CLH report

Proposal for Harmonised Classification and Labelling

Based on Regulation (EC) No 1272/2008 (CLP Regulation), Annex VI, Part 2

Substance Name: METHYLMERCURIC CHLORIDE

EC Number: 204-064-2

CAS Number: 115-09-3

Index Number: -

Contact details for dossier submitter: ANSES (on behalf of the French MSCA)

14, rue Pierre et Marie Curie F-94701 Maisons-Alfort Cedex +33 1 56 29 19 30 reach@anses.fr

Version number: 3

Date: March 2016

CONTENTS

Part A.

1	P	ROPOSAL FOR HARMONISED CLASSIFICATION AND LABELLING	4
	1.1 1.2 1.3	SUBSTANCE HARMONISED CLASSIFICATION AND LABELLING PROPOSAL PROPOSED HARMONISED CLASSIFICATION AND LABELLING BASED ON CLP REGULATION	4
2	B	ACKGROUND TO THE CLH PROPOSAL	9
	2.1	HISTORY OF THE PREVIOUS CLASSIFICATION AND LABELLING	
	2.2	SHORT SUMMARY OF THE SCIENTIFIC JUSTIFICATION FOR THE CLH PROPOSAL	9
	2.3	CURRENT HARMONISED CLASSIFICATION AND LABELLING.	10
	2.4	CURRENT SELF-CLASSIFICATION AND LABELLING	10
		<i>4.1</i> Current self-classification and labelling based on the CLP Regulation criteria. Erre <i>éfini.</i>	ur ! Signet non
3	Л	USTIFICATION THAT ACTION IS NEEDED AT COMMUNITY LEVEL	10

Part B.

S	SCIENTIFIC EVALUATION OF THE DATA11				
1	IDENTITY OF THE SUBSTANCE	11			
	 1.1 NAME AND OTHER IDENTIFIERS OF THE SUBSTANCE. 1.2 COMPOSITION OF THE SUBSTANCE				
2	MANUFACTURE AND USES	13			
	2.1 MANUFACTURE2.2 IDENTIFIED USES				
3	CLASSIFICATION FOR PHYSICO-CHEMICAL PROPERTIES	14			
4	HUMAN HEALTH HAZARD ASSESSMENT	14			
	 4.1 TOXICOKINETICS OF MERCURY COMPOUNDS. 4.1.1 Mercury in water and food 4.1.2 Mercury in breast milk. 4.1.2.1 Non-human information. 4.1.2.2 Human information. 4.2.2 Human information. 4.2.1 Non-human information. 4.2.1 Non-human information. 4.2.1 Acute toxicity: oral 4.2.1.2 Acute toxicity: inhalation. 4.2.1.3 Acute toxicity: dermal. 4.2.1.4 Acute toxicity: other routes. 4.2.2 Summary and discussion of acute toxicity 4.2.3 Comparison with criteria. 4.2.4 Conclusions on classification and labelling. 	14 15 15 16 16 18 18 19 20 20 20			
	 4.3 SPECIFIC TARGET ORGAN TOXICITY – SINGLE EXPOSURE (STOT SE) 4.4 IRRITATION	21			
	4.5 CORROSIVITY				
	4.7 Repeated dose toxicity				

CLH REPORT FOR METHYLMERCURIC CHLORIDE

	4.7.1 Non-human information	21
	4.7.1.1 Repeated dose toxicity: oral	
	4.7.1.2 Repeated dose toxicity: inhalation	
	4.7.1.3 Repeated dose toxicity: dermal	
	4.7.1.4 Repeated dose toxicity: other routes	
	4.7.2 Human information:	
	4.7.3 Summary and discussion of repeated dose toxicity Erreur ! Sign	
	4.8 SPECIFIC TARGET ORGAN TOXICITY (CLP REGULATION) - REPEATED EXPOSURE (STOT RE)	29
	4.8.1 Summary and discussion of repeated dose toxicity findings relevant for classification of	<i>as STOT RE</i>
	according to CLP Regulation	29
	4.8.2 Comparison with criteria of repeated dose toxicity findings relevant for classification 30	as STOT RE
	4.8.3 Conclusions on classification and labelling of repeated dose toxicity findings relevant	for
	classification as STOT RE	
	4.9 GERM CELL MUTAGENICITY (MUTAGENICITY)	
	4.9.1 Non-human information	31
	4.9.1.1 In vitro data	
	4.9.1.2 In vivo data	
	4.9.2 Human information	
	4.9.3 Other relevant information	
	4.9.4 Summary and discussion of mutagenicity	
	4.9.5 Comparison with criteria	
	4.9.6 Conclusions on classification and labelling	
	4.10 CARCINOGENICITY	
	4.10.1 Non-human information	
	4.10.1.1 Carcinogenicity: oral	
	4.10.2 Carcinogenicity: inhalation	
	4.10.3 Carcinogenicity: dermal	
	4.10.4 Human information	
	4.10.5 Other relevant information	
	4.10.6 Summary and discussion of carcinogenicity	
	4.10.7 Comparison with criteria	
	4.10.8 Conclusions on classification and labelling	
	4.11 TOXICITY FOR REPRODUCTION	
	4.11.1 Effects on fertility	
	4.11.1.1 Non-human information	
	4.11.1.2 Human information	
	4.11.2 Developmental toxicity	
	4.11.2.1 Non-human information	
	4.11.2.2 Human information	
	4.11.3 Other relevant information	
	4.11.4 Summary and discussion of reproductive toxicity	
	4.11.5 Comparison with criteria	
	4.11.6 Conclusions on classification and labelling	
	4.12 OTHER EFFECTS	84
5	ENVIRONMENTAL HAZARD ASSESSMENT	84
6	OTHER INFORMATION	85
7	REFERENCES	85
8	ANNEXES	94

Part A.

1 PROPOSAL FOR HARMONISED CLASSIFICATION AND LABELLING

1.1 Substance

Table 1:	Substance identity
----------	--------------------

Substance name:	Methylmercuric chloride		
EC number:	204-064-2		
CAS number:	115-09-3		
Annex VI Index number:	No specific entry but covered by the generic entry for organic compounds of mercury (index 080-004-00-7)		
Degree of purity:	No data available in the technical dossier		
Impurities:	No data available in the technical dossier		

1.2 Harmonised classification and labelling proposal

Tabla 7.	The automat Annay VI antry and the propagad harmonized aloggification
Table 2:	The current Annex VI entry and the proposed harmonised classification

	CLP Regulation		
Current entry in Annex VI, CLP	Acute Tox. 2 * - H330		
Regulation (generic entry for	Acute Tox. 1 – H310		
organic compounds of mercury)	Acute Tox. 2 * - H300		
	STOT RE 2 * - H373 with SCL of 0.1%		
	Aquatic Acute 1 – H400		
	Aquatic Chronic 1 H410		
	Note A		
	Note 1		
	SCL: STOT RE 2 * - H373 ≥0.1%		
Current proposal for	Acute Tox. 2 – H330		
consideration by RAC	Acute Tox. 1 – H310		
	Acute Tox. 2 – H300		
	STOT RE1 – H372 (nervous system, vision and		
	kidneys)		
	Carc. 2 – H351		
	Muta. 2 – H341		
	Repr. 1A – H360Df		

	Lact. Effects – H362
Resulting harmonised	Acute Tox. 2 – H330 Acute Tox. 1 – H310
classification (future entry in Annex VI, CLP Regulation)	Acute Tox. $1 - H310$ Acute Tox. $2 - H300$
	STOT RE1 – H372 (nervous system, vision and kidneys)
	Carc. 2 – H351
	Muta. 2 – H341
	Repr. 1A – H360Df
	Lact. Effects – H362
	Aquatic Acute 1 – H400
	Aquatic Chronic 1 H410
	Note 1

*minimum classification

1.3 Proposed harmonised classification and labelling based on CLP Regulation

CLP Annex I	Hazard class	Proposed classification	Proposed SCLs and/or M-factors	Current classification ¹⁾	Reason for no classification
ref 2.1.	Explosives	None		None	Not evaluated
2.2.	Flammable gases	None		None	Not evaluated
2.3.	Flammable aerosols	None		None	Not evaluated
2.4.	Oxidising gases	None		None	Not evaluated
2.5.	Gases under pressure	None		None	Not evaluated
2.6.	Flammable liquids	None		None	Not evaluated
2.7.	Flammable solids	None		None	Not evaluated
2.8.	Self-reactive substances and mixtures	None		None	Not evaluated
2.9.	Pyrophoric liquids	None		None	Not evaluated
2.10.	Pyrophoric solids	None		None	Not evaluated
2.11.	Self-heating substances and mixtures	None		None	Not evaluated
2.12.	Substances and mixtures which in contact with water emit flammable gases	None		None	Not evaluated
2.13.	Oxidising liquids	None		None	Not evaluated
2.14.	Oxidising solids	None		None	Not evaluated
2.15.	Organic peroxides	None		None	Not evaluated
2.16.	Substance and mixtures corrosive to metals	None		None	Not evaluated
3.1.	Acute toxicity - oral	Acute Tox. 2 – H300	Not applicable	Acute Tox. 2* – H300	
	Acute toxicity - dermal	Acute Tox. 1 – H310	Not applicable	Acute Tox. 1 – H310	
	Acute toxicity - inhalation	Acute Tox. 2 – H330	Not applicable	Acute Tox. 2* – H330	
3.2.	Skin corrosion / irritation	None		None	Not evaluated
3.3.	Serious eye damage / eye irritation	None		None	Not evaluated
3.4.	Respiratory sensitisation	None		None	Not evaluated
3.4.	Skin sensitisation	None		None	Not evaluated
3.5.	Germ cell mutagenicity	Muta. 2 – H341	Not applicable	None	
3.6.	Carcinogenicity	Carc. 2 – H351	None	None	
3.7.	Reproductive toxicity	Repr. 1A – H360Df	None	None	

