CLH report

Proposal for Harmonised Classification and Labelling

Based on Regulation (EC) No 1272/2008 (CLP Regulation), Annex VI, Part 2

International Chemical Identification:

benthiavalicarb-isopropyl (ISO); isopropyl [(S)-1-{[(R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]carbamoyl}-2methylpropyl]carbamate

EC Number:	-	
CAS Number:	177406-68-7	
Index Number:	-	
Contact details for d	ossier submitter:	Bureau for Chemical Substances 90-019 Łódź; Dowborczyków 30/34
Version number: 1.3	6	Date: 22 January 2021

CONTENTS

1	IDENTITY OF THE SUBSTANCE	1
	1.1 NAME AND OTHER IDENTIFIERS OF THE SUBSTANCE	1
	1.2 COMPOSITION OF THE SUBSTANCE	2
2	PROPOSED HARMONISED CLASSIFICATION AND LABELLING	3
	2.1 PROPOSED HARMONISED CLASSIFICATION AND LABELLING ACCORDING TO THE CLP CRITERIA	
3	HISTORY OF THE PREVIOUS CLASSIFICATION AND LABELLING	
4	JUSTIFICATION THAT ACTION IS NEEDED AT COMMUNITY LEVEL	
5	IDENTIFIED USES	5
6	DATA SOURCES	5
7	PHYSICOCHEMICAL PROPERTIES	5
8	EVALUATION OF PHYSICAL HAZARDS	
0		
	8.1 Explosives	
	8.1.1 Short summary and overall relevance of the information provided on explosive properties	
	 8.1.2 Comparison with the CLP criteria 8.1.3 Conclusion on classification and labelling for explosive properties 	
	8.2 FLAMMABLE GASES (INCLUDING CHEMICALLY UNSTABLE GASES)	
	8.3 OXIDISING GASES	
	8.4 GASES UNDER PRESSURE	
	8.5 FLAMMABLE LIQUIDS	
	8.6 FLAMMABLE SOLIDS	
	8.6.1 Short summary and overall relevance of the provided information on flammable solids	8
	8.6.2 Comparison with the CLP criteria	8
	8.6.3 Conclusion on classification and labelling for flammable solids	
	8.7 Self-reactive substances	
	8.7.1 Short summary and overall relevance of the provided information on self-reactive substances	
	8.7.2 Comparison with the CLP criteria	
	8.7.3 Conclusion on classification and labelling for self-reactive substances	
	 8.8 Pyrophoric liquids	
	8.9 1 ROFHORE SOLIDS	
	8.9.2 Comparison with the CLP criteria	
	8.9.3 Conclusion on classification and labelling for pyrophoric solids	
	8.10 SELF-HEATING SUBSTANCES	
	8.10.1 Short summary and overall relevance of the provided information on self-heating substance	s9
	8.10.2 Comparison with the CLP criteria	
	8.10.3 Conclusion on classification and labelling for self-heating substances	
	8.11 SUBSTANCES WHICH IN CONTACT WITH WATER EMIT FLAMMABLE GASES	
	8.11.1 Short summary and overall relevance of the provided information on substances which in co	
	water emit flammable gases	
	8.11.2 Comparison with the CLP criteria	
	8.11.3 Conclusion on classification and labelling for substances which in contact with water emit gases 10	jiammable
	gases 10 8.12 Oxidising liquids	10
	8.12 OXIDISING EIQUIDS	
	8.13.1 Short summary and overall relevance of the provided information on oxidising solids	
	8.13.2 Comparison with the CLP criteria	
	8.13.3 Conclusion on classification and labelling for oxidising solids	

	8.14 Or	GANIC PEROXIDES	11
		RROSIVE TO METALS	
	8.15.1	Short summary and overall relevance of the provided information on the hazard class corro	sive to
	metals		
	8.15.2 8.15.3	Comparison with the CLP criteria Conclusion on classification and labelling for corrosive to metals	
9	TOXICO	DKINETICS (ABSORPTION, METABOLISM, DISTRIBUTION AND ELIMINATION)	12
		Г SUMMARY AND OVERALL RELEVANCE OF THE PROVIDED TOXICOKINETIC INFORMATION O	
10) EVALU	ATION OF HEALTH HAZARDS	15
	10.1 AC	UTE TOXICITY - ORAL ROUTE	15
	10.1.1	Short summary and overall relevance of the provided information on acute oral toxicity	15
	10.1.2	Comparison with the CLP criteria	
	10.1.3	Conclusion on classification and labelling for acute oral toxicity	
		UTE TOXICITY - DERMAL ROUTE	
	10.2.1	Short summary and overall relevance of the provided information on acute dermal toxicity	
	10.2.2 10.2.3	Comparison with the CLP criteria	
		Conclusion on classification and labelling for acute dermal toxicity	
	10.3 AC	Short summary and overall relevance of the provided information on acute inhalation toxicity	
	10.3.1	Comparison with the CLP criteria	
	10.3.2	Conclusion on classification and labelling for acute inhalation toxicity	
		IN CORROSION/IRRITATION	
	10.4.1	Short summary and overall relevance of the provided information on skin corrosion/irritation	
	10.4.2	Comparison with the CLP criteria	18
	10.4.3	Conclusion on classification and labelling for skin corrosion/irritation	
		RIOUS EYE DAMAGE/EYE IRRITATION	
	10.5.1	Short summary and overall relevance of the provided information on serious eye dama	ige/eye
	irritation		10
	10.5.2 10.5.3	Comparison with the CLP criteria Conclusion on classification and labelling for serious eye damage/eye irritation	
		SPIRATORY SENSITISATION	
		IN SENSITISATION	
	10.7.1	Short summary and overall relevance of the provided information on skin sensitisation	
	10.7.2	Comparison with the CLP criteria	
	10.7.3	Conclusion on classification and labelling for skin sensitisation	
	10.8 Ge	RM CELL MUTAGENICITY	
	10.8.1	Short summary and overall relevance of the provided information on germ cell mutagenicity	
	10.8.2	Comparison with the CLP criteria	
	10.8.3	Conclusion on classification and labelling for germ cell mutagenicity	
		RCINOGENICITY	
	10.9.1 10.9.2	Short summary and overall relevance of the provided information on carcinogenicity Comparison with the CLP criteria	
	10.9.2	Comparison with the CLF criteria Conclusion on classification and labelling for carcinogenicity	
		PRODUCTIVE TOXICITY	
	10.10.1	Adverse effects on sexual function and fertility	
	10.10.2	Short summary and overall relevance of the provided information on adverse effects on	
	function of	and fertility	
	10.10.3	Comparison with the CLP criteria	41
	10.10.4	Adverse effects on development	
	10.10.5	Short summary and overall relevance of the provided information on adverse effects on develo	opment
	10 10 6	42 Comparison with the CLP aritoria	10
	10.10.6 10.10.7	Comparison with the CLP criteria Adverse effects on or via lactation	
	10.10.7 10.10.8	Short summary and overall relevance of the provided information on effects on or via lactation	
	10.10.8	Comparison with the CLP criteria	
	10.10.10		
		ECIFIC TARGET ORGAN TOXICITY-SINGLE EXPOSURE	

	10.11.1 single expo	Short summary and overall relevance of the provided information on specific target organ toxi osure	•
	10.11.2	Comparison with the CLP criteria	
	10.11.3	Conclusion on classification and labelling for STOT SE	
		IFIC TARGET ORGAN TOXICITY-REPEATED EXPOSURE	
	10.12.1	Short summary and overall relevance of the provided information on specific target organ toxi	
	repeated e	xposure	
	10.12.2	Comparison with the CLP criteria	57
	10.12.3	Conclusion on classification and labelling for STOT RE	57
	10.13 ASPI	RATION HAZARD	57
11	EVALUA	TION OF ENVIRONMENTAL HAZARDS	57
	11.1 RAPI	D DEGRADABILITY OF ORGANIC SUBSTANCES	58
	11.1.1	Ready biodegradability	60
	11.1.2	BOD5/COD	
	11.1.3	Hydrolysis	
	11.1.4	Other convincing scientific evidence	60
	11.1.4.1	Field investigations and monitoring data (if relevant for C&L)	61
	11.1.4.2	Inherent and enhanced ready biodegradability tests	61
	11.1.4.3	Water, water-sediment and soil degradation data (including simulation studies)	61
	11.1.4.4 11.2 Envi	Photochemical degradation RONMENTAL TRANSFORMATION OF METALS OR INORGANIC METALS COMPOUNDS	
	11.2 ENVI	Summary of data/information of merials or inorganic merials compounds	
		RONMENTAL FATE AND OTHER RELEVANT INFORMATION	
		CCUMULATION	
	11.4 DIOA	Estimated bioaccumulation	
	11.4.2	Measured partition coefficient and bioaccumulation test data	
		TE AQUATIC HAZARD	
	11.5 ACU 11.5.1	Acute (short-term) toxicity to fish	
	11.5.2	Acute (short-term) toxicity to fish	
	11.5.3	Acute (short-term) toxicity to algae or other aquatic plants	
	11.5.4	Acute (short-term) toxicity to ther aquatic organisms	
		G-TERM AQUATIC HAZARD	
	11.6.1	Chronic toxicity to fish	
	11.6.2	Chronic toxicity to aquatic invertebrates	
	11.6.3	Chronic toxicity to algae or other aquatic plants	
	11.6.4	Chronic toxicity to other aquatic organisms	
		PARISON WITH THE CLP CRITERIA	
	11.7.1	Acute aquatic hazard	
	11.7.2	Long-term aquatic hazard (including bioaccumulation potential and degradation)	
		ICLUSION ON CLASSIFICATION AND LABELLING FOR ENVIRONMENTAL HAZARDS	75
12	EVALUA'	TION OF ADDITIONAL HAZARDS	75
	12.1 HAZ	ARDOUS TO THE OZONE LAYER	
	12.1.1	Short summary and overall relevance of the provided information on ozone layer hazard	
	12.1.2	Comparison with the CLP criteria	
	12.1.2	Conclusion on classification and labelling for hazardous to the ozone layer	
13		NAL LABELLING	
14		NCES	
14		S	
13	AUTULAL	J	03

1 IDENTITY OF THE SUBSTANCE

1.1 Name and other identifiers of the substance

Table 1: Substance identity and information related to molecular and structural formula of the substance

Name(s) in the IUPAC nomenclature or other international chemical name(s)	IUPAC: Isopropyl [(S)-1-{[(R)-1-(6-fluoro-1,3- benzothiazol-2-yl) ethyl]carbamoyl}-2- methylpropyl]carbamate CA: 1-methylethyl [(1S)-1-[[[(1R)-1-(6-fluoro-2- benzothiazolyl)ethyl]amino]carbonyl]-2-methylpropyl] carbamate
Other names (usual name, trade name, abbreviation)	Producer's development code number: KIF-230, KIF-230R-L (which is the pure active substance, the active optical isomer)
ISO common name (if available and appropriate)	-
EC number (if available and appropriate)	-
EC name (if available and appropriate)	-
CAS number (if available)	177406-68-7
Other identity code (if available)	CIPAC number: 744.204
Molecular formula	$C_{18}H_{24}FN_3O_3S$
Structural formula	
SMILES notation (if available)	-
Molecular weight or molecular weight range	381.47g/mol
Information on optical activity and typical ratio of (stereo) isomers (if applicable and appropriate)	confidential information (Volume 4 of RAR)
Description of the manufacturing process and identity of the source (for UVCB substances only)	n.a.
Degree of purity (%) (if relevant for the entry in Annex VI)	≥ 93% (w/w)

1.2 Composition of the substance

Constituent (Name and numerical identifier)			Currentself-classificationandlabelling (CLP)
benthiavalicarb-isopropyl CAS no: 177406-68-7	94.9 - 100%	None	Skin Sens. 1 – H317 Carc. 2 – H351 Aquatic Chronic 2 – H411

Table 2: Constituents (non-confidential information)

Table 3: Impurities (non-confidential	information)	if relevant	for	the	classification	of the
substance						

Impurity (Name and numerical	Concentration range (% w/w minimum	Current CLH in Annex VI Table 3.1 (CLP)	Currentself-classificationandlabelling (CLP)	The impurity contributes to the classification and
identifier)	and maximum)			labelling
KIF-230-I-6	0.0-0.00035			
6,6'-difluoro-2,2'-				
dibenzothiazole				
CAS no not available				
KIF-230-I-12	0.0 - 0.0015			
bis(2-amino-5-				
fluorophenyl) disulfide				
CAS no not available				
Toluene	0.0 - 0.1	Flam. Liq 2 - H225	n.a.	No
CAS no: 108-88-3		Skin Irrit. 2 – H315		
		Asp. Tox. 1 – H304		
		STOT SE 3 – H336		
		STOT RE 2 – H373		
		Repr. 2 – H361d		

Table 4: Additives (non-confidential information) if relevant for the classification of the substance

Additive (Name and numerical identifier)	Function	range	Current CLH in Annex VI Table 3.1 (CLP)		The additive contributes to the classification and labelling
none	-	-	-	-	-

Table 5: Test substances (non-confidential information) (this table is optional)

Identification	Purity	Impurities and	additives	Other information	The study(ies) in		
of test		(identity, %, classi	fication if		which the	test		
substance		available)			substance is use	ed		
The presented in	formation dem	nonstrates that the current	nt EU specific	ation in terms of impurities	content is covered	ed by		
the profiles of benthiavalicarb-isopropyl technical material as used in safety testing (confidential information in Volume								
4 of RAR).								

2 PROPOSED HARMONISED CLASSIFICATION AND LABELLING

2.1 Proposed harmonised classification and labelling according to the CLP criteria

Table 6:

					Classif	ication		Labelling			
	Index No	International Chemical Identification	EC No	CAS No	Hazard Class and Category Code(s)	Hazard statement Code(s)	Pictogram, Signal Word Code(s)	Hazard statement Code(s)	Suppl. Hazard statement Code(s)	Specific Conc. Limits, M-factors	Notes
Current Annex VI entry	No current Annex VI entry										
Dossier submitters proposal		benthiavalicarb- isopropyl (ISO); isopropyl [(S)-1-{[(R)-1- (6-fluoro-1,3- benzothiazol-2- yl)ethyl]carbamoyl}-2- methylpropyl]carbamate	-	177406-68- 7	Carc. 2 Skin Sens. 1 Aquatic Chronic 2	H351 H317 H411	GHS08 GHS07 GSH09 Wng	H351 H317 H411			
Resulting Annex VI entry if agreed by RAC and COM		benthiavalicarb- isopropyl (ISO); isopropyl [(S)-1-{[(R)-1- (6-fluoro-1,3- benzothiazol-2- yl)ethyl]carbamoyl}-2- methylpropyl]carbamate	-	177406-68- 7	Carc. 2 Skin Sens. 1 Aquatic Chronic 2	H351 H317 H411	GHS08 GHS07 GSH09 Wng	H351 H317 H411			

Hazard class	Reason for no classification	Within the scope of standard consultation
Explosives	Data conclusive but not sufficient for classification	Yes
Flammable gases (including chemically unstable gases)	Hazard class not applicable	No
Oxidising gases	Hazard class not applicable	No
Gases under pressure	Hazard class not applicable	No
Flammable liquids	Hazard class not applicable	No
Flammable solids	Data conclusive but not sufficient for classification	Yes
Self-reactive substances	Data lacking	Yes
Pyrophoric liquids	Hazard class not applicable	No
Pyrophoric solids	Data conclusive but not sufficient for classification	Yes
Self-heating substances	Data conclusive but not sufficient for classification	Yes
Substances which in contact with water emit flammable gases	Data conclusive but not sufficient for classification	Yes
Oxidising liquids	Hazard class not applicable	No
Oxidising solids	Data conclusive but not sufficient for classification	Yes
Organic peroxides	Hazard class not applicable	No
Corrosive to metals	Data conclusive but not sufficient for classification	Yes
Acute toxicity via oral route	Data conclusive but not sufficient for classification	Yes
Acute toxicity via dermal route	Data conclusive but not sufficient for classification	Yes
Acute toxicity via inhalation route	Data conclusive but not sufficient for classification	Yes
Skin corrosion/irritation	Data conclusive but not sufficient for classification	Yes
Serious eye damage/eye irritation	Data conclusive but not sufficient for classification	Yes
Respiratory sensitisation	Data lacking	Yes
Skin sensitisation	Harmonised classification is proposed	Yes
Germ cell mutagenicity	Data conclusive but not sufficient for classification	Yes
Carcinogenicity	Harmonised classification is proposed	Yes
Reproductive toxicity	Data conclusive but not sufficient for classification	Yes
Specific target organ toxicity- single exposure	Data conclusive but not sufficient for classification	Yes
Specific target organ toxicity- repeated exposure	Data conclusive but not sufficient for classification	Yes
Aspiration hazard	Hazard class not applicable	No
Hazardous to the aquatic environment	Harmonised classification proposed	Yes
Hazardous to the ozone layer	Data lacking	No

Table 7: Reason for not proposing harmonised classification and status under standard consultation

3 HISTORY OF THE PREVIOUS CLASSIFICATION AND LABELLING

Benthiavalicarb-isopropyl is not currently listed in Annex VI of Regulation (EC) 1272/2008.

4 JUSTIFICATION THAT ACTION IS NEEDED AT COMMUNITY LEVEL

Benthiavalicarb-isopropyl is an active substance in the meaning of Regulation EC 1107/2009, therefore, is subject to harmonised classification and labelling according to Article 36 CLP Regulation, and justification is not required.

5 IDENTIFIED USES

Benthiavalicarb-isopropyl is an active substance used in plant protection products as a fungicide against *Peronosporales* fungi, except *Pythium* spp and *Phytophthora infestans* in potato crops.

6 DATA SOURCES

This CLH Report is mainly based on the available data from the Renewal Assessment Report (RAR, 2018/2019) developed in accordance with Regulation 1107/2009 and the Regulation (EC) No. 844/2012 by the Polish CA.

7 PHYSICOCHEMICAL PROPERTIES

Table 8: Summary of physicochemical properties

Property	Value	Reference	Comment (e.g. measured or estimated)
Physical state at	Powdered solid, Munsell colour designation N9.5/90.0%R (white)	Takeuchi, 2000 Report Nr 2000-003	Visual assessment at 25°C KIF-230R-L pure a.s. Purity: 99.96%
20°C and 101,3 kPa	Solid, free flowing powder. White, opaque in colour	O'Connor, 2001 Report Nr 131/451) (amended 2003)	Visual assessment at 25°C KIF-230 technical grade. Purity: 94.0% as KIF-230R-L
Melting/freezing point	153.1°C and 169.5°C (polymorphism)	Takeuchi, 2000 Report Nr 2000-003	OECD 102 with KIF-230R-L pure a.s. Purity: 99.96%
Boiling point	Boiling point could not be determined due to decomposition Decomposition occurred at 240°C (510 K) at 102 kPa and 322°C (595 K) at 7.9 kPa	Mullee, 2000a Report Nr 131/428A	ASTM E537-86. Differential scanning calorimetry / Reduced pressure distillation. Method complies with OECD 103 with KIF-230R-L pure a.s. Purity: 99.96%
	$1.25 \text{ at } 20.5 \pm 0.5^{\circ}\text{C}$	Mullee, 2000b Report Nr 131/428B	OECD 109 with KIF-230R-L pure a.s. Purity: 99.96%
Relative density	1.25 at 20.5 ± 0.5°C	O'Connor & Mullee, 2001a Report Nr 131/450	EEC A.3; OPPTS 830.7300 with KIF-230 technical grade. Purity:94.0% as KIF-230R-L
Vapour pressure	<3.0 x 10 ⁻⁴ Pa at 25°C	Bates, 1999 Report Nr 535/41- D2141 (amended 2003)	OECD 104 with KIF-230R-L pure a.s. Purity: 100%
Surface tension $63.1 \text{ mN/m of a } 9.69 \text{ x } 10-3 \text{ g/l at } 22.0 \pm \\ 0.5^{\circ}\text{C}$ Tremain, 2002 Report Nr 131/2		Tremain, 2002 Report Nr 131/486	EEC A5 with KIF-230 technical grade. Purity: 94.0% as KIF-230R- L
Water solubility	pH 5: 10.96 mg/L at 20°C pH unadjusted: 13.14 mg/L at 20°C	Bates, 1999 Report Nr 535/41-	EEC A.6; OECD 105 with KIF- 230R-L pure a.s. Purity: 100%

Property	Value	Reference	Comment (e.g. measured or estimated)
	pH 9: 12.76 mg/L at 20°C	D2141	
		(amended 2003)	
	pH 5, 20-25 °C:		
	2.63 (range 2.37 – 2.93)	Bates, 1999	
Partition	<u>pH 9, 20-25 °C:</u>	Report Nr 535/41-	EEC A.8 / OECD 117 with KIF-
coefficient n- octanol/water	2.62 (range 2.36 – 2.90)	D2141 (amended	230R-L pure a.s. Purity: 100%
	pH unadjusted (distill H2O), 20-25 °C:	2003)	
	2.56 (range 2.28 – 2.86)		
Henry's law	4.52 10 2 D 2 11 (2000)	Peeters, 2015	Calculation. Purity considered:
constant	<u>4.53 x 10-3 Pa.m3.mol-1 (20°C)</u>	Report Nr WP15017	100% KIF-230R-L
Flash point	Not required (melting point > 40° C)	/	/
Flammability	Not highly flammable	Tremain, 2001d Report Nr 131/452	EEC A.10 with KIF-230technical grade. Purity: 94.0% as KIF-230R- L
Explosive properties	Non-explosive	Tremain, 2001d Report Nr 131/452	EEC A.14 with KIF-230 technical grade. Purity: 94.0% as KIF-230R- L
Self-ignition temperature	Does not have a self-ignition temperature below its melting temperature	Tremain, 2001d Report Nr 131/452	EEC A.16 with KIF-230 technical grade. Purity: 94.0% as KIF-230R- L
Oxidising properties	Non-oxidising	Tremain, 2002 Report Nr 131/486	EEC A17 with KIF-230 technical grade. Purity: 94.0% as KIF-230R- L
Granulometry	Not available	/	/
Stability in organic solvents and identity of relevant degradation products	At 20°C: Acetone 25.4g/L Xylene 0.501g/L Heptane 2.15x10 ⁻² g/L Ethyl acetate 19.4g/L 1,2-Dichloroethane 11.5 g/L Methanol 41.7 g/L	Mullee, 2000c Report Nr 131/428C	OECD 105 with KIF-230R-L pure a.s. Purity: 99.96%
Dissociation constant No dissociation in the range pH 1.12 – 12.81 at 20°C		Takeuchi,2000Report Nr 2000-003	OECD 112 with KIF-230R-L pure a.s. Purity: 99.96%
Viscosity	Not applicable for solid substance		

8 EVALUATION OF PHYSICAL HAZARDS

8.1 Explosives

Table 9: Summary table of studies on explosive properties

Method	Results	Remarks	Reference
EEC A.14:	1) and 2) No sign of ignition or	KIF-230	Tremain, 2001d
1) BAM fall hammer test	explosion on impact and	technical grade	DRAR Volume 3 CA
2) BAM friction test	friction. No strong exothermic	Purity: 94.0%	B2 Report Nr 131/452

Method	Results	Remarks	Reference
3) the Koenen steel tube test.	decomposition was observed.	as KIF-230R-L	
	3) Flame decrease and self-		
	extinguished.		

8.1.1 Short summary and overall relevance of the information provided on explosive properties

One study was performed in accordance with EEC A.14 (Tremain, 2001d). The test substance was therefore subjected to: 1) BAM fall hammer test which is a test of mechanical sensitivity with respect to shock, 2) BAM friction test which is a test of mechanical sensitivity with respect to friction, and 3) the Koenen steel tube test which is a test of thermal sensitivity. The three tests were repeated three to six times and each time they were all negative.

8.1.2 Comparison with the CLP criteria

According to requirements of CLP regulation substance shall not be classified as explosive if there are no chemical groups associated with explosive properties (given in Table A6.1 in Appendix 6 of the UN RTDG, Manual of Tests and Criteria) present in the molecule.

Based on chemical structure, there are no chemical groups associated with explosive properties present in the benthiavalicarb-isopropyl There are unsaturated C-C links present, but they are found only in the benzothiazole group, which has no explosive properties. Additionally, even though EEC A.14 is not included in the recommended test series for the classification of explosive properties under CLP, the test was still designed in order to identify explosive properties and the results can be considered as sufficiently valid to indicate no potential for explosive properties.

8.1.3 Conclusion on classification and labelling for explosive properties

Benthiavalicarb-isopropyl is not classified for explosive properties under CLP regulation.

8.2 Flammable gases (including chemically unstable gases)

Hazard class is not applicable (benthiavalicarb-isopropyl is not a gas).

8.3 Oxidising gases

Hazard class is not applicable (benthiavalicarb-isopropyl is not a gas).

8.4 Gases under pressure

Hazard class is not applicable (benthiavalicarb-isopropyl is not a gas).

8.5 Flammable liquids

Hazard class is not applicable (benthiavalicarb-isopropyl is not a liquid).

8.6 Flammable solids

Table 10: Summary table of studies on flammable solids

Method	Results	Remarks	Reference
EEC A.10	Not highly flammable:	KIF-230	Tremain, 2001d
		technical grade	DRAR Volume 3 CA B2
		Purity: 94.0% as	Report Nr 131/452
		KIF-230R-L	

8.6.1 Short summary and overall relevance of the provided information on flammable solids

One study performed in accordance with EEC A.10 is available: a pile of active substance melted, then ignited, extinguished itself after 15 seconds failing to propagate combustion in the preliminary screening test. The result shows that benthiavalicarb-isopropyl is to be regarded as not highly flammable.

8.6.2 Comparison with the CLP criteria

Benthiavalicarb-isopropyl was not readily combusted in the study following the EEC A10 method (Tremain, 2001d) and no sign of ignition was found in the BAM friction test (EEC A14 method, Tremain, 2001d) showing that the substance does not cause or contribute to fire through friction.

The method used for classification purposes according to CLP criteria is the UN Test N.1 described in the UN RTDG, Manual of Tests and Criteria (7th revision). However, as reflected in the ECHA Guidance on Information Requirements and Chemical Safety Assessment (R.7.1.10.3), if the result of an A.10 method indicates that classification as a flammable solid does not apply (result: not highly flammable), no more testing is necessary.

Benthiavalicarb-isporpyl was classified as 'not highly flammable' in the EC Method A.10, hence no classification is required.

8.6.3 Conclusion on classification and labelling for flammable solids

Benthiavalicarb-isopropyl is not classified for flammability under CLP regulation.

8.7 Self-reactive substances

No specific data regarding self-reactive properties and none required.

8.7.1 Short summary and overall relevance of the provided information on selfreactive substances

Chemically, benthiavalicarb-isopropyl does not contain groups that are known to be self-reactive. Additionally, the BAM fall hammer test and the BAM friction test give information regarding the decomposition. In the BAM fall hammer test, no decomposition was observed while in the BAM friction test some decomposition was observed only through a black mark on the porcelain plate and pleg, without any strong exothermic reaction (no sign of ignition or explosion during the test).

8.7.2 Comparison with the CLP criteria

According to requirements of CLP regulation, the classification of a self-reactive substance or mixture shall be performed in accordance with test series A to H as described in Part II of the UN RTDG, Manual of Tests and Criteria. However, the classification procedures for self-reactive substances and mixtures do not need to be applied if there are no chemical groups present in the molecule associated with explosive or self-reactive properties (given in Tables A6.1 and A6.2 in Appendix 6 of the UN RTDG, Manual of Tests and Criteria).

Following its chemical structure and existing data, benthiavalicarb-isopropyl does not fall under the definition of a self-reactive substance and specific self-reactive substance test is not required.

8.7.3 Conclusion on classification and labelling for self-reactive substances

Benthiavalicarb-isopropyl is not classified as a self-reactive substance under CLP regulation.

8.8 Pyrophoric liquids

Hazard class is not applicable (benthiavalicarb-isopropyl is not a liquid)

8.9 Pyrophoric solids

No specific data regarding pyrophoric properties and none required.

8.9.1 Short summary and overall relevance of the provided information on pyrophoric solids

No specific data, derived in accordance with the recommended test method in CLP, has been provided. However, benthiavalicarb-isopropyl has been handled extensively in the air within all studies available in the dossier and there are no reports of self-ignition.

8.9.2 Comparison with the CLP criteria

According to requirements of CLP regulation, the classification procedure for pyrophoric solids does not need to apply when experience in manufacture or handling shows that the substance or mixture does not ignite spontaneously on coming into contact with air at normal temperatures (i.e. the substance is known to be stable at room temperature for prolonged periods of time (days)). During the course of the different studies realised for this dossier, benthiavalicarb-isopropyl was handled extensively in air and never ignited. Therefore, it does not meet the criteria for the classification of pyrophoric solid.

8.9.3 Conclusion on classification and labelling for pyrophoric solids

Benthiavalicarb-isopropyl is not classified as a pyrophoric solid under CLP regulation.

8.10 Self-heating substances

Method	Results	Remarks	Reference
EEC A.16	No relative self-ignition	KIF-230 technical	Tremain, 2001d
	temperature from ambient	grade	Report Nr
	temperature up to 179°C (which	Purity: 94.0% as	131/452
	is approximately 10°C higher	KIF-230R-L	
	that the melting temperature).		

Table 11: Summary table of studies on self-heating substances

8.10.1 Short summary and overall relevance of the provided information on selfheating substances

Due to polymorphism, benthiavalicarb-isopropyl has two melting temperatures: one at 153.1°C and one at 169.5°C (OECD 102, Takeuchi, 2000). Self-ignition temperature was investigated in a test following method EEC A.16: up until 179°C, approximately 10°C higher that the melting temperature, no relative self-ignition temperature was observed.

8.10.2 Comparison with the CLP criteria

Following CLP guidance (ECHA, 2017), EEC A.16 method is generally inappropriate for a reliable assessment, and the findings do not lead to a classification. However, the result in this case (EEC A16 method, Tremain, 2001d), i.e. no relative self-ignition temperature up to 10°C above the melting temperature, is sufficiently straightforward to conclude that benthiavalicarb-isopropyl will not self-ignited when under a solid form.

8.10.3 Conclusion on classification and labelling for self-heating substances

Benthiavalicarb-isopropyl is not classified for self-heating properties under CLP regulation.

8.11 Substances which in contact with water emit flammable gases

No specific data regarding the emission of flammable gases when a substance enters in contact with water are available.

8.11.1 Short summary and overall relevance of the provided information on substances which in contact with water emit flammable gases

No specific data, derived in accordance with the recommended test method in CLP, has been provided. However, benthiavalicarb-isopropyl has been in contact with water within many of the studies available in the dossier and there is no report of violent reaction and emission of gas.

8.11.2 Comparison with the CLP criteria

During the course of several studies conducted for this dossier (e.g.: studies on aquatic organisms), benthiavalicarb-isopropyl was in contact with water with no report of violent reaction and emission of gas.

According to requirements of CLP regulation, the classification procedure for this hazard class need not be applied if the chemical structure of the substance or mixture does not contain metals or metalloids, or experience in production or handling shows that the substance does not react with water or the substance is known to be soluble in water to form a stable mixture. According to the mentioned criteria, classification for this hazard class is not needed for benthiavalicarb-isopropyl.

8.11.3 Conclusion on classification and labelling for substances which in contact with water emit flammable gases

Benthiavalicarb-isopropyl is not classified for emission of flammable gas under CLP regulation.

8.12 Oxidising liquids

Hazard class is not applicable (benthiavalicarb-isopropyl is not a liquid).

8.13 Oxidising solids

Table 12: Summary table of studies on oxidising solids

Method	Results	Remarks	Reference
EEC A17	Non-oxidising	grade	Tremain, 2002 Report Nr 131/486

8.13.1 Short summary and overall relevance of the provided information on oxidising solids

Reference mixtures were prepared by mixing barium nitrate $(Ba(NO_3)_2)$ and cellulose in various weight ratios (10 to 90%). Sample mixtures were prepared by mixing benthiavalicarb-isopropyl with cellulose in various weight ratios (10 to 90%). During the test, all sample mixtures with the different ratios burned. The three ratios giving the shortest burning time (260 seconds for the 10%/90% mixture, 289 seconds for the 20%/80% mixture and 285 seconds for the 40%/60% mixture) were then retested in six burning trials (shortest of the 6 trials: 256 seconds for the 10%/90% mixture, 288 seconds for the 20%/80% mixture and

277 seconds for the 40%/60% mixture). In comparison, the reference mixtures had burning times that were always shorter (except in the 80%/20% and 90%/10% mixtures which did not burned).

8.13.2 Comparison with the CLP criteria

If the 4:1 or 1:1 sample-to-cellulose by mass (corresponding to 80%/20% and 50%/50%) mixtures ignites or burns then the mean burning time of those mixtures should be compared to the mean burning time of 3:7 mixture by mass (30%/70%) of potassium bromate and cellulose or of 1:2 mixture by mass of calcium peroxide and cellulose. If the burning times of the substance (mixture) is equal or greater than the burning time of the reference mixture, then the criteria for classification as oxidising solid are not met.

In the case of EEC A.17, barium nitrate is used as a reference oxidiser instead of potassium bromate or calcium peroxide. Therefore, a conclusion on the need for classification under CLP cannot be made. However, results show that the burning times of benthiavalicarb-isopropyl in the mixtures 4:1 and 1:1 were longer than in 3:7 ammonium nitrate/cellulose. Furthermore, all (mean) burning times of the substance mixtures were longer than all (mean) burning times of the reference mixtures, clearly indicating that no classification is warranted under CLP.

8.13.3 Conclusion on classification and labelling for oxidising solids

Benthiavalicarb-isopropyl is not classified for oxidizing properties under CLP regulation.

8.14 Organic peroxides

Hazard class is not applicable (benthiavalicarb-isopropyl is not an organic peroxides).

8.15 Corrosive to metals

No specific data available regarding the corrosive properties to metals of benthiavalicarb-isopropyl.

8.15.1 Short summary and overall relevance of the provided information on the hazard class corrosive to metals

There is no specific study for this hazard class with benthiavalicarb isopropyl. However, some parameters of the substance can be used to waive/screen the necessity of exploring corrosive properties of benthiavalicarb-isopropyl.

Benthiavalicarb-isopropyl is solid with melting points of 153.1°C and 169.5°C (due to polymorphism), formulations containing the active substance are all wettable dispersible granules (no liquid form).

8.15.2 Comparison with the CLP criteria

Application of classification criteria in the UN-MTC, Section 37.4 excludes solids, while 'liquids and solids that may become liquids (during transport)', have to be considered for such a classification. Solids may become liquids by melting (due to an increase in temperature). Solids having a melting point lower than 55°C (which is the test temperature required in UN Test C.1) must then be taken into consideration. The other physical way to transform a solid into liquid is by dissolution in water or another solvent.

