Registration Dossier

Ecotoxicological information

Long-term toxicity to aquatic invertebrates

Currently viewing:

Administrative data

Link to relevant study record(s)

Reference
Endpoint:
long-term toxicity to aquatic invertebrates
Type of information:
(Q)SAR
Adequacy of study:
key study
Study period:
Not applicable, calculated value
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
other: This summary has a reliability of 2 because the results are estimated using a computer model that is appropriate for use with this hydrocarbon substance.
Justification for type of information:
The aquatic toxicity was estimated by a QSAR, the Petrotox computer model. This model combines a partitioning model used to calculate the aqueous concentration of hydrocarbon components with the Target Lipid Model used to calculate acute and chronic toxicity of non-polar narcotic chemicals. Petrotox computes toxicity based on the summation of the aqueous-phase concentrations of hydrocarbon block(s) that represent a hydrocarbon substance and membrane-water partition coefficients (KMW) that describe the partitioning of the hydrocarbons between the water and organism.
Qualifier:
no guideline followed
Principles of method if other than guideline:
The aquatic toxicity was estimated by a QSAR, the Petrotox computer model. This model combines a partitioning model used to calculate the aqueous concentration of hydrocarbon components with the Target Lipid Model used to calculate acute and chronic toxicity of non-polar narcotic chemicals. Petrotox computes toxicity based on the summation of the aqueous-phase concentrations of hydrocarbon block(s) that represent a hydrocarbon substance and membrane-water partition coefficients (KMW) that describe the partitioning of the hydrocarbons between the water and organism.
GLP compliance:
no
Remarks:
The data were calculated by a computer model.
Specific details on test material used for the study:
Details on properties of test surrogate or analogue material (migrated information):
No test surrogate nor analogue material
Analytical monitoring:
not required
Details on sampling:
Not applicable (calculated data)
Vehicle:
no
Details on test solutions:
Not applicable (calculated data)
Test organisms (species):
Daphnia magna
Details on test organisms:
Not applicable (calculated data)
Test type:
other: QSAR modeled data
Water media type:
freshwater
Limit test:
no
Total exposure duration:
21 d
Post exposure observation period:
Not applicable (calculated data)
Hardness:
Not applicable (calculated data)
Test temperature:
Not applicable (calculated data)
pH:
Not applicable (calculated data)
Dissolved oxygen:
Not applicable (calculated data)
Salinity:
Not applicable (calculated data)
Nominal and measured concentrations:
Not applicable (calculated data)
Details on test conditions:
Not applicable (calculated data)
Reference substance (positive control):
not required
Key result
Duration:
21 d
Dose descriptor:
NOELR
Effect conc.:
> 1 000 mg/L
Nominal / measured:
nominal
Conc. based on:
test mat.
Basis for effect:
reproduction
Details on results:
No details (calculated data) - See inforamtion on substance composition in "Overall Remarks" section
Results with reference substance (positive control):
No reference substance required
Reported statistics and error estimates:
Not applicable

No other information

Validity criteria fulfilled:
yes
Conclusions:
Results of computer modelling to estimate chronicity in a 21-day freshwater invertebrate study, based on reproduction, show that this substance will not produce toxicity at or below its maximum attainable water solubility.
Executive summary:

The aquatic toxicity of was estimated using the Petrotox computer model, which combines a partitioning model used to calculate the aqueous concentration of hydrocarbon components as a function of substance loading with the Target Lipid Model used to calculate acute and chronic toxicity of non-polar narcotic chemicals. Petrotox computes toxicity based on the summation of the aqueous-phase concentrations of hydrocarbon block(s) that represent a hydrocarbon substance and membrane-water partitioning coefficients (KMW) that describe the partitioning of the hydrocarbons between the water and organism. Results of computer modelling to estimate chronicity in a 21-day freshwater invertebrate study, based on reproduction, show that this substance will not produce toxicity at or below its maximum attainable water solubility.

Description of key information

Results of computer modelling to estimate chronicity in a 21-day freshwater invertebrate study, based on reproduction, show that this substance will not produce toxicity at or below its maximum attainable water solubility.

Key value for chemical safety assessment

Additional information

The aquatic toxicity of was estimated using the Petrotox computer model, which combines a partitioning model used to calculate the aqueous concentration of hydrocarbon components as a function of substance loading with the Target Lipid Model used to calculate acute and chronic toxicity of non-polar narcotic chemicals. Petrotox computes toxicity based on the summation of the aqueous-phase concentrations of hydrocarbon block(s) that represent a hydrocarbon substance and membrane-water partitioning coefficients (KMW) that describe the partitioning of the hydrocarbons between the water and organism. Results of computer modelling to estimate chronicity in a 21-day freshwater invertebrate study, based on reproduction, show that this substance will not produce toxicity at or below its maximum attainable water solubility.