Table 3:Proposed classification according to the CLP Regulation

CLH REPORT FOR METHYLMERCURIC CHLORIDE

		Lact. Effects – H362			
3.8.	Specific target organ toxicity -single exposure	None		None	Not evaluated
3.9.	Specific target organ toxicity – repeated exposure	STOT RE1 – H372	None	STOT RE2* – H372 (SCL: 0.1%)	
3.10.	Aspiration hazard	None		None	Not evaluated
4.1.	Hazardous to the aquatic environment	Aquatic Acute 1 – H400 Aquatic Chronic 1 H410		Aquatic Acute 1 – H400 Aquatic Chronic 1 H410	
5.1.	Hazardous to the ozone layer	None		None	Not evaluated

¹⁾. Existing classification from the generic entry for organic mercury *minimum classification

Labelling: <u>Signal word:</u> "danger"

Pictogram: GHS06; GHS08; GHS09

Hazard statements: H300; H310; H330; H341; H351; H360Df; H362; H372; H410

Precautionary statements: not harmonised

Proposed notes assigned to the entry: Note 1.

Note 1 is included in the generic entry for organic mercury and is considered relevant for the specific entry for methylmercury compounds.

Note 1:

The concentration stated or, in the absence of such concentrations, the generic concentrations of this Regulation (Table 3.1) or the generic concentrations of Directive 1999/45/EC (Table 3.2), are the percentages by weight of the metallic element calculated with reference to the total weight of the mixture.

Note A is also included in the generic entry for organic mercury and is <u>not</u> considered relevant for the specific entry.

Note A:

Without prejudice to Article 17(2), the name of the substance must appear on the label in the form of one of the designations given in Part 3.

In Part 3, use is sometimes made of a general description such as '... compounds' or '... salts'. In this case, the supplier is required to state on the label the correct name, due account being taken of section 1.1.1.4.

2 BACKGROUND TO THE CLH PROPOSAL

2.1 History of the previous classification and labelling

Methylmercuric chloride has no specific harmonized classification but is covered by the generic entry for organic compounds of mercury (index 080-004-00-7). A classification proposal for human health was submitted at the TC C&L. It was discussed in November 2005 and concluded in October 2006 (see summary records of the meetings in Annex I).

Historically, methylmercuric chloride and methylmercury were proposed for classification within the same dossier. Indeed, studies on organic mercury compounds were carried out with these two substances. While submitting this hand-over dossier, it was first decided to split the dossier into two (one per substance) and then to withdraw the proposal for MeHg as this substance only exist naturally within our environment. Studies performed with MeHg are provided as supporting data.

Several new studies have been published on different endpoints since the TC C&L discussions and have been integrated in the present dossier. The following endpoints are concerned: acute toxicity, repeated toxicity, mutagenicity, carcinogenicity and toxicity for the reproduction.

The results of these new studies are consistent with the classification agreed by the TC C&L and proposed in the present dossier.

It is noted that no registration dossier is currently available for methylmercuric chloride.

2.2 Short summary of the scientific justification for the CLH proposal

A study (Yasutake, 1991) of **acute oral toxicity** on mouse showed a LD_{50} inferior to 20 mg/kg bw with decreased renal functions, so a classification Acute Tox 2, H300 was proposed. It was also proposed to maintain the existing classifications Acute Tox 1 – H310 and Acute Tox 2 - H330 based on data on the absorption of organic mercury compounds by dermal route and inhalation.

Several studies of **repeated toxicity** were performed on animals and humans, showing that the central nervous system was the mean target organ by oral route. So a classification STOT RE1 – H372 was proposed.

In vitro data show that methylmercuric chloride has a **genotoxic** potential. Numerical chromosome aberrations are also observed *in vivo*, so a classification on **mutagenicity** (Muta.2, H341) was proposed.

Three studies consistently report renal tumours in male mice at doses as low as 0.859 mg/kg bw/day. In humans, a study performed on the population of Minamata showed a positive association between MeHg exposure and leukemia. So a classification on **carcinogenicity** (Carc.2, H351) was proposed.

Based on animals' studies, **development** is severely impacted in several species (rats, mice, monkeys...). In humans, effects of methylmercury are described on neurodevelopment: very severe effects appear in children exposed *in utero* during periods of poisoning via food (via bread in Iraq, via fish in Japan). So a classification in reprotoxicity (Repr. 1A – H360Df) was proposed.

The intake of methylmercury by mothers could be toxic for the infants if they are strongly exposed via maternal milk, so a classification of the **lactation effects** is therefore required taking into account the possible poisoning of human populations. So a classification Lact. Effects – H362 was proposed.

2.3	Current harmonised	classification	and labelling
_	Current nur moniscu	ciussilication	and mounting

Both compounds are covered by the generic entry for organic compounds of mercury (index 080-004-00-7):	CLP Regulation
Generic entry for organic compounds of mercury	Acute Tox. 2 * - H330 Acute Tox. 1 – H310 Acute Tox. 2 * - H300 STOT RE 2 * - H373 with SCL of 0.1% Aquatic Acute 1 – H400 Aquatic Chronic 1 H410 Note A Note 1
	SCL: STOT RE 2 * - H373 ≥0.1%

*Minimum classification

2.4 Current self-classification and labelling

No registration dossier is currently available on methylmercuric chloride. However, the classification notifications are presented in the confidential appendix I (separate file).

3 JUSTIFICATION THAT ACTION IS NEEDED AT COMMUNITY LEVEL

Methylmercuric chloride has CMR properties, i.e. Carc. 2 – H351, Muta. 2 – H341, Repr. 1A – H360Df, Lact. Effects – H362 that justify a harmonised classification and labelling.

French CA decided to focus the CLH report of hand-over substances on human health effects only and to propose their harmonization consistently with what was discussed at TC C&L. Therefore, the environment effects are not considered for their harmonization in this CLH report. However, we consider that the classification for the environment endpoints coming from the generic entry of the mercury compounds should apply.

It is noted that in the self-classification notified by manufacturers and importers, the classifications for these endpoints are the same of those specified in the generic entry for organic compounds of mercury, but differ with the proposed harmonized classification.

The notifications are presented in the confidential appendix I (separate file).

Part B.

SCIENTIFIC EVALUATION OF THE DATA

1 IDENTITY OF THE SUBSTANCE

1.1 <u>Name and other identifiers of the substance</u>

Table 4: Substance identity:	Methylmercuric chloride
EC number:	204-064-2
EC name:	chloromethylmercury
CAS number (EC inventory):	115-09-3
CAS number:	115-09-3
CAS name:	-
IUPAC name:	chloro(methyl)mercury
CLP Annex VI Index number:	-
Molecular formula:	CH ₃ -Cl-Hg
Molecular weight range:	251.08

Structural formula:

Н₃С —Нд— СІ

1.2 <u>Composition of the substance</u>

No data

1.2.1 <u>Composition of test material</u>

See information given in the description of the studies.

1.3 **Physico-chemical properties**

 Table 5:
 Summary of physico - chemical properties

Property	Value Methylmercuric chloride	Reference	Comment (e.g. measured or estimated)
State of the substance at 20°C and 101,3 kPa	Crystals, white with disagreeable odour	ATSDR, 1999	
Melting/freezing point	170°C	ATSDR, 1999	
Boiling point	Volatilizes at 100°C	ATSDR, 1999	
Relative density	4.06 g/mL at 25°C	ATSDR, 1999	
Vapour pressure	1.12 Pa at 25°C (0.0085 mm Hg)	ATSDR, 1999	
Surface tension	No data		
Water solubility	High solubility in water	ATSDR, 1999	
	DMSO: >100 mg/L at 27°C		
	Acetone: >100 mg/L at 27°C		
Partition coefficient n- octanol/water	: log Kow = 0.4	ATSDR, 1999	Calculated
Flash point	No data		
Flammability	Probably not flammable	ATSDR, 1999	
Explosive properties	No data		
Self-ignition temperature	No data		
Oxidising properties	No data		
Granulometry	No data		
Stability in organic solvents and identity of relevant degradation products	No data		
Dissociation constant	No data		
Viscosity	No data		

2 MANUFACTURE AND USES

2.1 Manufacture

No data.

2.2 Identified uses

Laboratory chemical.

3 CLASSIFICATION FOR PHYSICO-CHEMICAL PROPERTIES

Not evaluated in this dossier.

4 HUMAN HEALTH HAZARD ASSESSMENT

4.1 Toxicokinetics of mercury compounds

Justification of the read-across between methylmercuric chloride and mercury compounds:

Study shows that MeHgCl presents a different bioavailability than MeHg as it is more hydrophobic than MeHg that systematically bind to thiols (Harris et al.; 2003). MeHgCl displays therefore a toxicity, which is more important compared to MeHg (<u>Glover CN</u>; 2009; Berntssen et al., 2004; Oyama et al., 2000). Studies performed with MeHg are presented as supportive data as MeHgCl is the most toxic form of organic mercury compounds.

4.1.1 Mercury in water and food

First, the mercury cycle in the environment is explained in order to better understand the formation of methylated forms in the environment and then the exposition to the human.