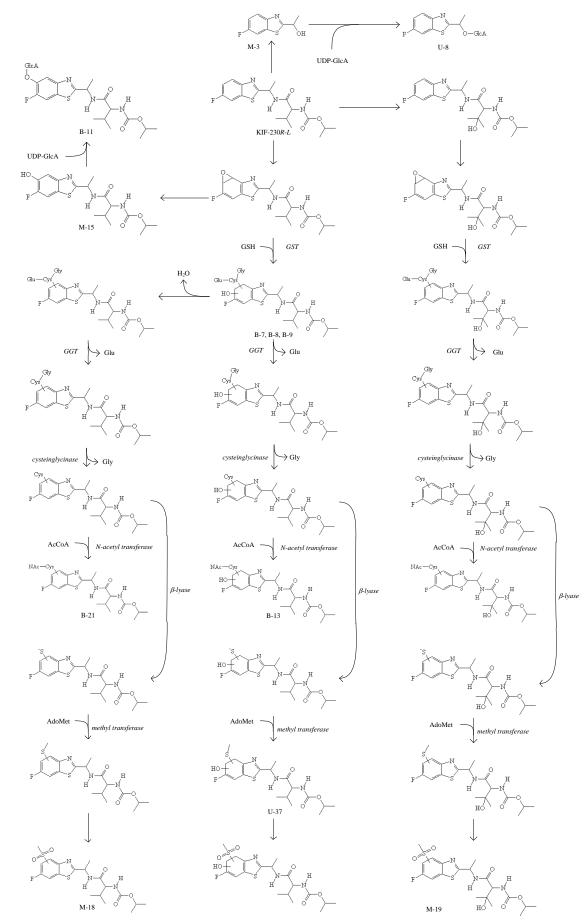
Therefore, based on the physical state of benthiavalicarb-isopropyl and the interpretation given in the CLP guidance (ECHA, 2017) for this hazard class, the active substance should not be considered for such a classification.

8.15.3 Conclusion on classification and labelling for corrosive to metals

Benthiavalicarb-isopropyl is not classified as corrosive to metals under CLP regulation.

9 TOXICOKINETICS (ABSORPTION, METABOLISM, DISTRIBUTION AND ELIMINATION)

The absorption, distribution, metabolism and excretion (ADME) in mammals of benthiavalicarbisopropyl were investigated through two studies (Anonymous 1 and Anonymous 2). Summarised results are provided in Table 13.


Method	Results	Remarks	Reference
Absorption, distribution, metabolism and excretion following oral administration to the rat	Rate and extent of absorption Rapid (<48h); efficient (89-97%) at low dose, less efficient (41-54%) at high dose	Test material: (¹⁴ C)- KIF-230R-L; purity: 99.5%	Anonymous 1, 2003, Report no. 535/55, DRAR Vol. 3 CA, B.6.1.1
EPA OCSPP Guideline No 870.7845, OECD 417, EC B 36	Distribution		
	Widely distributed		
	Rate and extent of excretion		
	Rapid, within 48h: 73-81% (low dose) and 80-86% (high dose); means (48h):12% urine/cage wash,		
	65% faeces; evidence of biliary excretion, enterohepatic circulation		
	Metabolism:		
	Extensive (low dose) to low (high dose) metabolization; major metabolite B11 (glucuronic acid conjugate of hydroxylated derivative); limited cleavage of the amide bond of the valyl-moiety		
Tissue levels following repeat dosing	Distribution	Test material: (¹⁴ C)-	Anonymous 2, 2003, Report no. 0535/003
in the rat	Widely distributed	KIF-230R-L; purity: 99.9%	Report no. 0535/093, DRAR Vol. 3 CA,
EPA OCSPP Guideline No 870.7845,	Metabolism		B.6.1.1
OECD 417, EC B 32	Extensive (low dose) to low (high dose) metabolization; major metabolite B11 (glucuronic acid conjugate of hydroxylated derivative); limited cleavage of the amide bond of the valyl-moiety		
	Potential for accumulation		
	Apparent accumulation after repeated administration, most probably due to recruitment of valine		

9.1 Short summary and overall relevance of the provided toxicokinetic information on the proposed classification(s)

Absorption, distribution, metabolism and excretion of benthiavalicarb-isopropyl was studied in rodents (Anonymous 1,2003). Two forms of KIF-230R-L labelled with ¹⁴C at the benzene ring or valyl moiety

were administered to groups of two to 2 to 12 rats (Fischer CDF Crl:BR (F-344)) of each sex with a single dose of 5 or 400 mg/kg by oral gavage. The potential accumulation and tissue levels following repeated dosing was also studied in rats (Anonymous 2, 2003). During 7 or 14 days, 4 rats per sex received 5 mg/kg bw/day by oral gavage.

KIF-230R-L was extensively and rapidly absorbed (almost complete at the low dose, about 50% at the high dose) in both sexes. The absorption was slightly delayed at the high dose. The distribution was generally throughout the body, mainly in the gastrointestinal tract, bile duct and urinary bladder followed by liver and kidney. Rapid and quite extensive excretion was predominantly via the bile. The metabolism of KIF-230R-L was complex; the predominant routes of metabolism were by glutathione conjugation or by hydroxylation on the benzene or valyl moieties. Numerous metabolites have been isolated and co-chromatographed with authentic standards; the main metabolite was B11 upon analysis of urine and bile of bile-duct cannulated rats. Metabolites present in bile, urine and faeces of cannulated rats accounted for 43-60% of the administered dose. The parent substance was not present in urine or bile. After repeated administration of KIF-230R-L the distribution profile was similar to that obtained after a single administration. Kinetics data indicated delayed depuration in some tissues but as the absolute radioactivity in these tissues were not higher than those of the other tissues and were very low 14 days after administration and toxicological studies did not indicate that these tissues/organs were particularly targeted, it is concluded that the slow depuration is not of concern. Metabolites formed after repeated administrations were not quantitatively different from those formed after a single administration of the substance.

Figure 1 Proposed pathways for metabolism of benthiavalicarb-isopropyl in animals.

10 EVALUATION OF HEALTH HAZARDS

Acute toxicity

Benthiavalicarb-isopropyl (KIF-230) has a low acute toxicity after oral exposure (Anonymous 3 and 4, 1998), dermal exposure (Anonymous 5, 1998c), and after inhalation exposure (Anonymous 6, 2000a).

10.1 Acute toxicity - oral route

Table 14: Summary table of animal studies on acute oral toxicity

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance,	Doselevels,durationofexposure	Value LD ₅₀	Reference
Acute oral toxicity in rats, Compliant with test method B.1 of directive 92/69/EEC, GLP	5 rats/sex/dose Slc: Wistar, SPF	KIF-230, purity: 88.8% as KIF- 230R-L	5,000mg/kg bw, single exposure gavage	>5,000 mg/kg bw (male and female)	Anonymous 3, 1998b Exp. No 4062, DRAR Vol. 3 CA, B.6.2.1
Acute oral toxicity in mice, Compliant with test method B.1 of directive 92/69/EEC; OECD 401, GLP	5 mice/sex/dose Slc: ICR (SPF)	KIF-230, purity: 88.8% as KIF- 230R-L	5,000mg/kg bw, single exposure gavage		Anonymous 4,1998a report No.: 4061, DRAR Vol. 3 CA, B.6.2.1

No human data on acute oral toxicity is available.

10.1.1 Short summary and overall relevance of the provided information on acute oral toxicity

The oral acute toxicity of KIF-230 was tested on rats (Anonymous 3, 1998b) and mice (Anonymous 4, 1998a) by oral gavage of 5,000 mg/kg bw. Five individuals per sex and per dose were tested. In both tests, there was no mortality and no relevant finding in clinical signs, body weight and necropsy.

10.1.2 Comparison with the CLP criteria

The available LD_{50} were both above 5,000 mg a.s./kg b.w. which are above the CLP criteria for acute oral toxicity, the lowest classification, category 4, being when acute toxic endpoint is between 300 (excluded) and 2,000 mg a.s./kg bw (included). Therefore benthiavalicarb-isopropyl is not classified for acute oral toxicity.

10.1.3 Conclusion on classification and labelling for acute oral toxicity

Benthiavalicarb-isopropyl is not classified for acute oral toxicity under CLP regulation.

10.2 Acute toxicity - dermal route

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance,	Doselevelsdurationofexposure	Value LD ₅₀	Reference
Acute dermal toxicity in rats Guidelines No. 82-1, EPA OCSPP& No 870.1200, OECD 402 GLP	5 rats/sex/dose Slc: Wistar (SPF)	KIF-230, purity: 88.8% as KIF- 230R-L	2,000 mg/kg bw 0.0145-0199 g/cm ² Dermal occlusive application 24h	>2,000 mg/kg bw (male and female)	Anonymous 5, 1998c, report No.: 4063, DRAR Vol.3 CA, B.6.2.2

Table 15: Summary table of animal studies on acute dermal toxicity

No human data on acute dermal toxicity is available

10.2.1 Short summary and overall relevance of the provided information on acute dermal toxicity

Rats were exposed to KIF-230 in solid form (moistened with 1 mL water) at a dose level of 2,000 mg/kg bw and at a dose rate of about 0.0145-0199 g/cm², by dermal occlusive application for 24 hours (Anonymous 51998c). There was no mortality and no relevant finding in clinical signs and necropsy.

10.2.2 Comparison with the CLP criteria

The available LD_{50} was above 2,000 mg a.s./kg b.w. which is higher than the CLP criteria for acute dermal toxicity. Indeed, the lowest classification, category 4, is when the acute toxic endpoint is between 1,000 (excluded) and 2,000 mg a.s./kg bw (included). Therefore benthiavalicarb-isopropyl is not classified for acute dermal toxicity.

10.2.3 Conclusion on classification and labelling for acute dermal toxicity

Benthiavalicarb-isopropyl is not classified for acute dermal toxicity under CLP regulation.

10.3 Acute toxicity - inhalation route

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance, , form and particle size (MMAD)	Dose levels, duration of exposure	Value LC50	Reference
Acute inhalation toxicity in rats Guidelines No. 81-3, EPA OCSPP & No 870.1300; OECD 403 GLP	5 rats/sex/dose Charles River Crl:CD® IGS BR	KIF-230, purity: 89.1% as KIF- 230R-L Micronized dust aerosol MMAD= 3.9± 2.82 μm	Nominal: 19 mg/L Mean actual exposure concentration: 4.6±0.6 mg/L During 4.0h Inhalation rate: 7 I/h Mean pre- exposure bw: 263g (♂) and	>4.6 mg/L (male and female)	Anonymous 6, 2000a, report No.: WIL-156011, DRAR Vol. 3CA, B.6.2.3

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance, , form and particle size (MMAD)	Dose levels, duration of exposure	Value LC50	Reference
			227g (‡)		

No human data on acute inhalation toxicity is available.

10.3.1 Short summary and overall relevance of the provided information on acute inhalation toxicity

5 rats/sex were exposed to a micronized dust aerosol of KIF-230 in a whole-body inhalation assay (Anonymous 6, 2000a), at a nominal concentration of 19 mg/L (nominal) resulting to a mean actual exposure concentration of 4.6 ± 0.6 mg/L (determined by gravimetry) during 4.0h. MMAD was equal to 3.9 ± 2.82 µm. About 51% of the particles were < 4.0 µm. One female and one male died on day 1. The clinical signs from the deceased rats were laboured respiration, rales, gasping, hypoactivity, clear lacrimation. The clinical signs of the survivors were also laboured respiration and rales, and in addition dried red material around nose/eyes/forelimbs, dried yellow material on urogenital area, decreased/mucoid faeces. Effects on body weight were observed between day 0 and 3 and day 0 and 7. Necropsy from the deceased rats showed dark red adrenals (in both sexes), dark patchy lungs (female) and gas-filled stomach (male), while in the survivors there were no relevant findings, except dark red/mottled lungs in one female.

10.3.2 Comparison with the CLP criteria

The available LC_{50} was above 4.6 ± 0.6 mg a.s./L, the actual mean measured concentration, as one female and one male over ten rats (20%) died during the test, on the first day. The lowest classification, category 4, for acute inhalation toxicity, is when the acute toxic endpoint, LC_{50} , is between 1.0 (excluded) and 5 mg a.s./L (included). Therefore, even though the actual mean exposure concentration only reached the upper limit value of the criteria, the data show that benthiavalicarb-isopropyl should not be classified for acute inhalation toxicity.

10.3.3 Conclusion on classification and labelling for acute inhalation toxicity

Benthiavalicarb-isopropyl is not classified for acute inhalation toxicity.

10.4 Skin corrosion/irritation

Method, guideline, deviations	Species, strain, sex,	Test substance,	Doselevelsdurationofexposure	Results -Observations and time point of onset -Mean scores/animal	Reference
if any	no/group		exposure	-Reversibility	
Guidelines No. 81-5, EPA OCSPP & No 870.2500 GLP	6 male rabbits/ dose Crl: NZW	KIF-230, purity: 87.9% as KIF-230R- L moistened with 500 µL water	0.5 g/ 10 cm ² 4 hours	Average score for each animal (mean of 24, 48, 72 h observations): Score erythema: 0, 0, 0, 0, 0, 0, 0 Score oedema: 0, 0, 0, 0, 0, 0	Anonymous 7, 1999, KCI Doc No. 198/993612/SE, DRAR Vol. 3 CA, B.6.2.4

Table 17: Summary table of animal studies on skin corrosion/irritation

No human data on skin corrosion/irritation is available

10.4.1 Short summary and overall relevance of the provided information on skin corrosion/irritation

Male rabbits were exposed to KIF-230 moistened with 500 μ L water, in the amount of 0.5 g/ 10 cm² on back skin, by semi-occlusive application for 4 hours (Anonymous 7, 1999). The scores for erythema and oedema were both equal to zero at 24, 48 and 72 hours after application.

10.4.2 Comparison with the CLP criteria

To be classified for skin irritation under CLP, some positive lasting effect should be observed in one exposed animal which was not the case in the skin corrosion/irritation test performed with benthiavalicarb-isopropyl where no dermal effect was observed.

10.4.3 Conclusion on classification and labelling for skin corrosion/irritation

Benthiavalicarb-isopropyl is not classified for skin corrosion/irritation.

10.5 Serious eye damage/eye irritation

Table 18: Summary table of animal studies on serious eye damage/eye irritation

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance	Dose levels duration of exposure	Results - Observations and time point of onset - Mean scores/animal - Reversibility	Reference
Eye irritation study in the rabbit FIFRA Guidelines No. 81-5, EPA OCSPP & No 870.2400 GLP	6 male rabbits/ dose Crl: Kbl©BR	KIF-230, purity: 96% as KIF- 230R-L	solid form, 0.061 g, correspondin g to 0.1 mL of undiluted a.s. one application	Average score for each animal (mean of 24, 48, 72 h observations): Corneal opacity: 0, 0, 0, 0, 0, 0 Iritis: 0, 0, 0, 0, 0, 0 Conjunctival redness: 0.3, 1.6, 1.3, 0.6, 0.3, 0.6 Conjunctival chemosis: 0, 0, 0, 0, 0, 0 All signs were reversible within 4 days	Anonymous 8, 2000, KCI Doc No. 199/993939/SE, DRAR Vol. 3 CA, B.6.2.5

No human data on serious eye damage/eye irritation is available.

10.5.1 Short summary and overall relevance of the provided information on serious eye damage/eye irritation

Seven male rabbits were exposed to KIF-230 in solid form, by single instillation of 0.061 g, corresponding to 0.1 mL of the undiluted test substance into the everted lid of the left eye (Anonymous 8, 2000).

Screen study -rinsed eye:

One animal was treated in advance of the others. The treated eye was rinsed with distilled water 30 seconds after instillation lasting 30 seconds. Responses in rabbit were observed at 60 minutes, 24, 48 and 72 hours after exposure. Only conjunctiva redness score 1 was observed 1h and 24h after instillation. Ocular reactions had resolved by two days after instillation.

Main study – unrinsed eye:

All treated rabbits showed positive response for conjunctival redness with a score of 1 to 2 from one hour to 72 hours post instillation. Ocular reactions had resolved in all animals by either two or four days after instillation.

No cornea opacity, iridial inflammation or conjunctival chemosis was seen in any animal.

10.5.2 Comparison with the CLP criteria

The mean scores at 24, 48 and 72 hours after instillation, mean scores for corneal opacity or iris should be equal or above one, or conjunctival redness or oedema should be equal or above 2, in 2 of 3 (4/6) animals for the substance to be classified as eye irritant under criteria of CLP regulation. In this case, the highest score was 1.6 for conjunctival redness. Therefore benthiavalicarb-isopropyl should not be classified for eye irritation.

10.5.3 Conclusion on classification and labelling for serious eye damage/eye irritation

Benthiavalicarb-isopropyl is not classified as an eye irritant.

10.6 Respiratory sensitisation

No data available.

10.7 Skin sensitisation

Table 19: Summary table of animal studies on skin sensitisation

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance,	Dose levels duration of exposure	Results				Reference
Maximisation test EPA OCSPP Guideline No 870.2600 GLP	20 female guinea pigs (Dunkin- Hartley) /test dose and 20 female guinea pigs /control group	KIF-230 (87.9% as KIF-230R- L; B.n.° G51-15- 162)	Intradermal: 0.25% w/v KIF-230 in (FCA*) + Alembicol D, 3 pairs of injections. Topical: 70% w/v KIF-230 in Alembicol D, 48 hours. Challenge: 35 and 70% w/v in Alembicol D, 24 hours	effects i Topical Challen	No. of se Challeng 35% benthiav Control group	ensitised a	 e with	Anonymous 9, 2000a, KCI Doc No. 201/993857/SS, DRAR Vol. 3 CA, B.6.2.6
Buehler test EPA OCSPP Guideline No 870.2600 GLP	20 female guinea pigs/ test dose, Dunkin- Hartley	KIF-230 (87.9% as KIF-230R- L; B.n.° G51-15- 162)	Induction: 70% w/v in Alembicol D, 6 hours, at day 1, 8 and 15 Challenge: 40% w/v in Alembicol	animals	on: sporadi ge: No eff	C	tion, 3/20	Anonymous 10, 2000b, KCI Doc No. 200/002387/SS, DRAR Vol. 3 CA, B.6.2.6

Method, guideline, deviations if any	strain,	Test substance,	Dose levels duration of exposure		Reference		
			D, 6 hours				
FCA = Freund	FCA = Freund's Complete Adjuvant						

No human data on skin sensitisation is available

10.7.1 Short summary and overall relevance of the provided information on skin sensitisation

Two skin sensitisation studies were conducted with guinea pigs: one Magnusson-Kligman maximisation test (Anonymous 9, 2000a) and one Buehler test (Anonymous 10, 2000b).

Three phases were conducted in the Magnusson-Kligman maximisation test:

- intradermal induction on day 1- 20 female guinea pigs (Dunkin-Hartley) received three pairs of intradermal injections of respectively 100 μL of (i) 50% w:v Freund's Complete Adjuvant (FCA)/water emulsion, (ii) 0.25% w:v benthiavalicarb-isopropyl /Alembicol D, and (iii) 0.25% Benthiavalicarb in 50% w:v FCA/Alembicol D. 20 female control animals were given three pairs of intradermal injections of 100 μL with the concommittant blanks (FCA/water, Alembicol D, 50% w:v FCA/Alembicol D).
- topical induction on day 7, 400 μL of 70% w:v benthiavalicarb-isopropyl in Alembicol D (tests) or Alembicol D (controls) was administered by the occlusive application during 48h.
- challenge on day 22, 200 µL of 35% or 70% w:v benthiavalicarb-isopropyl in Alembicol D was applied on either an anterior or posterior flank for 24h.

In the first pretest (intradermal injection range-finding), benthiavalicarb-isopropyl was injected at 0.1, 0.25, 0.5 and 1.0% w:v in Alembicol D. Slight erythema and edema occurred at 0.25% mixture at 24h and 72h.

In the second pretest (topical induction range-finding), benthiavalicarb-isopropyl was applied at 10, 20, 50 and 70% w:v in Alembicol D. No irritation was observed up to and including 70% mixture at 24h and 48h.

The test facility concluded that a 70% w:v mixture was the maximum practical concentration that could be prepared which would give no rise to irritating effects during the challenge.

Additionally, 10 female guinea pigs were treated with hexyl cinnamic aldehyde (HCA, 10% v:v intradermal and topical induction, 50% and 100% v:v challenge).

After intradermal injection, necrosis was observed at all intradermal FCA-injection sites, while slight irritation was observed at the other injection site (0.25% test article in Alembicol D), in both control and test animal.

One day after percutaneous induction (70% test article in Alembicol D), no irritation was observed.

The animals treated with HCA (positive controls) exhibited 100% response after both 24h and 48h challenge times as expected.

The challenge with a 70% w:v benthiavalicarb-isopropyl at 48h elicited a skin response above the level observed in the controls, in more than 30% of the test animals.

The challenge with a 35% w:v benthiavalicarb-isopropyl at 24h and 48h elicited a skin response in 45 and 50% of animals, respectively, when no effects in any control animals were observed.

In the Buelher test, 20 female guinea pigs (Dunkin-Hartley) were subject to a topical induction test on day 1, 8 and 15, 500 μ L of 40% w:v benthiavalicarb-isopropyl in Alembicol D was applied epidermally for 6h. On day 29 (challenge), 500 μ L of 70% w:v benthiavalicarb-isopropyl in Alembicol D was applied for 6h. In the pretest (topical induction range-finding), benthiavalicarb-isopropyl was applied for 6h at 40, 50, 60 and 70% w:v in Alembicol D. Slight erythema and edema occurred in animals treated with 60% mixture and above at 24h and 72h. It was concluded that a 40% w:v mixture was the maximum practical concentration that could be prepared which would give no rise to irritating effects during the challenge. 24h after the 3 induction phases, sporadic incidences of slight to well-defined irritation was observed in the animals (induction 1: 1/20, induction 2: 3/20, induction 3: 1/20).

24h and 48h after challenge phase, no positive reaction was elicited, in neither treated nor control group.

The animals treated with HCA (positive controls) exhibited 90% and 100% response after respectively 24h and 48h challenge times as expected.

Additionally, 10 female guinea pigs were treated with Cinnamic aldehyde (HCA, 10% v:v topical induction, 50% and 100% v:v challenge).

10.7.2 Comparison with the CLP criteria

To be classified as a skin sensitizer under CLP regulation, for Category 1, when an adjuvant type test method for skin sensitisation is used, a response of at least 30% of the animals is considered as positive. Where data are not sufficient for sub-categorisation, skin sensitizer substance shall be classified as Category 1. Positive answers in \geq 30% of animals were observed at the intradermal induction dose 0.25% of benthavalicarb-isopropyl in Guinea pig maximisation test (Anonymous 9, 2000a). Based on those results it is proposed to classified benthiavalicarb-isopropyl as a skin sensitizer category 1, without sub-categorisation (since dose \leq 0.1% intradermal induction dose was not tested), with the hazard statement H317: "May cause an allergic skin reaction".

10.7.3 Conclusion on classification and labelling for skin sensitisation

Benthiavalicarb-isopropyl is classified as skin sensitizer category 1, H317: "May cause an allergic skin reaction". The corresponding pictogram is GHS07 with the signal word "Warning".

10.8 Germ cell mutagenicity

Method, guideline, deviations if any	Test substance,	Relevantinformationabout the study includingrationalefordoseselection (as applicable)	Observations	Reference
Bacterial	KIF-230	S. typhimurium (strains	Positive	Dawkes
assay for gene	Lot: G51-	TA98, TA100, TA1535,	(strain TA98)	(1999), Report
mutation	15-162;	TA1537)	+S9 mixture	no. 535/44,
OCSPP Test	87.9% as	E. coli (strain WP2 uvrA)		Vol. 3 CA,
Guideline	KIF-230R-L	8, 40, 200, 1,000 and 5,000	Positive result due the impurity I-6	B6.4.1/1
870.5100		μg/plate	Sensitivity demonstrated by positive	
Acceptable		32, 80, 200, 500, 1,000,	control	
		2,000 and 5,000 µg/plate		
Bacterial	KIF-230	S. typhimurium (strains	Negative	Mizuhashi
assay for gene	Lot: G51-	TA98, TA100, TA1535,	± S9 mixture	(2001a),
mutation	35-184;	TA1537)		Report no.
OCSPP Test	91.9% as	E. coli (strain WP2 uvrA)	Sensitivity demonstrated by positive	5839, Vol. 3

Table 20: Summary table of mutagenicity/genotoxicity tests in vitro

Method,	Test	Relevant information	Observations	Reference
guideline,	substance,	about the study including rationale for dose		
deviations if any		rationale for dose selection (as applicable)		
Guideline 870.5100 Acceptable	KIF-230R-L	39, 78, 156, 313, 625, 1,250, 2,500 and 5,000 µg/plate	controls	CA, B.6.4.1/2
Bacterial assay for gene mutation OCSPP Test Guideline 870.5100 Acceptable	KIF-230 Lot: G51- 37-184; 95.8% as KIF-230R-L	<i>S. typhimurium</i> (strains TA98, TA100, TA1535, TA1537) <i>E. coli</i> (strain WP2 uvrA) 78, 156, 313, 625, 1,250, 2,500 and 5,000 µg/plate	Negative ± S9 mixture Sensitivity demonstrated by positive controls	Mizuhashi (2001b), Report no. 5840, Vol. 3 CA, B6.4.1/3
Bacterial assay for gene mutation OCSPP Test Guideline 870.5100 Acceptable	KIF-230 Lot: G51- 36-184; 92.6% as KIF-230R-L	<i>S. typhimurium</i> (strains TA98, TA100, TA1535, TA1537) <i>E. coli</i> (strain WP2 uvrA) 39, 78, 156, 313, 626, 1,250, 2,500 and 5,000 μg/plate	Negative ± S9 mixture Sensitivity demonstrated by positive controls	Mizuhashi (2001c), Report no. 5918, Vol.3 CA, B.6.4.1/4
Bacterial assay for gene mutation OCSPP Test Guideline 870.5100 Acceptable	KIF-230 TG - lot no. G51-08- 158; 88.6% as KIF- 230R-L	<i>S. typhimurium</i> (strains TA98, TA100, TA1535, TA1537) <i>E. coli</i> (strain WP2 uvrA) 28, 45, 72, 116, 186, 298, 477, 763, 1,221, 1,953, 3,125 and 5,000 µg/plate	Positive (strain TA98) + S9 mixture Positive result due to the impurity I-6 Sensitivity demonstrated by positive controls	Mizuhashi (2001d), Report no. 5919, Vol. 3 CA, B.6.4.1/5
Bacterial assay for gene mutation OCSPP Test Guideline 870.5100 Acceptable	KIF-230 Lot: G51- 47-190; 92.4% as KIF-230R-L	<i>S. typhimurium</i> (strain TA98) 313, 625, 1,250, 2,500 and 5,000 µg/ plate	Negative ± S9 mixture Sensitivity demonstrated by positive control	Mizuhashi (2002a), Report no. 6239, Vol.3 CA, B.6.4.1/6
Bacterial assay for gene mutation OCSPP Test Guideline 870.5100 Acceptable	KIF-230 Lot: G51- 48-190; 94.8% as KIF-230R-L	<i>S. typhimurium</i> (strain TA98) 313, 625, 1,250, 2,500 and 5,000 µg/ plate	Negative ± S9 mixture Sensitivity demonstrated by positive control	Mizuhashi (2002b), Report no. 6240 Vol. 3 CA, B.6.4.1/7
Bacterial assay for gene mutation OCSPP Test Guideline 870.5100 Acceptable	KIF-230 Lot: G51- 49-190; 92.7% as KIF-230R-L	<i>S. typhimurium</i> (strain TA98) 313, 625, 1,250, 2,500 and 5,000 µg/ plate	Negative ± S9 mixture Sensitivity demonstrated by positive control	Mizuhashi (2002c), Report no. 6241, Vol. 3 CA, B.6.4.1/8
Bacterial assay for gene mutation OCSPP Test Guideline 870.5100 Acceptable	KIF-230 Lot: G51- 50-190; 91.5% as KIF-230R-L	<i>S. typhimurium</i> (strain TA98) 313, 625, 1,250, 2,500 and 5,000 µg/ plate	Negative ± S9 mixture Sensitivity demonstrated by positive control	Mizuhashi (2002d), Report no. 6242, Vol. 3 CA, B.5.4.1/9
Bacterial assay for gene mutation	KIF-230 Lot: G51- 51-190;	<i>S. typhimurium</i> (strain TA98) 313, 625, 1,250, 2,500 and	Negative ± S9 mixture	Mizuhashi (2002e), Report no.

Method,	Test	Relevant information	Observations	Reference
guideline, deviations if	substance,	about the study including rationale for dose		
any		selection (as applicable)		
OCSPP Test Guideline	93.3% as KIF-230R-L	5,000 μg/ plate	Sensitivity demonstrated by positive control	6243, Vol. 3 CA, B.6.4.1/10
870.5100 Acceptable				
Bacterial assay for gene	KIF-230 TG - lot no.	<i>S. typhimurium</i> (strains TA98, TA100, TA1535,	Negative ± S9 mixture	Ballantyne (2004a),
mutation OECD 471	G51-56 ; 93.6% as	TA1537) <i>E. coli</i> (strain WP2 uvrA)	Negative result confirmed in a repeat	Report no. 535/114, Vol.
Acceptable	KIF-230R-L	16, 50, 158, 500, 1,581 and 5,000 μg/ plate 8, 20, 51, 128, 320, 800, 2,000 and 5,000 μg/plate	study Sensitivity demonstrated by positive controls	3 CA, B.6.4.1/11
Bacterial assay for gene	KIF-230 TG - lot no.	<i>S. typhimurium</i> (strains TA98, TA100, TA1535,	Negative ± S9 mixture	Ballantyne (2004b),
mutation OECD 471	G51-56, 93.6% as	TA1537) <i>E. coli</i> (WP2 uvrA)	Negative result confirmed in a repeat	Report no. 535/115, Vol.
Acceptable	KIF-230R-L	16, 50, 158, 500, 1,581 and 5,000 μg/ plate 20, 51, 128, 320, 800, 2,000 and 5,000 μg/ plate	study Sensitivity demonstrated by positive controls	3 CA, B.6.4.1/12
Bacterial gene mutation	KIF-230 Lot: G51-	and 5,000 μg/plate S. typhimurium (strain TA98, TA100, TA1535,	Negative ± S9 mixture	Ballantyne (2004c),
assay OECD 471	58; 94.6% as KIF-	TA1537) <i>E. coli</i> (strain WP2 uvrA)	Negative result confirmed in a repeat	Report no. 535/116, Vol.3
Acceptable	230R-L	16, 50, 158, 500, 1,581 and 5,000 μg/ plate 8, 20, 51, 128, 320, 800, 2,000 and 5,000 μg/plate	study Sensitivity demonstrated by positive controls	CA, B.6.4.1/13
Bacterial reverse gene	KIF-230 Lot: G51-	Salmonella typhimurium (TA 1535, TA 1537, TA 98	Negative ± S9 mixture	Ballantyne (2004d),
mutation OECD 471 Acceptable	58; 94.6% as KIF- 230R-L	and TA 100) <i>Escherichia coli</i> WP2 uvrA 16, 50, 158, 500, 1,581 and	Negative result confirmed in a repeat study	Report no. 535/117, Vol. 3 CA,
	25011 1	$5,000 \ \mu g/ \ plate$ 20, 51, 128, 320, 800, 2,000 and 5,000 $\mu g/ \ plate$	Sensitivity demonstrated by positive controls	B.6.4.1/14
Bacterial reverse gene	KIF-230 Lot: G51-	Salmonella typhimurium (TA 1535, TA 1537, TA 98	Negative ± S9 mixture	Ballantyne (2004e),
mutation OECD 471	59; 92.7% as KIF-	and TA 100) Escherichia coli WP2 uvrA	Negative result confirmed in a repeat	Report no. 535/118, Vol.
Acceptable	230R-L	16, 50, 158, 500, 1,581 and 5,000 μg/ plate 8, 20, 51, 128, 320, 800, 2,000 and 5,000 μg/plate	study Sensitivity demonstrated by positive controls	3 CA, B.6.4.1/15
Bacterial reverse gene	KIF-230 Lot: G51-	Salmonella typhimurium (TA 1535, TA 1537, TA 98	Negative ± S9 mixture	Ballantyne (2004f),
mutation OECD 471	59; 92.7% as KIF-	and TA 100) Escherichia coli WP2 uvrA	Negative result confirmed in a repeat	Report no. 535/119, Vol.
Acceptable	230R-L	16, 50, 158, 500, 1,581 and 5,000 μg/ plate 20, 51, 128, 320, 800, 2,000	study Sensitivity demonstrated by positive controls	3 CA, B.6.4.1/16
Clastogenicity	KIF-230	and 5,000 µg/plate Chinese hamster lung	Negative	Anonymous 11
in mammalian cells	Lot: G51- 02-152;	(CHL) cells 955, 1,910 and 3,820 µg/ml	± S9 mixture	(1998), Report no. 3391,

Method, guideline, deviations if any	Test substance,	Relevantinformationabout the study includingrationalefordoseselection (as applicable)	Observations	Reference
OCSPP Test Guideline 870.5300 Acceptable	96.9% as KIF-230R-L		Sensitivity demonstrated by positive control	Vol.3 CA, B.6.4.1/17
Gene mutation in mammalian cells OCSPP Test Guideline 870.5300 Supportive (presence of white powdery test substance)	KIF-230 Lot: G51- 15-162; 87.9% as KIF-230R-L	Mouse lymphoma cells 3.75, 7.5, 15, 30, 60 and 120 μg/ml 7.5, 15, 30, 60 and 120 μg/ml	Negative ± S9 mixture Sensitivity demonstrated by positive control	Anonymous 12 (1999a), Report no. 535/45, Vol. 3 CA, B.6.4.1/18
Unscheduled DNA synthesis Supportive	KIF-230 Lot: G51- 15-162; 87.9% as KIF-230R-L	Rat hepatocytes 5, 16, 50, 158 and 500 µg/ml 16, 31, 63, 125, 250 and 500 µg/ml	Negative Sensitivity demonstrated by positive control	Anonymous 13 (1999b), Report no. 535/46, Vol. 3 CA, B.6.4.1/
Comet assay Not stated/ No EC protocol is available Acceptable	KIF-230 Lot: FL- 3003; 93.4% as KIF- 230R-L	Human lymphocytes 62, 104, 173, 288 and 480 μg/ml	Negative Sensitivity demonstrate by positive control	Anonymous 14 (2003), Report no. 7445, Vol. 3 CA, B.6.4.1/20

Table 21: Summary table of mutagenicity/genotoxicity tests in mammalian somatic or germ cells *in vivo*

Method, guideline,	Test	Relevant information	Observations	Reference
deviations if any	substance,	about the study (as applicable)		
Mouse bone marrow micro- nucleus test method B.12 of directive 2000/32/EC Deviations but acceptable	KIF-230 Lot: G51- 15-162; 87.9% as KIF-230R- L	Mouse (CD-1) 2,000 mg/kg dosed by oral gavage	Negative Sensitivity demonstrated by positive control	Anonymous 15 (2000), Report no. 535/47, Vol. 3. CA, B.6.4.2/1
Unscheduled DNA synthesis test method B.39 of directive 2000/32/EC Acceptable	KIF-230 Lot: G51- 24-176; 92.3% as KIF-230R- L	Rat (Fischer CrJ: F344/Du) Hepatocytes 1,000 and 2,000 mg/kg dosed by oral gavage	Negative Sensitivity demonstrated by positive control	Anonymous 16 (2001e), Report no. 5336, Vol. 3 CA, B.6.4.2/2
Transgenic rodent mutation assay Methodology in line with open literature (Env. Mol. Mutagenesis 28: 363-375, 1996) Acceptable	KIF-230 Lot: G51- 08-158; 88.6% as KIF-230R- L	Mouse (Muta [™] mouse) hepatocytes 1,000 and 2,000 mg/kg dosed by oral gavage for 5 days	Negative Sensitivity demonstrated by positive control	Anonymous 17 (2000a), Report no. 4911., Vol.3 CA, B.6.4.2/3

No genotoxic activity was detected in somatic mammalian cells. Hence, it is not necessary to conduct a germ cell mutagenicity test.

