td>Проводници за намотки — като разтворител в специални емайли при производството на изолиращи/с покритие проводници за намотки, напр. използвани в двигатели, електрически двигатели и генератори</td>
<td>Важен за е-мобилност</td>
<td>Индустриална среда, металообработваща индустрия</td>
</tr>
<tr>
<td>Други изделия с покритие — като разтворител в разнообразни покрития и като почистяващ агент. Това включва напр. автомоболната, текстилната, въздухоплавателната и космическата индустрия, както и при производството на лабораторно оборудване (капилярни епруветки за газова хроматография).</td>
<td></td>
<td>Индустриална среда. Видовете процеси и задачи се различават.</td>
</tr>
</tbody>
</table>