The change in mercury speciation from inorganic to methylated forms is the first step in the aquatic bioaccumulation process. Methylation can occur non-enzymatically or through microbial action. Once methylmercury is released, it enters the food chain by rapid diffusion and tight binding to proteins. It attains its highest levels, through food-chain biomagnification, in the tissues of fish predatory species (EHC 1991). Moreover, the greatest source of human exposure to methylmercury (MeHg) is the diet, in particular the consumption of seafood (Glover CN; 2009). Then, the cation MeHg2+ can be bound by ionic liaisons with mineral ligands like chloride to form MeHgCl (Picot; Proust; 1998).

Monoalkyl mercury compounds (e.g., methylmercuric chloride) are relatively soluble in water; however, the solubility of methylmercury is decreased with increasing dissolved organic carbon content, indicating that it is bound by organic matter in water (Miskimmin 1991). Dialkyl mercury compounds (e.g., dimethylmercury) are relatively insoluble in water (Callahan et al. 1979; EPA 1984b) (ATSDR 1999).Metabolism

Distribution (ATSDR 1999)

Organic mercury compounds distribute throughout the body following oral exposure and have the highest accumulation in the kidneys. As with metallic mercury, the ability of methyl- and phenyl mercury compounds to cross the blood-brain and placental barriers allows distribution, and subsequent accumulation, in the brain and foetus.

4.1.2 Mercury in breast milk

4.1.2.1 Non-human information

Organic mercury is excreted in breast milk, less efficiently than inorganic mercury. However, Sundberg et al. (1998) conducted a study which was designed to provide additional information on the speciation of mercury in breast milk and the differences between methylmercury and inorganic mercury migration into milk.

The values for the methylmercury kinetic parameters were significantly higher in lactating than nonlactating mice: plasma clearance (93.5 and 47.1 mL/hour/kg, respectively) and volume of distribution (18,500 and 9,400 mL/kg, respectively). The milk-to-plasma concentration ratios for total mercury after methylmercury administration were lower than those seen with inorganic mercury, and varied between 0.1 and 0.7 with a mean of 0.20.

Methylmercury is also excreted in the breast milk of rats, humans, and guinea pigs (Sundberg and Oskarsson 1992; Yoshida et al. 1992).

4.1.2.2 Human information

Concentrations of mercury have also been measured in breast milk from several populations. Breast milk concentrations have been reported for two U.S. populations; one in rural Iowa (Pitkin et al. 1976) and the other from Alaska (Galster 1976). Pitkin et al. (1976) reported a total mean mercury concentration in breast milk of 0.9 ± 0.23 ng/g (range, 0.8-1.6 ng/g). The mean total mercury concentrations in the Alaskan populations were 3.3 ± 0.5 ng/ml for the urban population, 3.2 ± 0.8 ng/ml for the interior population, and 7.6 ± 2.7 ng/ml for the coastal population that consumed fish and marine mammals. Total mercury concentrations in breast milk from other countries and exposure scenarios were 3.6 ± 2.2 ng/g for an urban population in Tokyo, Japan (Fujita and Takabatake 1977), 0.6 ± 0.4 ng/g for Swedish women that were fish consumers with 12 dental amalgams (Oskarsson et al. 1996), 0.2-6.3 ng/g (range) for Swedish women that consumed fish (Skerfving 1988), and 9.5 ± 5.5 ppb for an urban population of women in Madrid, Spain (Baluja et al. 1982).

Some of the highest levels were reported in fish eaters, and about 20% of the total mercury content of the milk was methylmercury. The median and maximum mercury concentrations in breast milk from women in the Faroe Islands, a population that consumes large quantities of fish and marine mammal tissue, were 2.45 and 8.7 ng/ml, respectively (Grandjean *et al.* 1995). Breast milk mercury concentrations reported by these authors were significantly associated with mercury concentrations in cord blood and with the frequency of pilot whale dinners during pregnancy.

These are relatively low values in contrast to the values reported in Minamata, Japan, for women who ate contaminated seafood in the Minamata episode, which resulted in total mercury concentrations in breast milk of 63 ppb (Fujita and Takabatake 1977), and in Iraq, where consumption of homemade bread prepared from methylmercury-contaminated wheat occurred, resulted in breast milk concentrations of up to 200 ng/g (about 60%) methylmercury (Amin-Zaki et al. 1976; Bakir et al. 1973) (ATSDR 1999). These two episodes were poisoning contexts.

Amin-Zaki *et al* (1979, 1981), studied children that were born just before the poisoning of farmers (see Chapter 3.2.). They were breast-fed via their mother's milk, so they had a relatively large postnatal intake of methylmercury from maternal milk. The effect observed during five years was considered evidence of damage for the central nervous system. The

concentration in breast-milk was up to 200 ng/g (the value is about 100 fold larger than the concentrations in women from several various populations).

So, methylmercury could migrate in breast milk of females exposed to a large quantity of methylmercury (poisoning), and large intake of methylmercury by mothers could be toxic for the infants if they are breast-fed.

4.2 Acute toxicity

4.2.1 Non-human information

4.2.1.1 Acute toxicity: oral

Studies presented in the TC C&L dossier:

Species	LD50 (mg/kg)	Observations and Remarks	Ref.
Mouse (C57BL/6N Jcl)	$LD_{50} < 20 \text{ mg}$ MeHgCl/kg for the males $LD_{50} > 50 \text{ mg}$ MeHgCl/kg for the females	Substance tested: Methylmercuric chloride. Study on the nephrotoxicity of the MeHgCl (and the sex-related difference of the renal effects). The animals were exposed at a single administration of 5, 10, 20, 30, 40, 50 mg/kg of Methyl Mercury Chloride. For 7 days following the administration, survival rates of the mice (6 for each dosing group) were examined: 20 mg MeHgCl/kg (= 16 mg Hg/kg): 4/6 males mice died and 0/6 females mice died 50 mg MeHgCl/kg (= 40 mg Hg/kg): 6/6 males mice died and 2/6 females mice died. Decreased renal function (decreased phenolsulfonphthalein excretion), increased plasma creatinine, and swelling of tubular epithelial cells, with exfoliation of the cells into the tubular lumen. The renal function was disturbed as early as 24 h after MeHgCl treatment with dose levels of 20 mg/kg and 50 mg/kg for males and females respectively.	Yasutake 1991

		Substance tested: Methylmercuric chloride.	
		Methods:	
		Analytical grade MeHgCl was dissolved in corn oil (Mazola) at suitable concentrations and each animal was dosed with 1ml/100g of its body weight.	
	LD ₅₀ = 25 mg Hg/kg	The LD_{50} was determined by the least square method. Rats were observed for 10 days to determine the LD50, but the groups of 200g, 350g and 450g rats were observed for a further period of 20 days to assess the onset of neurological signs by suspending the animals by their tails, when either of the hind limbs began to show flexion. Acute toxic stages were denoted by crossing of hind limbs and flailing movement during suspension.	
Male Sprague- Dawley Rats	bw (= 31.3 mg MeHgCl/kg) in adult rats LD ₅₀ = 40 mg Hg/kg	6 groups according to the body weights: 200g, 300g, 350g, 400g, 450g, and 500g.	Lin <i>et al</i> , 1975
	bw (= 50 mg MeHgCl/kg) in young rats	Each group was divided into 4 sub- groups of 20 rats. Each sub-group orally received a single dose of a solution of MeHgCl.	
		Sub-groups 1 and 2 were dosed with 25, 30, 35 and 40mg Hg/kg;	
		Sub-groups 3, 4 and 5 were dosed with 20, 25, 30 and 35 mg Hg/kg;	
		Sub-group 6 were dosed with 15, 20, 25 and 30 mg Hg/kg.	
		Results: This study shows the inversely proportional relationship between the LD_{50} of MeHgCl and the ages of the rats. As the age increases, the LD_{50} decreases, the younger rats could tolerate higher doses of MeHgCl than the older ones.	
		The onset of neurological symptoms after receiving 25mg Hg/kg of MeHgCl occurred between 8 to 15 days post dosing in the surviving rats.	

New study added in the present dossier:

6 adult males cats	6.4 mg/kg dissolved in milk Of Methyl mercury chloride	Six adult males cats received a single dose of methyl mercury chloride (MeHgCl) (6.4 mg/kg) dissolved in milk. After 30 days, we observed changes of the axon terminal morphologies in a large extent and alterations of different morphometric features of fragments in different proportions. The synthetic enzyme of nitric oxide of white matter cells of the cat striate cortex, after MeHg intoxication, presents higher decrease of its histochemical activity in the distal branches of the dendritic trees of type I NADPH-diaphorase neurons. These results suggest that cellular changes start to become first evident in the distal portions of axon terminals and dendrites in the cat visual cortex . Dramatical morphological changes in both types I and II axon fragments, 30 days after MeHg intoxication, were observed. The results may suggest a general impairment of synaptic transmission in the intrinsic circuits of the visual cortex affecting both GABA-ergic and glutamatergic connections near the border of areas 17 and 18. The visual functions were not tested after MeHgCl intoxication.	Oliveira et al., 2008
-----------------------	---	---	--------------------------

4.2.1.2 Acute toxicity: inhalation

Human data:

Following acute inhalation exposure of dust containing **methylmercury**, four men had initial symptoms including numbness and tingling of limbs, unsteadiness in gait, difficulty in performing fine movements (e.g., buttoning a shirt), irritability, and constricted vision (Hunter et al. 1940). At least 2 years after these occupational exposures, the subjects had not fully recovered from their symptoms.