10.8.1 Short summary and overall relevance of the provided information on germ cell mutagenicity

Several batches of benthiavalicarb-isopropyl were tested for their potency to induce mutagenic lesions in bacteria. Among the first set of batches (pilot batches), including numbers 15-162, 35-184, 36-184, 37-184 and 08-158, two of them proved to be positive, as illustrated by their potential to induce (frame-shift) mutations in *S. typhimurium* strain TA98. In subsequent analytical studies, it was demonstrated that the mutagenic potential in both batches 08-158 and 15-162 was caused by the presence of impurity KIF-230–I–6 (see confidential data and B.6.8.1.2.12). Additionally, batch 08-158 contained the genotoxic relevant impurity KIF-230–I–12 (see DRAR Volume 3 CA B.6.8.1.2.10).

The notifier provided a new five-batch analysis (batches numbers 47-190, 48-190, 49-190, 50-190 and 51-190), which was claimed to correspond with the impurity profile of the commercially manufactured active substance.

The genotoxicity studies on this new set of batches, which were conducted only in bacterial strain TA98, both in the presence and in the absence of S9, demonstrated that the active substance was indeed devoid of mutagenic activity.

It is of note that the two impurities, KIF-230–I–6 and KIF-230–I–12 were <LOQ in the new commercial batches.

Other *in vitro* (UDS, chromosome aberration, mammalian gene mutation) or *in vivo* (UDS, bone marrow micronucleus, a mammalian gene mutation in transgenic mouse) genotoxicity tests with the technical active substance were negative.

A slight increase of polyploid cell incidence was detected in the *in vitro* chromosome-aberration assay, in the absence of exogenous metabolisation, but its toxicological significance remains questionable, as this may be a reflexion of cell toxicity, and no similar effect was observed when the test was performed in the presence of S9.

Other mechanistic or complementary studies, including the *in vitro* single cell gel assay (Comet-assay on lymphocytes), and the analysis of 8-OH DNA-adducts in liver cells (2-week feeding study in rats and mouse, see B.6.8.2.3), offered additional evidence that benthiavalicarb-isopropyl is not genotoxic both *in vivo* and *in vitro*.

10.8.2 Comparison with the CLP criteria

Classification for genotoxicity/mutagenicity is based on results of the *in vitro* and *in vivo* tests. It was demonstrated that the positive results in 2/16 bacterial reverse mutation ('Ames') assays may be attributable to the impurities I-6 and I-12, which were not present in the profile of the commercial manufactured active substance (it was only found in the test substance). The KIF-230 batch (G51-08-158) that was used for the long-term carcinogenicity studies was tested for mutagenicity in the MutaTMMouse assay by gavage at doses up to 2,000 mg/kg bw once daily for 5 days (DRAR Volume 3 CA 6.4.2-03) and found negative. Since this negative gene mutation test has been carried out *in vivo* using the relevant route of administration and in the test species that showed a clear increase in the incidence of liver and thyroid tumours, there is no reason to believe that the presence of the impurities, that tested only positive in *Salmonella thyphimurium* strain TA98 with S9, would have had any influence on the production of the tumours. Benthiavalicarb-isopropyl was not mutagenic in a valid *in vivo* somatic cell mutagenicity/genotoxicity tests in mammals and so according to the guidance on the application of the CLP criteria no classification is warranted.

10.8.3 Conclusion on classification and labelling for germ cell mutagenicity

Benthiavalicarb-isopropyl is not classified as genotoxic/ mutagenic under the CLP regulation.

10.9 Carcinogenicity

The long-term toxicity and carcinogenicity of benthiavalicarb-isopropyl were investigated in mice and rats (Anonymous 18, 2001a and Anonymous 20, 2001b). The results are summarized in Table 22. Seventeen mechanistic studies (Anonymous 22, McMahon, 2018a-e; Anonymous 25 and 26, 2001c-d; Anonymous 27-32, 2001a-b, 2002a-c, 2003; Anonymous 33, 2015) were also submitted in order to investigate the mode of action of the tumours observed in the long-term studies. Results are summarized in Table 23. Both, long term studies and mechanistic studies are then further discussed in section 10.9.1, however for more information; please refer to DRAR Volume 3 CA, section B.6.5 Long-term toxicity and carcinogenicity (for Anonymous 22, McMahon, 2018a-e; Anonymous 25 and 26, 2001c-d; Anonymous 27-32, 2001a-b, 2002a-b, 2003) and section B.6.9.3. Endocrine disrupting properties (for Anonymous 32, 2002c and Anonymous 33, 2015). Unless stated otherwise, all reported effects in Table 22 have been found to be statistically significant.

Method, guideline,	Test substance,	Results	Reference
deviations if any,	dose levels		
species, strain, sex,			
no/group	exposure		
2-year chronic	KIF-230, batch	NOAEL: M: 9.9 mg/kg bw/day; F: 12.5 mg/kg bw/day	Anonymou
toxicity /	G51-08-158,	LOAEL: M: 250 mg/kg bw/day; F: 318 mg/kg bw/day –	s 18,
oncogenicity study in	purity: 88.8-89.1%	In this table only neoplastic lesions are described. Numerous	2001a.,
rats	as KIF-230R-L	non-neoplastic lesions and effects were observed at the two	DRAR
		highest doses tested. Please refer to Table 28 of section 10.12	Report no.
- OCSPP Guideline	0; 50; 200; 5,000;	(STOT RE) for summary.	3822,
No 870.4300 - OECD	10,000 ppm		Vol.3 CA,
453(2008)	M. 0. 2.5	• Increase in the incidence of hepatocellular adenoma	B.6.5/1
Acceptable	- M: 0, 2.5;	(14.0%) observed at 10,000 ppm (518.3 mg/kg bw/d) in	
Data E244/DuCri	9.9, 249.6, 518.3	males at termination but these tumours were within the	
Rats - F344/DuCrj (Fischer, SPF)	mg/kg bw/day - F: 0, 3.2,	 historical control range of the test laboratory (0.0-18.0%). Increase in the incidence of uterus adenocarcinoma 	
80 animals/sex/group	12.5, 318.2, 649.4	• Increase in the incidence of uterus adenocarcinoma at 5,000 (318.2 mg/kg bw/d) and 10,000 ppm (649.4 mg/kg	
oo ummus, sex, group	mg/kg bw/day	bw/d) (22.0% and 20.0%, respectively) and was above	
	- 104	maximal historical control value (8%). The increase after 78	
	weeks (5-6 weeks	weeks of treatment was not statistically significant.	
	at the start of		
	dosing)		
Historical control	-	Historical control data are submitted from the testing	Anonymou
data on the findings		laboratory (BioSafety Research Centre for Foods, Drugs and	s 19 2017,
observed in the		Pesticides, "An-Pyo Centre") for F344/DuCrj rats that were	DRAR
former studies:		used in long-term carcinogenicity studies performed in the	Historical
Chronic/Carcinogenic		period 1996 to 2005. The historical control database used	control
study in rats with KIF-230 Technical		covers 15 studies and 750 animals from the control groups. In	Studies No.: 3822,
KIF-250 Technical		male rats the spontaneous tumours incidence for hepatocellular adenoma ranged from 0.0 to 18.0% and in	Vol. 3 CA,
		females from 0.0 to 8.0%.	B.6.5/5
		In female rats the spontaneous incidence of uterine	D .0.3/3
		adenocarcinoma ranged from 0.0 to 8.0%.	
2-years oncogenicity	KIF-230, batch	NOAEL: M: 13.7 mg/kg bw/day, F: 18.6 mg/kg bw/day	Anonymou
study in mice	G51-08-158,	LOAEL: M: 358 / mg/kg bw/day, F: 459 mg/kg bw/day	s 20,
	purity: 88.8-89.1%	In this table only neoplastic lesion are described. Numerous	2001b.
EPA OCSPP	as KIF-230R-L	non neoplastic lesions and effect were observed at the two	DRAR
Guideline No		highest tested doses. Please refer to Table 28 of section 10.12	Report no.
870.4200, OECD	0; 20; 100; 2,500;	(STOT RE) for summary.	3823,
Test Guideline 451	5,000 ppm		Vol.3 CA,
Acceptable		• Increase in the incidence of hepatocellular adenoma	6.5/2
Mar DCC2E1	- M: 0, 2.7,	at 2,500 and 5,000 ppm (86.0% and 94.0%, respectively), and	
Mice, B6C3F1	13.7, 358, 731	hepatocellular carcinoma at 2,500 and 5,000 ppm (70.0% and	
70 animals/sex/group	mg/kg bw/day	86.0%, respectively) in males after 104 weeks of treatment.	
	- F: 0, 3.7,	Also, a statistically significant increase in the incidence of	

Table 22: Summary table of animal studies on long-term toxicity and carcinogenicity

Method, guideline, deviations if any, species, strain, sex, no/group	Testsubstance,doselevelsdurationofexposure	Results	Reference
	18.6, 459, 928 mg/kg bw/day - 104 weeks (5-6 weeks at the start of dosing)	 hepatocellular adenoma in males at 5,000 ppm after 78 weeks (10/10) and 52 weeks of treatment (7/10). Increase in the incidence of hepatocellular adenoma at 2,500 and 5,000 ppm (40.0% and 46.0%, respectively) in females after 104 weeks of treatment. Not statistically significant increase in the incidence of hepatocellular carcinoma at 2,500 and 5,000 ppm (14.0% and 12.0%, respectively) in females. These incidences are still within the historical control range of hepatocellular carcinoma in females of the test laboratory (2.0% to 16.0%). Increase in the incidence of hepatoblastoma at 2,500 and 5,000 ppm (24.0% and 18.0%, respectively) in males after 104 weeks of treatment. Increase in the incidence of thyroid follicular cell adenoma at 5,000 ppm (18.0%) and a not statistically significant increase at 2,500 ppm (8.0%) after 104 weeks of treatment. 	
Historical control data on the findings observed in the former studies: Oncogenicity study in mice with benthiavalicarb- isopropyl	-	Historical control data are submitted from the testing laboratory (BioSafety Research Centre for Foods, Drugs and Pesticides, "An-Pyo Centre") for B6C3F1 mice that were used in long-term carcinogenicity studies performed in the period 1996 to 2005. The historical control database covers 14 long-term carcinogenicity studies with 705 animals from the control groups. Hepatocellular adenoma: in males from 16.0 to 56.0% and in females from 6.0 to 26.0%. Hepatocellular carcinoma: in males from 10.0 to 40.0% and in females from 2.0 to 16.0%. Follicular cell adenoma: in males from 0.0 to 6.0% and in females from 0.0 to 5.5%. Hepatoblastoma: in males from 0.0 to 2.0% and in females from 0.0 to 0.0%.	Anonymos 21 2018, DRAR Historical control Studies No 3823 (001- 209), Vol.3 CA, 6.5/4

One study with hepatocytes from three individual male human donors is available as part of mechanistic studies investigating the relevance to human of the hepatocellular and thyroid follicular cell toxicity found in mice (McMahon, 2018d). Please refer to Table 23 and section 10.9.1 for more information regarding this study.

Table 23: Summary	v table of other	[•] studies relevar	nt for long-term	n toxicity and	carcinogenicity
I upic zet Summun	cubic of other	studies i eleval		i conterty and	caremogenery

deviationsifany,doselevelsspecies,strain,sex,durationofno/groupexposure		
KIF-230 TGAI0, 500 and 5,000500 and 5hepatocellular andppmand 5,000thyroid follicular cell7 days: 80 and 740and 5,000toxicitymg a.s./kg bw/dayat 500 and 5No guideline660 mg a.s./kgenzymeAcceptablebw/dayppm, resp	Cyp2b10 mRNA: 450- and 1,900-fold increase at 5,000 ppm, respectively. Cyp3a11 mRNA: 1.2- and 6.6-fold increase at 500 0 ppm, respectively. Cyp1a1 and Cyp1a2 mRNA: less than 1.4 increase d 5,000 ppm. activity: PROD: 31- and 65-fold increase at 500 and 5,000	Anonymous 22 2018a, DRAR Study No. CXR1882, Vol. 3 CA, B.6.5.1

Method, guideline,	Test substance,	Results	Reference
deviations if any,	dose levels		
species, strain, sex,	duration of		
no/group	exposure		
species, strain, sex, no/group	duration of exposure phenobarbital sodium salt (PB) at 500 ppm 7 days: 87 mg PB/kg bw/day 28 days: 79 mg PB/kg bw/day	 EROD: 0.9- and 4.6-fold increase at 500 and 5,000 ppm, respectively. T4-UDPGT: 0.3- and 1.3-fold increase at 500 and 5,000 ppm, respectively. BQ: 0.5- and 3.2-fold increase at 500 and 5,000 ppm, respectively. Plasma hormone levels : Total T4: 0.9- and 0.7-fold increase at 5,000 ppm after 7 and 28 days respectively. Total T3: No change at 500 and 5,000 ppm after 7 and 28 days. TSH: tendency of increased TSH plasma levels after 7 days. This tendency of increase could not be demonstrated at 28 days despite increased TSH persistent in the pituitary (see further). Gene expression in the pituitary glands: Tshb (thyroid stimulating hormone beta) mRNA: 3.8-fold increase at 5,000 ppm after 28 days of treatment. Trhr (thyrotropin-releasing hormone receptor) mRNA: 1.3-fold increase at 5,000 ppm after 28 days of treatment. 	
		 Hepatocellular proliferation: 3.6-fold increase at 5,000ppm after 7 days of treatment. Thyroid follicular cell proliferation: 32 and 51% increase at 500 and 5,000 ppm, respectively, after 28 days of treatment. 	
<i>In vitro</i> study KIF-230 mechanism of action in cultured wild-type mouse hepatocytes No guideline Acceptable Male C57BL/6 mouse hepatocytes	KIF-230R-L, purity: 99% 0, 3 μ M, 10 μ M, 30 μ M, and 100 μ M, Positive control PB: 100 μ M and 1 mM Epidermal growth factor (EGF): 25 ng/ml.	 Gene expression: Cyb2b10 mRNA: 44% decrease at 100 μM (cytotoxicity), no increase at other concentration levels. Cyp3a11 mRNA: 1.5-fold increase at 30 μM, no increase at other concentration levels. Cyp1a1 mRNA: No increase at any concentration level. Cyp1a2 mRNA: 1.5-fold increase at 100 μM (cytotoxicity), no increase at other concentration levels. 	McMahon 2018b, DRAR Study No. 180071- 1/45, Vol. 3 CA, B.6.5.1
	cultured with KIF- 230R-L and phenobarbital (PB) and Epidermal Growth Factor (EGF) 96 hours + 72 hours in the presence of BrdU for evaluation of cell proliferation	 Enzyme activity: BROD: 0.88-, 2.0-, and 1.6-fold increase at 3, 10, and 30 μM, respectively. No significant increase at 100 μM due to cytotoxicity. PROD: 1.4-, 2.5-, and 2.1-fold increase at 3, 10, and 30 μM, respectively. No significant increase at 100 μM due to cytotoxicity BQ: About 1-fold increase at 10 and 30 μM. No significant increase at 100 μM due to cytotoxicity EROD: No statistically significant change Cell proliferation: Hepatocellular proliferation: 33, 51 and 54% at 10 μM, 30 μM and 100 μM, respectively. 	
<i>In vitro</i> study KIF-230 mechanism	KIF-230R-L, purity: 99%	Gene expression: • Cyb2b10 mRNA: No increase.	McMahon 2018c,

Method, guideline,	Test substance,	Results	Reference
deviations if any,	dose levels		
species, strain, sex,			
no/group	exposure		
of action in cultured	0, 3 μM, 10 μM,	• Cyp3a11 mRNA: No increase.	DRAR
mouse (CAR-/-/PXR-	30 µM, and 100	 Cyp1a1 mRNA: 1.1-fold increase at 100 μM. 	Study No.
/-) hepatocytes	μΜ	• Cyp1a2 mRNA: marginal increase, 0.4 to 0.6-fold	180073-
No guideline	Positive control:	at 3, 10 and 30μ M and 2.8-fold increase at 100 μ M.	1/45, Vol. 3 CA, B.6.5.1
Acceptable	PB:100 μ M and 1	Enzyme activity:PROD and BROD: No increase.	CA, D.0.3.1
	mM	 BQ: 50% decrease at 30 µM. No change at other 	
Hepatocyte from	EGF: 25 ng/ml.	concentrations.	
CAR/PXR knock-out		• EROD: 40% decrease at 10 µM and 1.9-fold	
mice (KO-mice), male	96 hours + 72 hours in the	increase at 100 μM.	
male	presence of BrdU	Cell proliferation:	
	for evaluation of	Hepatocellular proliferation: No increase.	
	cell proliferation		
In vitro study	KIF-230R-L,	Gene expression:	McMahon,
KIF-230 mechanism	purity: 99%	• CYP2B6 mRNA: 1.0- to 1.2-fold, 1.4- to 2.4-fold,	2018d,
of action in cryopreserved human	0, 3 μM, 10 μM, 30 μM, and 100	and 1.0- to 5.5-fold increase at 10, 30, and 100 μ M, respectively.	DRAR Study No.
hepatocytes	μM	• CYP3A4 mRNA: 1.4- to 3.6-fold, 3.4- to 5.1-fold,	180073 -
hepatoeytes	P	3.6- to 6.7-fold, and 3.8- to 5.9-fold increase at 3, 10, 30,	1/68, Vol. 3
No guideline	Positive control:	and 100 μ M, respectively.	CA, B.6.5.1
Acceptable	PB: 100 µM and 1	• CYP1A1 mRNA: 0.3- to 0.5-fold, and 0.6- to 0.8-	
II	mM	fold increase at 30 and 100 μ M. respectively.	
Human hepatocytes, 3 donors	EGF:25 ng/ml.	• CYP1A2 mRNA: 0.6- and 0.7-fold increase in one	
5 401013	96 hours + 72	donor at 30 and 100 μM, respectively. Cell proliferation :	
	hours in the	Hepatocellular proliferation: No increase.	
	presence of BrdU		
	for evaluation of		
In vitro study	cell proliferation KIF-230R-L,	TPO (thyroid peroxidase) inhibition (guaiacol oxidation):	McMahon
Investigation into the	purity: 99%	No effect up to $100 \ \mu$ M.	2018e,
potential for KIF-230	Positive control:		DRAR
to inhibit Thyroid	6-propyl-2-		Study No.
Peroxidase (TPO)	thiouracil (PTU)		180073 -
activity in vitro	9 concentrations:		1/68, Vol. 3
No guideline	from 0.01 to 100		CA, B.6.5.1
Acceptable	μM		
•			
Female Yorkshire pig			
thyroid microsomes		Montality and alinical signs: Name	Anonymaus
A two-stage hepato- carcinogenicity study	KIF-230 TGAI, purity: 88.8-89.1%	Mortality and clinical signs: None	Anonymous 23, 2000a,
in rats	as KIF-230R-L	Food consumption and body weight:	DRAR
	Initiation study, 2	8% decrease in the group "DENA + a.s." compared to the	Report
No guideline	wks	group "saline + a.s." over the 8 weeks.	n°4905
Acceptable	Saline: 0.9%	Body weight gain was 10% lower in the group "DENA +	(001-260)
Rat, F344/DuCrj	DENA: 200 mg/kg i.p. (single dose)	a.s." compared to the group "saline + a.s." over the 8 weeks.	
Fischer- SPF	i.p. (single dose)	WURD.	
12 males/groups	Promotion study, 6	Liver weight and gross pathology:	
	wks	Enlarged liver and increased liver weight (8%) in the group	
	KIF-230: 0; 10,000	"DENA + a.s." compared to the group "saline + a.s.".	
	ppm (from wk 2 to		

Mathad and dina	Tost substance	Results	Reference
Method, guideline, deviations if any,	Test substance, dose levels	Kesuits	Reference
species, strain, sex,			
no/group	exposure		
	8 via diet)		
	610.3mg a.s./kg	Cellular findings:	
	bw/day	Saline + a.s.:	
		Increased incidence of hepatocellular hypertrophy	
	PB: 0.05% (from	Marginal and not statistically significantly increased	
	wk 2 to 8 via diet)	incidence of mitosis.)	
	At wk 3 after i.p.	DENA + a.s.:	
	injection, a ² / ₃	Increased incidence of hepatocellular hypertrophy	
	partial	Increased incidence of mitosis	
	hepatectomy (PH)	Increased incidence of acidophilic cell foci	
	was performed on	Increased incidence of clear-, mixed- and vacuolated cell foci	
	the animals of all groups, in order to	1001	
	induce mitosis		
A two-stage hepato-	KIF-230 TGAI,	Mortality and clinical signs: None	Anonymous
carcinogenicity	purity: 88.8-89.1%		24, 2000b,
initiator study in rat.	as KIF-230R-L	Food consumption and body weight:	DRAR
N 1.1	Initiation study, 2	No effect on food consumption in a.s. group over the 8	Report
No guideline Acceptable	weeks DENA: 200 mg/kg	weeks. No effect on body weight and body weight gain in a.s.	n°4906 (001-261)
Acceptable	i.p.	group.	(001-201)
Rat, F344/DuCrj	KIF-230: 2,000	5 P.	
Fischer- SPF	mg/kg bw (Single	Liver weight and gross pathology:	
12 males/groups	dose)	Absolute and relative liver weight statistically significantly	
		increased when compared to DENA group (9%).	
	Promotion study, 6	Calledon fin din m	
	wks PB: 0.05% (from	Cellular findings : Lower incidence for mitosis, clear- and eosinophilic foci in	
	wk 2 to 10 via diet)		
	DGA3: 300 mg/kg	hypertrophy and necrosis at comparable level in a.s. group	
	bw i.p. (single dose	and DENA group.	
	at week 3)		
	2/3 hepatectomized		
	(PH)		
Induction of drug	KIF-230 TGAI,	Mortality and clinical signs: None	Anonymous
metabolic enzyme and proliferation of	purity: 88.8-89.1% as KIF-230R-L	Body weight and body weight gain:	25, 2001c, DRAR
hepatocytes in rats	0, 10 or 1,000	 Body weight gain: 43% increase in males and 100% in 	Report
	mg/kg bw/day	females at 1,000 mg/kg bw/day.	n°4900
No guideline			(001-259)
Acceptable	7 days by oral	Gross pathology and histopathology:	
Rat, F344/DuCrj	gavage	Enlarged liver in males at 1,000 mg/kg bw/day.	
Fischer- SPF		11% increase in males and 10% increase in females of	
8 rats/sex/dose		relative liver weight at 1,000 mg/kg bw.	
		No histopathological findings.	
		Enzyme induction:	
		• Total CYP450: 18% increase in males at 1,000 mg/kg	
		bw/day.	
		• CYP1A1/CYP1A2: 1.6-fold increase in males at 1,000	
		mg/kg bw/day.	
		• CYP2B1/CYP2B2: 1.6-fold increase in males at 1000	
		mg/kg bw/day.	

Method, guideline,	Test substance,	Results	Reference
deviations if any,	dose levels	i i i i i i i i i i i i i i i i i i i	Reference
species, strain, sex,	duration of		
no/group	exposure		
Induction of drug metabolic enzyme and proliferation of	KIF-230 TGAI, purity: 88.8-89.1% as KIF-230R-L	 CYP3A2: 1.0-fold increase in males and 1.3-fold increase in females at 1000 mg/kg bw/day. CYP2E1 and CYP4A1: No relevant change. Cell proliferation: Hepatocellular proliferation: 62% and 58% at 10 and 1,000 mg/kg bw/day in males, respectively. Mortality and clinical signs: None Body weight and body weight gain: 	Anonymous 26, 2001d, DRAR
hepatocytes in mice No guideline Acceptable Mouse, Slc:B6C3F1 (C57BL/6 x C3H®(SPF)	0, 10 or 1,000 mg/kg bw/day 7 days by oral gavage	No relevant findings. Gross pathology and histopathology : Hepatocyte hypertrophy in males and females at 1,000 mg/kg bw/day. 20% and 24% increase in relative liver weight at 1,000 mg/kg bw/day in males and females, respectively.	Report n°4899 (001-258)
8 mice/sex/dose		 Enzyme induction: Total P-450: 71% increase and 92% increase at 1,000 mg/kg bw/day in males and females, respectively. Cyp1a1/Cyp1a2: 1.5-fold and 63% increase at 1,000 mg/kg bw/day in males and females, respectively. Cyp2b1/Cyp2b2: 1.8-fold and 5.5-fold increase at 1,000 mg/kg bw/day in males and females, respectively. Cyp3a2: 1.0-fold and 1.7-fold increase at 1,000 mg/kg bw/day in mlaes and females, respectively. Cyp2a2: 1.0-fold and 1.7-fold increase at 1,000 mg/kg bw/day in mlaes and females, respectively. Cyp2a2: 1.0-fold and 1.7-fold increase at 1,000 mg/kg bw/day in mlaes and females, respectively. Cyp2e1 and Cyp4a1: No relevant change. 	
		Cell proliferation:	
Oxidative DNA damage in the liver of rats	KIF-230 TGAI, purity: 88.8-89.1% as KIF-230R-L 0, 200 and 10,000	Hepatocellular proliferation: No increase. Hepatic 8-OHdG remained unaffected after 2 weeks of treatment up to 10,000 ppm.	Anonymous 27, 2001a, DRAR Report
No Guideline Acceptable Rat, F344/DuCrj Fischer- SPF 5 rats/sex/dose	ppm M: 17.4 and 797.5 mg a.s./kg bw/d F: 17.1 and 914.5 mg a.s./kg bw/d		n°5433 (001-284)
	2 weeks via diet		
Oxidative DNA damage in liver of mice No Guideline	KIF-230 TGAI, purity: 88.8-89.1% as KIF-230R-L 0, 100 and 5,000 ppm	Hepatic 8-OHdG remained unaffected after 2 weeks of treatment up to 5,000ppm.	Anonymous 28, 2001b, DRAR Report n°5434
Acceptable 5 mice/sex/dose Slc:B6C3F1(C57BL/ 6 x C3H®(SPF)	M: 19.4 and 1031.2 mg a.s./kg bw/d F: 26.1 and 1203.7 mg a.s./kg bw/d		(001-285)

Method, guideline,	Test substance,	Results	Reference
deviations if any,	dose levels	Kesuits	Kelerence
species, strain, sex,	duration of		
no/group	exposure		
	2 weeks via diet		
	2 weeks via diet		
<i>In vitro</i> study	KIF-230 TGAI,	Main test:	Nakajima,
Two-stage	purity: 88.8-89.1%	No focal transformation when the a.s. was tested as an	2000b,
transformation assay on Balb/c 3T3 cells	as KIF-230R-L Initiation assay	initiator.	DRAR
on baid/c 515 cens	KIF-230: 10.4,	Promotor test:	Report n°4909
Test method B.21 of	17.3, 28.8, 48.0	Increase in incidence of foci: 0.8, 0.5, and 0.3 mean number	(001-262)
directive 88/302/EEC	and 80.0 μ g/ml (72	of foci/ dish at 3, 6, and 9 μ g/L, respectively, against 0.1	(001 202)
	hours incubation)	mean number of foci/ dishes in control.	
Pre-incubated Balb/c			
3T3 cells	TPA: 0.1 µg/ml		
	(promotor, 11 days		
	incubation)		
	Promotion assay		
	KIF-230: 0, 3, 6, 9,		
	12 and 15 µg/ml		
	(11 days		
	incubation)		
	3-		
	5- methylcholanthren		
	e: $0.2 \mu \text{g/ml}$		
	(initiator, 72 hours		
	incubation)		
Effect on thyroid	KIF-230 TGAI,	Mortality and clinical signs:	Anonymous
hormones in male	purity: 88.6-89.1%	No relevant findings.	29,
rats	as KIF-230R-L	Pody weight and hady weight gain.	2002a, DRAR
No guideline	0, 200 and 10,000 ppm 13.3 and	Body weight and body weight gain : No relevant findings.	Report
Acceptable,	661.4 mg a.s./kg	ivo recevant findings.	n°5903
supplementary	bw/d	Gross pathology and histopathology:	(001-323),
information		Enlarged livers.	× ,,
	14 days via the diet	5	
Rat, F344/DuCjr-		24% and 22% increase in absolute and relative liver weight	
Fischer SPF 10 males/dose	Levels of TSH, T3,	at 10,000 ppm, respectively	
10 males/dose	T4 and T4 UDP- GT were	Enzyme activity:	
	measured.	•T4 UDP-GT: 16% increase at 10,000 ppm after 14 days of	
	incusurou.	treatment.	
		Serum hormone levels:	
		• Total T4: 15% and 18% decrease at 10,000 ppm after 7	
		and 14 days of treatment, respectively.	
Effect on thyroid	KIF-230 TGAI,	• TSH and total T3: Unaffected. Mortality and clinical signs:	Anonymous
hormones in male	purity: 88.6-89.1%	No relevant findings.	30, 2002b,
mice	as KIF-230R-L		DRAR
	0, 100 and 5,000	Body weight and body weight gain:	Report
No guideline	ppm	No relevant findings.	n°5904
Acceptable,	17.0 and 855.0 mg		(001-324)
supplementary	a.s./kg bw/d	Gross pathology and histopathology:	
information		Dark and enlarged livers at 5,000 ppm.	

CLH REPORT FOR BENTHIAVALICARB-ISOPROPYL (ISO)

Method, guideline,	Test substance,	Results	Reference
deviations if any,	dose levels		
species, strain, sex,			
no/group	exposure		
	14 days via the diet		
Mouse, Slc: B6C3F1,		62% and 53% increase in absolute and relative liver weight	
C57BL/6xC3H- SPF		after 14 days of treatment, respectively.	
6	Levels of TSH, T3,	Energy and the trans	
males/dose/sampling time	T4 and T4 UDP- GT were	Enzyme activity:• T4 UDP-GT: 65% increase at 5,000 ppm after 14 days of	
ume	measured.	treatment.	
	measured.	freatment.	
		Serum hormone levels:	
		Total T4: 29% and 27% decrease at 5,000 ppm after 7 and	
		14 days of treatment, respectively.	
		• TSH and T3: Unaffected.	
Effect on serum TSH	KIF-230 TGAI,	Mortality and clinical signs:	Anonymous
of male mice	purity: 88.6-89.1% as KIF-230R-L	No relevant findings.	31, 2003, DRAR
No guideline	0, 100 and 5,000	Body weight and body weight gain:	Report
Acceptable,	ppm	20% decrease in body weight gain over the 16 weeks of	n°6655
supplementary	15.7 and 809.8 mg	treatment.	(001-386)
information	a.s./kg bw/d		
	via the diet for 2,	Serum hormone levels:	
Mouse Slc: B6C3F1,	4, 8 and 16 weeks	TSH: 14% increase at 5,000 ppm after 16 weeks of	
C57BL/6xC3H- SPF		treatment.	
12 males /dose/sampling time	Serum TSH		
/dose/sampling time	concentration was		
	measured via		
	radio-		
	immunoassay.		
Oncogenetic	KIF-230 TGAI,	NOAEL= 11.6 mg/kg bw/d	Anonymous
mechanism of uterine	purity: 88.6-89.1%	LOAEL= 576.2 mg/kg bw/d	32, 2002c,
cancer	as KIF-230R-L 0; 200 and 10,000	(increase in liver size/weight, increase in liver aromatase)	DRAR Report
No guideline	ppm	Mortality and clinical signs:	n°5914(001-
Acceptable	11.9 and 593.9 mg	No relevant findings.	325)
I	a.s./kg bw/d	6 · · · · · · · · · · · · · · · · · · ·	/
Rat, F344/DuCjr-	56 days feeding	Body weight and body weight gain:	
Fischer SPF	study	No relevant findings.	
10 females/dose	A	Cross according to a second success and share	
	Aromatase activity was measured in	Gross necropsy and organ weight : Dark and enlarged livers.	
	liver, uterus and	31% and 29% increase in absolute and relative liver weight	
	ovaries.	at 10,000 ppm after 8 weeks of treatment, respectively.	
	Serum	No effect on uterus and ovary size and weight.	
	concentrations of	-	
	oestradiol,	Enzyme activity:	
	progesterone and	Aromatase: 36% increase in liver, no increase in ovary and	
	luteinizing hormone (LH)	uterus at 10,000 ppm after 8 weeks of treatment.	
	were measured in	Serum hormone levels:	
	serum at pre-	No significant change at any dose and sampling time.	
	dosing and at	General company with and any many many many many many	
	weeks 2, 4, 6 and 8		
	of dosing.		
Uterotrophic bioassay	KIF-230 TGAI,	Mortality and clinical signs:	Anonymous
in the ovariectomised	purity: 97% as	No relevant findings.	33, 2015.