Animal data:

No data.

4.2.1.3 Acute toxicity: dermal

No data.

4.2.1.4 Acute toxicity: other routes

Species	Substance tested	LD50 (mg/kg)	Observations and Remarks	Ref.
---------	------------------	--------------	--------------------------	------

Male Sprague Dawley Rats		intraperitoneal injection : 9.5 mg MeHgCl /kg bw	 15 min after intraperitoneal injection of doses > 3 mg/kg bw: the animals became lethargic, with drooping heads and dulled eyes; some died after developing dyspnea, spasticity, and loss of the ability to walk. Animals given < 3 mg/kg bw became drowsy but survived 50% of mortality after 24 h 	
	Methylmercuric chloride dissolved in sterile isotonic saline administered intraperitoneally in	intraperitoneal injection : 8.1 mg MeHgCl /kg bw	50% of mortality after 30 days.	Hoskins <i>et</i>
Male Syrian	1 or 2 ml of saline (one single injection)	intraperitoneal injection : 20 mg MeHgCl /kg bw	50% of mortality after 24 h	<i>al</i> , 1978
Hamsters	Controls: like amount of isotonic saline	intraperitoneal injection : 12 mg MeHgCl /kg bw	50% of mortality after 30 days	
Adults males and females Squirrel		intraperitoneal injection : 9.5 mg MeHgCl /kg bw	50% of mortality after > 14 h	
monkeys		intraperitoneal injection : 3.8- 5.1 mg MeHgCl /kg bw	50% of mortality after 30 days	

4.2.2 Summary and discussion of acute toxicity

Animal data on MeHgCl are available for acute toxicity by oral route and human data on MeHg dust by inhalation. However, no studies were located regarding death in humans or animals after dermal exposure to methylmercury (ATSDR, 1999) and regarding death in animals after inhalation.

The critical value for classification by oral route is the LD_{50} inferior to 20 mg MeHgCl/kg for the male mice.

Modification of axon morphology but no mortality was observed in cats at 6.4 mg/kg 30 days after a single oral administration of MeHgCl but the visual functions were not tested (Oliveira 2008).

Case studies in humans report deaths by inhalation of alkylmercury compounds but with prolonged exposure of several months or years. These data are therefore not relevant to classify MeHgCl for acute toxicity by inhalation.

4.2.3 Comparison with criteria

The acute oral LD_{50} value for MeHgCl is less than 50 mg/kg bw and a classification "Acute Tox. 2, H300" is proposed according to CLP criteria.

4.2.4 Conclusions on classification and labelling

Animal data support the existing classification Acute Tox. 2 - H300 according to the CLP by oral route.

No acute toxicity relevant information is available on methylmercury compounds by dermal and inhalation routes. However, information on acute toxicity and absorption by the different routes of organic mercury compounds in general can assist in the assessment of acute toxicity of methylmercury compounds by the different routes of exposure.

No information was identified on absorption of methylmercury via **dermal route**. It was however reported that dermal absorption of phenylmercuric acetate from the vaginal tract was 75% of the dose within 8 hours after administration in rats. In humans, a case history indicates nearly complete absorption of dimethylmercury through the skin: a 48-year old woman died 9 months after she inadvertently spilled several drops (estimated at 0.4-0.5ml) of dimethylmercury on her disposal latex gloves. Gloves were shown to be penetrated completely by dimethylmercury in 15 seconds or less. Dimethylmercury is also able to volatilise and inhalation exposure might also have occurred.

No animal studies on absorption of organic mercury **by inhalation** are available. Indirect evidence shows that organic mercury is absorbed readily through the lung. Indeed, case studies of occupational exposure to unspecified alkyl mercury compounds have reported deaths in humans following inhalation. Most subjects died after developing profound neurotoxicity. Exposure to diethylmercury vapour (estimated exposure level: 1-1.1 mg/m³) for 4-5 months resulted in the death of two women. A 41-year-old man with to 3-4 years of exposure to alkyl mercury compounds used in seed dressing died within approximately 3 months after cleaning up a spill of liquid containing alkyl mercury.

By the **oral route**, no quantitative data are available in humans with methylmercury or methylmercuric chloride but 95% of an oral dose of methylmercuric nitrate was absorbed. In animals, absorption was nearly complete within 6 hours after female Cynomolgus monkeys were given 0.5 mg/kg as methylmercuric chloride by gavage.

Overall, no direct quantitative data are available on absorption of methylmercury or methylmercuric chloride via inhalation or dermal route. However, data on other organic mercury compounds provides evidence of a massive percutaneous absorption of organic mercury compounds. On inhalation, data on organic mercury compounds are not quantitative but indicate that some organic mercury compounds are significantly absorbed in the lung.

It should also be noted that the current classification of these substances from the general entry "Organic compounds of mercury" is Acute Tox. $2^* - H330$ (*minimal classification) by inhalation and Acute Tox. 1 - H310 by dermal route.

The data above provide evidence for significant exposure to methylmercury by inhalation or dimethylmercury by skin contact. As detailed previously, MeHgCl is the most toxic form of organic mercury compounds and it is therefore considered that the existing general classification for acute toxicity for these routes should not be removed.

So, based on this consideration, the existing classification Acute Tox 1; H310 and Acute Tox 2; H330 according to the CLP regulation criteria is supported.

4.3 Specific target organ toxicity – single exposure (STOT SE)

Human data by inhalation reported in section 4.2.1.2 provide evidence of neurotoxicity after single acute exposure. However, it is not known whether co-exposure to other substances may exit for these cases. The dose of exposure is also not known.

Besides, a classification for acute toxicity by inhalation is proposed in relationship with lethal effects and a classification as STOT SE would be redundant for consideration of acute toxicity on methylmercury compounds.

No classification for STOT SE is proposed.

4.4 Irritation

Not evaluated.

4.5 Corrosivity

Not evaluated.

4.6 Sensitisation

Not evaluated.

4.7 Repeated dose toxicity

4.7.1 Non-human information

4.7.1.1 Repeated dose toxicity: oral

Species	Dose (mg/kg/body weight)	Duration of treatment	Observations and Remarks	Ref.
Male Rat (Wistar)	0.5 mg MeHgCl/kg bw every day by gavage (group 1) 1.5 mg MeHgCl/kg	3-4 wk	This study (not in compliance with a guideline) focuses on the effects of acute and chronic methyl mercury chloride treatment on rat blood pressure .	Wakita 1987
	bw every 3 days by		Increased systolic blood pressure (SBP) in male rats (group 1). The effect began	

	gavage (group 2)		60 days after initiation of exposure and reached levels higher than those of the	
	Substance tested: methyl mercury chloride		control by 10-25 mm Hg, 84 days after the cessation of treatment.	
			In the group 2, significant increases of SBP were found to occur after cessation of the treatment and to persist for at least 9 months.	
Female Mouse (BALB/c)	0 and 0.625 mg MeHg/kg bw (diet) Substance tested: methyl mercury	12 wk	The study was performed to determine whether a MeHg-enriched diet during 12 weeks affects immune cell activities or cellular counts in the thymus, spleen and blood. (This study is not in compliance with a guideline).	
			22% decrease in thymus weight and 50% decrease of cell number compared to controls. The natural killer cell activity was reduced by 44 and 75% in the spleen and blood, respectively. However, the lymphoproliferative response in the spleen increased at this dose of mercury.	Ilbäck 1991
Rat	0.2 mg MeHgCl/kg bw or 2 ppm MeHgCl (diet)	12 wk	This study focuses on the nephropathy induced by long-term exposure to small amounts of MeHgCl. This is not in compliance with a regulatory guideline.	
	Substance tested: methyl mercury chloride		Renal effects: ultrastructural changes (cytoplasmic masses containing ribosomes and bundles of smooth endoplasmic reticulum) in kidney proximal tubule cells of female rats, despite the normal appearance of the glomeruli at light microscope.	Fowler 1972
Mouse (ICR)	0; 0.05 (approx); 0.2 (approx); 0.906 mg MeHgCl/kg bw	26 wk	This study (not in compliance with regulatory guideline) was performed to evaluate renal carcinogenic potentiality at low level.	
	0, 0.4, 2, 10 ppm of methylmercuric chloride (diet)		Renal effect at 10 ppm (0.906 MeHgCl mg/kg/day): degeneration of the proximal tubules characterised by nuclear swelling and vacuolation of the cytoplasm.	Hirano 1986
Mouse (ICR)	0; 0.05 (approx); 0.2 (approx); 0.906 (mean daily intake) mg MeHgCl/kg bw	104 wk	A second study was performed by Hirano <i>et al.</i> , during a longer period (not in compliance with regulatory guidelines). At 2 ppm: Epithelial cell degeneration and	Hirano 1986

(diet) Renal epithelial tumors, mostly adenocarcinomas, were found, in 13 of 59 male at 10 ppm. No renal tumors were induced in other groups including females.	
	Mitsumori 1990

			60) and at week 80 in females (3 of 60) of the 10 ppm group. A marked increase in mortality was observed for males of the 10 ppm group after 60 weeks. The final survival rate of males in this group was 17%, in contrast to 48% in the male's controls.	
Rat	0, 0.01, 0.05 and 0.25 mg/kg bw (approx) 0, 0.1, 0.5 and 2.5 ppm MeHgCl (diet) Substance tested: methylmercuric chloride	104 wk	A long term toxicity study was performed in rats to evaluate histology of several organs (kidneys). (Not in compliance with regulatory guidelines). No treatment-related histopathological lesions of the heart, lung, stomach or jejunum. No change in haematological or hepatic parameters. Increased kidney weights and decreased enzymes (alkaline phosphatase, ATPase, NADH- and NADPH-oxidoreductase, and AMPase) in the proximal convoluted tubules. No histological lesions.	Verschuuren 1976

Neurotoxicity of methylmercury was also studied extensively. As described in the WHO food additives series (2000) the role of the granular layer of the cerebellum and the posterior root fibres as a target of methylmercury was identified in rats 60 years ago (Hunter et al., 1940). This study also described the clinical course of severe poisoning as weight loss, ataxia, paralysis, and death in rats given 2.4 mg Hg/kg/d for 29 days. Axoplasmic and myelin degeneration of posterior root fibres was produced by daily doses of 0.8 mg/kg bw as methylmercuric chloride (Chang & Hartmann, 1972), while the ventricular root fibres and the dorsal root nerves remained intact after administration of 1.6 mg/kg bw per day in rats exposed up to 11 weeks (Yip & Chang, 1981).

Sprague- Dawley Rats	5 or 500 μg/kg of MeHgCl	This study (not in compliance with a guideline) focuses on the effects of methyl mercury chloride treatment on rat immune system.	Wild al., 199	et 97
		The Lymphocyte Proliferative Response of splenocytes to both mitogens (PWM and Con A) was enhanced in the both MeHgCl-exposed groups at 6 weeks of age. At 12 weeks of age, the LPR of splenocytes to PWM remained enhanced in the both groups. The response to Con A and PWM was increased ($p < 0.05$). Natural Killer (NK) cell activity was markedly depressed (56%) at 12 weeks of age in both groups		

			compared to the controls ($P < 0.05$).	
Male Wistar Rats 2 groups of 7 rats each one: one control and one exposed group	0 and 100 μg/kg/day (drinking water by gavage) Low level of methyl mercury chloride	100 days Sub- chronic exposure	This study (not in compliance with a guideline) focuses on the effects of methyl mercury chloride treatment on rat blood pressure . At the beginning of the experiment and during the following three weeks: the Systolic Blood Pressure (SBP) did not change. After 4 weeks of treatment, SBP significantly increased in MeHg-treated rats compared with the control (respectively for the exposed then the control group, for the weeks 6, 10 and 14: 150 mmHg/125 mmHg, 170 mmHg/125 mmHg, 175 mmHg/125 mmHg, p < 0.01).	Grotto et al., 2009

4.7.1.2 Repeated dose toxicity: inhalation

No data

4.7.1.3 Repeated dose toxicity: dermal

No data

4.7.1.4 Repeated dose toxicity: other routes

New studies added in the present dossier:

Adult Swiss Albino mice t	N=5 pups for each group; one control group (daily subcutan eous treatment of a 150 mM NaCl solution) and 4 groups: PND 1- 5, PND 6-10, PND 11- 15, PND 16-20	MeHg treatment caused a significant increase in the locomotor activity (open field task) in a time period dependent way ($F_{4.34}$ =3.33, P=0.021). However, the motor performance of animals in the rotarod task was not affected by MeHg exposure ($F_{4.34}$ =1.09; P=0.376). MeHg exposure led to a diminished activity of cerebellar antioxidant enzymes (glutathione peroxidase GPx and glutathione reductase GR), ($F_{4.35}$ =2.99, P=0.032) during PND 16-20, causing oxidative stress and behavioral alterations and increased the cerebellar lipid peroxidation during PND 11-15 and PND 16-20 (measured by TBARS levels, thiobarbituric acid reactive substances), ($F_{4.34}$ =4.03; P=0.009). So, MeHg caused significant neurotoxic effects related to oxidative stress in mouse cerebellum (a vulnerable target for the neurotoxic effects) mainly from the second half of the suckling period (PND 11-20), resulting in behavioural changes (hyperlocomotor activity).	(Stringari <i>et al.</i> 2006)
		pups for each group; one control group (daily subcutan eous treatment of a 150 mM NaCl solution) and 4 groups: PND 1- 5, PND 6-10, PND 11- 15, PND	pups for each group; one (daily group (daily subcutan of a 150 mM NaCl So, MeHg caused significant neurotoxic effects related to a disperiod (PND 11- 5, PND 11- 15, PND

During		
five		
consecuti		
ve days		
in five		
different		
post		
natal		
periods.		
*		

4.7.2 Human information:

New studies added in the present dossier:

52Chinese childrenHigh fish nThe relationship between fish consumption and mercury toxicity (Cheuk consumption bound to cysteine in fish, seems to be far lower than Me-Hg-Cl wong to wore the previous six monthsThe relationship between fish consumption and mercury, which is s and to cysteine in fish, seems to be far lower than Me-Hg-Cl wong to wore the previous six months before the study.The relationship between fish consumption and mercury toxicity (Cheuk to wore the previous six months before the study.The relationship between fish consumption and mercury toxicity (Wong 2006)and study.59before the beginning of study.Children with ADHD (attention deficit hyperactivity disorder) had a significantly higher mean blood level than control.2006)The geometric mean blood mercury levels were 18.2 nmol/L (95% Cl 15.4 - 21.5 nmol/L) in the ADHD group and 11.6 nmol/L (95% Cl 9.9 - 13.7 nmol/L) in the control group, with a difference of 6.6 nmol/L (p < 0.001).35 children (67.3%) with ADHD were classified to the combined subtype while 13 (25%) and 4 (7.7%) patients belonged to the predominantly inattentive and predominantly hyperactive-impulsive subtypes respectively. The geometric means of blood mercury levels of children with the inattentive (19.4 nmol/L, 95% Cl 13.3 - 28.5 nmol/L) and the combined (18.0 nmol/L, 95% Cl 13.3 - 28.5 nmol/L) and the combined significantly different from those of controls (p = 0.03 and p = 0.01, respectively). However, although the geometric mean blood mercury level of children with the hyperactive-impulsive subtype of ADHD (16.1 nmol/L, 95% Cl 7.3 - 35.5 nmol/L) was higher than that of controls, the difference was not statistically significant.After a				
	children with ADHD (Attention Deficit Hyperactitiv y Disorder) and 59 normal	consumptio n in this population over the previous six months before the beginning of the	is still controversial, as the toxicity of methylmercury, which is bound to cysteine in fish, seems to be far lower than Me-Hg-Cl or Me-Hg-I usually used in experiments. The mean ages of cases and controls were 7.06 years and 7.81 years respectively. Children with ADHD (attention deficit hyperactivity disorder) had a significantly higher mean blood level than control. The geometric mean blood mercury levels were 18.2 nmol/L (95% CI 15.4 – 21.5 nmol/L) in the ADHD group and 11.6 nmol/L (95% CI 9.9 – 13.7 nmol/L) in the control group, with a difference of 6.6 nmol/L ($p < 0.001$). 35 children (67.3%) with ADHD were classified to the combined subtype while 13 (25%) and 4 (7.7%) patients belonged to the predominantly inattentive and predominantly hyperactive-impulsive subtypes respectively. The geometric means of blood mercury levels of children with the inattentive (19.4 nmol/L, 95% CI 13.3 – 28.5 nmol/L) subtypes were also significantly different from those of controls ($p = 0.03$ and $p =$ 0.01, respectively). However, although the geometric mean blood mercury level of children with the hyperactive-impulsive subtype of ADHD (16.1 nmol/L, 95% CI 7.3 – 35.5 nmol/L) was higher than that of controls, the difference was not statistically significant. After adjusting for age, gender and parental occupational status using the multiple linear regression method, the mean blood mercury level was 75% higher in children with ADHD ($p <$ 0.001). Children with ADHD were more likely to have blood mercury levels greater than 29 nmol/L (5.8 µg/L, the threshold of possible adverse effects considered by the US Environmental Protection Agency and the National Academy of Sciences)	and Wong 2006)

22 adult	22 adult	A study was performed on humans, in order to assess early		et
male subjects	controls	neurotoxic effects following low levels of organic mercury (methylmercury) absorbed through fish eating. In this purpose, two groups of 22 adult male subjects, habitual consumers of tuna fish, and 22 controls were examined using neurobehavioral tests of vigilance and psychomotor function, hand tremor measurements and serum prolactin assessment.		
		Mercury in urine (U-Hg) was significantly higher among exposed subjects (median 6.5 μ g/g of creatinine, range 1.8-21.5) than controls (median 1.5 μ g/g of creatinine, range 0.5-5.3). The organic component of mercury in blood (O-Hg) was 41.5 μ g/l among the tuna fish eaters and 2.6 μ g/l in the control group. Both U-Hg and O-Hg were significantly correlated with the quantity of fish consumed per week. Significant differences in serum prolactin (sPRL) were found between exposed (12.6 ng/ml) and controls (9.1 ng/ml).		
		The neurobehavioral performance of subjects who consumed tuna fish regularly was significantly worse on color word reaction time, digit symbol reaction time and finger tapping speed (FT) in comparison with the control group. So, long-term increased MeHg intake can be associated with impairment of psychomotor performance.		
684 men examined	724 men for the control group	A clinical study was performed on 684 men with a first diagnosis of myocardial infarction and 724 men for the control group (Guallar <i>et al.</i> , 2002). The mercury levels in the patients with cardio-vascular risk were 15 percent higher than those in controls. Moreover, analysis with adjustment for age and center, showed an increased risk of myocardial infarction at high mercury levels.	et c	ar al.,

New studies added in the present dossier:

Visual system manifestations after methylmercury exposure in human:

In the study of Hunter (1954), four cases of workers inhaling methylmercury vapour discharged from a fungicide plant were reported. Constriction of visual fields occurred in all of the workers, and it was localized in central visual areas in three cases. One patient who was monitored for 15 years until his death, continued to have constricted visual fields, ataxia, and other symptoms. After death, the patient was found to have atrophy of the visual cortex.