Method, guideline, deviations if any, species, strain, sex, no/group	dose levels	Results	Reference
rat OECD No. 440, US EPA Test Guideline OPPTS 890.1600 Acceptable Rat, Sprague-Dawley Crl:CD®(SD) IGS BR 6 females/dose	KIF-230R-L 0, 10, 100 or 1000 mg/kg bw/d Positive control 17α- ethynylestradiol 14 days	 Body weight and food consumption: No relevant findings. Organ weights: No effect on uterine and vaginal weight. Histopathology: No effect on uterus and vaginal tissues. Cell proliferation: Uterine tissue: No increase. Vaginal tissue: No increase. There was no evidence of any estrogenic effect. 	DRAR Report n° 41401234

10.9.1 Short summary and overall relevance of the provided information on carcinogenicity

In both long-term studies with mice and rats, all neoplastic effects were observed at doses at or above the maximum tolerable dose (MTD). The MTD is the dose inducing slight toxic effects/able to elicit signs of minimal toxicity, such as - but not exclusively - less than 10% decrease of body weight gain. The animal's normal lifespan should not be significantly altered due to effects other than the one studied, in this case, carcinogenicity (OECD 2000, 2012, 2015, ISGC 1986). It is of note that the spacing between the two highest doses and the other lower doses used in the long-term toxicity studies with mice and rats was too large and not the most appropriate. For rats: 50 and 200 ppm for the two low doses and 5,000 and 10,000 ppm for the two high doses. For mice: 20 and 100 ppm for the two low doses and 2,500 and 5,000 ppm for the two high doses

In the two-year toxicity study with mice (Anonymous 20, 2001b), a statistically significant increase in mortality was seen in males at a dose level 5,000 ppm. Body weight gain calculated over the treatment period of 104 weeks was statistically significantly decreased in males by 26% and 30% at 2,500 and 5,000 ppm respectively.

From the histopathological examination of the tissues after 104 weeks of treatment statistically significant changes were observed in bone marrow, stomach, liver, thyroid, ovaries, uterus and adrenals.

In the bone marrow, there was an increase in megacaryocytes at 5,000 ppm in males. Forestomach ulcers, lymphocytic infiltration and squamous cell hyperplasia were observed at 2,500 and 5,000 ppm in males.

Increased incidences in hepatocellular adenoma were observed at 2,500 and 5,000 ppm in males and females, hepatocellular carcinoma and hepatoblastoma at 2,500 and 5,000 ppm in males, hepatocytic hypertrophy at 2,500 and 5,000 ppm in males and females, intermediate fatty change and foci of cellular alteration at 2,500 and 5,000 ppm in males and females, anisonucleosis at 2,500 and 5,000 ppm in males and 5,000 ppm in females, single-cell necrosis at 2,500 and 5,000 ppm in males and 5,000 ppm in females, single-cell necrosis at 2,500 and 5,000 ppm in males and 5,000 ppm in females, lymphocytic infiltration, multinucleated hepatocytes, accumulation of macrophages, bile duct proliferation, extramedullary hematopoiesis and fibrosis at 2,500 ppm in males.

Increased incidences of follicular cell hyperplasia were observed at 2,500 and 5,000 ppm in males and females and follicular cell adenoma at 5,000 ppm in males. Ovarian atrophy was reported at 2,500 and 5,000 ppm and uterine angiectasis at 5,000 ppm in females. In the adrenals, cortical hypertrophy was observed at 2,500 and 5,000 ppm in males and females.

Because of the adverse effects seen at 2,500 and 5,000 ppm, the MTD for treatment of 104 weeks with KIF-230 in the mouse should be set at 2,500 ppm.

In the two-year toxicity study with rats (Anonymous 18, 2001a), effects in body weight and body weight gain were noted with statistical significance in both males and females throughout the study but without consistent or long-lasting effects.

From the histopathological examination of the tissues after treatment for 104 weeks statistically significant changes were observed in the pancreas, liver and kidneys.

Atrophy of the exocrine pancreas was observed at 10,000 ppm in males and females.

Increased incidences of hepatocellular adenoma were observed at 10,000 ppm in males, fatty change at 5,000 and 10,000 ppm in females, spongiosis hepatis at 5,000 and 10,000 ppm in males, hepatocytic hypertrophy at 10,000 ppm in males and at 5,000 and 10,000 ppm in females. Glomerulosclerosis of the kidneys was observed at 5,000 and 10,000 ppm in females, calculus at 5,000 and 10,000 ppm in males and females, chronic nephropathy at 5,000 and 10,000 ppm in males, brown pigment deposition at 5,000 and 10,000 ppm in females, dilated tubules at 5,000 ppm and 10,000 ppm in males, hyaline droplets at 5,000 and 10,000 ppm in males, lymphocytic infiltration at 5,000 and 10,000 ppm in females, fibrosis and transitional cell hyperplasia at 10,000 ppm in males. Uterine adenocarcinoma was observed in females at 5,000 and 10,000 ppm. Because of the adverse effects seen at 5,000 and 10,000 ppm, the MTD for treatment of 104 weeks with KIF-230 in the rat should be set at 5,000 ppm.

Hepatocellular adenoma and carcinoma

In the male F344 rat, a statistically significant increased incidence of hepatocellular adenoma (14%) has been observed at the high dose level (10,000 ppm) only after 104 weeks of treatment. Although there is a positive trend, this tumour incidence is still within the historical control range (0.0-18.0%) of male F344 rats of the test laboratory recorded between 1996 and 2005. In the male B6C3F1 mouse, a statistically significant increased incidence was observed of hepatocellular adenoma (86% and 94% at 2,500 ppm and 5,000 ppm, respectively), and hepatocellular carcinoma (70% and 86% at 2,500 and 5,000 ppm, respectively) after 104 weeks of treatment. (Anonymous 18 and 20, 2001a-b). Based on four mechanistic toxicology studies in vitro and *in vivo* in the mouse (Anonymous 22, McMahon, 2018a-d), it can be concluded that the hepatocellular tumours produced by KIF-230 in male and female mice are based on a mode of action which operates through CAR activation. The key events, i.e. altered gene expression, hepatocellular proliferation, clonal expansion leading to altered foci and hepatocellular adenomas/ carcinomas, and associative events, i.e. Cyp2b10 and Cyp3a11 enzyme induction, increase in relative liver weight and liver hypertrophy, that is typical for this mode of action in the mouse have been demonstrated to be present. The concordance of doseresponse relationships, the temporal association, the strength, the consistency and specificity of association with the tumour response, the biological plausibility, the absence of alternative modes of action and the species specificity of these key events have been proven (Martens 2018a). Therefore, KIF-230 can be considered as a compound acting through a CAR-mediated mode of action, similar to that of phenobarbital. As a consequence, KIF-230 is not expected to increase the risk of liver tumour development in humans.

Hepatoblastoma

In the male B6C3F1 mouse, a statistically significant increase in the incidence of hepatoblastoma was observed at 2,500 and 5,000 ppm (24% and 18%, respectively) with no dose-response relationship at these dose levels (Anonymous 20, 2001b). These incidences are higher than the historical control range of the test laboratory (0.0-2.0% for males and 0.0-0.0% for females) for the period from 1996 to 2005. In terms of the relationship of the hepatoblastomas in the B6C3F1 mouse and those appearing in the human population, there are several fundamental differences between the biology and development of the neoplasms in the two species.

Hepatoblastomas in humans generally arise in children under the age of five and are extremely rare in juveniles and adults and unknown in old age. The tumour shows a strong association with inherited syndromes such as Familial Adenomatous Polyposis and Beckwith–Wiedemann syndrome and other congenital anomalies and a considerably weaker association with occupational exposure to metals, petroleum products, and paints or pigments. It occurs in the absence of other liver pathologies, either neoplastic or non-neoplastic and is thought to derive de novo from mutated hepatoblasts retained in the liver during development.

There is clear evidence that mouse hepatoblastomas can be chemically-induced and that male B6C3F1 mice are considerably more sensitive to their induction than are female B6C3F1 mice. It is also clear that they only arise during the later stages of the lifespan of the mouse and that they are an end-of-life neoplasm even when chemically-induced. There is also considerable support for the hypothesis that murine hepatoblastomas arise out of, and share similar mutational spectra to, hepatocellular carcinomas and adenomas appearing in the same mouse livers and that de novo evolution from hepatoblasts is extremely unlikely.

There are however some morphological and molecular similarities between hepatoblastomas in B6C3F1 mice and those occurring in man. Similar mutations and unusual protein distributions, such as those affecting β -catenin and other proteins related to the Wnt pathway, are seen in hepatoblastoma from both species.

Nonetheless, considering the divergent evolution, biology and age of onset differences between the murine and human hepatoblastoma and the almost unique appearance of chemically-induced hepatoblastomas in the B6C3F1 mouse strain, chemically-induced murine hepatoblastomas should not be considered relevant to human hazard characterisation as it appears to be primarily an artefact of the use of the B6C3F1 mouse. There is no evidence that other mouse strains, except the Crj:BDF1 mouse, can develop these neoplasms under the same conditions (Martens 2018b; Foster and Provan 2018a-b).

Thyroid follicular cell adenoma

In the male mouse, a statistically significantly increased incidence of thyroid follicular cell adenoma of 18% was observed at 5,000 ppm. (Anonymous 20, 2001b). From the data of the standard toxicology and mechanistic toxicology studies *in vitro* and *in vivo* (Anonymous 22, McMahon, 2018a-e), it can be concluded that the thyroid follicular cell tumours produced by KIF-230 in male mice are based on a mode of action which operates through CAR activation. The key events, i.e. CAR activation leading to increased activity of T4 UDP-GT, increased production of TSH by the pituitary, thyroid follicular cell proliferation and thyroid follicular cell adenomas, that are typical for this mode of action in the mouse have been demonstrated to be present. The concordance of dose-response relationships, the temporal association, the strength, the consistency and specificity of association with the tumour response, the biological plausibility, the absence of alternative modes of action (e.g. inhibition of thyroid peroxidase) and the species specificity of these key events have been proven (Martens 2018c). Therefore, KIF-230 can be considered as a compound acting through a CAR-mediated mode of action, similar to that of phenobarbital, which is considered not to be relevant to humans. As a consequence, KIF-230 is not expected to increase the risk of thyroid follicular cell tumour development in humans.

Uterine adenocarcinoma

In the female F344 rat a statistically significant increase in the incidence of uterus adenocarcinoma was seen at 5,000 ppm and 10,000 ppm (22% and 20%, respectively) with no dose-response relationship at these dose levels. (Anonymous 18, 2001a). These incidences are higher than the historical control range of the test laboratory in the period from 1996 to 2005 (0.0-8.0%). Although the available data on KIF-230 in the F344 rat is not sufficient to demonstrate with certainty a mode of action, it has been established that mutagenicity, oxidative stress (Anonymous 27 and 28, 2001a-b), uterine cytotoxicity and inflammation, uterine pre-neoplastic lesions, direct estrogen activity and hormonal changes such as estrogen metabolism and E2/P4-ratio (Anonymous 32 2002c, Anonymous 33 2015), at least in early lifetime rats, can be excluded as possible causes for endometrial cancer. Additionally, as already stated before, these tumours were only observed at 5,000 and 10,000 ppm, dose levels where severe adverse effects were observed in liver, and kidney indicating that the MTD was reached or exceeded.

10.9.2 Comparison with the CLP criteria

Comparison with criteria for Category 1A classification: In accordance with the criteria in the CLP regulation, classification for carcinogenicity Category 1A is reserved for substances known to have carcinogenic potential in humans. In the absence of human data, category 1A is not triggered.

Comparison with criteria for Category 1B classification: In accordance with the criteria in the CLP regulation, classification for carcinogenicity Category 1B is reserved for substances that are presumed to be carcinogenic in humans, and is largely based on data from animal studies where there is sufficient evidence to demonstrate animal carcinogenicity (presumed human carcinogen).

To assess the strength of evidence and to conclude whether benthiavalicarb-isopropyl triggers Cat. 1B, Cat. 2 or no classification, the Guidance on the Application of the CLP Criteria (version 5.0, July 2017) in section 3.6.2.2.2. establishes certain important factors which may be taken into consideration when assessing the overall level of concern. These factors are displayed in Table 24 below.

Species and strain	Tumour type and background incidence	Multi- site respo nses	Progressio n of lesions to malignancy	Reduce d tumour latency	Response s in single or both sexes	Confounding effect by excessive toxicity?	Route of exposure	MoA and relevance to humans
F344/D uCrj Fisher	Hepatocellular adenoma (14% incidence in males) HC: 0-18%	No	No	No After 104 weeks	Males	Yes MTD reached at 5,000 ppm	Oral 5,000 ppm 10,000 ppm	CAR activation, not relevant to humans (in analogy to the findings in the mouse and high incidence (48%) in hepatocellular hypertrophy at 10,000 ppm).
F344/D uCrj Fisher	Uterus adenocarcinom a HC: 0-8%	No	Not applicable	No After 78 weeks (not statistica lly significa nt) and 104 weeks	Females	Yes MTD reached at 5,000 ppm	Oral 5,000 ppm 10,000 ppm	Unknown but not: mutagenicity, oxidative stress, cytotoxicity, inflammation, pre-neoplastic lesions, direct estrogen activity and hormonal changes (e.g. estrogen metabolism, E2/P4-ratio)
B6C3F 1 mice	Hepatocellular adenoma HC: 16-56% in males, 6-26% in females	Yes	Yes	No After 52 weeks for males After 78 weeks for females	Males and females	Yes MTD reached at 2,500ppm	Oral 2,500 ppm 5,000 ppm	CAR activation, not relevant to humans

Table 24: Compilation of factors to be taken into consideration in the hazard assessment

Species and strain	Tumour type and background incidence	Multi- site respo nses	Progressio n of lesions to malignancy	Reduce d tumour latency	Response s in single or both sexes	Confounding effect by excessive toxicity?	Route of exposure	MoA and relevance to humans
B6C3F 1 mice	Hepatocellular carcinoma HC: 10-40% in males	Yes	Not applicable	No After 104 weeks	Males	Yes MTD reached at 2,500 ppm	Oral 2,500 ppm 5,000 ppm	CAR activation, not relevant to humans
B6C3F 1 mice	Hepatoblastom a HC: not available	Yes	Not applicable	No After 104 weeks	Males	Yes MTD reached at 2,500 ppm	Oral 2,500 ppm 5,000 ppm	Tumour type biologically different from the counterpart in humans and specific to the B6C3F1 mouse where it is associated with hepatocellular tumours of which the MOA is CAR activation. Not relevant to humans.
B6C3F 1 mice	Thyroid follicular cell adenomas HC: 0-6% in males	Yes	No	No After 104 weeks	Males	Yes MTD reached at 5,000 ppm	Oral 5000ppm	CAR activation leading to increased biliary excretion of thyroid hormones. Not relevant to humans.

Based on the fact that a mode of action has been established for the hepatocellular tumours and thyroid tumours that are not relevant to man, thus, these tumours should not be taken into account for carcinogenicity classification. No mode of action was established for the production of hepatoblastomas in the B6C3F1 mouse but, since the biological nature of these mouse tumours is very different from the hepatoblastomas in humans, and such type of tumours is considered specific to this strain of mice, these tumors should not be considered as relevant to man. No mode of action has been established for the production of uterine adenocarcinoma, although all possible causes for endometrial cancer in humans have been explored and excluded.

Comparison with criteria for Category 2 classification: In accordance with the criteria in the CLP regulation, classification for carcinogenicity Category 2 is reserved for substances where there is evidence obtained from human and/or animal studies but which is not sufficiently convincing to place the substance in Category 1.

Based on the effects seen in the long term studies, i.e., uterine tumors incidence in the rat, benthiavalicarbisopropyl is considered as a carcinogen towards rats and should be classified according to Regulation (EC) No 1272/2008 as Carc. 2 (H351): Suspected of causing cancer.

10.9.3 Conclusion on classification and labelling for carcinogenicity

It is proposed that KIF-230 (benthiavalicarb-isopropyl) should be classified as a category 2 carcinogen based on the uterine adenocarcinoma incidence observed in rats at or beyond the MTD.

10.10 Reproductive toxicity

One multigenerational study was conducted with benthiavalicarb-isopropyl in mice. Results are summarised in Table 25.

Two teratogenicity studies were realised with the active substance, one in rats and one in rabbits. The results are summarised in Table 26: of Section 10.10.4.

10.10.1 Adverse effects on sexual function and fertility

Table 25: Summary table of animal studies on adverse effects on sexual function and fertility

Mathad	Toot substance	Descrite	Deference
Method, guideline,	Test substance, dose levels	Results	Reference
deviations if any,	duration of		
	exposure		
sex, no/group	capobule		
~~,, 8F			
2	Demand	Descent	A
2-generation reproduction	Parent KIF-230 (TGAI), ,	Parent NOAEL: M: 10 mg/kg bw/d	Anonymous 34, 1999,
study in CD rats	purity: 88.8-89.1%	F: 106 mg/kg bw/d	DRAR
EPA OPPTS	as KIF-230R-L	LOAEL: M: 99.7 mg/kg bw/d	Report no.
870.3800; OECD	0, 100, 1,000 and	F: 1,114.6 mg/kg bw/d	3820,
416	10,000 ppm	Body weight:	5626,
Rat, CD	F0:	F0: increased body weight in females at 1,000 ppm (6% at day	
(Sprague-Dawley	Males: 0, 6.9, 68.5	70) during premating but not at 10,000 ppm. Increased body	
origin)	and 702.4 mg/kg	weight gain during premating at 100 ppm (9%) and 1,000 ppm	
F0: 25	bw/d	(14%). Food consumption and efficiency was also slightly	
animals/sex/group	Females: 0, 6.8 to	increased during part of the premating and lactation periods at	
F1: 22 ± 1	15.5, 67.3 to 167.7	1,000 ppm.	
animals/sex/group	and 708.3 to	F1: Decrease body weight in females at 10,000 ppm (9% at 77	
	1,672.9 mg/kg	days) and of body weight gain (10%) during premating, part of	
	bw/day	gestation (but not at the end of gestation) at the same dose and	
	F1	during lactation period at all doses but without dose-effect	
	F1:	relationship (6, 7 and 6% at 100, 1,000 and 10,000 ppm at the	
	Males: 0, 10.0, 99.7 and 1057.8 mg/kg	end of lactation period). Mean food efficiency during premating period was slightly decrease in males and females at 10,000	
	bw/d	ppm.	
	Females: 0, 6.5 to	ppm.	
	14.3, 67.2 to 146.7	Organ weight:	
	and 702.5 to 1456.1	F0: relative liver weight was increased in males at 1,000 ppm	
	mg/kg bw/d.	(6%) and both absolute and relative liver weight were increased	
		in males and females at 10,000 ppm (absolute: 22 & 25%;	
	F0, F1: 10 weeks	relative: 24 & 30%). Increased adrenals weight in males at	
		10,000 ppm (absolute: 12%; relative: 9%). Thymus weight was	
		decreased in females at 10,000 ppm (absolute: 24%; relative:	
		21%).	
		F1: liver weight was increased in males and females at 10,000 $(1 + 1)^{1/2} = (1 + 1)^{1/2$	
		ppm (absolute: 23 & 20%; relative: 24 & 36%).	
		Histopathology:	
		F0: Hepatocyte hypertrophy was noted in males and females at	
		10,000 ppm.	
		F1: Hepatocyte hypertrophy was noted in males and females at	
		10,000 ppm and lymphocyte infiltration in males at 10,000	
		ppm.	
	Pup development	Pup development	
	KIF-230 (TGAI)	NOAEL: 67.2 mg/kg bw/d	
	0, 100, 1,000,	LOAEL: 702.5 mg/kg bw/day	

Method, guideline, deviations if any, species, strain, sex, no/group	exposure	Results	Reference
	10,000 ppm F1: Males: 0, 10.0, 99.7 and 1057.8 mg/kg bw/d Females: 0, 6.5 to 14.3, 67.2 to 146.7 and 702.5 to 1456.1 mg/kg bw/d.	 Organ weight: F1: Absolute and relative liver weights were increased in males at 10,000 ppm (absolute: 8%; relative: 19%) while only relative liver weight was increased in females at 10,000 ppm (16%). Decrease of thymus weight in males and females at 10,000 ppm (absolute: 18 & 18%; relative:12 & 6%). Spleen weight was decreased in males and females at 10,000 ppm (absolute: 22 & 20%; relative: 13 & 11%). F2: Liver weight was increased at 10,000 ppm (absolute: 4 & 8%; relative: 16 & 13%). %). Decrease of thymus weight in males and females at 10,000 ppm (absolute: 4 & 8%; relative: 4 & 16%). Spleen weight was decreased in males and females at 10,000 ppm (absolute: 16 & 15%; relative:4 & 16%). Spleen weight was decreased in males and females at 10,000 ppm (absolute: 13 & 11%). 	
	Reproduction KIF-230 (TGAI) 0, 100, 1000, 10000 ppm F0: Males: 0, 6.9, 68.5 and 702.4 mg/kg bw/d Females: 0, 6.8 to 15.5, 67.3 to 167.7 and 708.3 to 1,672.9 mg/kg bw/day	 Reproduction NOAEL: 67.2 mg/kg bw/d LOAEL: / Reproductive function and performance: F0: Mating, fertility, oestrus cyclicity, or sperm number, activity and morphology were unaffected. F1: Number of sperm were reduced at 100 ppm (38%) and 10,000 ppm (22%) but not at 1,000 ppm. Mating, fertility, oestrus cyclicity, or sperm activity and morphology were unaffected in all groups.	
	F1: Males: 0, 10.0, 99.7 and 1057.8 mg/kg bw/d Females: 0, 6.5 to 14.3, 67.2 to 146.7 and 702.5 to 1456.1 mg/kg bw/d.		

10.10.2 Short summary and overall relevance of the provided information on adverse effects on sexual function and fertility

During a two-generation reproduction toxicity study, benthiavalicarb-isopropyl was continuously administered to groups of 25 Sprague-Dawley rats per sex and per dose in the diet at dose levels of 0, 100, 1,000 and 10,000 ppm (mean achieved dose of 0, 6.9, 68.5 and 702 mg/kg bw/day in the F0 males and 0, 6.8, 67.3 and 708 mg/kg/day in the F0 females during gestation; mean achieved dose of 0, 10.0, 99.7 and 1058 mg/kg/day in the F1 males and 0, 6.5, 67.2 and 703 mg/kg/day in the F1 females during gestation). F0 and F1 parents were dosed for at least 10 weeks before they were mated to produce F1 and F2 litters, respectively. The F1 pups were weaned at 22 days post-natum and selected randomly to establish new groups of 22 ± 1 pups per sex as parents for the F2 generation. No treatment-related adverse effects were observed in parent animals on mortality, clinical signs, body weight, body weight gain, food consumption or gestation index. Changes were observed in the liver of the males in the 1,000 and 10,000 ppm groups and the females

of the 10,000 ppmgroup including slight hypertrophy and increased and/or relative organ weight. The enlarged liver was observed in one F0 and one F1 female at 10,000 ppm. No treatment-related effects were observed on fertility and reproductive performance. The only treatment-related effects observed among the offspring of the F1 and F2 generations included increased absolute and/or relative liver weights and decreased absolute and relative weights of thymus and spleen in the 10,000 ppm group. The NOAEL for the study was 10.0 mg/kg/day in males and 67.2 mg/kg/day in females.

10.10.3 Comparison with the CLP criteria

No human information is available on the effects of benthiavalicarb-isopropyl on the reproductive system. A reliable 2-generation study in rats showed that benthiavalicarb-isopropyl has no treatment-related adverse effects on sexual function and fertility. Consequently, classification is not warranted.

10.10.4 Adverse effects on development

Table 26: Summary table of animal studies on adverse effects on development

Method,	Test	Results	Reference
guideline,	substance,	Kesuits	Kelefence
deviations if			
any, species,			
strain, sex,	exposure		
no/group			
Teratogenicity	- KIF-	Dam	Anonymous
study in rats	230 TGAI, ,	NOAEL: 10 mg a.s./kg bw/day	35, 2000a.
stady in face	purity: 88.8-	LOAEL: 100 mg a.s./kg bw/day	DRAR
EPA OPPTS	89.1% as	Organ weight: liver weight was increased at 1,000 mg/kg bw/day	Report no.
870.3700	KIF-230R-L	(absolute: 12%; relative: 11%). Increased adrenal weight at 100 mg/kg	4541, Vol.3
(1998)	- 0,	bw/day (absolute: 12%; relative: 8%).	CA, B.6.6.3
(10, 100,	- ··· ···· ···························	,
Acceptable	1,000 mg	Gross pathology: enlarged liver was observed in 2 dams at 100 mg/kg	
I	a.s./kg	bw/day and in 6 dams at 1,000 mg/kg bw/d.	
Rat, Srj:CD	bw/day		
(SD)	From	Caesarean section data: number of corpora luteum, implantations, live	
(Sprague-	gestation day	foetuses, sex ratios, foetal weights or placental weights remained	
Dawley	7 to 19	unchanged at all doses.	
origin)	inclusive		
		Foetus	
25 pregnant		NOAEL:100 mg/kg bw/day	
females/dose		LOAEL: 1,000 mg/kg bw/day	
		Development: at 1,000 mg/kg bw/day, 32/176 foetuses from 11/24 litters	
		were found with thymic remnant in the neck and 13/175 foetuses from	
		9/24 were found with splitting of the rib cartilage, both these findings	
		were not statistically significant and within historical control of the	
		testing laboratory.	
		Caesarean section data: number of corpora luteum, implantations, live	
		foetuses, sex ratios, foetal weights or placental weights remained	
		unchanged at all doses	
Historical	-	Historical control data are submitted from the testing laboratory	Anonymous
control data		(BioSafety Research Centre for Foods, Drugs and Pesticides, "An-Pyo	35, 2000a.
on the		Centre") for Srj:CD (SD) (Sprague-Dawley) that were used in the	DRAR
findings		teratogenicity studies.	Report no.
observed in		Over 799 fetuses in 112 litters, thymic remnant in the neck ranged from	4541, Vol.3
former		5.2 to 25.4% with an average of 12.76%.	CA, B.6.6.3
studies:		In studies performed during the 1999 year, over 223 fetuses in 30 litters	
Teratogenicity		observed, splitting of the rib cartilage ranged from 6.4 to 8.3% with an	
study in rats		average of 7.4%.	
Embryo-foetal	KIF-230	Dam	Anonymous

CLH REPORT FOR BENTHIAVALICARB-ISOPROPYL (ISO)

Method,	Test	Results	Reference
guideline,	substance,	ксэштэ	Reference
deviations if			
any, species,			
strain, sex,			
no/group	enposure		
toxicity study	TGAI, ,	NOAEL: 10 mg a.s./kg bw/day	36, 2004.
in rat	purity: 93.6%	LOAEL: 100 mg a.s./kg bw/day	DRAR
	as KIF-230R-	Organ weight: relative liver weight was increased at 1,000 mg/kg bw/day	Report KCI
OECD 414	L	(6%). Adrenals weight was increased at 100 mg/kg bw/day (absolute:	283/042632,
	- 0,	14%; relative: 16%) and 1,000 mg/kg bw/d (absolute: 29%; relative:	Vol. 3 CA,
Acceptable	10, 100, 1000	16%).	B.6.6.3
	mg a.s./kg		
Rat, CD	bw/day	Foetus	
(Sprague-	From	NOAEL: 100 mg/kg bw/day	
Dawley	gestation day	LOAEL: 1,000 mg/kg/day	
origin)	5 to 19	Development:	
22	inclusive	Very slight incidence of ribs/costal cartilage variations at the top dose	
22 pregnant females/dose		level in 9/144 foetuses from 5/21 litters.	
	KIF-230	Dam	A
Teratogenicity in rabbits	TGAI,	Dam NOAEL: 20 mg a.s./kg bw/day	Anonymous 37, 2000b.
in rabbits	purity: 87.5-	LOAEL: 40 mg a.s./kg bw/day	DRAR
EPA 1998,	87.9% as	Body weight: on group mean no effect was observed in body weight,	Report No.
Method B.31	KIF-230R-L	body weight gain and food consumption. However, one animal hardly	4762, Vol. 3
(Annex to	- 0,	took food in the latter half of the gestation period and became	CA, B.6.6.3
Regulation	10, 20, 40 mg	malnourished.	
(EC)	a.s./kg		
440/2008)	bw/day	Organ weight: relative liver weight was increased at 40 mg/kg bw/day	
Rabbit, New	From	(11%).	
Zealand	gestation day		
White	6 to 28	Gestation: two animals aborted at 40 mg/kg bw/d, on days 25 and 28.	
22		One of the two was the animal with low food consumption.	
22 pregnant females/dose		Caesarean section data: numbers of corpora lutea, implantation sites, live	
Ternales/uose		or dead foetuses, or resorptions; as well as sex ratio, live foetus weight or	
		placental weight remained unaffected.	
		precentar weight fernanica analicetea.	
		Foetus:	
		NOAEL: 20 mg/kg/day	
		LOAEL: 40 mg/kg/day	
		Development: 12/155 nano foetuses from 2/19 litters were recorded at	
		40 mg/kg bw/day. Incomplete ossification of the hindlimb talus in 14/155	
		was evidenced with a slightly higher incidence at the top dose level.	
		Nanofetuses was defined as fetuses with less than 60% of the mean fetal	
		weight in the control group by the study author.	

10.10.5 Short summary and overall relevance of the provided information on adverse effects on development

Teratogenicity study with rats (Anonymous 35, 2000a; Anonymous 36, 2004)

In a first developmental toxicity study (Anonymous 35, 2000a) benthiavalicarb-isopropyl was administered by oral gavage to groups of 25 presumed pregnant Sprague-Dawley rats at dose levels of 0, 10, 100 and 1,000 mg a.s./kg bw/day between day 7 and 19 of gestation. All dams were euthanized on day 20 of gestation, their foetuses removed by caesarean section and examined. There were no effects of the treatment on survival, clinical signs, body weights, body weight gains or food consumption. Increased absolute and

relative adrenal weight was noted at 100 and 1,000 mg a.s./kg bw/day. Additionally, an increase of absolute and relative liver weight was observed at 1,000 mg a.s./kg bw/day. There were incidences of an enlarged liver. At 1,000 mg a.s./kg bw/day, there were possible treatment-related visceral and skeletal malformations in the foetuses which were however not statistically significant and within the historical control range of the laboratory performing the test (cf. Table 26). The NOAEL for the study was 10 mg a.s./kg bw/day for maternal toxicity and 100 mg a.s./kg bw/day for developmental toxicity.

In a second developmental toxicity study (Anonymous 36, 2004), benthiavalicarb-isopropyl was administered by oral gavage to groups of 25 presumed pregnant Sprague-Dawley rats at dose levels of 0, 10, 100 and 1,000 mg a.s./kg bw/day between day 5 and 19 of gestation. All dams were euthanized on day 20 of gestation, their foetuses removed by caesarean section and examined. There was no effect of the treatment on survival, clinical signs, body weights, body weight gains or food consumption. Absolute and relative adrenals weights were increased at 100 and 1,000 mg a.s./kg body weight/day. Relative liver weight was also increased at 1,000 mg/kg body weight/day. There was a slightly higher incidence of ribs/costal cartilage variations at the top dose level. Due to this finding, the NOAEL for developmental toxicity is set at 100 mg a.s./kg body weight/day. For maternal toxicity, the NOAEL is also set at 10 mg a.s./kg bw/day based on elevated adrenal weights at 100 mg a.s./kg bw/day and above.

Teratoginicity study with rabbits (Anonymous 37, 2000b)

In a developmental toxicity study, benthiavalicarb-isopropyl was administered via oral gavage to groups of 22 presumed pregnant New Zealand White rabbits at dose levels of 0, 10, 20 and 40 mg/kg/day between day 6 and 28 of gestation. All dams were sacrificed on day 29 of gestation; their foetuses were removed by caesarean section and examined. At 40 mg/kg body weight/day, relative liver weight was increased. Additionally, two dams aborted at 40 mg/kg body weight/day, but the cause could not be elucidated at necropsy. One of the two dams hardly took food in the latter half of the gestation period and became malnourished, which probably resulted in abortion. A higher number of nano-foetuses (defined as fetuses with less than 60% of the mean fetal weight in the control group by the study author) was recorded at 40 mg/kg body weight/day. However, 10 of the 12 nanofetuses in that dose group were present in one litter which indicates that this increase in incidence is due to the condition of one single dam and not related to treatment. An increase in the incidence of delayed talus ossification was also observed at 40 mg a.s./kg bw/day, although the incidence rate was low. This finding was judged as an incidental change and was not considered to be an effect of the administration of the test substance, considering that ossification was fully normal at other parts. The NOAEL of the study was 20 mg a.s./kg bw/day for maternal and developmental toxicity.

10.10.6 Comparison with the CLP criteria

According to the results of submitted studies, no irreversible effects such as structural malformations, foetal embryo/lethality, and significant postnatal functional deficiencies were observed. The effects observed were minor developmental changes and were not statistically significant or dose-dependent and they could be associated with maternal toxicity. Consequently, the classification of benthiavalicarb-isopropyl for developmental adverse effects is not warranted.

10.10.7 Adverse effects on or via lactation

Summary of animal studies on effects on or via lactation

Clinical signs, body weight and food consumption were observed during lactation periods in the twogeneration study in rat (Anonymous 34, 1999). No substance-related effect was observed. Please refer to Table 25.

Summary of human data on effects on or via lactation

No data available.

Summary of other studies relevant for effects on or via lactation

No data available.

10.10.8 Short summary and overall relevance of the provided information on effects on or via lactation

Clinical signs, body weight and food consumption were observed during lactation periods in the twogeneration study in rat (Anonymous 34, 1999). No substance-related effect was observed. Please refer to Table 25: of Section 10.10.2 for more information.

10.10.9 Comparison with the CLP criteria

Effects on or via lactation are allocated to a separate single category. It is recognised that for many substances there is no information on the potential to cause adverse effects on the offspring via lactation. However, substances which are absorbed by women and have been shown to interfere with lactation, or which may be present (including metabolites) in breast milk in amounts sufficient to cause concern for the health of a breastfed child, shall be classified and labelled to indicate this property hazardous to breastfed babies. This classification can be assigned on the:

(a) human evidence indicating a hazard to babies during the lactation period; and/or

(b) results of one or two generation studies in animals which provide clear evidence of adverse effect in the offspring due to transfer in the milk or adverse effect on the quality of the milk; and/or

(c) absorption, metabolism, distribution and excretion studies that indicate the likelihood that the substance is present in potentially toxic levels in breast milk.

There were no effects observed in the available data to warrant classification of benthiavalicarb-isopropyl, for effects on or via lactation according to the above mentionned criteria.

10.10.10 Conclusion on classification and labelling for reproductive toxicity

Benthiavalicarb-isopropyl is not classified for reproductive toxicity.