Another case involves poisoning due to fungicides using a dimethyl compound of mercury; however, only the central nervous system was affected, with visual manifestations including immediate constriction of vision accompanied with tremor and ataxia (Stein, 1992).

A further incident occurred in the 1940s in which two workers were poisoned by spraying wood with a preservative containing methylmercury. Bilateral concentric narrowing of visual fields occurred in both workers, causing them to develop total blindness, followed by death (Ahlmar A., 1948; Merigan; 1980).

Methylmercury primarily causes neuro-ophtalmological effects as experienced in Minamata disease and in Iraq. Visual effects include the degeneration of peripheral vision (a unique sign in all of these cases) while patients claim that their central vision is unharmed.

Other vision-related effects of methylmercury include the visually evoked response (VER) (Jalili MA, 1961) and contrast sensitivity (NIOSH 94-116, 1994). In usual brightness conditions, VERs were degraded only when visual fields became constricted. However, in scotopic brightness the VERs decreased even when visual fields were normal.

Other neuro-ophtalmological effects of methylmercury involve eye movements. Superficial ptosis, as well as uneven nystagmus occurs infrequently. Methylmercury also causes degenerative effects on the occipital visual cortex and cerebellum.

4.8 Specific target organ toxicity (CLP Regulation) – repeated exposure (STOT RE)

4.8.1 Summary and discussion of repeated dose toxicity findings

Two studies (Wakita 1987; Grotto 2009) show the increase of the **blood systolic pressure** on rats with MeHgCl treatment: the lowest dose of 100 μ g/kg/day can increase the pressure more than 150 mm Hg/ 125 mm Hg after 4 weeks of MeHgCl treatment.

Wild and Ilbäck studied the impact of the MeHgCl on the **immune system**. The same results were found: Lympho Proliferative Response enhanced, Natural Killers decreased at the lowest dose of $5\mu g/kg$ (Wild 1997).

Several studies show the **renal toxicity** after MeHgCl oral treatment: at the lower dose of 0.2 mg/kg MeHgCl bw (2 ppm), ultrastructural changes were observed in kidney proximal tubule cells of female rats (Fowler 1972); Epithelial cell degeneration and interstitial fibrosis in kidney was observed at 2 ppm too (Mitsumori, 1990).

Methyl mercury mainly targets the **CNS** as evidenced by data on rodents and non-human primates. In humans, neurotoxicity following oral exposure was also characterised further the poisoning in Minamata and Iraq. Cheuk performed clinical studies on children of 7 and 14 years, showing adverse effects in regard to motor speed, attention and language. The study shows that children with ADHD (attention deficit hyperactivity disorder) had a significantly higher mean blood MeHg level than control. In addition, Carta shows that long-term increased MeHg intake can be associated with impairment of psychomotor performance.

No studies were located regarding effects in humans or animals after dermal exposure (ATSDR, 1999).

Via inhalation, neurotoxicity and death were reported further occupational exposure to alkylmercury compounds. Besides, several occupational exposures by inhalation to methylmercury vapor were reported, showing constriction of visual fields, localized in central visual areas. In some cases, consequences were total blindness, followed by death (Ahlmar, 1948; Merigan, 1980). However, duration of exposure was not specified in many case reports and it is not possible to know whether effects are due to chronic or acute (poisoning) exposures and no classification is proposed by inhalation.

4.8.2 Comparison with criteria of repeated dose toxicity findings relevant for classification as STOT RE

Under CLP, the following effects are considered as relevant:

(a) morbidity or death resulting from repeated or long-term exposure. Morbidity or death may result from repeated exposure, even to relatively low doses/concentrations, due to bioaccumulation of the substance or its metabolites, and/or due to the overwhelming of the detoxification process by repeated exposure to the substance or its metabolites;

(b) significant functional changes in the central or peripheral nervous systems or other organ systems, including signs of central nervous system depression and effects on special senses (e.g. sight, hearing and sense of smell);

(c) any consistent and significant adverse change in clinical biochemistry, haematology, or urinalysis parameters;

(d) significant organ damage noted at necropsy and/or subsequently seen or confirmed at microscopic examination;

(e) multi-focal or diffuse necrosis, fibrosis or granuloma formation in vital organs with regenerative capacity;

(f) morphological changes that are potentially reversible but provide clear evidence of marked organ dysfunction (e.g., severe fatty change in the liver);

(g) evidence of appreciable cell death (including cell degeneration and reduced cell number) in vital organs incapable of regeneration.

In the available studies, the adverse effects induced by methylmercury are:

- (a): substance-related deaths after oral exposure in animals (2.4 mg Hg/kg for 29 days; Chang 1972), (4.3 mg/kg bw for 26 weeks Mitsumori 1981), 10 ppm (0.859 mg/kg in males) for 2 years (Mitsumori 1990).
- (e): histological effects in the kidney including fibrosis by oral route in animals (2 ppm = approx 0.1 mg/kg bw).
- (b): Changes in the central nervous system, which affects the visual cortex, evaluated by clinical signs and brain necropsy (atrophy of the visual cortex) in animals (doses not known).

By oral route, substances shall be classified under CLP in category 1 when they cause significant and/or severe toxic effects of relevance to human health at levels ≤ 10 mg/kg in a 90-day study.

Besides, adverse effects observed in humans trigger classification in **category 1** without consideration of the dose inducing the effects.

Methylmercury is responsible for neurotoxical effects by oral route (causing visual constrictions). The doses at which these effects appear in humans are not exactly known; however, the long term exposure studies and human cases experiences support the conclusion that a classification of the substance is necessary (cf. the paragraph 3.9.2.9.9. of the CLP).

4.8.3 Conclusions on classification and labelling of repeated dose toxicity findings relevant for classification as STOT RE

A classification STOT RE 1 - H372 is proposed according to CLP.

The central nervous system (and the visual cortex in particular) and kidneys are the target organs and should be identified in the hazard statement. H372 (nervous system, vision and kidneys).

4.9 Germ cell mutagenicity (Mutagenicity)

4.9.1 Non-human information

4.9.1.1 In vitro data

Tissue	Dose	Metabolic activation	Observations and Remarks	Ref.
Saccharomyces cerevisiae	Organic mercury	Without	Neither mutagenic nor caused recombination in, but it did produce a slight increase in the frequency of chromosomal nondisjunction	Nakai and Machida 1973
Bacillus subtilis	Methyl mercuric chloride at 0.005 M and methylmercury at 0.05 M	Without	Induction of primary DNA damage in the rec-assay	Kanematsu et al. 1980
Human lymphocytes	Methylmercuric chloride at 0.12, 0.6, 1, 3, 5, 15 and $25 * 10^{-6}$ M	Without	Significant increase in chromosomal aberration, mainly chromatid breaks at 0.6 * 10 ⁻⁶ M Structural and numerical chromosomal aberrations at higher doses (symmetrical and asymmetrical exchanges, more than 10 aberrations per cell). Hyperdiploid cells increased linearly from the lowest dose (but significance was obtained at higher dose). Polyploid cells appeared in all treated culture but without a clear dose- response relationship (significant at only 15*10 ⁻⁶ M).	Betti 1992
Human lymphocytes	Methylmercuric chloride at 0, 3, 5, 15 and $25 * 10^{-6}$ M	Without	Chromosome and chromatid aberrations with dose-effect relationship (p<0.05). Weak effect on sister chromatid exchange but not dose-related (at 3	Betti 1993

			and 5 * 10 ⁻⁶ M).	
			Production of aneuploidy (particularly hyperdiploidy) (p<0.001, linear and significant increase up to a dose of 15*10 ⁻⁶ M).	
Human peripheral lymphocytes	Methylmercuric chloride at 10 ⁻⁵ , 10 ⁻⁶ , and 10 ⁻⁷ M	Without	Induction of aberrant metaphases (including gaps) in a dose-dependent manner (p<0.05). At the higher concentrations, also induction of a significant number of breaks. Induction of a significant number of SCEs per cell in a dose-dependent manner, which was reduced by treatment with gamma linolenic acid.	Bala 1993
Indian muntjac fibroblasts and human lymphocytes	Methylmercuric chloride at 5, 15, 30*10 ⁻⁶ M	Without	Clear increase in C-mitotic figures in human lymphocytes up to the final dose of 30*10 ⁻⁶ M. No C-mitosis was observed in muntjac fibroblasts because of a lethal toxic effect preceding any increase of C-mitosis effect.	Verschaeve 1984b
			Substance tested: methylmercuric chloride prepared in absolute ethanol at a concentration of 3.5 mM. Then a series of dilutions in ethanol was made from this solution to obtain desired final concentrations.	
Blastocysts of early ICR mouse embryos	1 or 2 μM Substance tested: methylmercuric chloride	Without	Method: Sister Chromatid Exchange (SCE) assay: blastocysts were incubated with various concentrations of MeHgCl to find out if the severity of delayed effects (interference with trophoblast outgrowth and ICM growth and differentiation at 0.5 µM) was related to the number of SCEs.	Matsumoto and Spindle 1982
	chloride		Results: At concentrations of 0.25 μ M or greater, metaphase plates were too few and it was difficult to make good spreads. In blastocysts treated with 0.125 μ M MeHgCl, chromosomes were well spread but the number of SCEs (7.3 ± 0.94, n = 8) was not significantly different (p>0.05, Student's t test) from that for control blastocysts (7.9 ± 0.6, n =	