10.11 Specific target organ toxicity-single exposure

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, route of exposure, dose levels, duration of exposure	Results	Reference
Acute oral toxicity in rats Compliant with test	KIF-230, purity: 88.8% as KIF-230R-L	No relevant effect	Anonymous 3, 1998b,
method B.1 of directive 92/69/EEC,	5,000 mg a.s./kg bw, gavage, one time		DRAR Exp. No 4062, Vol. 3
5 rats/sex/dose, Slc: Wistar, SPF			CA, B.6.2.1

Table 27: Summary table of animal studies on STOT SE

KIF-230, purity: 88.8% as KIF-230R-L	No relevant effect	Anonymous 4, 1998a, DRAR report No.:
5,000 mg a.s./kg bw, gavage, one time		4061, Vol. 3 CA, B.6.2.1
KIF-230, purity: 88.8% as KIF-230R-L	Body weight: 1/5 females showed a slightly impaired body weight gain on day 8.	Anonymous 5, 1998c,
2,000 mg a.s./kg bw dose rate: 0.0145-0199 g/cm ²		DRAR report No.: 4063, Vol. 3 CA, B.6.2.2
KIF-230, purity: 89.1% as KIF-230R-L	Mortality: 1/5 males and 1/5 females died on day 1	Anonymous 6, 2000a,
Dust aerosol	Clinical signs:	DRAR report
Nominal: 19 mg/L Mean actual exposure	Decedents: laboured respiration, rales, gasping, hypoactivity, clear lacrimation.	No.: WIL- 156011, Vol. 3, B.6.2.3.
concentration: 4.6 ± 0.6	Survivors: laboured respiration, rales, dried red	
$MMAD = 3.9 \pm 2.82 \ \mu m$	yellow material on urogenital area, decreased/mucoid faeces	
	Body weight: bw loss (<10%) on d0-3 or reduced bw gain on d0-7	
	Necropsy:	
	Decedents: dark red adrenals (males and females, dark patchy lungs (females) and gas- filled stomach (males)	
	Survivors: no relevant findings, except dark red/mottled lungs in one female.	
KIF-230, purity: 92.3%	NOAEL= 2,000 mg/kg bw/day	Anonymous
	LOAEL > 2,000 mg/kg bw/day	38 and 39, 2001 and 2002
single oral gavage	Functional Observational Battery (FOB): A statistically significant decreased motor activity was observed in the treated males when	- amended final report-,
	compared to control animals on day 1 of treatment. The value (1184) was below the	DRAR Report no. 3404.12,
	treatment. The value (1184) was below the historical data range (2047-3902) of the perfomring laboratory (Springborn laboratories, Inc.), but the study control value (2047) was also at the lower end. The decrease of motor activity in males at day 1 was not observed at later stages and was concluded as not toxicologically relevant There was no statistically significant difference for females between control and treated group.	Vol. 3CA, B.6.7
	as KIF-230R-L 5,000 mg a.s./kg bw, gavage, one time KIF-230, purity: 88.8% as KIF-230R-L 2,000 mg a.s./kg bw dose rate: 0.0145-0199 g/cm ² KIF-230, purity: 89.1% as KIF-230R-L Dust aerosol Nominal: 19 mg/L Mean actual exposure concentration: 4.6±0.6 mg a.s./L MMAD = $3.9\pm 2.82 \ \mu\text{m}$ KIF-230, purity: 92.3% as KIF-230R-L 2,000 mg a.s./kg bw,	as KIF-230R-LBody weight: 1/5 females showed a slightly impaired body weight gain on day 8.KIF-230R-Limpaired body weight gain on day 8.2,000 mg as./kg bw dose rate: 0.0145-0199 g/cm2Mortality: 1/5 males and 1/5 females died on day 1KIF-230R-LClinical signs:Nominal: 19 mg/L Mean actual exposure concentration: 4.6±0.6 mg as./LMortality: 1/5 males and 1/5 females died on day 1MMAD = 3.9± 2.82 μmDecedents: laboured respiration, rales, gasping, hypoactivity, clear lacrimation. Survivors: laboured respiration, rales, dried red material around nose/eyes/forelimbs, dried vellow material on urogenital area, decreased/mucoid faecesBody weight: bw loss (<10%) on d0-3 or reduced bw gain on d0-7 Necropsy: Decedents: dark red adrenals (males and females) Survivors: no relevant findings, except dark red/mottled lungs in one female.KIF-230, purity: 92.3% as KIF-230R-L 2,000 mg a.s./kg bw, single oral gavageNOAEL= 2,000 mg/kg bw/day Functional Observational Battery (FOB): A statistically significant decreased motor activity was observed in the treated males when compared to control animals on day 1 of treatment. The value (1184) was below the historical data range (2047-3902) of the performing laboratory (Springborn laboratories, Inc.), but the study control value (2047) was also at the lower end. The decreased of motor activity in males at day 1 was not observed at later stages and was concluded as not toxicologically relevant. There was no statistically significant difference for females

10.11.1 Short summary and overall relevance of the provided information on specific target organ toxicity – single exposure

In all of the acute studies but one, no relevant findings or effects were observed. In the acute inhalation study in albino rats, dark red adrenals were observed in the two deceased animals as the relevant effects but not considered as a "severe" effect. The two other effects observed in the lungs and stomach are most probably due to the inhalation process than to direct substance toxicity. For more details on the studies protocols and results, please refer to DRAR Volume 3 CA, B.6.2.1, B.6.2.2, B.6.2.3 and B.6.7

10.11.2 Comparison with the CLP criteria

In order to be classified as a substance targeting a specific organ after a single exposure, the significant nonlethal toxic effect should be observable on a specific organ at a certain level. Depending on the level of toxic effect, a substance can either be in category 1 (guidance value for classification: \leq 300 mg a.s./kg bw) or category 2 (guidance value for classification: \leq 2000 mg a.s./kg bw and >300 mg/kg bw). According to the available acute toxicity studies, benthiavalicarb-isopropyl does not have a significant toxic effect on any specific organ and should therefore not be classified for this hazard class.

No signs were observed to be regarded for classification for STOT SE 3 according to CLP Regulation (respiratory tract irritation and narcotic effects)

10.11.3 Conclusion on classification and labelling for STOT SE

Benthiavalicarb-isopropyl is not classified for specific target organ toxicity after single exposure.

10.12 Specific target organ toxicity-repeated exposure

The sub-chronic toxicity of benthiavalicarb-isopropyl was investigated in mice, rats and dogs. The results are summarized in Table 28 and below in section 10.12.1. For more detailed information on the sub-chronic toxicity studies, please refer to DRAR Volume 3 CA, B.6: Toxicology and Metabolism, section B.6.3: Short-term toxicity.

The long-term toxicity of benthiavalicarb-isopropyl was investigated in mice and rats. The results are summarised in Table 28 and below in section 10.12.1 and Table 22 of section 10.9 of the present document. For more detailed information on the long-term toxicity studies, please refer to DRAR Volume 3 CA, B.6: Toxicology and Metabolism, section B.6.5 Long-term toxicity and carcinogenicity.

In this section, three 90-days studies on rats, mice and dogs and a one-year study in dogs are presented. Also, a cross-reference is made to the short-term dermal toxicity with repeated exposure in rats and to two long-term toxicity and carcinogenicity studies with rats and mice. One range-finding study in a dog is also presented as supportive information. Unless stated otherwise, all reported effects in Table 28 are statistically significant.

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, route of exposure, dose levels, duration of exposure	Results	Reference
28-days oral toxicity in dog - range-finding study	KIF-230, purity: 87.7% as KIF-230R-L Oral,	NOAEL: 300 mg a.s./kg bw/day LOAEL: 1,000 mg a.s./kg bw/day Organ weight : increased absolute and relative liver weight without dose-dependency in males at 100 mg/kg bw/day (absolute: 18%; relative: 17%) and 1,000 mg/kg bw/day (absolute: 16%;	Anonymous 40, 1998, DRAR Report no. 3390, Vol. 3 CA.

Table 28: Summary table of animal studies on STOT RE

Not compliant with test method B.7. of Directive 96/54/EEC	0, 100, 300, 1000 mg a.s./kg bw/day	relative: 11%) and in females at 300 mg/kg bw/day (absolute: 14%; relative: 13%) and 1,000 mg/kg bw/day (absolute: 36%; relative: 45%). No statistical analysis was performed because of the low number of animals per group.	B.6.3.1/1
additional information	28 days	Gross pathology and histopathology : liver enlargement in both males and females with panlobular hepatocyte hypertrophy at 1,000 mg/kg bw/day. One female with unilateral kidney atrophy (fibrous scars) in the same dose group.	
Beagle dogs		(fibrous sears) in the same dose group.	
2 dogs/sex/dose			
28-days dermal toxicity in rat	KIF-230, purity:	NOAEL: 300 mg a.s./kg bw/day LOAEL: 1,000 mg a.s./kg bw/day	Anonymous41, 2000b, DRAR
FIFRA Guideline No. 81-3, EPA OCSPP Guideline No 870.1300; OECD 403 Acceptable	87.9% as KIF-230R-L Dermal 0, 100, 300, 1000 mg a.s./kg bw/day 28 days	Clinical chemistry : increase in albumin levels (4%) in males at and increase in globulin levels (10%) in females but with unaffected A/G-ratios at 1,000 mg/kg bw/day. Increase in inorganic phosphorus (23%) in females at 1,000 mg/kg bw/day. Increase in sorbitol dehydrogenase activities (38%) in males at 1,000 mg/kg bw/day. Dose-related decreases of AST (between 17 and 22%) and ALT (between 19 and 21%) activities in males without significant pathological meaning.	Report No.: WIL-156012, Vol. 3 CA 6.3.3
Rat,	20 augs	Organ weight : dose related decrease in thymus weight (22, 18 and 13% at 100, 300 and 1,000 mg/kg bw/day respectively).	
Crl:CD®(SD)IGS BR 10 rats/sex/dose		Gross pathology and histopathology : marginal liver cell necrosis was observed at 1,000 mg/kg bw/day in males. Marginal increased incidence of squamous hyperplasia in females at 1,000 mg/kg bw/day (9/10 vs 5/10 in control).	
sub-chronic oral neurotoxicity, OECD 424 Rat, Sprague- Dawley Crl:CD® (SD)IGS BR	purity: 92.6% as KIF-230R-L Oral,	 NOAEL: M: 174.1 mg a.s./kg/day F: 1845.8mg a.s./kg/day LOAEL: M: 1853.7 mg a.s./kg/day F: >1845.8 mg/kg/day Body weight: Decreased body weight gain at the top dose of 20,000 ppm in males (18% at the end of the study). Food efficiency was also decreased (20%). FOB: slight decrease of motor activity (low level) detected in males at 20,000 ppm (25%). 	Dion
90-days oral toxicity in mice	KIF-230, purity: 87.7% as	NOAEL: M: 33.0 mg a.s./kg bw/day F: 45.2 mg a.s./kg bw/day	Anonymous 43, 1998a, DRAR Report
Test method B.26 of directive	KIF-230R-L Oral, 0; 50; 200;	LOAEL: M: 1293 mg a.s./kg bw/day F: 1620 mg/kg bw/day Body weight: decrease in body weight gain in males by 32% at	no. 3385, Vol. 3 CA 6.3.2/1

2001/59/EC Acceptable Mice, B6C3F1, SPF 10 mice/sex/dose	7,000 and 20,000 ppm M: 0, 8.4, 33.0, 1293, 4031 mg a.s./kg bw/day F: 0, 11.3, 45.2, 1620, 4946 mg a.s./kg bw/day 90 days	 7,000 ppm and by 43% at 20,000 ppm over the entire treatment period of 13 weeks. Haematology: slight macrocytic anaemia in males and females at 7,000 and 20,000 ppm without increase in reticulocyte ratio. Thrombocytosis in the males at 7,000 ppm and above. Organ weight: increase in liver weight at 7,000 ppm (absolute: 63 and 51 %; relative: 87 and 59% in males and females, respectively) and at 20,000 ppm (absolute: 97 and 96%; relative: 136 and 109% in males and females, respectively). Decrease in ovary weight at 20,000 ppm (absolute: 29%; relative: 18%). Decrease in absolute kidney weight at 7,000 ppm in males (10%) and above in both males and females (22 & 8%). Gross necropsy: patches on stomach and liver, as well as black and enlarged livers and brown thyroid glands at 7,000 and 20,000 ppm in males. Histopathology: anisonucleosis in liver at dose levels from 7,000 ppm and above in males, fatty change at 20,000 ppm in males, hepatocytic hypertrophy from 7,000 ppm in males, multinucleated giant cells at 20,000 ppm in males, 	
90-days oral	KIE-230	necrosis from 7,000 ppm and above in males and females; bile duct proliferation at 20,000 ppm in males and females. In the ovaries, there was a decrease in corpora lutea at a dose level of 20,000 ppm in females. Enzymatic induction in the hepatocytes in both sexes at 7,000 ppm and above, increased and/or dilated rough endoplasmic reticulum.	Anonymous
90-days oral toxicity in rats	KIF-230, purity: 87.7% as KIF-230R-L	NOAEL: M: 14.1 mg a.s./kg bw/day F: 15.3 mg a.s./kg bw/day LOAEL: M: 353 mg a.s./kg bw/day	Anonymous 44, 1998b, DRAR Report
EPA OCSPP Guideline No 870.3100 Acceptable Rat, F344/DuCrj (Fisher) 10 rats/sex/dose	Oral 0; 50; 200; 5,000 and 20,000 ppm M: 0, 3.5, 14.1, 353, 1444 mg a.s./kg/day F: 0, 3.9, 15.3, 379, 1552 mg a.s./kg/day 90 days	F: 379 mg a.s./kg bw/day Haematology : decrease of red blood cell parameters at 5,000 ppm and above in both sexes. Blood chemistry : increase of calcium level in males at 5,000 ppm (3%) and at 20,000 ppm in males (4%) and females (6%). Increase of total cholesterol at 5,000 ppm in males (16%) and females (44%) and at 20,000 ppm (30 in males and 94% in females). Increase of free cholesterol in females at 5,000 ppm (36%) and at 20,000 ppm in males (27%) and females (100%). Increase of phospholipids in females at 5,000 ppm (21%) and at 20,000 ppm in both males (14%) and females (51%). Total protein increased in males at 5,000 ppm (4%) and in both sexes at 20,000 ppm (7% in males and 10% in females). Increase of α 2-globulin in both sexes at 5,000 ppm (10%) and 20,000 ppm (17% in males and 25% in females), of α 1-globulin at 20,000 ppm in both sexes (7% in males and 18% in females) and of β -globulin at top dose in females (10%). The A/G ratio was decreased in females at 5,000 ppm in males (167%) and females (307%) and at 20,000 ppm in males (167%) and females (307%) and at 20,000 ppm (absolute: 19 and 29%; relative: 21 and 23%, in males and females,	no. 3386, Vol. 3 CA 6.3.2/2

		 (12%) and at 20,000 ppm (19% in males and 14% in females) as well as relative adrenal weight in males at 20,000 ppm (21%). Absolute kidney weight was increased in females at 5,000 ppm (8%) and 20,000 ppm (7%). 										
			ross necropsy : livers were blackish and enlarged in the top-dose imals in both sexes.									
		ppm in r	stopathology: Hepatocytic hypertrophy was observed at 20,000 m in males and females. Mineralisation was observed at 20,000 m in females.									
90-days oral toxicity in dogs	KIF-230, purity:	NOAEL		0	U	•						Anonymous 45, 1999,
tomenty in dogs	88.8% as	LOAEL		-	-	•			6	1111	11	DRAR Report
EPA OCSPP Guideline No 870.3150;	KIF-230R-L Oral 0, 40, 200,	Haemat paramete 200 ppm in both s	ers at 1 n for ha	l,000 a	mg a.s ocrit a	s./kg t	w/din	both s	sexes ar	nd in fer	nales at	no. 3812, Vol. 3 CA 6.3.2/3
corresponding to the OECD 409	1,000 mg a.s./kg		(mg/kg	0		40		200		1000		
Acceptable	bw/day	нст	week	M 44.6	F 49.9	M 41.0	F 43.8	M 44.3	F 39.9*	M 38.8	F	
Acceptable	90 days		6 13	44.8	51.1	41.2	43.8*	43.2	42.3**	34.3*	40.8* 38.2**	
	5	Hb	6 13	14.4 14.3	16.0 16.6	13.1 13.4	14.2 14.2*	14.1 14.0	12.9* 13.5**	11.9 10.8*	12.5* 11.7**	
Beagle dogs		RBC	6 13	6.46 6.52	7.16 7.39	6.05 6.08	6.52 6.51	6.55 6.33	5.93 6.24	5.30 4.85**	5.51* 5.18**	
4 dogs/dose/sex		MCV	6	69	70	68	67	67	67	73*	74*	
		МСНС	13 6	68.7 32	69.1 32	67.6 32	67.5 32	67.9 31	67.9 32	70.9 30.6**	74.2* 30.7**	
		PLT	13 6	31.9 325	32.5 312	32.4 381	32.4 352	32.5 322	31.9 350	31.5 569*	30.6** 567**	
			13	312	302	390	383	380	404	613**	637**	
		Ret.	6 13	6 11	7 6	5 5	9 10	4	7 8	5 25*	5 25↑**	
	Blood cl (125%) females) females Calcium ratio wa at 1,000 females 21 and 2 Organ v mg/kg (4 (absolute females, Gross n Depositi at 1,000	and fer and g and d and at was a s decree mg a.s at 40, 1 (4%) ar veight 43%) a respect ecrops on of j	males amma ecreas 1,000 lso de eased is s./kg b 200 an nd in n : increand ind 58 ctively sy and pigme	(120%) -GTP se of t) ppm ccrease in ferr ow/d (nd 1,0 males eased : crease %; rel y). 1 histo nt and	6), of activ otal prin ma e in bo ales a (26%) 00 mg at 1,0 relativ d live ative:	ALP (ities (9 rotein (les (18 oth sex. tt 200 o. Albu g a.s./k 000 mg ve liver r weigl 75 and ology: tocytic	107% (3% in (10%) (%) an es at t mg a. min le g bw/ a.S./A weig ht at 1 d 70% large hype	in male males at 200 d fema op dose s./kg by evel dec d (resp cg bw/d ht in fer ,000 m , in mal	es and 1 and 729 ppm in les (10% e (7%) T w/d (279 treased i ectively ay (26% males at g a.s./kg les and the top	71% in % in %). Che A/G %) and in 7: 10, %). t 200 g bw/d dose.		
Dog 1 year	KIF-230,	NOAEL	: 40 m	g a.s./	/kg bv	v/day						Anonymous 46
	purity: 87.5 – 87.9% as	LOAEL	LOAEL: 400 mg a.s./kg bw/day					2001,				
US EPA FIFRA Posticido	KIF-230R-L		lood chemistry: while some parameters were statistically gnificantly different from the control during the test, at					DRAR Report no. 4551, CA				
Pesticide Assessment	Oral	terminat									these	6.3.2/6
Guidelines,	0, 4, 40, 400	paramet										
Section 83-1, 1984 (OCSPP	mg a.s./kg	Organ v	veight	: incre	eased	absolı	ıte live	er weig	ght at 4	00 mg a	.s./kg	

 870.4100), OECD Test Guideline 452 Beagle dogs 4 dogs/dose/sex 2-years chronic toxicity / oncogenicity study in rats EPA OCSPP Guideline No 870.4300; OECD Test Guideline 	bw/day 1 year KIF-230, purity: 88.8- 89.1% as KIF-230R-L 0, 50, 200, 5,000, 10,000 ppm	bw/day (2 increased Gross pat increase in females w NOAEL: 1 LOAEL: 1 Body weight weight in over the w Haematol parameter the two to	relative li chology a in the incidit ithout a c M: 9.9 mg M: 250 m ght : sligh females a whole peri- logy : sligh s, except p doses in	nd hi lence lear o g/kg l g/kg t but t 10,0 od of ht but platel n both	veight stopa of pit lose-re ow/da bw/da statist 000 pp the st t statist let wh n sexes	in femal thology uitary cy esponse y; F: 12. y; F: 312 ically sig om (4%) udy (7% udy (7% sich incress.	le at top : no sigr ysts (slig relation 5 mg/kg 8 mg/kg gnifican and of b b). ignifican eased (be	dose (18 nificant e ght) was ship. g bw/day bw/day t decreas body wei nt decrea etween 6	3%). ffect. Onl noted in e of body ght gain se in bloc to 19%)	, 1 , 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Anonymou 18, 2001a., DRAR Rep no. 3822, Vol.3 CA, B.6.5/1	
453 adopted in 08		Dose (j	ppm)		00	50	-		000			
September 2008.	M: 0, 2.5;	Hat	most 20	8	Ŷ	ð	♀ ↓40/**	ð	♀ ↓4%**			
Rat, F344/DuCrj	9.9, 249.6,	Hct	week 26 week 78			-	↓4%**	-	$\downarrow 4\%^{**}$ $\downarrow 4\%^{**}$			
(Fischer, SPF)	518.3 mg a.s./kg		week			-	↓2%**	↓6%*	↓4%**			
80	bw/day	Hb	104 week 26			-	↓4%**	↓3%*	<u>↓</u> 4%**			
animals/sex/group	•		week 52			-	↓3%*	-	↓4%**			
unning sex group	F: 0, 3.2,		week 78 week				↓2%*	↓6%*	↓5%** ↓4%**			
	12.5, 318.2,		104			-	↓2 <i>7</i> 0'	10%	↓470			
	649.4 mg	RBC	week 26		100/*	-	↓2%*	-	↓2%*			
	a.s./kg	MCV	week 52 week 78	-	↓2%*	-	↓4%** ↓4%**	-	↓5%** ↓5%**			
	bw/day		week			↓4%**	↓2%**	↓4%**	↓3%**			
	2 years	мсн	104 week 26			-	↓2%*	-	↓2%**			
		мсп	week 20 week 52			-	↓2% [*]	-	↓2 [%] **			
			week 78			-	↓5%**	-	↓6%**			
			week 104			↓5%**	↓2%**	↓5%**	↓3%**			
		Plt	week 26			1€20%**	18%*	↑17%**	10%**			
			week 52 week 78			↑5%*	↑8%*	↑7%*	-			
			week /o			<u>-</u> ↑14%**	- ↑6%**	_ ↑19%**	- ↑8%**			
			104			1700/*						
		reticulocyte WBC	week 26 week			↑78%*	-	↑56** ↑33%**	- ↑11%**			
			104									
	* Significa control: p Blood cl cholester of free cl phosphoi protein a at 5,000 decrease at 5,000 ppm and increased (164%). Organ w the 5,000 relative:	 * Significant control: p Blood che cholestero of free cho phospholip protein at at 5,000 pj decrease of at 5,000 pj ppm and 4 increased (164%). Organ we the 5,000 relative: 2 the 10,000 	emistry: a l in fema olesterol a pid at 5,0 5,000 ppn pm (167% of total bil pm and 3 10% at 10 at termina eight: live ppm grou 1 and 19%) ppm grou	at terr les at at 5,0 00 pp n (6% 6) and lirubi 9% a (,000 ation er wei p (at c, i n uup al	nination 5,000 00 ppi om (43 %) and d 10,0 n at th t 10,00 ppm). at 5,00 (ght w termininales so in b	on, there oppm (6' m (70%) (%) and l 10,000 00 ppm e same of 00 ppm) In male 00 ppm (as increation, a and ferr poth sexe	 * Significan e was an 7%) and 0 and 10, 10,000 µ ppm (89) (217%). doses (50) and of 4 s, only γ (31%) a ased at a bsolute: nales, res es (at ten 	increase 10,000 ppm (479 %), of γ-4 There w 0%), of A ALT (414 γ-GT acti nd 10,00 Ill sacrifi 22 and 1 spectivel mination	of total ppm (72% (83%), of (83%), of (%), of tota GT activi (7as a (%), of tota (%), of tota (%	of al ty 6 0		

respectively). Kidney weight was also increased at 5,000 ppm (at termination, absolute: 10 & 5%; relative: 7 & 8%; in males and females, respectively) and 10,000 ppm (at termination, absolute: 16 & 9%; relative: 18 & 15%; in males and females, respectively). In addition, adrenals weight was also increased in males at 5,000 ppm (absolute and relative: 20% at termination) while only relative adrenals weight was increased in female at 200 and 5,000 ppm (7 and 14%, respectively); at top dose, absolute and relative adrenals weights were increased (absolute: 16 and 10%; relative: 20 and 14%, in males and females, respectively). Spleen weight	
was reduced in females at 5,000 ppm and 10,000 ppm (~20-25%) while relative heart weight (6%) and relative brain weight (4%) were increased at 10,000 ppm in females.	termination, absolute: 10 & 5%; relative: 7 & 8%; in males and females, respectively) and 10,000 ppm (at termination, absolute: 16 & 9%; relative: 18 & 15%; in males and females, respectively). In addition, adrenals weight was also increased in males at 5,000 ppm (absolute and relative: 20% at termination) while only relative adrenals weight was increased in female at 200 and 5,000 ppm (7 and 14%, respectively); at top dose, absolute and relative adrenals weights were increased (absolute: 16 and 10%; relative: 20 and 14%, in males and females, respectively). Spleen weight was reduced in females at 5,000 ppm and 10,000 ppm (~20-25%) while relative heart weight (6%) and relative brain weight (4%)
Gross pathology : liver enlargement was observed in both sexes in the interim sacrifices (wk 26: 10 males and 9 females at 10,000 ppm, wk 52: 5 males at 5,000 ppm, 9 males and 9 females at 10,000ppm, wk 78: 5 males and 4 females at 5,000ppm, 8 males and 9 females at 10,000ppm, no enlarged liver in control at any time point) but not at termination in the 5,000 and 10,000 ppm groups. However, white and brown patches were observed in males at 5,000 ppm (brown: 36 at 5,000ppm against 12 in control; white: 16 at 5,000 ppm against 5 in control) and 10,000ppm (brown: 34 at 10,000ppm; white: 24 at 10,000ppm) and red patches in females were observed in the 5,000 (13 at 5,000ppm against 5 in control) and 10,000 ppm (19 at 10,000ppm) termination. Granular kidney surface was evidenced in both sexes at 10,000 ppm against 0 in control). Black patches were also observed in the Harderian gland either in males (8 at 10,000ppm against 0 in control) or in females (28 at 5,000 ppm ad 41 at 10,000 ppm against 0 in control). Tail nodules were detected at the two top doses in males as well as.	the interim sacrifices (wk 26: 10 males and 9 females at 10,000 ppm, wk 52: 5 males at 5,000 ppm, 9 males and 9 females at 10,000ppm, wk 78: 5 males and 4 females at 5,000ppm, 8 males and 9 females at 10,000ppm, no enlarged liver in control at any time point) but not at termination in the 5,000 and 10,000 ppm groups. However, white and brown patches were observed in males at 5,000 ppm (brown: 36 at 5,000ppm against 12 in control; white: 16 at 5,000 ppm against 5 in control) and 10,000ppm (brown: 34 at 10,000ppm; white: 24 at 10,000ppm) and red patches in females were observed in the 5,000 (13 at 5,000ppm against 5 in control) and 10,000ppm (brown: 34 at 10,000 ppm (19 at 10,000ppm)) at termination. Granular kidney surface was evidenced in both sexes at 10,000 ppm against 0 in control). Black patches were also observed in the Harderian gland either in males (8 at 10,000ppm against 0 in control) or in females (28 at 5,000 ppm and 41 at 10,000 ppm against 0 in control). Tail nodules were detected at the
Non neoplastic histopathology: hepatocytic hypertrophy was recorded at 10,000 ppm in males (24/44 against 1/38 in control) and at 5,000 (7/46 against 1/40 in control) and 10,000 ppm (25/45) in females. Fatty degeneration was observed infemales (39/42 at 5,000 ppm, 36/45 at 10,000 ppm against 21/40 in control) as well as focal changes, in association with spongiosis hepatis in males (39/46 at 5,000 ppm, 42/44 at 10,000 ppm against 19/38 in control). Glomerulosclerosis of the kidneys was observed in females at 5,000 (20/42 against 6/40 in control) and 10,000 ppm (26/45), calculus at 5,000 and 10,000 ppm in males (10/46 at 5,000 ppm, 12/44 at 10,000 ppm against 0/38 in control) and females (17/42 at 5,000 ppm, 25/45 at 10,000 ppm against 8/40 in control), chronic nephropathy in males at 5,000 (23/46 against 6/38 in control) and 10,000 ppm (26/44), brown pigment deposition in females at 5,000 (19/42 agains 2/40 in control) and 10,000 ppm (19/45), dilated tubules in males at 5,000 ppm (26/46 against 10/38 in control) and 10,000 ppm (33/44), hyaline droplets in males at 5,000 (37/46 against 17/38 in control) and 10,000 ppm (18/42) at 5,000 ppm, 23/45 at 10,000 ppm against 9/40 in control), hymphcytic infiltration in females (19/45 against 9/40 in control), hymphcytic infiltration in females (19/45 against 9/40 in control), fibrosis in males (5 at 10,000 ppm against 9/40 in control), fibrosis in males (5 at 10,000 ppm against 9/40 in control), fibrosis in males (10 at 10,000 ppm against 1 in control) at 10,000 ppm. Atrophy of the exocrine pancreas was also observed at 10,000 ppm in males (22/44 against 11/38 in control) and females (15/45 against 3/40 in control) as	Non neoplastic histopathology: hepatocytic hypertrophy was recorded at 10,000 ppm in males (24/44 against 1/38 in control) and at 5,000 (7/46 against 1/40 in control) and 10,000 ppm (25/45) in females. Fatty degeneration was observed infemales (39/42 at 5,000 ppm, 36/45 at 10,000 ppm against 21/40 in control) as well as focal changes, in association with spongiosis hepatis in males (39/46 at 5,000 ppm, 42/44 at 10,000 ppm against 19/38 in control). Glomerulosclerosis of the kidneys was observed in females at 5,000 (20/42 against 6/40 in control) and 10,000 ppm (26/45), calculus at 5,000 and 10,000 ppm in males (10/46 at 5,000 ppm, 12/44 at 10,000 ppm against 0/38 in control) and females (17/42 at 5,000 ppm, 25/45 at 10,000 ppm against 8/40 in control), chronic nephropathy in males at 5,000 (23/46 against 6/38 in control) and 10,000 ppm (26/44) , brown pigment deposition in females at 5,000 (19/42 agains 2/40 in control) and 10,000 ppm (19/45) , dilated tubules in males at 5,000 ppm (26/46 against 10/38 in control) and 10,000 ppm in females (19/45 against 9/40 in control), lymphocytic infiltration in females at 5,000 and 10,000 ppm (18/42 at 5,000 ppm, 23/45 at 10,000 ppm against 9/40 in control), fibrosis in males (5 at 10,000 ppm against 9 40 in control), fibrosis in males (5 at 10,000 ppm against 9 40 in control), fibrosis in males (5 at 10,000 ppm against 9 40 in control), fibrosis in males (5 at 10,000 ppm against 9 40 in control), fibrosis in males (5 at 10,000 ppm against 9 40 in control), fibrosis in males (5 at 10,000 ppm against 0 in control) and transitional cell hyperplasia in males (10 at 10,000 ppm against 1 in control) at 10,000 ppm in females (22/44 against

		against 2/38 in 0/40 in control)			om (40/42 against		
		N.B.: for neople the present doc		ology please refer	to section 10.9 of		
study in mice 89.1% as KIF-230R EPA OCSPP Guideline No 870.4200, OECD Test Guideline 451 Mice, B6C3F1 70 animals/sex/group F: 0, 3.7, 18.6, 459, 928 mg/kg/day	purity: 88.8- 89.1% as KIF-230R-L 0, 20, 100, 2,500, 5,000 ppm M: 0, 2.7, 13.7, 358, 731 mg/kg/day F: 0, 3.7, 18.6, 459,	NOAEL: M: 13 LOAEL: M: 35 Body weight : to period of 104 weight: to period of 104 weight: to period of 104 weight: to males by 26% and Haematology: females was of males; wk 104 5,000ppm (wk wk 72: increass 20% in males males of: haem at 2,500 ppm 5,000 ppm (12 MCV at 2,500 5,000 ppm (30 coherent with significant deer doses on week	Anonymous 20, 2001b. DRAR Report no. 3823, Vol.3 CA, 6.5/2				
	5			al leukocyte coun	and confirmative ats.		
		Week 104	V	VBC			
		Dose (ppm)	М	F			
		20	- 31%**	+131%*	-		
		100	- 45%**	- 23%*			
		2500	- 35%**	- 8% + 54**			
		5000 Significant diff 0.05 **: p ≤ 0.0		$+ 54^{***}$ trol group; *: p \leq			
		all sacrifice tim 67%; relative: 1 and 5,000 ppm 218 and 73%; i relative adrenal 2,500 ppm (abs (absolute: 20%	tes at 2,500 pp 140 and 61%; i (at termination n males and fe s weights were solute: 20%; rel ; relative: 38%	n (at termination, n males and fema a, absolute: 174 ar males, respective e increased in mal lative: 31%) and 3	ly). Absolute and es at termination at 5,000ppm olute and relative		
		5,000 ppm. Enl 10 in females a control; wk: 78 and 5,000 ppm, 27 in females a brown zones (w					

24 at 5,000 ppm against 0 in control) were observed in males and females. White zones on the stomach of males were statistically increased at 2,500 ppm (31 against 19 in control) but not at 5,000 ppm (18). Liver nodules were observed in males and females (wk 78: 10 at 5,000 ppm in males against 4 in control; week 104: in males, 34 at 2,500 ppm and 28 at 5,000 ppm against 22 in control) and in females, 27 at 2,500 ppm and 30 at 5,000 ppm against 7 in control) and white zones were observed at top dose in males at week 78 (8 at 5,000 ppm agains 3 in control) but not at termination while in females white zones were observed to be statistically signicifantly increase at 5,000ppm only at termination (23 against 6 in control). In addition, at the top dose: enlarged lymph node (12 at 5,000 ppm against 4 in control) and Harderian gland nodules (6 at 5,000 ppm against 0 in control) were observed in females and red zones on the liver and thymus atrophy (not confirmed by histopathology) were observed in males.	
Non neoplastic histopathology:	
The following statistically significant observations were made: hepatocytic hypertrophy in males (30/35 at 2,500 ppm and 20/28 at 5,000 ppm agains 0/41 in control) and females (40/41 at 2,500 ppm and 42/43 at 5,000 ppm aganst 0/41 in control), intermediate fatty change in males (30/35 at 2,500 and 20/28 at 5,000 ppm against 0/41 in control) and females (37/41 at 2,500 ppm and 33/43 at 5,000 ppm against 0/41 in control), foci of cellular alteration in males (35/35 at 2,500 and 28/28 at 5,000 ppm against 20/41 in control) and in females (36/41 at 2,500 ppm and 34/43 at 5,000 ppm against 9/41 in control), anisonucleosis in males (11/35 at 2,500 and 13/28 at 5,000 ppm against 1/41 in control) and in females (12/43 at 5,000 ppm against 2/41 in control), necrosis in males (15/35 at 2,500 and 22/28 at 5,000 ppm against 2/41 in control) and at 5,000 ppm in females (10/43 against 1/41 in control), single cell necrosis in males (13/35 at 2,500 and 28/28 at 5,000 ppm against 1/41 in control) and at 5,000 ppm against 1/41 in control), single cell necrosis in males (33/35 at 2,500 and 28/28 at 5,000 ppm against 1/41 in control) and at 5,000 ppm against 1/241 in control), multinucleated hepatocytes in males (8/35 at 2,500 ppm and 4/28 at 5,000 ppm against 0/41 in control), accumulation of macrophages in males (28/35 at 2,500 ppm and 28/28 at 5,000 ppm against 4/41 in control), bile duct proliferation in males (5/35 at 2,500 ppm against 2/41 in control), bile duct proliferation in males (5/35 at 2,500 ppm against 2/41 in control), extramedullary hematopoiesis in males (8/35 at 2,500 and 14/28 at 5,000 ppm against 2/41 in control) and fibrosis at 2,500 ppm in males (5/35 against 0/41).	
Forestomach ulcers (13/35 at 2,500 ppm and 16/28 at 5,000 ppm against 6/41 in control), lymphocytic infiltration (22/35 at 2,500 ppm and 17/28 at 5,000 ppm against 12/41 in control) and squamous cell hyperplasia (29/35 at 2,500 ppm and 19/28 at 5,000 ppm against 18/41 in control) were observed at 2,500 and 5,000 ppm in the males	
Ovaries atrophy was evidenced at 2,500 (22/41 against 4/41in control) and 5,000 ppm (30/43). Uterus angiectatis was observed at 5,000 ppm (6/43 against 0/41 in control).	
Thyroid follicular cell hyperplasia was observed in males (12/35 at 2,500 ppm and 27/28 at 5,000 ppm against 2/41 in control) and females (20/41 at 2,500 and 26/43 at 5,000 ppm against 5/41 in control), as well as dilated follicles in males (12/35 at 2,500 ppm and 17/28 at 5,000 ppm against 2/41 in control) at the same doses	

and in females only at 5,000 ppm (10/43 against 1/41 in control). Increase in megacaryocytes in bone marrow at 5,000 ppm in the males (8/28 against 3/41 in control).	
Adrenal hypertrophy in males (13/35 at 2,500 and 20/28 at 5,000 ppm against 0/41 in control)and females (38/41 at 2,500 ppm and 42/43 at 5,000 ppm against 1/41 in control).	
N.B.: for neoplastic histopathology please refer to <u>section 10.9 of</u> the present document.	

10.12.1 Short summary and overall relevance of the provided information on specific target organ toxicity – repeated exposure

28-days dermal toxicity study in rats (Anonymous 41 2000b)

Groups of 10 rats/sex/dose (CrI:CD®(SD)IGS BR) were dermally exposed to benthiavalicarb-isopropyl at dose level of 0; 10; 300 and 1,000 mg/kg body weight for 28 days. The only toxicological findings considered possibly substance-related in the rat following dermal exposure for 28 days at the top dose of 1,000 mg/kg/day were increased sorbitol dehydrogenase activity and marginal liver cell necrosis. Squamous hyperplasia was observed as a local histopathological finding. However, the reported histopathological findings and the toxicological significance of the clinical chemistry findings remain unclear. The NOAEL was set at 300 mg/kg/day.

Subchronic toxicity study in rat (Anonymous 42, 2002)

In a sub-chronic neurotoxicity study benthiavalicarb-isopropyl was administered to groups of 10 CD rats per sex and dose in the diet at doses of 0, 200, 2,000 and 20,000 ppm (mean achieved dose of 0, 17.7, 174.1 and 1,853.7 mg/kg/day in males and 0, 19.3, 185.7 and 1,845.8 mg/kg/day in females) for 4 weeks. No treatment-related effects on mortality, clinical signs, food consumption, brain weight, gross necropsy or neuropathological parameters were observed. Although a slight effect on motor activity was noted in males at 20,000 ppm, it was not considered to be a sign of neurotoxicity. In the males of the 20,000 ppm group, decreased body weight gains were observed during the first week and up until the end of the study. **The NOAEL for this study is 174.1 mg/kg/day in males and 185.7 mg/kg/day in females.**

90 days toxicity study in the mouse (Anonymous 43, 1998a)

Benthiavalicarb-isopropyl was administered to groups of 10 mice (B6C3F1) per sex and dose at the concentrations of 0, 50, 200, 7,000 and 20,000 ppm in the diet (mean achieved dose of 0, 8.4, 33.0, 1,293 and 4,031 mg/kg body weight/day in males and 0, 11.3, 45.2, 1,620 and 4,946 mg/kg/day in females).

Body weight gain calculated over the entire treatment period of 13 weeks was statistically significantly decreased in males by 32% and 43% at 7,000 and 20,000 ppm respectively. Food consumption increased sporadically in males and females at 20,000 ppm and increased slightly in the males of the 7,000 mg/kg group. Food efficiency decreased in the males of the 7,000 and 20,000 ppm groups and the females of the 20,000 ppmgroup. Some effects on haematology were observed at 7,000 and 20,000 ppm in males and females. Increased absolute and relative liver weights were noted in both sexes at 7,000 and 20,000 ppm, as well as decreased absolute kidney weight at 7,000 ppm for males and both sexes at 20,000 ppm. Decrease of ovary weight at 20,000 ppm was also recorded.

Gross lesions observed included enlarged liver and black-coloured liver. Histopathological effects noted in the liver of males and females included necrosis, bile duct hyperplasia and hepatocellular hypertrophy; fatty

change, anisonucleosis and formation of multinucleated giant cells were observed in males only. Additional findings included brown-coloured thyroid in all males of the 20,000 ppm group. In the ovaries, there was a decrease in corpora lutea at a dose level of 20,000 ppm in females.

No treatment-related effects were observed in males and females of the 50 and 200 ppm groups. The NOAEL of 33.0 mg/kg/day for males and 45.2 mg/kg/day for females is based on decreased body weight, body weight gain and food efficiency in males; increased absolute and relative liver weight, enlarged liver, black-coloured liver and histopathological liver effects (necrosis, hypertrophy, bile duct proliferation) at 7,000 ppm.

Based on these observations, MTD for treatment of mice for 13 weeks should be set at 7,000 ppm.

90 days toxicity study in the rat (Anonymous 44, 1998b)

Benthiavalicarb-isopropyl was administered to groups of 10 rats (F344/DuCrj, Fisher) per sex and dose, at concentrations of 0, 50, 200, 5,000 and 20,000 ppm in the diet (mean achieved dose of 0, 3.5, 14.1, 353 and 1,444 in males and 0, 3.9, 15.3, 379 and 1,552 mg/kg/day in females) for 13 weeks.

Absolute and relative liver weights increased in males and females at 5,000 and 20,000 ppm, as well as absolute adrenals weight and absolute the kidney weight in females. Black and enlarged livers were observed in both sexes at 20,000 ppm. Mineralisation in kidney at 20,000 ppm in females was also recorded. Hepatocyte hypertrophy was observed in both sexes at 5,000 and 20,000 ppm. Related to liver toxicity a dose-dependent increase of clinical chemistry parameters was observed, including total cholesterol and GGT in both sexes at 5,000 and 20,000 ppm, free cholesterol and phospholipids in the males of the 20,000 ppm group and the females of the 5,000 and 20,000 ppm groups and total protein in the males of the 5,000 and 20,000 ppm group.

The NOAEL is 14.1 mg/kg/day for males and 15.3 mg/kg/day for females based on hepatocyte hypertrophy in both sexes and increases in absolute and relative liver weights and total cholesterol and GGT in both sexes, increases of free cholesterol and phospholipids in the females and total protein in the males at a dose level of 5,000 ppm.

At the high dose of 20,000 ppm, only relatively mild effects were observed in the liver and the kidney. Therefore, the MTD for a treatment of 13 weeks in the rat can be considered to be greater than 20,000 ppm

Sub-chronic and chronic toxicity in the dog (Anonymous 40 1998, Anonymous 45 1999, Anonymous 46 2001)

In a dog range-finding test, doses of 0, 100, 300 and 1,000 mg/kg/day were given in gelatine capsules daily, 7 days per week, for 4 weeks to groups of two dogs per sex and dose. The only findings possibly related to the treatment were increased liver weight and hepatocyte hypertrophy in males and females at 1,000 mg/kg/day. The NOAEL was 300 mg/kg/day.

In a 13-weeks toxicity study, benthiavalicarb-isopropyl was administered daily in gelatine capsules to groups of 4 beagle dogs per sex and dose at dose levels of 0, 40, 200 and 1,000 mg/kg/day for 13 weeks. At 200 mg/kg/day, a decrease in haematocrit, haemoglobin and serum albumin was observed in females. At 1,000 mg/kg/day, the concentrations of serum total bilirubin, gamma-glutamyl transferase and alkaline phosphatase increased, while the concentration of serum albumin decreased in both sexes. Additionally, increased relative liver weights and diffuse lobular hepatocyte hypertrophy were observed in the males and females at 200 mg/kg/day. Decreased absolute and relative thymus weights were also noted at 200 mg/kg/day. Hemosiderin pigment deposits were observed in the spleen of males at 200 mg/kg/day, but the lesion was less severe than at 1000 mg/kg/day. The NOAEL for the study was 40 mg/kg/day for both males and females.

Based on these observations, the MTD for a treatment of 13 weeks in the dog can be considered to be greater than 1,000 mg/kg bw.

In a 52-weeks toxicity study, benthiavalicarb-isopropyl was administered in gelatine capsules to groups of 4 beagle dogs per sex and dose at dose levels of 0, 4, 40 and 400 mg/kg/day for 52 weeks. Decreased serum albumin levels and albumin/globulin levels were observed in females at 400 mg/kg/day. Levels of serum-free fatty acids were higher than in the controls in males at 400 mg/kg/day. Increased absolute and relative liver weights were observed in both sexes at 400 mg/kg/day. From the histopathological examination, only increase in the incidence of pituitary cysts (slight) was noted in females without a clear dose-response relationship. The NOAEL for the study was 40 mg/kg/day for both males and females.

Based on the observations, the MTD for a treatment of 52 weeks in the dog can be considered to be greater than 400 mg/kg bw.

Long-term toxicity study in rats and mice

Please refer to section 10.9 of the present document for the summaries about long term toxicity studies in rats and mice.

Study reference	Effective dose (mg/kg/d)	Length of exposure	Extrapolated effective dose when extrapolated to 90- day exposure	Classification supported by the study
Rat, dermal Anonymous 41, 2000b, Report no. WIL-156012, Vol.3 CA 6.3.3/1	> 1,000 mg/kg bw/day	28 days	>3,000 mg/kg bw/d	No (Cat 1: effects above 30 mg/kg bw/day. Cat 2: Effect above 300 mg/kg bw/day)
Rat, oral – neurotoxicity Anonymous 42, 2002, Report no. KCI 207/022387, Vol. 3 CA, B.6.7	1853.8 mg/kg/day	28 days	>5,561 mg/kg bw/d	No (Cat 1: effects above 30 mg/kg bw/day. Cat 2: Effect above 300 mg/kg bw/day)
Mouse, oral Anonymous 43, 1998a, Report no. 3385, Vol. 3 CA 6.3.2/1	Interpolation: between 33 mg/kg bw/day and 1293 mg/kg bw/day: 630 mg/kg bw/day. Additionally, in the two years LOAEL is at 358 mg/kg bw/day	90 days	Not applicable	No (Cat 1: effects above 10 mg/kg bw/day. Cat 2: effect expected above 100 mg/kg bw/day)
Rat, oral Anonymous 44, 1998b, Report no. 3386, Vol. 3 CA 6.3.2/2	Interpolation: between 14.1 mg/kg bw/day and 353 mg/kg bw/day: 169.5 mg/kg bw/day. Additionally, in the two years LOAEL is at 249.6 mg/kg bw/day	90 days	Not applicable	No (Cat 1: effects above 10 mg/kg bw/day. Cat 2: effect expected above 100 mg/kg bw/day)
Dog, oral Anonymous 45, 1999,	1,000 mg/kg bw/day	90 days	Not applicable	No GV for dog

Table 29: Extrapolation of equivalent effective dose for toxicity studies of greater or lesser duration than 90 days [if adequate, otherwise please delete]

Study reference	Effective dose (mg/kg/d)	Length of exposure	Extrapolated effective dose when extrapolated to 90- day exposure	
Report no. 3812, Vol. 3 CA 6.3.2/3				
Dog, oral Anonymous 46, 2001, Report no. 4551, CA 6.3.2/6	>400 mg/kg bw/day	1 year	Not applicable	No GV for dog
Rat, oral Anonymous 18, 2001a., Report no. 3822, Vol.3 CA, B.6.5/1	249.6 mg/kg bw/day	2 years	31.2 mg/kg bw/d	No (Cat 1: effects above 2.5 mg/kg bw/day. Cat 2: effect expected above 25 mg/kg bw/day)
Mouse, oral Anonymous 20, 2001b. Report no. 3823, Vol.3 CA, 6.5/2	358 mg/kg bw/day	2 years	44.75 mg/kg bw/d	No (Cat 1: effects above 2.5 mg/kg bw/day. Cat 2: effect expected above 25 mg/kg bw/day)

10.12.2 Comparison with the CLP criteria

In order to be classified as a substance targeting a specific organ after repeated exposure, the significant nonlethal toxic effect should be observable on a specific organ (either category 1 or 2 depending on the level of toxic effect and test) at a certain level. In the case of benthiavalicarb-isopropyl, while severe effects have been observed mainly in the liver, they were only seen at doses sufficiently above the guidance values given by CLP Regulation.

10.12.3 Conclusion on classification and labelling for STOT RE

Benthiavalicarb-isopropyl is not classified for specific target organ toxicity after repeated exposure.

10.13 Aspiration hazard

Hazard class is not applicable.

11 EVALUATION OF ENVIRONMENTAL HAZARDS

Benthiavalicarb-isopropyl is a fungicide active substance considered under Directive 91/414/EEC (subsequently Regulation 1107/2009) for representative use as a treatment of aerial parts downward spraying. Available studies on environmental fate and ecotoxicology have been considered and summarised in the original Draft Renewal Assessment Report, 2018 (DRAR, Volume 3, Annex B8 and Annex B9) and the renewal of approval dossier.

The key information pertinent to determining the environmental hazard classification for Benthiavalicarbisopropyl is presented below.

11.1 Rapid degradability of organic substances

Table 30: Summary of relevant information on rapid degradability

Method	Results	Remarks	Reference
EC Method C4,	CO2 evolution was found to be 2-3% of the	Ready biodegradability	DRAR Vol.
OECD TG 301B	theoretical maximum value after 28 days	Inoculum: sewage plant	3CA,
	incubation of KIF-230R-L. KIF-230 is not readily	effluent	B.8.2.2.1/01
	biodegradable	The study is considered	Bealing, 1998,
		acceptable	
OECD Test	In the 11 µg/l dose, degradation was rapid after a	Water aerobic	DRAR Vol.
Guideline No.	lag phase of 36 days with a $T1/2$ of 13.9 days.	Pelagic pond system (pH	3CA,
309	DT50 and 90 on the whole study period were	8.28) under aerobic	B.8.2.2.2/01
	respectively 49.9 and 82.2 days (HS). Major	conditions for 62 days at	Feldmann S,
	metabolites were: KIF-230-M8, KIF-230-M5 and	23°C	2015
	KIF-230-M4.	The study is souridaned	Doc. no.:
	In the 108 μ g/l dose, degradation was slow after a lag phase of 37 days with a T1/2 of 65.7days.	The study is considered acceptable	150011
	DT50 and 90 on the whole study period were	acceptable	
	respectively 103 and 256 days (HS). Major		
	metabolite was: KIF-230-M5.		
BBA Guidelines	In the Millstream Pond water, benthiavalicarb-	Water/sediment	DRAR Vol.
for PPP (Part IV,	isopropyl degraded rapidly reaching 10.2% after	Pond water/sediment	3CA,
5-1) (Dec. 1990);	30 days and 5.1% at last sampling time (100	system (pH 8.2) and a	B.8.2.2.3/01
SETAC	days). DT50 dissipation from water, sediment and	lake water/sediment	Goodyear A,
Pesticides, Section 8.2	system were respectively: 3.69 days (DFOP), 25.7 days (SFO) and 18.2 days (SFO).	system (pH 6.8) under aerobic conditions for	2000
(March 1995)	DegT50 water and sediment were respectively:	100 days at 20°C	
and EPA,	17.2 and 21.7 days (SFO).	100 aujs at 20 C	
subdivision N,	Major metabolites were: KIF-230-M3, KIF-230-	The study is considered	
Section 162-4	M5 and KIF-230-M4.	acceptable	
(Oct. 1982).	In the Emperor Lake water, benthiavalicarb-		
	isopropyl also degraded rapidly reaching 3.3%		
	after 59 days. DT50 dissipation from water, sediment and		
	system were respectively: 7.71 days, 16.5 days		
	(SFO) and 15.1 days (SFO).		
	DegT50 water and sediment were respectively:		
	25.7 and 9.63 days (SFO).		
	Major metabolites were: KIF-230-M3, KIF-230-		
SETAC	M5 and KIF-230-M4. KIF-230 decreased rapidly from 93 - 96% of the	Soil aerobic	DRAR Vol.
Pesticides,	applied amount at day 0 to 1 - 2% of the applied	Soli aerobic Sandy loam (pH 5.1,	JRAK VOL. 3CA,
Section 1.1	radioactivity at 120 days.	1.3% organic carbon), silt	B.8.1.1.2/01
(March 1995);	DT50 in sandy loam, silt loam and clay loam were	loam (pH 6.7, 3.0% OC),	
EPA,	respectively 16.4, 11.1 and 10.6 days (SFO). The	clay loam (pH 7.7, 4.0%	Purser D and Goodyear A,
Subdivision N,	corresponding DT90 were 57.6, 36.7 and 35.4	OC) for 120 days in the	2001.
Section 162-1	days.	dark at 20°C and 45% of	
(Oct. 1982); MAFF: 59		the maximum water holding capacity.	
NohSan No.		norunig capacity.	
4200 (Jan. 1985).		The study is considered	
OECD No 307		acceptable	
(April 2002)			
EPA Subdivision	The half-lives in the dark control and light	Photolysis	DRAR Vol.
N, Section 161-3	exposed samples were 12.4 and 20.4 days,	Silt loam soil (pH 7.4,	3CA,
(Oct. 1982); SETAC	respectively. These results indicate soil photolysis is not a significant route of degradation for the	5.0% organic carbon) for 30 days at 25°C and 29 -	B.8.1.1.3/01 Lewis CJ, 2001
Pesticides,	active substance.	38% moisture.	LCW15 CJ, 2001
Section 2 (March	Major metabolites: KIF-230-M-1 and KIF-230-M-	12 hours irradiation,	

Method	Results	Remarks	Reference
1995)	5	xenon lamp with no	
		wavelength < 290 nm.	
		The study is considered acceptable	
OECD Test	KIF-230-M-5 decreased steadily in the sandy	KIF-230-M-5 in soil	DRAR Vol.
Guideline No.	loam and silt loam soils with 22 and 25% of the	Silt loam (pH 5.71,	3CA,
307	initial applied concentrations after 120 days. In the loam soil the concentration declined rapidly to	1.42% organic carbon), loamy sand (pH 4.92,	B.8.1.1.4.1.2/01 Voelkel W,
	6% of the applied amount over a period of 37	0.92% OC), loam (pH	2015
	days.	7.20, 1.98% OC) for up	
		to 120 days in the dark at	
	DT50 in silt loam, loamy sand and loam were respectively 42.8, 26.2 and 2.13 days (DFOP).	20°C and with default field capacity	
	The corresponding DT90 were 1480, 178 and 24.2	neid capacity	
	days.	The study is considered acceptable	
SETAC	KIF-230-M-4 decreased from 79 - 86% to 13 -	KIF-230-M-4 in soil	DRAR Vol.
Pesticides, Section 1.1	40% of the applied amount in the first 6 hours. Then it decreased very slowly to 4 - 7% of the	Silt loam (pH 6.7, 4.5% organic carbon), sandy	3CA, B.8.1.1.4.1.2/02
(March 1995).	applied amount at study termination.	loam (pH 5.5, 1.3% OC),	Wright DR,
Complies with	DT50 in silt loam, sandy loam and clay loam were	clay loam (pH 8.0, 2.7%	2001
OECD No 307 (April 2002)	respectively 0.06, 0.08 and 0.18 days (DFOP). The corresponding DT90 were 33.7, 82.0 and 64.3	OC) for 90 days in the dark at 20°C and 45%	
(April 2002)	days.	water holding capacity	
		The study is considered acceptable	
SETAC	KIF-230-M-3 decreased from 88 - 90% of applied	KIF-230-M-3 in soil	DRAR Vol.
Pesticides,	amount at day 0 to 4.9 - 8.4% at the end of the	Silt loam (pH 6.7, 4.5%	3CA,
Section 1.1 (March 1995).	study period DT50 in silt loam was 7.34 (SFO), in sandy loam	organic carbon), sandy loam (pH 5.5, 1.4% OC),	B.8.1.1.4.1.2/03 Wright DR,
Complies with	it was 6.93 (SFO) and in clay loam it was 2.34	clay loam (pH 8.0, 2.7%	2001
OECD No 307	days for trigger (FOMC) and 5.55 days for	OC) for 30 days in the	
(April 2002)	modelling (SFO). The corresponding DT90 were 24.4, 23.0, 19.8 for triggering and 18.4 days for	dark at 20°C and 45% water holding capacity	
	modelling		
SETAC	VIE 220 M 1 downood out the in oild loop from	The study is considered acceptable	
SETAC Pesticides,	KIF-230-M-1 decreased quickly in silt loam from 80% of applied amount at day 0 to 5.6% at 30	KIF-230-M-1 in soil Silt loam (pH 6.7, 4.5%	DRAR Vol. 3CA,
Section 1.1	days. Decrease was a slower in clay loam, passing	organic carbon), sandy	B.8.1.1.4.1.2/04
(March 1995).	from 81% applied amount at day 0 to 9.2% at 60	loam (pH 5.5, 1.4% OC),	Wright DR,
Complies with OECD No 307	days. In sandy loam, decrease was very slow, passing from 89% of applied amount at day 0 to	clay loam (pH 8.0, 2.7% OC) for 30 days in the	2001
(April 2002)	19% at 120 days.	dark at 20°C and 45%	
× 1 - /	DT50 in silt loam, sandy loam and clay loam were	water holding capacity	
	respectively 3.83, 12.7 and 7.42 days (DFOP).		
	The corresponding DT90 were 15.5, 249 and 67.6 days.	The study is considered acceptable	
OECD Test	KIF-230-M-8 decreased rapidly to 2 - 4% of the	KIF-230-M-8 in soil	DRAR Vol.
Guideline No.	applied amount after 14 days in the silt loam and	Silt loam (pH 5.8, 1.38%	3CA,
307	loam soils. In the loamy sand soil, the concentration decreased more slowly and	organic carbon), loamy sand (pH 5.4, 1.16%	B.8.1.1.4.1.2/05 Voelkel W,
	represented 8% of the applied amount after 28	OC), loam (pH 7.2,	2015
	days.	1.98% OC) for 28 days in	Doc. no.:
		the dark at 21°C and 14.8	1150126
	DT50 in silt loam, loamy sand and loam were respectively 2.87, 7.44 and 1.85 days (SFO). The	- 31.9% moisture.	

CLH REPORT FOR BENTHIAVALICARB-ISOPROPYL (ISO)

Method	Results	Remarks	Reference
	corresponding DT90 were 9.53, 24.7 and 6.14	The study is considered	
	days.	acceptable	
Testing Method		KIF-230 was studied at	DRAR Vol.
C.7 (Directive	$DT50 > 1$ year at $25^{\circ}C$.	25°C and 50°C in sterile	3CA,
92/69/EEC).	No major hydrolysis products.	aqueous buffer solutions	B.8.2.1.1/01
EPA Subdivision		at pH 4, pH 5, pH 7 and	Yeomans P and
N, Section 161-1		рН 9.	Swales S, 2000
(October 1982);			
MAFF: 59		The study is considered	
NohSan No.		acceptable	
4200 (January			
1985) and OECD			
no. 111 (May			
1981).			
SETAC	Photolytic $DT50 = 16.2$ days at pH 5, 543 days at	KIF-230 under	DRAR Vol.
Pesticides,	pH 7 and 191 days at pH 9.	intermittent artificial	3CA,
Section 10	Many minor photolytic degradation products at	light for 12 h/day, for 30	B.8.2.1.2/01
(March 1995);	pH 5, all \leq 5% AR.	days at 25°C in sterile	Lewis C, 2001
EPA Pesticide		aqueous buffered	
Guidelines,		solutions at pH 5, pH 7	
Subdivision N,		and pH 9	
Section 161-2			
(October 1982)		The study is considered	
		acceptable	
EPA OPPTS	Photolytic DT50 = 795 days (SFO)	KIF-230 in synthetic	DRAR Vol.
835.5270 -	No photolytic degradation products	humic water under	3CA,
(January 1998)		natural sunlight for 16	B.8.2.1.3/01
		days	Habeeb SB,
			2016
		The study is considered	Doc. No.:
		acceptable	160001

11.1.1 Ready biodegradability

The ready biodegradability of KIF-230R-L was investigated using sewage plant effluent as the biological inoculum. The test system was shown to be viable based on the acceptable degradation of sodium benzoate. KIF-230R-L was demonstrated not to inhibit the biological degradation benzoate. CO2 evolution after 28 days incubation of KIF-230R-L was found to be 2-3% of the theoretical maximum value.. KIF-230R-L is not readily biodegradable under the conditions of the test.

11.1.2 BOD5/COD

No data submitted.

11.1.3 Hydrolysis

The hydrolysis of benthiavalicarb-isopropyl was studied at 25°C and 50°C in sterile aqueous buffer solutions at pH 4, pH 5, pH 7 and pH 9. The nominal concentration of benthiavalicarb-isopropyl was 4 μ g a.s./ml. Acetonitrile was used as co-solvent (0.9%-v/v). Total recovery of radioactivity was in the range of 96 to 107%.

Benthiavalicarb-isopropyl was considered hydrolytically stable. The half-life is assumed to be more than one year at 25°C. No major hydrolysis products were detected.

11.1.4 Other convincing scientific evidence

No data available.

11.1.4.1 Field investigations and monitoring data (if relevant for C&L)

No data available.

11.1.4.2 Inherent and enhanced ready biodegradability tests

No test was performed on inherent and enhanced ready biodegradability, however, there are sufficient available studies to describe the degradation behaviour of benthiavalicarb-isopropyl in the environment.

11.1.4.3 Water, water-sediment and soil degradation data (including simulation studies)

Aquatic simulation tests

Two studies are available: one aerobic mineralisation in surface water study (Feldmann S, 2015) and one water/sediment study (Goodyear A, 2000).

Aerobic mineralisation in surface water

The degradation and metabolism of benthiavalicarb-isopropyl were studied in a pelagic pond system (pH 8.28) under aerobic conditions for 62 days at 23°C. The test material was applied at a low dose of 11 μ g/l and a high dose of 108 μ g/l.

In the low dose system, degradation of benthiavalicarb-isopropyl was rapid after the ended lag phase (36 days) with a t¹/₂ value of 13.9 days (Hockey Stick). In the case of the pond system treated with the high dose, degradation after the ended lag phase (37 days) was much slower with a t¹/₂ value of 65.7days (Hockey Stick). CO2 and other volatile organic compounds did not exceed 1% of the applied radioactivity at any dose. In both test systems, 1-(6-fluoro-2,3-benzothiazol-2-yl)ethanamine (KIF-230-M-5) comprised circa 19 - 25% of the applied radioactivity at the end of the study. In the low dose test system 1-(6-fluoro-2,3-benzo-thiazol-2-yl)ethanone (KIF-230-M-4) comprised circa 24% of the applied radioactivity, N-[1-(6-fluoro-2,3-benzothiazol-2-yl)ethanol (KIF-230-M-8) comprised circa 10% of the applied radioactivity and 1-(6-fluoro-2,3-benzothiazol-2-yl)ethanol (KIF-230-M-3) comprised circa 5% of the applied radioactivity at the end of the study.

Water/sediment study

The degradation and metabolism of benthiavalicarb-isopropyl was studied (Goodyear 2000) in a pond water/sediment system (pH 8.2) and a lake water/sediment system (pH 6.8) under aerobic conditions for 100 days at 20°C. The test material used was [Bz-U-14C]-labelled benthiavalicarb-isopropyl.

In both systems, the disappearance of benthiavalicarb-isopropyl from water was rapid with DT50 values of 3.69 (DFOP) and 7.71 (SFO) days. The decline of benthiavalicarb-isopropyl from the aqueous phase was accompanied by a corresponding increase in residues in the sediment which represented 82 and 94% of the applied radioactivity after 100 days incubation.

The main metabolites detected in the sediments were 1-(6-fluoro-1,3-benzothiazol-2-yl)ethanamine (KIF-230-M-5) at circa 12% of applied radioactivity, 1-(6-fluoro-1,3-benzothiazol-2-yl)ethanone (KIF-230-M-4) at circa 23% of applied radioactivity and 1-(6-fluoro-1,3-benzothiazol-2-yl)ethanol (KIF-230-M-3) at circa 26% of applied radioactivity. 6-fluoro-2-hydroxy-1,3-benzothiazole was a minor degradation product (5% of the applied radioactivity). The degradation profile of benthiavalicarb-isopropyl was similar for aerobic soil and aerobic water/sediment systems, indicating that degradation in sediment was the result of microbial degradation. Volatile substances (CO2 and other organic volatile compounds) did not exceed 4% of the applied radioactivity. In the water layer of both test systems, 1-(6-fluoro-1,3-benzothiazol-2-yl)ethanome comprised < 3% of applied radioactivity, 1-(6-fluoro-1,3-benzothiazol-2-yl) ethanone comprised < 0.5% of applied radioactivity and 1-(6-fluoro-1,3-benzothiazol-2-yl) ethanol comprised $\leq 6\%$ of applied radioactivity.

Route of degradation in aerobic soil

The degradation of [Val-2-¹⁴C]- and [Bz-U-¹⁴C]-labelled benthiavalicarb-isopropyl was studied (Purser D and Goodyear A, 2001) in a sandy loam soil (pH 7.0, 2.5% organic carbon) for 365 days under aerobic conditions in the dark at 20°C and 27% moisture. Both labelled test materials were applied at a rate of 2 mg/kg soil.

The concentration of the parent compound decreased from 96 - 97% of the applied amount at day 0, to 2% at day 120 and to 0.3 - 0.4% after 365 days. The half-lives of $[Val-2-{}^{14}C]$ - and $[Bz-U-{}^{14}C]$ -labelled benthiavalicarb-isopropyl in soil were 16.1 - 21.9 days and 53.0 - 72.7 days.

The half-lives of [Val-2-¹⁴C]- and [Bz-U-¹⁴C]-labelled benthiavalicarb-isopropyl in soil were 16.1 - 21.9 days and 53.0 - 72.7 days (SFO).

The major degradation products detected were 6-fluoro-2-hydroxy-1,3-benzothiazole (KIF-230-M-1), 1-(6-fluoro-1,3-benzothiazol-2-yl)ethanone (KIF-230-M-4) and 1-(6-fluoro-1,3-benzo-thiazol-2-yl)ethanamine (KIF-230-M-5) with a maximum concentration of 10, 8 and 12% of the applied amount, observed on the 120th, 30th and 30th day of incubation, respectively. The corresponding concentrations at the end of the study period were 3, 0.7 and 1% of the applied amount, respectively. Non-extractable radioactivity increased from 2% of the applied amount at day 0 to 27 - 62% of the applied amount at the end of the study period. At study termination, evolved ¹⁴CO₂ and organic volatiles were 20 - 54% and < 0.1% of the applied amount, respectively.

In the second degradation in aerobic soil (Ikeda M, Usami S, Mizutani H and Yagi A, 2005), the degradation and metabolism of [Val-2-¹⁴C]- and [Bz-U-¹⁴C]-labelled benthiavalicarb-isopropyl were studied in two Japanese soils (Ushiku and Kakegawa) for 56 days in a closed system in darkness at 30°C and 55% of maximum water holding capacity following application of 0.75 mg a.s./kg dry soil.

The DT_{50} values for degradation of parent material, based on first-order reaction kinetics, were respectively 6.9 and 4.2 days in Ushiku soil and respectively 2.8 and 3.4 days in Kakegawa soil (SFO).

Where $[Bz-U^{-14}C]$ -labelled benthiavalicarb-isopropyl was applied to soil, the major degradation product detected was 1-(6-fluoro-1,3-benzothiazol-2-yl)ethanamine (KIF-230-M-5 with 20% of applied radioactivity). Other significant metabolites were 1-(6-fluoro-1,3-benzothiazol-2-yl)ethanone (KIF-230-M-4 with 9% of applied radioactivity) and 1-(6-fluoro-1,3-benzothiazol-2-yl)ethanol (KIF-230-M-3 with max 4% of applied radioactivity). The final soil residue was 6-fluoro-2-hydroxy-1,3-benzothiazole (KIF-230-M-1 with 6% of the applied radioactivity). These metabolites were not found where $[Val-2^{-14}C]$ -labelled benthiavalicarb-isopropyl was applied to soil. In the case of $[Val-2^{-14}C]$ -labelled benthiavalicarb-isopropyl and to *ca*. 36% of the applied amount of $[Bz-U^{-14}C]$ -labelled benthiavalicarb-isopropyl and to *ca*. 36% of the applied amount of $[Val-2^{-14}C]$ -labelled benthiavalicarb-isopropyl at day 56. On the basis of public literature data, it was indicated that bound benzothiazole metabolites degrade slowly in soil.

Soil photolysis study

The photolytic degradation of [Bz-U-¹⁴C]-labelled benthiavalicarb-isopropyl was studied (Lewis CJ, 2001) on a silt loam soil (pH 7.4, 5.0% organic carbon) from the United Kingdom at 2 mg a.s./kg soil for 30 days at

25°C and 29 - 38% moisture. [Bz-U-¹⁴C]-labelled benthiavalicarb-isopropyl was applied on the soil surface. The treated samples were irradiated for 12 hours per day using a xenon lamp filtered to cut off wavelengths below 290 nm.

The half-lives of [Bz-U-¹⁴C]-labelled benthiavalicarb-isopropyl in the dark control and light-exposed samples were 12.4 and 20.4 days (SFO), respectively. These results indicate that soil photolysis does not contribute to the dissipation of benthiavalicarb-isopropyl in soil.