			43). Conclusion; No increase in the frequency of sister chromatid exchanges.	
Human whole blood	Methylmercuric chloride at doses ranging from 8 * 10^{-8} to 2.5 * 10^{-4} M	Without	Dose-dependent increase in sister chromatide exchanges. SCEs per cell at the dose of 2*10-6 M: (mean ± SEM) 12.69 ± 0.60 (p<0.001).	Morimoto 1982
Rat glioblastoma cells, Chinese hamster V79 cells, human lung cells, and human nerve cells		Without	Induction of single-strand breaks	Costa 1991
Chinese hamster V-79 cells	0.08–0.4 μg Hg/mL	Without	Weak but dose-related mutagenic responses near the cytotoxic threshold.	Fiskesjo 1979

4.9.1.2 In vivo data

Species	Dose (mg/kg body weight)	Duration of treatment	Observations and Remarks	Ref.
Cat (n=3/group)	0.0084, 0.02, or 0.046 mg Hg/kg bw as methylmercury in diet	39 months	 No clear evidence of UDS in lymphocytes. Significant increases in nuclear abnormalities in bone marrow cells from the 3 treatment groups but response was not dose-related. Number of cats scored positive on the total number of cats for the cats treated by respectively 8.4; 20 and 46 µg Hg/kg/day: for multinucleated in myeloid cells: 0/5; 0/8; 0/5; for nuclear abnormalities in myeloid cells: 4/6*; 7/8*; 	Miller 1979

			 3/5*; *Significantly different from control (P < 0.05). for multinucleated in erythroid cells: 2/6; 2/8; 3/5; for nuclear abnormalities in erythroid cells: 0/6; 0/8; 0/5; 	
Syrian hamster (females)	7.4 mg Hg/kg by intraperitoneal injection Methyl mercury chloride	Single IP injection	No chromosomal aberrations produced in metaphase II oocytes. However, the frequency of hyperploid cells in the treated animals was significantly (p<0.01) increased compared to the control. A borderline significant increase in hypoploid cells was also seen.	Mailhes 1983
Mouse (BALB/c) (females)	0, 2.5, 5.0 or 7.5 mg/kg of methyl mercury chloride bw by intraperitoneal injection	Single IP injection	Dominant lethal assay: significant increase in especially pre- and early post-implantation foetal loss. No data on maternal toxicity.	Verschaeve 1984a

4.9.2 Human information

Tissue	Population	Exposure	Observations and remarks	Ref
Lymphocyt es	N=23 people who consumed mercury- contaminated fish.	Not specified	Positive correlation between blood mercury levels and structural or numerical chromosomes aberrations. No data on smoking status. Effects were significant only when lymphocytes cultures were initiated several days after collection and not on the day of collection.	Skerfving 1974
Lymphocyt es	N=9 people who consumed methylmercury- contaminated fish.	Not specified	Significant (p<0.05) correlation between mercury levels and chromosomes breaks. No data on smoking status. Effects were significant only when lymphocytes cultures were initiated several days after collection and not on the day of collection.	Skerfving 1970

	Humans who ate seal contaminated meal.	Not specified	Increased incidence of sister chromatide exchange. No data on smoking and consumption of other heavy metals.	Wulf 1986
Blood peripheral lymphocyte s	51 fishermen who had eaten mercury contaminated seafood	The first year, blood mercury levels ranged from 10,08 ng/g to 252,25 ng/g with a mean of 81,97 ng/g (±49,96 ng/g). In 1991, the average mercury concentration in blood was 97,72 ng/g (SD=58,57 ng/g).	A statistical correlation between micronucleus frequency in peripheral blood lymphocytes and total mercury concentration in blood (p=0.00041), as well as between micronucleus frequency and age (p=0.017). Peripheral venous blood from 51 fishermen was collected during two years of analysis (1990-1991). The blood was used for micronucleus analysis and mercury detection. The first year, the average frequency of micronucleated lymphocytes was 8,7 ‰ with a SD of 2,47. When data were analysed with linear regression analysis, a significant correlation was found between micronucleus frequency and blood mercury levels (p=0,0118, r=0,786). In 1991, there was a significant correlation between micronucleus frequency and blood mercury concentration (p=0,017; r=0,706).	Franchi 1994

New studies added in the present dossier:

Blood	08 adults whom one	Not specified	The median level of total hair mercury	Amorim at
peripheral	third (33.3%) of the	-	for this population was 13.50 μ g/g,	
lymphocyte	· · · · · ·	CAULTY	ranged from 0.57 μ g/g to 153.8 μ g/g.	aı., 2000.
s	women had lived in		$\mu_{B} = 0 \mu_{B} = 0 \mu_{B} = 0$	
5	the gold-mining		The first apparent biological effect with	
	region, exposed to		increasing MeHg hair level was the	
	mercury vapours,		impairment of lymphocyte proliferation	
	in a region		measured as mitotic index (MI), the	
	contaminated by		proportion of cells in M-phase of the cell	
	methyl mercury.		cycle. So, decreased MI reflects	
			inhibition of cell-cycle progression. The	
			mitotic index ranged from 8 to 36 per	
			1000 cells, with a mean of 25.20 ± 7.8 .	
			No significant differences were observed	
			with having lived in the gold mining area.	
			The frequency of polyploides per 1000	
			lymphocyte cells ranged from 0 to 16.	
			The majority of participants (63.9%) did	
			not present this aberration. The lowest	
			MeHg-level at which polyploidal	
			aberrations (PA) are observed is 7.25	
			μ g/g. At MeHg \geq 20 μ g/g, the prevalence	
			of persons with polyploidal aberrations is	
			86.7% compared to 18.8% for those with	
			levels comprised between 10 μ g/g and 20	
			$\mu g/g$ of MeHg. The differences are highly	
			significant (Chi square: 48.9, df=2; p <	
			0.001).	
			Between 1-3 breaks were observed in	
			lymphocytes for 14 persons (14.6%); for	
			11 there was only one break, for two	
			there were 2 breaks and 1 person	
			presented 3 breaks. The persons with	
			chromatid breaks have significantly	
			higher levels of MeHg as compared to	
			those without (30.46 $\mu g/g \pm 10.7$ vs 14.5	
			$\mu g/g \pm 11.6$; ANOVA F=23.3; p<0.001).	
			Among those with MeHg $\geq 20 \ \mu g/g$, the	
			prevalence of persons with breaks is	
			37.9%, as compared to 9.4% for those	
			with 10 $\mu g/g \le MeHg \le 20 \ \mu g/g$; none of	
			the persons with MeHg levels below 10	
			$\mu g/g$ presented breaks. The differences	
			are highly significant (Chi square: 19.4,	
			df=2; p<0.001).	

Cliphlasta	Mathylmanaria	Exposure of cells to MeHgCl for 24h	(Crospo
	Methylmercuric	· · · · · ·	` 1
ma (U373)		affected the binucleation index (BI, cells	1
and	concentrations of 0-1	divided once) in a concentration	2007)
Neuroblast	μινι	dependent manner. The BI of	
oma		neuroblastoma decreased significantly	
(B103),		$(p<0.05)$ even at the dose of 0.1 μ M of	
human		MeHgCl. Results of frequencies of	
brain cell		micronucleated cells demonstrated that	
lines,		MeHgCl increase the number of these	
incubated		cells found in neuroblastoma samples. No	
for 24h at		significant differences were detected in	
37°C with		glioblastoma cells, although it seems to	
MeHgCl		be a tendency to increase the number of	
		micronucleated cells at higher	
		concentrations of MeHgCl. In addition,	
		an increased number of micronuclei in	
		each micronucleated cell were detected in	
		glioblastoma cells, in a statistically	
		significant manner at the highest dose of	
		1 μM MeHgCl.	
		The increased number of colle in	
		The increased number of cells in	
		metaphase, calculated by the metaphasic	
		index, was significantly higher (p<0.05)	
		in neuroblastoma (a six-fold increase)	
		than in glioblastoma cells (a two-fold	
		increase) at the highest concentration	
		$(1\mu M)$ when compared with the control	
		groups.	
		A higher proportion of cells containing	
		nucleoplasmic bridges (index of	
		nucleoplasmic bridges) was also found	
		for both cell lines exposed to 1 μ M	
		MeHgCl.	
L	1		I

4.9.3 Other relevant information

No data available.

4.9.4 Summary and discussion of mutagenicity

In vitro data shows that methylmercury has a genotoxic potential. Crespo-Lopez *et al* shows that the human brain cell lines are also affected by MeHgCl: binucleation and metaphasic index are affected, cells containing nucleoplasmic bridges appear. *In vivo*, two studies show effects on germinal cells. However, according to the CLP guidance 3.5.2.3.9, the intraperitoneal route tested in animals (hamster and mouse, respectively Mailhes 1983 and Verschaeve 1984) is not considered as relevant compared to the expected route of human exposure (mainly by oral route, which is the most common route of exposure in human), to evaluate potential effects on

germinal cells. Besides, in the dominant lethal assay, treatment was administered to females so that the foetal loss may also be induced by maternal toxicity. These results nevertheless indicate a genotoxic potential *in vivo*, which is supported by induction of nuclear abnormalities in bone marrow in cats chronically exposed through the diet.