In the dark control samples, the concentration of the parent compound decreased from 95% at day 0 to 23% of the applied amount at test termination. The major degradation products identified were 6-fluoro-2-hydroxy-1,3-benzothiazole (KIF-230-M-1 with max 16.2% of applied radioactivity) and 1-(6-fluoro-1,3-benzothiazol-2-yl)ethan-amine (KIF-230-M-5 with max 11.4% of applied radioactivity). At study termination, the evolved CO_2 and volatile organic compounds in the dark samples amounted to 1.8% and 0.2% of the applied amount, respectively. Non-extractable residues in the dark control samples amounted to 25% of the applied amount.

In the light-exposed samples, the concentration of the parent compound decreased from 95% at day 0 to 41% of the applied amount at test termination. The major degradation products were also 6-fluoro-2-hydroxy-1,3-benzothiazole (KIF-230-M-1) and 1-(6-fluoro-1,3-benzothiazol-2-yl)ethanamine (KIF-230-M-5) with maximum concentrations of 12 and 5% of the applied amount, respectively, observed on the 30th day of incubation. In the light exposed samples the evolved CO_2 and volatile organic compounds amounted to 1.5 and 0.5% of the applied amount, respectively. Non-extractable residues remaining after reflux extraction amounted to 19% of the applied amount at the end of the study

Rate degradation in aerobic soil

In Purser and Goodyear (2001), the degradation rate of radiolabelled benthiavalicarb-isopropyl was tested in parallel to the route of degradation. It was studied in a sandy loam, silt loam and clay loam soil (pH 5.1 - 7.7, 1.3 - 4.0% organic carbon) from the United Kingdom for 120 days under aerobic conditions in the dark at 20°C and 45% of the maximum water holding capacity at a rate of 2 mg a.s./kg soil.

The concentration of the parent compound decreased rapidly from 93 - 96% of the applied amount at day 0 to 1 - 2% of the applied radioactivity at the end of the study period. The half-lives (DT_{50}) for benthiavalicarbisopropyl were 16.4, 11.1 and 10.2 days in sandy loam, silt loam and clay loam soil, respectively. The principal metabolite KIF-230-M-5 appeared to be moderately persistent in soil with DT_{50} values ranging from 15.6 to 66.2 days. These values are only indicative.

The major degradation products were 1-(6-fluoro-1,3-benzothiazol-2-yl)ethanamine (KIF-230-M-5 with max 27% of the applied radioactivity) in the sandy loam soil on the 58th day of incubation, 1-(6-fluoro-1,3-benzothiazol-2-yl)ethanone (KIF-230-M-4 with max 9.8% of the applied radioactivity) in the silt loam soil on the 28th day of incubation, 1-(6-fluoro-1,3-benzothiazol-2-yl)ethanol (KIF-230-M-3 with max 12% of the applied radioactivity) observed in the silt loam soil on the 28th day of incubation and 6-fluoro-2-hydroxy-1,3-benzothiazol (KIF-230-M-1 with max 28% of the applied radioactivity) in the sandy loam soil on the last day of incubation. Non-extractable ¹⁴C-residues increased to 23 - 58% of the applied radioactivity at the end of the incubation period. At study termination, evolved CO₂ amounted to 4 - 12% of the applied radioactivity. No other volatile degradation products were detected.

Aerobic degradation of KIF-230-M-5

The degradation of non-labelled 1-(6-fluoro-1,3-benzothiazol-2-yl)ethanamine (KIF-230-M-5) was studied in silt loam, loamy sand and loam soils (pH 4.9 - 7.2, 0.9 - 2.0% organic carbon) from Germany for up to120

days under aerobic conditions in the dark at 20° C and with moisture contents around the corresponding default field capacity at a rate of 1 mg/kg dry soil.

Since CO_2 and other organic volatiles were not recovered in this study, the mass balance was not completed. On day 0 the concentrations in the silt loam, sandy loam and loam soil were 0.735, 1.015 and 1.039 mg/kg soil, respectively. In the sandy loam and silt loam soils, the concentrations decreased steadily to 22 and 25% of the corresponding initial concentrations after 120 days of incubation. In the loam soil, the concentration declined rapidly to 6% of the applied amount over a period of 37 days.

The calculated DT_{50} and DT_{90} values for KIF-230-M-5 in the silt loam, sandy loam and loam soils were 42.8 and 1480 days, 26.2 and 178 days and 2.13 and 24.4 days, respectively.

Aerobic degradation of KIF-230-M-4

The degradation of non-labelled 1-(6-fluoro-1,3-benzothiazol-2-yl)ethanone (KIF-230-M-4) was studied in silt loam, sandy loam and clay loam soils (pH 5.5 - 8.0; 1.3 - 4.5% organic carbon) from the United Kingdom for 90 days under aerobic conditions in the dark at 20°C and 45% of maximum water holding capacity at the rate of 1 mg/kg soil.

The mass balance for the study was not completed because CO_2 and other organic volatiles were not recovered. In the first six hours, the concentration of KIF-230-M-4 decreased from 79 - 86% of the applied amount to 13 - 40% of the applied amount and then decreased very slowly to 4 - 7% of the applied amount at study termination.

The half-lives (DT_{50}) of metaboliteKIF-230-M-4 in the silt loam, sandy loam and clay loam soil were respectively 1, 2 and 4 hours, while the periods to reach 90% dissipation (DT_{90}) were respectively 34, 82 and 64 days.

Aerobic degradation of KIF-230-M-3

The degradation of non-labelled 1-(6-fluoro-1,3-benzothiazol-2-yl)ethanol (KIF-230-M-3) was studied in silt loam, sandy loam and clay loam soils (pH 5.5 - 8.0; 1.4 - 4.5% organic carbon) from the United Kingdom for 30 days under aerobic conditions in darkness at 20°C and 45% of maximum water holding capacity at a rate of 1 mg/kg soil.

The mass balance was not completed because CO_2 and other organic volatiles were not recovered. The concentrations of metabolite KIF-230-M-3 were 88 - 90% of the applied amount at day 0 and decreased to 4.9 - 8.4% of the applied amount at the end of the study period.

The calculated half-lives (DT_{50}) for metabolite KIF-230-M-3 in aerobic soils ranged between2and 7 days, and the time for 90% degradation ranged between 20 and 24 days.

Aerobic degradation of KIF-230-M-1

The degradation of non-labelled 6-fluoro-2-hydroxy-1,3-benzothiazole (KIF-230-M-1) was studied in silt loam, sandy loam and clay loam soils (pH 5.5 - 8.0, 1.4 - 4.5% organic carbon) from the United Kingdom for up to 120 days under aerobic conditions in the dark and 45% of maximum water holding capacity at a rate of 1 mg/kg soil.

A mass balance was not completed for the study because CO_2 and other volatile compounds released were not recovered. The concentrations of metabolite KIF-230-M-1 decreased from 80 - 89% of the applied amount at day 0 to 5.6 - 32% of the applied amount at day 30. The sampling was continued in the sandy loam and clay loam soils where the concentrations declined slowly to 5.4% of the applied amount in the sandy loam soil at day 90 and 19% of the applied amount in the clay loam soil at day 120. The half-life (DT_{50}) values for metabolite KIF-230-M-1 in soils ranged from 4 to 13 days and the time required to reach 90% degradation (DT_{90}) ranged from 16 to 249 days.

Aerobic degradation of KIF-230-M-8

The degradation of non-labelled N-[1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]ethanamide (KIF-230-M-8) was studied in silt loam, loamy sand and loam soils (pH 5.4 - 7.2, 1.2 - 2.0% organic carbon) from Germany for up to 28 days under aerobic conditions in darkness at 21°C and 14.8 - 31.9% moisture at a rate of 1.004 mg/kg soil.

No mass balance was completed because CO_2 and other volatile compounds released were not recovered. The concentration of metabolite KIF-230-M-8 decreased rapidly to 2 - 4% of the applied amount after 14 days in the silt loam and loam soils. In the loamy sand soil, the concentration decreased more slowly and represented 8% of the applied amount after 28 days.

The half-lives (DT_{50}) for metabolite KIF-230-M-8 in soil were 2 to 7 days.

11.1.4.4 Photochemical degradation

Direct photodegradation

The aqueous photolysis of benthiavalicarb-isopropyl was studied under intermittent artificial light for 12 hours per day for 30 days at 25°C in sterile aqueous buffered solutions at pH 5, pH 7 and pH 9 with an initial concentration of 4 μ g a.s./ml.

The photolytic half-life for benthiavalicarb-isopropyl was calculated to be 16.2 days at pH 5, 543 days at pH 7 and 191 days at pH 9. The overall mass balance was 96% for the irradiated samples and 98% for the dark control samples.

The study indicated that the active R-L isomer was not converted to the S-L isomer following irradiation at any pH. Many minor photolytic degradation products were formed at pH 5 in amounts of \leq 5% of the applied radioactivity and were not identified. Evolution of CO2 accounted for 28% of the applied radioactivity at pH 5, for 2.2% at pH 9 and 0.5% at pH 7. Other volatile organic compounds accounted for < 0.5% of the applied radioactivity.

Indirect photodegradation

In an indirect photolysis screening study, the aqueous photolysis of benthiavalicarb-isopropyl was studied in synthetic humic water at an initial concentration of $1 \mu g/ml$ under natural sunlight for 16 days.

The photolytic half-life (DT50) calculated assuming first-order linear reaction kinetics was 795 days (rate constant of 0.000872 d-1, the correlation coefficient of 0.0619).

Mass balance at each sampling point ranged from 92.2 to 99.4% of the applied radioactivity over the 16 days. No photolytic degradation products were formed. Indirect photolysis is unlikely to be a significant mechanism for dissipation of benthiavalicarb-isopropyl in aquatic environments.

11.2 Environmental transformation of metals or inorganic metals compounds

Not applicable.

11.2.1 Summary of data/information on environmental transformation

Not applicable.

11.3 Environmental fate and other relevant information

Overall, even though benthiavalicarb-isopropyl was not readily biodegradable and inherent biodegradability was not tested, the active substance demonstrated biodegradation under soil laboratory studies, aerobic mineralisation study and water/sediment studies. Major metabolites that were identified included KIF-230-M1, KIF-230-M3, KIF-230-M-4 and KIF-230-M-5. The degradation rates of these metabolites were tested in soil aerobic degradation studies.

Degradation rates were all below the trigger values for persistence. In soil, KIF-230-M-5 (Voelkel, 2015) and KIF-230-M-1 (Wright DR, 2001) had DT90 values > 200 days. However, both have low maximum predicted environmental concentrations in soil following application of benthiavalicarb-isopropyl to potatoes based on the recommended use rate of 75 g a.s./ha and a realistic worst-case exposure scenario ranged between 0.010 and 0.089 mg/kg soil (see point CP B.8.2.2). Additionally, in a field rotational crop study (Grolleau, 2011) conducted at two sites in France and Italy, benthiavalicarb-isopropyl was applied to a preceding potato crop at a seasonal rate of 450 g as/ha. Residues of KIF-230-M-5 were detected at the two sites until one year after application and the levels ranged from < 0.01 to 0.02 mg/kg. Residues of KIF-230-M-1 were not detected in the French site and only in small amounts (< 0.01 mg/kg) in the Italian site. It is of note that accumulation over many years of repeated application is taken into account in PECS calculations. These calculations can be regarded as sufficiently protective as these are based on laboratory degradation rates.

11.4 Bioaccumulation

The summary of partition coefficient test data evaluated during Annex I inclusion of benthiavalicarbisopropyl and submitted for the purposes of EU renewal is reported below. Only information considered adequate, reliable and relevant for the classification proposal has been included.

The available partition coefficient test data for relevant metabolites of benthiavalicarb-isopropyl (KIF-230-M-1, KIF-230-M-3, KIF-230-M-4, KIF-230-M-5, KIF-230-M-8,) revealed logPow values <4 (trigger for CLP). Therefore, studies with these metabolites are not described here in detail.

Method	Results	Remarks	Reference
EEC A.8 / OECD	KIF-230R-L pure a.s. Batch No: lot 34	The study is	DRAR Vol. 3CA, B.2.7/01
117 - Partition	Purity: 100%	considered acceptable	Bates, 1999
coefficient n- octanol/water (logPow)	pH 5, 20-25 °C: 2.63 (range 2.37 – 2.93) pH 9, 20-25 °C: 2.62 (range 2.36 – 2.90) pH unadjusted (distill H2O), 20-25 °C: 2.56 (range 2.28 – 2.86)		Report Nr 535/41-D2141 (amended 2003)
OECD 107 - Partition coefficient n- octanol/water (logPow)	KIF-230-M-1 Batch No.: lot 4, Purity: 100% 2.30±0.01 at 20°C	The study is considered acceptable	DRAR Vol. 3CA, B.2.7/02 Inoue, 2000a Report Nr 2000-72
OECD 107 - Partition coefficient n- octanol/water (logPow)	KIF-230-M-3 Batch No.: lot 3 Purity: 99.5% 2.26±0.01 at 20°C	The study is considered acceptable	DRAR Vol. 3CA, B.2.7/03 Inoue, 2000b Report Nr 2000-73
OECD 107 -	KIF-230-M-4	The study is	DRAR Vol. 3CA, B.2.7/04

 Table 31: Summary of relevant information on bioaccumulation

Method	Results	Remarks	Reference
Partition coefficient n- octanol/water (logPow)	Batch No.: lot 3 Purity: 100% 2.58±0.01 at 20°C	considered acceptable	Inoue, 2000c Report Nr 2000-74
OECD 117 - Partition coefficient n- octanol/water (logPow)	KIF-230-M-5 Batch No.: lot 2 Purity: 100% 1.7 at 25°C	The study is considered acceptable	DRAR Vol. 3CA, B.2.7/05 Matsumoto 2001b Report Nr 81892
OECD 107 - Partition coefficient n- octanol/water (logPow)	KIF-230-M-8 Batch No.: lot 4 Purity: 100% 1.84±0.01 at 25°C	The study is considered acceptable	DRAR Vol. 3CA, B.2.7/06 Okazaki, 2015 (2015-002)

11.4.1 Estimated bioaccumulation

Taking into account that log Pow values for benthiavalicarb and its relevant metabolites are all < 4 (trigger for CLP being 4), there is low potential for bioaccumulation and therefore no bioaccumulation studies were conducted.

11.4.2 Measured partition coefficient and bioaccumulation test data

Partition coefficients octanol/water for benthiavalicarb-isopropyl was determined by the High Performance Liquid Chromatography (HPLC) method according to the OECD Test Guideline 117 giving the results as follow: 2.63 at pH 5 and 20-25 °C, 2.62 at pH 9 and 20-25 °C and 2.56 at pH unadjusted (distill H2O), 20-25 °C.

The study is considered valid and reliable. It is relevant for classification purposes.

The study (Bates, M 1999) with benthiavalicarb-isopropyl and studies (Inoue, J 2000a, 2000b, 2000c, Matsumoto, T 2001b,) with metabolites respectively KFI-230-M-1, KIF-230-M3, KIF-230-M-4 and KIF-230-M-5, were already evaluated during Annex I inclusion of Benthiavalicarb-isopropyl and they were accepted. The study (Okazaki, R 2015) for metabolite KIF-230-M-8 was submitted for the purpose of EU renewal.

11.5 Acute aquatic hazard

The summary of the aquatic toxicity studies evaluated during Annex I inclusion of benthiavalicarb-isopropyl and submitted for the purposes of EU renewal is reported below. Only information considered adequate, reliable and relevant for the classification proposal has been included.

The available acute toxicity data for relevant metabolites of benthiavalicarb-isopropyl (KIF-230-M-1, KIF-230-M-3, KIF-230-M-4, KIF-230-M-5, KIF-230-M-8,) revealed toxicity values > 1 mg/L. Therefore, the studies with these metabolites are not described here in detail.

Method	Species	Test material	Results ¹	Remarks	Reference
Fish					
Acute toxicity to fish.	Rainbow trout Oncorhynchus mykiss	benthiavalicarb- isopropyl, purity: 87.9% as KIF-	96h LC ₅₀ >10.0 mg a.s./L (nom)	Accepted	DRAR Vol. 3CA, B.9.2.1.1/01 Anonymous 47 (2000a) Rep. No. 535/49-D2145
OECD 203, (flow-through, mortality)		230R-L			
Acute toxicity	Common carp	benthiavalicarb-	96h LC ₅₀ >10.0 mg	Accepted	DRAR Vol. 3CA,

Table 32: Summary of relevant information on acute aquatic toxicity

CLH REPORT FOR BENTHIAVALICARB-ISOPROPYL (ISO)

to fish.	Cyprinus carpio	isopropyl, purity: 87.9% as KIF- 230R-L	a.s./L (nom)		B.9.2.1.1/02 Anonymous 48 (2000b) Rep. No. 535/50-D2145
OECD 203,					
(flow- through,					
mortality)					
Acute toxicity	Bluegill	benthiavalicarb-	96h LC ₅₀ >10.0 mg	Accepted	DRAR Vol. 3CA,
to fish.	Lepomis	isopropyl, purity:	a.s./L (nom)		B.9.2.1.1/03
	macrochirus	87.5% as KIF- 230R-L			Anonymous 49 (2000) Rep. No. 131/147
OECD 203,		200R E			Rep. 101 151/11/
(flow-through, mortality)					
Acute toxicity	Rainbow trout	metabolite	96h LC50 = 14.2 mg	Accepted	DRAR Vol. 3CA,
to fish.	Oncorhynchus	KIF-230-M-1,	pm/L (nom)	_	B.9.2.1.2/01
	mykiss	purity: 100%			Anonymous 50 (2014a) Rep. No. S14-02339 (KCI
OECD 203,					150005)
(static, mortality)					
Acute toxicity	Rainbow trout	metabolite	96h LC _{50 =} 40.5 mg	Accepted	DRAR Vol. 3CA,
to fish.	<i>Oncorhynchus</i>	KIF-230-M-3,	pm/L (nom)	prod	B.9.2.1.2/02
	mykiss	purity: 99.9%			Anonymous 51 (2014b)
OECD 203,					Rep. No. S14-02340 (KCI 150006)
(static,					,
mortality) Acute toxicity		metabolite	96h LC ₅₀ >3.36 mg	Accepted	DRAR Vol. 3CA,
to fish.	Rainbow trout Oncorhynchus	KIF-230-M-4,	pm/L (mm)	Accepted	B.9.2.1.2/03
	mykiss	purity: 100%			Anonymous 52 (2014c)
OECD 203,					Rep. No. S14-02341 (KCI 150007)
(static,					150007)
mortality)					DD I D I I AGI
Acute toxicity to fish.	Rainbow trout	metabolite KIF-230-M-5,	96h LC ₅₀ >10.0 mg pm/L (nom)	Accepted	DRAR Vol. 3CA, B.9.2.1.2/04
to fish.	Oncorhynchus mykiss	purity: 99.86%	pin E (nom)		Anonymous 53 (2014d)
OECD 203,	ingition of the second s	pung. 99.00%			Rep. No. S14-02342 (KCI
(semi-static,					150008)
mortality)					
Acute toxicity	Rainbow trout	metabolite	96h LC50>100.0 mg	Accepted	DRAR Vol. 3CA, B.9.2.1.2/05
to fish.	Oncorhynchus mykiss	KIF-230-M-8, purity: 100%	pm/L (nom)		Anonymous 54 (2014 ^e)
OECD 203,	птуклоо	punty. 10070			Rep. No. S14-02343 (KCI
(semi-static,					150009)
mortality)					
N 1 45					
Daphnids		1 .1			
Acute toxicity	Water flea	benthiavalicarb- isopropyl, purity:	48h EC ₅₀ >10.0 mg a.s./L (nom)	Accepted	DRAR Vol. 3CA, B.9.2.4.1/01
to aquatic invertebrates.	Daphnia magna	isopropyl, purity: 87.9% as KIF-	unon La (nonn)		Mattock (2000c)
		230R-L			Rep. No. 535/48-D2145
OECD 202					
(static,					
immobilisation)		motols ality	49h EC 14.0	A apparte 1	DRAP Vol 2CA
Acute toxicity to aquatic	Water flea Daphnia magna	metabolite KIF-230-M-1,	$48h EC_{50} = 14.0 mg$ pm/L (nom)	Accepted	DRAR Vol. 3CA, B.9.2.4.2/01
invertebrates.	Daphnia magna	purity: 100%	·····		Eser (2015a)
		1 3 - - - - - - - - - -			Rep. No. S14-02345 (KCI
OECD 202					150014)
(semi-static,					
immobilisation)					

CLH REPORT FOR BENTHIAVALICARB-ISOPROPYL (ISO)

Acute toxicity to aquatic invertebrates.	Water flea Daphnia magna	metabolite KIF-230-M-3 purity: 99.5%	48h EC ₅₀ = 55.3 mg pm/L (nom)	Accepted	DRAR Vol. 3CA, B.9.2.4.2/02 Mattock (2001b) Rep. No. 535/86-D2145
OECD 202 (static, immobilisation)					
Acute toxicity to aquatic invertebrates.	Water flea Daphnia magna	metabolite KIF-230-M-4 purity: 100%	48h EC ₅₀ = 6.28 mg pm/L (mm)	Accepted	DRAR Vol. 3CA, B.9.2.4.2/03 Mattock (2001c) Rep. No. 535/87-D2145
OECD 202 (static, immobilisation)					
Acute toxicity to aquatic invertebrates.	Water flea Daphnia magna	metabolite KIF-230-M-5 purity: 100%	48h EC ₅₀ >10.0 mg pm/L (nom)	Accepted	DRAR Vol. 3CA, B.9.2.4.2/04 Oishi (2001) Rep. No. 5327 (001-281)
OECD 202 (semi-static, immobilisation)					
Acute toxicity to aquatic invertebrates.	Water flea Daphnia magna	metabolite KIF-230-M-8, purity: 100%	48h EC ₅₀ >100.0 mg pm/L (nom)	Accepted	DRAR Vol. 3CA, B.9.2.4.2/05 Eser (2015b) Rep. No. S14-02346 (KCI 150015)
OECD 202 (static, immobilisation)					150015)
Algae				I	I
Acute toxicity to algae OECD 201 (tatia growth)	Green alga Selenastrum capricornutum	benthiavalicarb- isopropyl, purity: 87.5% as KIF- 230R-L	72h ErC50 >10.0 mg a.s./L (nom) 72h EyC50 >10.0 mg a.s./L (nom)	Accepted	DRAR Vol. 3CA, B.9.2.6.1/01, Mattock (2000e), Rep. No. 535/52-D2145
(static, growth) Acute toxicity to algae OECD 201 Growth	Green algae Pseudokirchneriella subcapitata	metabolite KIF-230-M-1, purity: 100%	72h ErC50 = 38.6 mg pm/L (nom) 72h EyC50 = 30.1 mg pm/L (nom)	Accepted	DRAR Vol. 3CA, B.9.2.6.2/01, Falk (2014a), Rep. No. S14-02347 (KCI 150016)
Inhibition Test Acute toxicity	Green algae	metabolite	72h ErC50 = 90.9	Accepted	DRAR Vol. 3CA, B.9.2.6.2/02,
to algae OECD 201 Growth Inhibition Test	Pseudokirchneriella subcapitata	KIF-230-M-3, purity: 99%	mg pm/L (nom) 72h EyC50 = 42.0 mg pm/L (nom)		B.9.2.0.2/02, Falk (2014b), Rep. No. S14-02348 (KCI 150017)
Acute toxicity to algae OECD 201 Growth	Green algae Pseudokirchneriella subcapitata	metabolite KIF-230-M-4, purity: 100%	72h ErC50 >10.0 mg pm/L (nom) 72h EyC50 = 7.42 mg pm/L (nom)	Accepted	DRAR Vol. 3CA, B.9.2.6.2/03, Falk (2014c), Rep. No. S14-02349 (KCI 150018)
Inhibition Test					
Acute toxicity to algae OECD 201	Green algae Pseudokirchneriella subcapitata	metabolite KIF-230-M-5, purity: 99.86%	72h ErC50 = 71.1 mg pm/L (nom) 72h EyC50 = 44.0 mg pm/L (nom)	Accepted	DRAR Vol. 3CA, B.9.2.6.2/04, Falk (2015a), Rep. No. S14-02350 (KCI 150019)

Growth Inhibition Test					
Acute toxicity to algae OECD 201 Growth Inhibition Test	Green algae Pseudokirchneriella subcapitata	metabolite KIF-230-M-8, purity: 100%	72h ErC50 >100.0 mg pm./L (nom) EyC50 >100.0 mg pm./L (nom)	Accepted	DRAR Vol. 3CA, B.9.2.6.2/05, Falk (2015b), Rep. No. \$14-02351 (KCI 150020)

¹Indicate if the results are based on the measured or on the nominal concentration

11.5.1 Acute (short-term) toxicity to fish

Benthiavalicarb-isopropyl was tested in 3 acute toxicity tests (Anonymous 472000a and Anonymous 48 200b, Anonymous2000) on fish (*Oncorhynchus mykiss*, *Cyprinus carpio*, *Lepomis macrochirus*) under flow-through conditions for 96 hours at the sole concentration of 10 mg a.s./L (limit test). The content was analysed in the three studies and found to be within the \pm 20% interval of deviation from the nominal concentration, therefore endpoints were derived based on the nominal concentration. In the three studies, the LC₅₀ was found to be above 10 mg a.s./L.

These studies were already evaluated during Annex I inclusion of benthiavalicarb-isopropyl and they were accepted. All studies for metabolites (Anonymous50, 2014a; Anonymous 51, 2014b; Anonymous 52, 2014c; Anonymous 53, 2014d; Anonymous 54, 2014e) were submitted for the purpose of EU renewal.

11.5.2 Acute (short-term) toxicity to aquatic invertebrates

One acute toxicity study (Mattock 2000c) was conducted on daphnids (*Daphnia magna*) with benthiavalicarb-isopropyl under static conditions at the nominal concentration of 10 mg a.s./L. The content was analysed and found to be within the \pm 20% interval of deviation from the nominal concentration, therefore endpoint was derived based on the nominal concentration. The EC₅₀ for immobilisation was found to be above 10 mg a.s./L.

The study (Mattoc 2000c) with benthiavalicarb-isopropyl and studies (Mattock 2001b, 2001c, Oishi, N. (2001) with metabolites respectively KIF-230-M3, KIF-230-M-4 and KIF-230-M-5, were already evaluated during Annex I inclusion of Benthiavalicarb-isopropyl and they were accepted. The studies (Eser 2015a, and 2015b) for metabolites KIF-230-M-1 and KIF-230-M-8 were submitted for the purpose of EU renewal.

11.5.3 Acute (short-term) toxicity to algae or other aquatic plants

One study (Mattock 2000e) was conducted on green algae (*Selenastrum capricornutum*) with benthiavalicarb-isopropyl at different concentrations (0.63, 1.25, 2.5, 5.0 and 10 mg KIF-230/L, control and solvent control, 3 replicates with an initial cell density of $1x10^4$ cells/mL per treatment) under static conditions to detect possible growth inhibition of the algae population. The content was analysed and found to be within the allowed deviation for the endpoint to be derived on the nominal concentrations. Effective concentrations inhibiting 50 per cent of the growth rate and the yield was above the highest tested concentration of 10 mg a.s./L while NOEC for growth rate was found to be equal to 2.50 mg a.s./L. As for fish and daphnids, based on the available study, benthiavalicarb-isopropyl is shown to be moderately toxic for algae.

This study was already evaluated during Annex I inclusion of benthiavalicarb-isopropyl and was accepted. The studies (Falk 2014a, 2014b, 2014c, 2015a and 2015b) with metabolites, respectively KIF-230-M-1, KIF-230-M-3, KIF-230-M-4, KIF-230-M-5, and KIF-230-M-8, were submitted for the purpose of EU renewal.

11.5.4 Acute (short-term) toxicity to other aquatic organisms

No other aquatic organisms were tested.

11.6 Long-term aquatic hazard

The summary of the aquatic toxicity studies evaluated during Annex I inclusion of benthiavalicarb-isopropyl and submitted for the purposes of EU renewal is reported below. Only information considered adequate, reliable and relevant for the classification proposal has been included.

Regarding the metabolites of benthiavalicarb-isopropyl, only metabolites KIF-230-M-1, KIF-230-M-3, KIF-230-M-4, KIF-230-M-5 and KIF-230-M-8 toxicity data to algae are presented. The studies with these metabolites are described below.

Method	Species	Test material	Results ¹	Remarks	Reference
Fish	~ F • • • •				
ELS, semi- static, hatching, length, weight, mortality	Zebrafish Danio rerio	KIF-230, purity: 97.0% as KIF- 230R-L	35-day NOEC ≥ 5.0 mg a.s./L (nom) No ECx derivation due to lack of effect	Acceptable	DRAR Vol. 3CA, B.9.2.2.1/01, Anonymous 55 (2015) Rep. No. S14-02344 (KCI 150075)
OECD 210 Fish juvenile growth test, flow- through, weight OECD 215	Rainbow trout Oncorhynchus mykiss	KIF-230, purity: 87.9% as KIF- 230R-L	28-day NOEC = 1.0 mg a.s./L (nom) EC10 weight = 3.50mg a.s./L (95% CI: 1.84 – 6.65mg a.s./L) No reliable EC10 for growth rate	Acceptable despite flows in design and statistical analysis	DRAR Vol. 3CA, B.9.2.2.2/01, Anonymous 56 (2001a) Rep. No. 535/61- D2149
Daphnids					
Long term and chronic toxicity to aquatic invertebrates semi-static, reproduction OECD 211	Water flea Daphnia magna	KIF-230, purity: 87.9% as KIF- 230R-L	21-day NOEC = 3.0 mg a.s./L EC _{10offspring} = 4.30mg a.s./L (nom) (95% CI: 4.28 – 4.31 mg a.s./L)	Acceptable	DRAR Vol. 3CA, B.9.2.5/01, Mattock (2000d), Rep. No. 535/53-D2145
Algae					
Acute toxicity to algae or other aquatic plants. Growth Inhibition Test	Green alga Selenastrum capricornutum	KIF-230, purity: 87.5% as KIF- 230R-L	72h NOE _r C = 2.5 mg a.s./L (nom)	Acceptable	DRAR Vol. 3CA, B.9.2.6.1/01, Mattock (2000e), Rep. No. 535/52-D2145
OECD 201					
Acute toxicity to algae or	Green algae Pseudokirchneriella subcapitata	metabolite KIF-230-M-1, purity: 100%	72h NOE _r C = 20.0 mg pm/L (nom)	Acceptable	DRAR Vol. 3CA, B.9.2.6.2/01,

Table 33: Summary of relevant information on chronic aquatic toxicity

CLH REPORT FOR BENTHIAVALICARB-ISOPROPYL (ISO)

	1				
other aquatic					Falk (2014a),
plants.					Rep. No. S14- 02347 (KCI
Growth					150016)
Inhibition					150010)
Test					
OECD 201	Crear alars	metabolite	72h NOE C 160 mm	Assertable	
Acute	Green algae		$72h \text{ NOE}_{r}\text{C} = 16.0 \text{ mg}$	Acceptable	DRAR Vol. 3CA,
toxicity to	Pseudokirchneriella	KIF-230-M-3,	pm/L (nom)		B.9.2.6.2/02,
algae or	subcapitata	purity:99%			Falk (2014b),
other aquatic					Rep. No. S14-
plants.					02348 (KCI
Growth					150017)
Inhibition					
Test					
OFCE					
OECD					
Guideline					
201					
Acute	Green algae	metabolite	$72h \text{ NOE}_{r}\text{C} = 5.0 \text{ mg}$	Acceptable	DRAR Vol. 3CA,
toxicity to	Pseudokirchneriella	KIF-230-M-4,	pm/L (nom)		B.9.2.6.2/03,
algae or	subcapitata	purity: 100%			Falk (2014c),
other aquatic					Rep. No. S14-
plants.					02349 (KCI
Growth					150018)
Inhibition					
Test					
OECD					
Guideline					
201	Crear along		72h NOE C 25.0 mg	A	
Acute	Green algae	metabolite	$72h \text{ NOE}_{r}\text{C} = 25.0 \text{ mg}$	Acceptable	DRAR Vol. 3CA,
toxicity to	Pseudokirchneriella	KIF-230-M-5,	pm/L (nom)		B.9.2.6.2/04,
algae or	subcapitata	purity:			Falk (2015a),
other aquatic		99.86%			Rep. No. S14-
plants.					02350 (KCI
Growth					150019)
Inhibition					
Test					
OECD					
Guideline					
201	Crean alaac	matchalita	72h NOE C 22.2	A acceptable	
Acute	Green algae	metabolite	$72h \text{ NOE}_{r}\text{C} = 33.3 \text{ mg}$	Acceptable	DRAR Vol. 3CA,
toxicity to	Pseudokirchneriella	KIF-230-M-8,	pm/L (nom)		B.9.2.6.2/05,
algae or	subcapitata	purity: 100%			Falk (2015b),
other aquatic					Rep. No. S14-
plants.					02351 (KCI
Growth					150020)
Inhibition					
Test					

OECD Guideline 201					
--------------------------	--	--	--	--	--

¹Indicate if the results are based on the measured or on the nominal concentration

11.6.1 Chronic toxicity to fish

Two chronic toxicity studies are available (Anonymous 55,2015; Anonymous 56,2001a) on fish (*Danio rerio* and *Oncorhynchus mykiss*). One test was an early life stage test under semi-static conditions were fertilised eggs were exposed to different concentrations: 0.05, 0.15, 0.49, 1.56 and 5.00 mg a.s./L, control and solvent control, 4 replicates of 20 eggs per treatment. The other test was a fish juvenile test under flow-through conditions where juvenile fish were exposed to different concentrations of benthiavalicarb-isopropyl: 0.1, 0.32, 1.0, 3.2 and 10 mg a.s./L, control and solvent control, 1 replicate of 10 fish per treatment. In both studies, the content was analysed and found in the \pm 20% interval of deviation from the nominal concentrations. Consequently, endpoints were derived based on nominal concentrations. In the early life stage test, no toxic effect was observed up to 5 mg a.s./L, setting the NOEC above this value. In the fish juvenile test, the strong effects were observed on growth and weight at 10 mg a.s./L, and at 3.2 mg a.s./L effects were observed in weight and pseudo specific growth in one fish, with impact on the average growth values, therefore the NOEC was set at 1 mg a.s./L. Based on the available studies, benthiavalicarb-isopropyl was shown to be moderately toxic to fish for chronic parameters.

The study (Anonymous 56,2001a) was already evaluated during Annex I inclusion of benthiavalicarbisopropyl, and it was accepted. The study (Anonymous 55, 2015) was submitted for the purpose of EU renewal.

11.6.2 Chronic toxicity to aquatic invertebrates

One reproduction test (Mattock 2000d) was realised on daphnids (*Daphnia magna*) under semi-static conditions. Young daphnids were exposed to different concentrations of benthiavalicarb-isopropyl (0.1, 0.3, 1.0, 3.0, and 10 mg KIF-230/L, control and solvent control, 10 replicates of 1 daphnid per treatment) and observed for reproduction for 21 days. The content was analysed and found to be within the allowed deviation for the endpoint derived on the nominal concentrations. NOEC for reproduction and length was set at 3 mg a.s./L and was found to be the most critical endpoint. Based on the available study, benthiavalicarb-isopropyl is shown to be moderately toxic for daphnids for chronic endpoints.

This study was already evaluated and accepted during Annex I inclusion of benthiavalicarb-isopropyl.

11.6.3 Chronic toxicity to algae or other aquatic plants

Please refer to previous point 11.5.3 where the toxicity tests with the parent and metabolites on algae are included.

11.6.4 Chronic toxicity to other aquatic organisms

No other aquatic organisms were tested.

11.7 Comparison with the CLP criteria

11.7.1 Acute aquatic hazard

Table 34: Summary of information on acute toxicity relevant for classification

CLH REPORT FOR	BENTHIAVALICARB-ISOPROPYL (ISO)
oprinter out i ou	

Method	Species	Test	Results	Remarks	Reference
		material			
OECD 203,	Rainbow trout	KIF-230,	96h LC50 > 10.0 mg a.s./L	Acceptable	DRAR Vol. 3CA,
	Oncorhynchus	purity:	(nom)		B.9.2.1.1/01
(flow-through,	mykiss	87.9% as			Anonymous 47
mortality)		KIF-230R-			2000a Rep. No.
		L			535/49 D2145
OECD 202	Water flea	KIF-230,	48h EC50>10.0 mg a.s./L	Acceptable	DRAR Vol. 3CA,
(static	Daphnia magna	purity:	(nom)		B.9.2.6.1/01
immobilisation)		87.9% as			Mattock (2000c)
		KIF-230R-			Rep No. 535/48-
		L			D2145
OECD 201	Green alga	KIF-230,	72h ErC50 and EyC50>10.0 mg	Acceptable	DRAR Vol. 3CA,
	Selenastrum	purity:	a.s./L (nom)		B.9.2.6.1/01
	capricornutum	87.9% as			Mattock (2000e)
		KIF-230R-			Rep. No. 535/52-
		L			D2145

In order to be classified for aquatic acute toxicity under CLP, 50% lethal/effect concentrations should be below or equal to 1 mg a.s./L. Therefore, there is no classification of benthiavalicarb-isopropyl proposed. Additionally, M factor is derived by taking the lowest endpoints and to compare it to set interval. The first interval for acute toxicity starts at [0.1 - 1mg/L] (M =1), therefore there is no M factor for acute toxicity for benthiavalicarb-isopropyl.

11.7.2 Long-term aquatic hazard (including bioaccumulation potential and degradation)

 Table 35:
 Summary of information on long-term aquatic toxicity relevant for classification

Method	Species	Test material	Results ¹	Remarks	Reference
OECD 215 (fish juvenile growth test, flow- through, weight)	Rainbow trout Oncorhynchus mykiss	KIF-230, purity: 87.9% as KIF- 230R-L	28-day NOEC=1.0 mg a.s./L (nom)	The study was considered acceptable despite flows in design and statistical analysis	DRAR Vol. 3CA, B.9.2.2.2/01 Anonymous 56 (2001a) Rep. No.535/61- D2149
OECD 211 (semi-static, reproduction)	Water flea Daphnia magna	KIF-230, purity: 87.9% as KIF- 230R-L	21-day NOEC= 3.0 mg a.s./L (nominal)	Acceptable	DRAR Vol. 3CA, B.9.2.5/01 Mattock (2000d) Rep. No. 535/53- D2145
OECD 201	Green alga Selenastrum capricornutum	KIF-230, purity: 87.9% as KIF- 230R-L	72h NOErC=2.5 mg a.s./L (nom)	Acceptable	DRAR Vol. 3CA, B.9.2.6.1/01 Mattock (2000e) Rep. No. 535/52- D2145

Benthiavalicarb-isopropyl, is not rapidly degradable (degradation in water: DT50 on the whole study period was 49.9 days (HS). In water/sediment system DegT50 water and sediment were respectively: 17.2 and 21.7

days (SFO), in one system and 25.7 and 9.63 days (SFO) in the other system). Benthiavalicarb-isopropyl is not expected to be bioaccumulative based on its log Pow of ~2.6 (trigger for CLP being 4).

The lowest endpoint was determined in the chronic fish study with rainbow trout and is equal to 1 mg a.s./L.

Based on the parameters mentioned above, benthiavalicarb-isopropyl is classified as hazardous to the aquatic environment for chronic toxicity category 2, but with no M factor.

11.8 CONCLUSION ON CLASSIFICATION AND LABELLING FOR ENVIRONMENTAL HAZARDS

Benthiavalicarb-isopropyl has no classification for aquatic acute toxicity and no M factor.

Benthiavalicarb-isopropyl is classified as hazardous to the aquatic environment for chronic toxicity, category 2, but with no M factor.

The H statement for aquatic chronic toxicity category 2 is H411: Toxic to aquatic life with long lasting effects with the pictogram GSH09 but no signal word. Three precautionary statements: P273 - Avoid release to the environment (prevention), P391 - Collect spillage (response) and P501 - Dispose of contents/container in accordance with local/regional/national/international regulation (storage).

12 EVALUATION OF ADDITIONAL HAZARDS

12.1 Hazardous to the ozone layer

No data available and none required, benthiavalicarb-isopropyl and its metabolites are not gaseous under environmental conditions.

12.1.1 Short summary and overall relevance of the provided information on ozone layer hazard

Not relevant.

12.1.2 Comparison with the CLP criteria

Not relevant.

12.1.3 Conclusion on classification and labelling for hazardous to the ozone layer

No data are available and none are required as benthiavalicarb-isopropyl and its metabolites are not gaseous under environmental conditions. Therefore, the active substance is not classified hazardous to the ozone layer.

13 ADDITIONAL LABELLING

Not applicable.

14 REFERENCES

Author(s)	Year	Title.
		Source (where different from company), Company,
		Report No.,

		GLP (where relevant)
		(Un)Published
Takeuchi A.	2000	Determination of the physical and chemical properties of KIF-230R-L(PAI) (Color, physical state, odour, melting point, mass spectrum, 1H and 13C NMR spectrum, IR spectrum, UV/Visible absorption, dissociation constant and thermal stability K-I Chemical Research Institute Co., Ltd. Company report No.: 2000-003 GLP, Unpublished
O'Connor, B.J.	2001	KIF-230 (TGAI): Determination of physical state, colour, odour and optical purity Safepharm Laboratories Limited Company report No.: 131/451 (amended October 2003) GLP, Unpublished
Mullee, D.M.	2000a	KIF-230R-L (PAI): Determination of boiling temperature Safepharm Laboratories Limited Company report No.: 131/428A GLP, Unpublished
Mullee, D.M.	2000b	KIF-230R-L (PAI): Determination of relative density Safepharm Laboratories Limited Company report No.: 131/428B GLP, Unpublished
O'Connor, B.J., Mullee, D.M.	2001a	KIF-230 (TGAI): Determination of Relative Density Safepharm Laboratories Limited Company report No.: 131/450 GLP, Unpublished
Bates, M.	1999	KIF-230 (Purified Active Substance): Determination of the physico-chemical properties (OECD tests 104, 105, 107/117) Covance Laboratories Ltd Company report No.: 535/41-D2141 (amended November 2003) GLP, Unpublished
Tremain, S.P.	2002	Determination of surface tension and oxidising properties Safepharm Laboratories Limited Company Report No. 131/486 GLP, Unpublished.
Peeters, W.	2015	benthiavalicarb-isopropyl-Calculation of Henry's Law Constant Japan Agro Services S.A; Report No.: WP15017 Kumiai Chemical Industry Co., Ltd., Doc. No.: KCI 150183 Not GLP, Unpublished
Tremain, S.P.	2001d	KIF-230 (TGAI): Determination of hazardous physico-chemical properties Safepharm Laboratories Limited Company report No.: 131/452 GLP, Unpublished
Mullee, D.M.	2000c	KIF-230R-L (PAI): Determination of solubility in organic solvents Safepharm Laboratories Limited Company report No.: 131/428C) GLP, Unpublished
Anonymous 1	2003	 (14C)-KIF-230R-L: Absorption, distribution, metabolism and excretion following oral administration to the rat. Amended final report 2. Company report No.: 535/55-D1141 Covance Laboratories Ltd, UK. GLP, Unpublished
Anonymous 2	2003	 (14C)-KIF-230R-L: Tissue levels following repeat oral dosing in the rat Company report No.: 0535/093 Covance Laboratories Ltd, UK. GLP, Unpublished
Anonymous 3	1998b	KIF-230 Technical: Acute oral toxicity study in rats An-Pyo Center report No.: 4062 Biosafety Research Center GLP, Unpublished

Anonymous 4	1998a	KIF-230 Technical: Acute oral toxicity study in mice
		An-Pyo Center report No.: 4061
		Biosafety Research Center
	1000	GLP, Unpublished
Anonymous 5	1998c	KIF-230 Technical: Acute dermal toxicity study in rats
		An-Pyo Center report No.: 4063 Biosafety Research Center
		GLP, Unpublished
Anonymous 6	2000a	Acute inhalation study of KIF-230 (TGAI) in albino rats
Anonymous o	2000a	Company report No.: WIL-156011
		WIL Research Laboratories Inc, US
		GLP, Unpublished
Anonymous 7	1999	KIF-230 (TGAI): Skin irritation to the rabbit
		KCI Doc No. 198/993612/SE
		Huntingdon Life Sciences Ltd. UK
		GLP, Unpublished
Anonymous 8	2000	KIF-230 (TGAI): Eye irritation to the rabbit
		KCI Doc No. 199/993939/SE
		Huntingdon Life Sciences Ltd. UK
A	2000-	GLP, Unpublished
Anonymous 9	2000a	KIF-230 (TGAI): Skin sensitisation in the guinea-pig (Magnusson and Kligman method)
		KCI Doc No. 201/993857/SS
		Huntingdon Life Sciences Ltd. UK
		GLP, Unpublished
Anonymous 10	2000b	KIF-230 (TGAI): Skin sensitisation in the guinea pig (Buehler method – 3
		inductions)
		KCI Doc No. 200/002387/SS
		Huntingdon Life Sciences Ltd. UK
		GLP, Unpublished
Dawkes, N.	1999	KIF-230 (TGAI): Reverse mutation of four histidine-requiring strains of
		Salmonella typhimurium and one trypophan-requiring strain of Escherichia coli
		Company report No.: 535/44-D5140
		Covance Laboratories Ltd.UK
	2001	GLP, Unpublished
Mizuhashi, F.	2001a	Reverse mutation test of KIF-230 TGAI (Lot G51-35-184) with bacteria
		An-Pyo Center report No.: 5839 Biosafety Research Center
		GLP, Unpublished
Mizuhashi, F.	2001b	Reverse mutation test of KIF-230 TGAI (Lot G51-37-184) with bacteria
Witzunasin, T.	20010	An-Pyo Center report No.: 5840
		Biosafety Research Center
		GLP, Unpublished
Mizuhashi, F.	2001c	Reverse mutation test of KIF-230 TGAI (Lot G51-36-184) with bacteria
		An-Pyo Center report No.: 5918
		Biosafety Research Center
		GLP, Unpublished
Mizuhashi, F.	2001d	Reverse mutation test of KIF-230 TGAI (Lot G51-08-158) with bacteria
		An-Pyo Center report No.: 5919
		Biosafety Research Center
Mizuhash: E	2002a	GLP, Unpublished
Mizuhashi, F.	2002a	Reverse mutation test of KIF-230 TGAI (Lot G51-47-190) with bacteria. An-Pyo Center report No.: 6239
		Biosafety Research Center
		GLP, Unpublished
Mizuhashi, F.	2002b	Reverse mutation test of KIF-230 TGAI (Lot G51-48-190) with bacteria.
	20020	An-Pyo Center report No.: 6240
		Biosafety Research Center
	1	

90) with bacteria.
90) with bacteria.
90) with bacteria.
Ilistidia a socializationa
r Histidine-requiring strains ing strain of Escherichia
ing strain of Escherichia
r Histidine-requiring strains
ing strain of Escherichia
8
r Histidine-requiring strains
ing strain of Escherichia
YY
r Histidine-requiring strains
ing strain of Escherichia
r Histidine-requiring strains
ing strain of Escherichia
r Histidine-requiring strains
ing strain of Escherichia
ed with KIF-230 Technical
locus of mouse lymphoma
chnique
.1 1 . 1 .
ynthesis in isolated rat
ynthesis in isolated rat

		Covance Laboratories Ltd. UK
		GLP, Unpublished
Anonymous 14	2003	KIF-230R-L: Single Cell Gel (SCG: Comet) Assay for the Detection of DNA
·		strand breaks in Human Lymphocytes.
		An-Pyo Center report No.: 7445
		Biosafety Research Center
		GLP, Unpublished
Anonymous 15	2000	KIF-230 (TGAI): Induction of Micronuclei in the bone marrow of treated mice
		Company report No.: 535/47
		Covance Laboratories Ltd. UK
		GLP, Unpublished
Anonymous 16	2001e	KIF-230 In vivo/In vitro unscheduled DNA synthesis (UDS) assay in rat
		hepatocytes
		An-Pyo Center report No.: 5336
		Biosafety Research Center
. 17	2000	GLP, Unpublished
Anonymous 17	2000a	KIF-230 Technical: Gene mutation assay in transgenic miceAn-Pyo Center report
		No.: 4911 Dissofety Desserve Conten
		Biosafety Research Center GLP, Unpublished
Anonymous 18	2001a	KIF-230 Technical: Chronic Toxicity Study and Oncogenicity Study in Rats
Anonymous 18	2001a	An-Pyo Center report no.: 3822
		Biosafety Research Centre
		GLP, Unpublished
Anonymous 19	2017	Chronic/carcinogenicity study in rats with KIF-230 Technical - Studies No.: 3822 -
Anonymous 19	2017	Historical control data on the findings observed in the former studies
		Kumiai Chemical Industry Co., Ltd., Doc # 140276
		Public Interest Incorporated Foundation, BioSafety Research Centre
		Not GLP, Unpublished
Anonymous 20	2001b	KIF-230 Technical: Oncogenicity Study in Mice
,		An-Pyo Center report no.: 3823
		Biosafety Research Centre
		GLP, Unpublished
Anonymous 21	2018	Ocogenicity study in mice with benthiavalicarb-isopropyl - Study No.: 3823 (001-
		209) - Historical control data on the findings observed in the former studies
		Kumiai Chemical Industry Co., Ltd.
		BioSafety Research Center Inc.
		Not GLP
		Not published
Anonymous 22	2018a	Evaluation of the KIF-230 TGAI hepatocellular and thyroid follicular cell toxicity
		Kumiai Chemical Industry Co., Ltd., Doc # 180070
		Concept Life Sciences Ltd / Medical School Resource Unit of the University of
		Dundee
		Not GLP
	20101	Not published
McMahon M.	2018b	KIF-230 Mechanism of Action in cultured Mouse Hepatocytes
		Kumiai Chemical Industry Co., Ltd., Doc # 180071 Concept Life Sciences Ltd. and Medical School Research Unit of the University of
		Dundee
		Not GLP
		Not published
McMahon M.	2018c	KIF-230 Mechanism of Action in cultured Mouse (CAR-/- PXR-/-) Hepatocytes
	20100	Kuriai Chemical Industry Co., Ltd., Doc # 180072
		Concept Life Sciences Ltd. and Medical School Research Unit of the University of
		Dundee
		Not GLP
McMahon M	2018d	Not published
McMahon M.	2018d	

		Dundee
		Not GLP
		Not published
McMahon M.	2018e	Investigation into the potential for KIF-230 to inhibit Thyroid Peroxidase (TPO)
		activity in vitro
		Kumiai Chemical Industry Co., Ltd., Doc # 180074
		Concept Life Sciences Ltd.
		Not GLP
		Not published
Anonymous 23	2000a	KIF-230 Technical: Two stage hepatocarcinogenicity study using rats for
		examining the promoter effect
		An-Pyo Center report No.: 4905
		Biosafety Research Center
		Not GLP, Unpublished
Anonymous 24	2000b	KIF-230 Technical: Two stage hepatocarcinogenicity study using rats for
		examining the initiator effect
		An-Pyo Center report No.: 4906
		Biosafety Research Center
1	2001	Not GLP, Unpublished
Anonymous 25	2001c	KIF-230 technical: A study on the induction of drug metabolic enzyme and proliferation of hepatocytes in rats
		An-Pyo Center report No.: 4900
		Biosafety Research Center
		Not GLP, Unpublished
Anonymous 26	2001d	KIF-230 Technical: A study on the induction of drug-metabolic enzyme and
Anonymous 20	20010	proliferation of hepatocytes in mice
		An-Pyo Center report No.: 4899
		Biosafety Research Center
		Not GLP, Unpublished
Anonymous 27	2001a	Oxidative DNA damage study of KIF-230 in liver of rats
-)		An-Pyo Center report No.: 5433
		Biosafety Research Center
		Not GLP, Unpublished
Anonymous 28	2001b	Oxidative DNA damage study of KIF-230 in liver of mice
		An-Pyo Center report No.: 5434
		Biosafety Research Center
		Not GLP, Unpublished
Nakajima M.	2000b	KIF-230 Technical: Two stage transformation assay on BALB/c 3T3 cells
		An-Pyo Center report No.: 4909
		Biosafety Research Centre
		GLP, Unpublished
Anonymous 29	2002a	KIF-230 Technical: Mechanism study of potential effects on the thyroid gland in
		rats.
		An-Pyo Center report No.: 5903
		Biosafety Research Center
Anonymous 20	2002h	Not GLP, Unpublished
Anonymous 30	2002b	KIF-230 Technical: Mechanism study of thyroid gland tumors in mice. An-Pyo Center report No.: 5904
		Biosafety Research Center
		Not GLP, Unpublished
Anonymous 31	2003	KIF-230 Technical: Measurement of TSH in mouse serum
Anonymous 51	2003	An-Pyo Center report No.: 6655
		Biosafety Research Center
		Not GLP, Unpublished
Anonymous 32	2002c	KIF-230 Technical: Mechanism study of uterine cancer in rats.
- inonymous 52	20020	An-Pyo Center report No.: 5914
		Biosafety Research Center
		Not GLP, Unpublished
Anonymous 33	2015	KIF-230 technical (benthiavalicarb-isopropyl): Uterotrophic bioassay in the
		ovariectomised rat

		KCI Dec. no. 150010
		KCI Doc. no. 150010 Harlan Laboratories Ltd.
A	1000	GLP, Unpublished
Anonymous 34	1999	KIF-230 Technical: Two-Generation Reproduction Toxicity Study in Rats
		An-Pyo Center report No. 3820
		Biosafety Research Center
	2000	GLP, Unpublished
Anonymous 35	2000a	KIF-230 Technical: Teratogenicity Study in Rats
		An-Pyo Center report No. 4541
		Biosafety Research Center
		GLP, Unpublished
Anonymous 36	2004	KIF-230 Technical: Embryo-fetal toxicity study in the CD rat by oral gavage
		administration
		KCI Doc No. 283/042632
		Huntingdon Life Sciences Ltd.
		GLP, Unpublished
Anonymous 37	2000b	KIF-230 Technical: Teratogenicity study in rabbits
		An-Pyo Center Report No. 4762
		Biosafety Research Center
		GLP, Unpublished
Anonymous 38	2001	An acute oral neurotoxicity study of KIF-230 (TGAI) in rats
-		Company report No.: 3404.12
		Springborn Laboratories, Inc. (SLI)
		GLP, Unpublished
Anonymous 39	2002	An acute oral neurotoxicity study of KIF-230 (TGAI) in rats. Amended final
		report.
		Company Report No.: 3404.12
		Springborn Laboratories Inc.
		GLP, Unpublished
Anonymous 40	1998	KIF-230 Technical: Preliminary subchronic toxicity study in dogs by oral
,		administration for 4 weeks
		An-Pyo Center report No.: 3390
		Biosafety Research Center
		GLP, Unpublished
Anonymous 41	2000b	A 28-day dermal toxicity study of KIF-230 (TGAI) in rats
1 11011 9 110 48 11	20000	Company report No.: WIL-156012
		WIL Research Laboratories Inc.
		GLP, Unpublished
Anonymous 42	2002	KIF-230 (TGAI) Neurotoxicity study by dietary administration to CD rats for 4
1 monymous 12	2002	weeks.
		KCI Doc No. 207/022387
		Huntingdon Life Sciences Ltd.
		GLP, Unpublished
Anonymous 43	1998a	KIF-230 Technical: Preliminary oncogenicity study in mice by dietary
7 monymous +5	17700	administration for 13 weeks
		An-Pyo Center report No.: 3385
		Biosafety Research Center
		GLP, Unpublished
Anonymous 44	1998b	KIF-230 Technical: Subchronic toxicity study in rats by dietary administration for
Allollyllious 44	19980	13 weeks followed by a 4 week recovery study
		An-Pyo Center report No.: 3386 Biosafaty Research Contor
		Biosafety Research Center
A non 45	1000	GLP, Unpublished
Anonymous 45	1999	KIF-230 Technical: Subchronic toxicity study by oral administration to beagle
		dogs for 3 months
		An-Pyo Center report No.: 3812
		Biosafety Research Centre
		GLP, Unpublished
Anonymous 46	2001	KIF-230 Technical: Chronic toxicity study by oral administration to beagle dogs
		for 52 weeks

		An Drie Conton generat No. (1551
		An-Pyo Center report No.: 4551 Biosafety Research Center
		GLP, Not published
Martens M	2018a	Benthiavalicarb-isopropyl - Opinion Document on Mode of Action and Analysis of
	2010a	human Relevance of rodent Hepatocellular Tumours
		Kumiai Chemical Industry Co., Ltd.
		Mark Martens, PhD, ERT
		Not GLP
		Not published
Martens M	2018b	Benthiavalicarb-isopropyl - Opinion Document on Hepatoblastoma in the Mouse
		Kumiai Chemical Industry Co., Ltd.
		Mark Martens, PhD, ERT
		Not GLP
		Not published
Foster JR, Provan M	2018a	Peer Review of Hepatoblastomas from KIF-230 Technical - Oncogenicity in mice
		Kumiai Chemical Industry Co., Ltd., Doc # 180075
		Regulatory Science Ltd.
		Not GLP
		Not published
Foster JR, Provan M	2018b	A Review of the Comparative Biology and Genetics of Hepatoblastomas in
		Rodents and Humans
		Kumiai Chemical Industry Co., Ltd., Doc # 180076
		Regulatory Science Ltd.
		Not GLP
Martens M	2018c	Not published
Martens M	20180	Benthiavalicarb-isopropyl - Opinion Document on Mode of Action and Analysis of human Relevance of rodent Thyroid Follicular Cell Tumours
		Kumiai Chemical Industry Co., Ltd.
		Mark Martens, PhD, ERT
		Not GLP
		Not published
Bealing DJ	1998	KIF-230 R-L PAI: Assessment of ready biodegradability by measurement of
Douling Do	1770	carbon dioxide evolution.
		EC Method C4, OECD TG 301B
		GLP, Unpublished
Feldmann S.	2015	Benthiavalicarb-isopropyl - Aerobic Mineralization of [14C]Benthiavalicarb-
		isopropyl in Surface Water - Simulation Biodegradation Test
		Kumiai Chemical Industry Co., Ltd., Doc. No.: 150011
		Harlan Laboratories Ltd. (Report No. D90354)
		GLP, Not published
Goodyear A.	2000	(14C)-KIF-230 Degradation and Retention in Water-Sediment Systems
		Kumiai Chemical Industry Co., Ltd.
		Covance Laboratories Ltd (Report No. CLE 535/42-D2142)
		GLP, Not published
Purser D.	2001a	(14C)-KIF-230 Aerobic Soil Metabolism and Degradation
Goodyear A.		Kumiai Chemical Industry Co., Ltd.
		Covance Laboratories Ltd (Report No. 535/39-D2142)
	2001	GLP, Not published
Lewis C.J.	2001	[Bz-14C]-KIF-230R-L Photodegradation on a Soil Surface
		Kumiai Chemical Industry Co., Ltd.
		Covance Laboratories Ltd (Report No. 535/40-D2142)
V a alla al W/	2015	GLP, Not published
Voelkel W.	2015a	Metabolite KIF-230-M-5 - Rate of Degradation in Three Soils under Aerobic Conditions
		Kumiai Chemical Industry Co., Ltd., Doc. No.: 150125 Innovative Environmental Services (IES) Ltd (Report No. 20140079)
Wright D.R.	2001a	GLP, Not published KIF-230-M-4 Degradation in three soils
wilgin D.K.	2001a	Kuriai Chemical Industry Co., Ltd.
		Covance Laboratories Ltd (Report No. 535/85-D2140)
		Covance Laboratories Litt (Report 100, 353/05-D2140)

		GLP, Not published
Wright D.R.	2001b	KIF-230-M-3 Degradation in three soils
		Kumiai Chemical Industry Co., Ltd.
		Covance Laboratories Ltd (Report No. 535/72-D2140)
		GLP, Not published
Wright D.R.	2001c	KIF-230-M-1 Degradation in three soils
		Kumiai Chemical Industry Co., Ltd.
		Covance Laboratories Ltd (Report No. 535/84-D2140)
		GLP, Not published
Voelkel W.	2015b	Metabolite KIF-230-M-8 - Rate of Degradation in Three Soils under Aerobic
		Conditions
		Kumiai Chemical Industry Co., Ltd., Doc. No.: 150126
		Innovative Environmental Services (IES) Ltd (Report No: 20140081)
Yeomans P.	2000	GLP, Not published (14C)-KIF-230 Hydrolytic Stability
Swales S.	2000	Kumiai Chemical Industry Co., Ltd.
Swales 5.		Covance Laboratories Ltd (Report No. 535/36-D2142)
		GLP, Not published
Lewis C.	2001	[Bz-14C]-KIF-230 Photodegradation in Sterile Aqueous Solution
Lewis C.	2001	Kumiai Chemical Industry Co., Ltd.
		Covance Laboratories Ltd (Report No. 535/37-D2142)
		GLP, Not published
Habeeb S.B.	2016	Indirect Photolysis Screening Test of [Benzene ring 14C(U)]KIF-230R-L in
		Synthetic Humic Water.
		Kumiai Chemical Industry Co., Ltd.,
		Doc. No.: 160001
		GLP, Not published
Inoue J.	2000a	Determination of the physical and chemical properties of KIF-230-M-1 (water
		solubility and octanol/water partition coefficient)
		K-I Chemical Research Institute Co., Ltd
		Company report No.: 2000-072
		GLP, Unpublished
Inoue J.	2000b	Determination of the physical and chemical properties of KIF-230-M-3 (water
		solubility and octanol/water partition coefficient)
		K-I Chemical Research Institute Co., Ltd
		Company report No.: 2000-073
Incura I	2000-2	GLP, UnpublishedDetermination of the physical and chemical properties of KIF-230-M-4 (water
Inoue J.	2000c	solubility and octanol/water partition coefficient)
		K-I Chemical Research Institute Co., Ltd
		Company report No.: 2000-074
		GLP, Unpublished
Matsumoto T.	2001b	Measurement of water solubility of KIF-230-M-5 by flask method
industriitoto 11	20010	Kerume Laboratory
		Company report No.: 81892
		GLP, Unpublished
Okazaki R.	2015	Determination of the Physical and Chemical Properties of KIF-230-M-8
		«Octanol/water partition coefficient»
		K-I Chemical Research Institute Co, Ltd.; Report No.: 2015-002
		Kumiai Chemical Industry Co., Ltd., Doc. No.: KCI 150066
		GLP, Unpublished
Anonymous 47	2000a	KIF-230 (TGAI): Acute toxicity to Oncorhynchus mykiss (rainbow trout)
		Covance Laboratories Ltd., UK
		Rep. No. 535/49-D2145
		GLP: Yes, Unpublished
Anonymous 48	2000b	KIF-230 (TGAI): Acute toxicity to <i>Cyprinus carpio</i> (carp)
-		Covance Laboratories Ltd., UK
		Rep. No. 535/50-D2145
		GLP: Yes, Unpublished

Anonymous 49	2000	KIF-230 (TGAI): Acute toxicity to Bluegill sunfish (Lepomis macrochirus)
		Safepharm Laboratories Ltd.
		Rep. No. 131/147
		GLP: Yes, Unpublished
Anonymous 50	2014a	KIF-230-M-1: Toxicity to the Rainbow Trout Oncorhynchus mykiss under
		Laboratory Conditions (Acute Toxicity Test – Static)
		Eurofins Agroscience Services EcoChem GmbH
		Rep. No. S14-02339 (KCI 150005)
A	20141	GLP: Yes, Unpublished
Anonymous 51	2014b	KIF-230-M-3: Toxicity to the Rainbow Trout Oncorhynchus mykiss under
		Laboratory Conditions (Acute Toxicity Test – Static) Eurofins Agroscience Services EcoChem GmbH
		Rep. No. S14-02340 (KCI 150006)
		GLP: Yes, Unpublished
Anonymous 52	2014c	KIF-230-M-4: Toxicity to the Rainbow Trout Oncorhynchus mykiss under
,		Laboratory Conditions (Acute Toxicity Test – Static)
		Eurofins Agroscience Services EcoChem GmbH
		Rep. No. S14-02341 (KCI 150007)
		GLP: Yes, Unpublished
Anonymous 53	2014d	KIF-230-M-5: Toxicity to the Rainbow Trout Oncorhynchus mykiss under
		Laboratory Conditions (Acute Toxicity Test – Semi-Static)
		Eurofins Agroscience Services EcoChem GmbH
		Rep. No. S14-02342 (KCI 150008)
		GLP: Yes, Unpublished
Anonymous 54	2014e	KIF-230-M-8: Toxicity to the Rainbow Trout Oncorhynchus mykiss under
		Laboratory Conditions (Acute Toxicity Test – Semi-Static)
		Eurofins Agroscience Services EcoChem GmbH
		Rep. No. S14-02343 (KCI 150009)
Maria 1 CD	2000	GLP: Yes, Unpublished
Mattock, S.D	2000c	KIF-230 (TGAI): Acute toxicity to <i>Daphnia magna</i> Covance Laboratories Ltd., UK
		Rep. No. 535/48-D2145
		GLP: Yes, Unpublished
Eser, S.	2015a	KIF-230-M-1: Toxicity to the Water Flea <i>Daphnia magna</i> Straus under Laboratory
2301, 5.	20154	Conditions (Acute Immobilisation Test – Static)
		Eurofins Agroscience Services EcoChem GmbH
		Rep. No. S14-02345 (KCI 150014)
		GLP: Yes, Unpublished
Mattock, S.D.	2001b	KIF-230-M-3: Acute toxicity to Daphnia magna
		Covance Laboratories Ltd., UK.
		Rep. No. 535/86-D2145
		GLP: Yes, Unpublished
Mattock, S.D.	2001c	KIF-230-M-4: Acute toxicity to Daphnia magna
		Covance Laboratories Ltd., UK
		Rep. No. 535/87-D2145
0:1: N	2001	GLP: Yes, Unpublished
Oishi, N.	2001	KIF-230-M-5: An acute immobilisation test of KIF-230-M-5 in <i>Daphnia magna</i>
		Biosafety Research Center (An-Pyo Center)
		Rep. No. 5327 (001-281)
Esor S	20155	GLP: Yes, Unpublished KIE 230 M 8: Toxicity to the Water Flee Daphnia magna Straus under Laboratory
Eser, S.	2015b	KIF-230-M-8: Toxicity to the Water Flea <i>Daphnia magna</i> Straus under Laboratory Conditions (Acute Immobilisation Test – Static)
		Eurofins Agroscience Services EcoChem GmbH
		1 Keb NO N 14 - 0734 b (K (1) 1) - 00012 b
		Rep. No. S14-02346 (KCI 150015) GLP: Yes_Unpublished
Mattock S D	2000e	GLP: Yes, Unpublished
Mattock, S.D.	2000e	

		GLP: Yes, Unpublished
Falk, S.	2014a	KIF-230-M-1: Toxicity to the Single Cell Green Alga <i>Pseudoirchneriella</i> subcapitata Hindák under Laboratory Conditions Eurofins Agroscience Services EcoChem GmbH Rep. No. S14-02347 (KCI 150016)
		GLP: Yes, Unpublished
Falk, S.	2014b	KIF-230-M-3: Toxicity to the Single Cell Green Alga <i>Pseudoirchneriella</i> <i>subcapitata</i> Hindák under Laboratory Conditions Eurofins Agroscience Services EcoChem GmbH Rep. No. S14-02348 (KCI 150017) GLP: Yes, Unpublished
Falk, S.	2014c	KIF-230-M-4: Toxicity to the Single Cell Green Alga <i>Pseudoirchneriella</i> subcapitata Hindák under Laboratory Conditions Eurofins Agroscience Services EcoChem GmbH Rep. No. S14-02349 (KCI 150018) GLP: Yes, Unpublished
Falk, S.	2015a	KIF-230-M-5: Toxicity to the Single Cell Green Alga <i>Pseudoirchneriella</i> <i>subcapitata</i> Hindák under Laboratory Conditions Eurofins Agroscience Services EcoChem GmbH Rep. No. S14-02350 (KCI 150019) GLP: Yes, Unpublished
Falk, S.	2015b	KIF-230-M-8: Toxicity to the Single Cell Green Alga <i>Pseudoirchneriella</i> subcapitata Hindák under Laboratory Conditions Eurofins Agroscience Services EcoChem GmbH Rep. No. S14-02351 (KCI 150020) GLP: Yes, Unpublished
Anonymous 55	2015	Benthiavalicarb-isopropyl: Toxicity Test on Early-life Stages of Zebrafish <i>Danio</i> <i>rerio</i> Eurofins Agroscience Services EcoChem GmbH Rep. No. S14-02344 (KCI 150075) GLP: Yes, Unpublished
Anonymous 56	2001a	KIF-230 (TGAI): Prolonged toxicity to juvenile <i>Oncorhynchus mykiss</i> in a flow- through system Covance Laboratories Ltd., UK Rep. No. 535/61-D2149 GLP: Yes, Unpublished
Mattock, S.D.	2000d	KIF-230 (TGAI): Reproduction test with <i>Daphnia magna</i> Covance Laboratories Ltd., UK Rep. No. 535/53-D2145 GLP: Yes, Unpublished

15 ANNEXES

Benthiavalicarb_DRAR_04_Volume_3CA_B-2_2018-10-04 Benthiavalicarb_DRAR_08_Volume_3CA_B-6_korekta_E V A_2019-07-12 Benthiavalicarb_DRAR_11_Volume_3CA_B-8_2018-10-04 Benthiavalicarb_DRAR_11_Volume_3CA_B-9_2018-10-04