A statistical correlation between micronucleus frequency in peripheral blood lymphocytes and total mercury concentration in blood (p=0.00041), as well as between micronucleus frequency and age (p=0.017), was found in a population of fishers who had eaten mercury contaminated seafood (Franchi *et al.* 1994).

Four studies involving subjects exposed to methylmercury compounds from contaminated seal or fish meal were either inconclusive or indicated some chromosomal effects (Franchi 1994). Considering potential confounding factors such as smoking, age or consumption of other heavy metals, human data are however not sufficient to establish a link between chromosomal effects and exposure to methylmercury. One study on the population living in a gold-mining region contaminated by methylmercury (Amorim *et al.*, 2000) showed impairment of lymphocytes proliferation and inhibition of the cell cycle progression and increased polyploidal aberrations when MeHg concentration was higher than 20 μ g/g.

4.9.5 Comparison with criteria

According to the CLP criteria for classification, the classification in Category 1A is based on positive evidence from human epidemiological studies. Substances to be regarded as if they induce heritable mutations in the germ cells of humans.

Classification in category 1A is not appropriate because no study clearly shows that MeHgCl induce heritable mutations in the germ cells of humans.

The classification in Category 1B is based on:

- positive result(s) from in vivo heritable germ cell mutagenicity tests in mammals; or

- positive result(s) from in vivo somatic cell mutagenicity tests in mammals, in combination with some evidence that the substance has potential to cause mutations to germ cells. It is possible to derive this supporting evidence from mutagenicity/genotoxicity tests in germ cells in vivo, or by demonstrating the ability of the substance or its metabolite(s) to interact with the genetic material of germ cells; or

– positive results from tests showing mutagenic effects in the germ cells of humans, without demonstration of transmission to progeny; for example, an increase in the frequency of aneuploidy in sperm cells of exposed people.

Classification in category 1B is not appropriate because the intraperitoneal route of exposure is not the most common route of exposure for humans (which is the oral route) (according to the CLP guidance 3.5.2.3.9), although there are positive results from *in vivo* heritable germ cell mutagenicity tests in mammals (hamster and mouse).

The CLP criteria for classification in Muta.2 are as follow:

"Substances which cause concern for humans owing to the possibility that they may induce heritable mutations in the germ cells of humans. The classification in Category 2 is based on:

— Positive evidence obtained from experiments in mammals and/or in some cases from in vitro experiments, obtained from:

- Somatic cell mutagenicity tests in vivo, in mammals; or

—Other in vivo somatic cell genotoxicity tests which are supported by positive results from in vitro mutagenicity assays."

Classification in category 2 is appropriate, based on positive results in mammals.

So a classification Muta. 2 – H341 is supported in CLP regulation.

4.9.6 Conclusions on classification and labelling

A classification Muta. 2 - H341 according to the CLP regulation is therefore proposed.

4.10 Carcinogenicity

4.10.1 Non-human information

4.10.1.1 Carcinogenicity: oral

Studies presented in the TC C&L dossier:

Species	Dose (mg/kg body weight)	Duration of treatment	Observations and Remarks	Ref.
Rat	Four groups (25 males and 25 females each one) of 0, 0.1, 0.5 and 2.5 ppm MeHgCl (diet) 0.01, 0.05 and 0.25 mg/kg bw	2 years	This study deals with the renal carcinogenicity of the methylmercuric chloride (not in compliance with a regulatory guideline because of the insufficient number of animals used in the experiment). No increase in tumour incidence at any level.	Verschuuren 1976
Mouse (ICR) (60/group)	0, 2.14, 4.3 mg/kg bw MeHgCl 0, 15 and 30 ppm MeHgCl (diet) Substance tested: methyl mercury chloride	78 wk	This study deals with the renal carcinogenicity of the methylmercuric chloride (equivalent to the TG 451 on the carcinogenicity (OECD)). Majority of mice (51 males mice on 60 and 59 females mice on 60) in the 30 ppm group died due to the neurotoxicity by week 26. First renal mass was grossly seen in a male of the 15 ppm group at week 58.	Mitsumori 1981

Mouse (ICR)	Four groups were	104 wk	Renal tumours were revealed in 13 of 16 males of the 15 ppm group (1 of 37 males of the control). No renal tumours were seen in the female treated groups and/or control groups. This study deals with the renal	
60 / sex / group	tested at the doses of 0, 0.4, 2 and 10 ppm MeHgCl. 0, 0.06, 0.3, 1.4 mg/kg bw/day MeHgCl (approx) (diet) of Methyl Mercury Chloride (purity = 99.3%)		 carcinogenicity of the methylmercuric chloride (equivalent to the TG 451 on the carcinogenicity (OECD)). Increased incidence of renal epithelial cell adenocarcinomas in males: overall, tumor incidence increased of 50% (13/26) in the 10 ppm group (0.906 mg/kg/day), after 58 weeks. No general toxicity was described at 10 ppm, in the study. No neurotoxical signs were observed. Although the dead of male mice in the 10 ppm group by 98 weeks, there were no marked differences in mortality between treated groups and the control group. The body weight and food consumption in both sexes in the treated groups were comparable to those of the controls throughout the study. Except for the lesions and neoplastic masses in the kidney, there were no significant increases in the incidence of macroscopic findings in the treated groups as compared to the control. In the 10 ppm group, the incidences of decreased spermatogenesis in males and degeneration or fibrosis of the sciatic nerve in females were 11/59 and 23/60, respectively, and increased significantly as compared to the control group. (1/58 and 9/19, respectively). Besides the above lesions, various kinds of spontaneous lesions were observed in animals of both treated and control groups. However, the incidences of spontaneous lesions 	Hirano 1986

[11 (1 (1		
			were comparable to the controls.		
		104 wk	This study was conducted in B6C3F1 mice with the same dosages used in previous study (Hirano <i>et al.</i> , 1986) in ICR mice, to compare the results of both studies (equivalent to the TG 451 on the carcinogenicity (OECD)).		
			At 10 ppm of MeHgCl: increased mortality in males but not in females. Renal epithelial tumors were observed in 16 of 60 males: 13 were diagnosed as carcinomas and 5 as adenomas (as quoted in the publication; the discrepancy was not explained). One female exhibited an adenoma at 10 ppm but there was not any carcinoma in females at any doses level.		
			ad	At 2 ppm: one male exhibited an adenoma but there was not any carcinoma at this dose level.	
Mouse (B6C3F1) (n=60/sex/group			At 0.4 ppm of MeHgCl: no renal tumors were observed neither in males neither in females.	Mitsumori 1990	
			Epithelial cell degeneration and interstitial fibrosis in kidney , with on-going regeneration of the tubules present were observed in 59 of 60 males and 56 of 60 females at 10 ppm but the renal damage was more prominent in males than in females. Similar nephropathy was also observed in males of the 2 ppm group.		
			The morphological features of the renal epithelial tumors observed in male M6C3F1 mice of the 10-ppm group in the present study were similar to those induced in male ICR mice treated with 10 ppm MeHgC1 (Hirano <i>et al.</i> , 1986).		
			General toxicology: neurological signs from posterior paresis to paralysis were first observed at week 59 in males (33 of 60) and at week 80 in females (3 of 60) of the 10 ppm		

group. A marked increase in mortality was observed for males of the 10 ppm group after 60 weeks. The final survival rate of males in this
group was 17%, in contrast to 48% in the male's controls.

4.10.2 Carcinogenicity: inhalation

No data available.

4.10.3 Carcinogenicity: dermal

No data available.

4.10.4 Human information

A study (Yorifuji *et al.* 2007) was performed to explore the association between MeHg and malignant neoplasms on two groups of population because each group was contaminated differently. Exposure group 1 (Minamata and Ashikita regions, on the east side) was contaminated from the late 1930s to 1968 and exposure group 2 (Amakusa, region of the west side) was contaminated from 1959 to 1968. There were 92525 and 152541 residents in each group in 1960 respectively. The results show in both exposure groups a **positive** association with **leukemia** (ASMRs, 95% CI using data from reference population 1, on the whole period = 1.80 (1.57-2.06)), a **negative** association with **gastric cancer** and **no association with other cancers**.

4.10.5 Other relevant information

No data available.

4.10.6 Summary and discussion of carcinogenicity

Although a rat study is negative, three studies consistently report renal tumours in male mice at doses as low as 10 ppm (0.859 mg/kg bw/d for males and 0.752 mg/kg bw/d for females in Mitsumori, 1990 and approximately 1.4 mg/kg bw/d in Hirano, 1986).

For information, methylmercury was classified in Group 2B by IARC in 1993 because of sufficient evidence in experimental animals.

In humans, a study performed on the population of Minamata showed a positive association between MeHg exposure and leukemia.

4.10.7 Comparison with criteria

The CLP criteria for classification in Carc. 1A or 1B are as follow:

Category 1A, known to have carcinogenic potential for humans, classification is largely based on human evidence;

Category 1B, presumed to have carcinogenic potential for humans, classification is largely based on animal evidence.

The classification in Category 1A and 1B is based on strength of evidence together with additional considerations (see section 3.6.2.2).

Such evidence may be derived from:

- human studies that establish a causal relationship between human exposure to a substance and the development of cancer (known human carcinogen); or

– animal experiments for which there is sufficient (1) evidence to demonstrate animal carcinogenicity (presumed human carcinogen).

In addition, on a case-by-case basis, scientific judgement may warrant a decision of presumed human carcinogenicity derived from studies showing limited evidence of carcinogenicity in humans together with limited evidence of carcinogenicity in experimental animals.

Classification in category 1A or 1B for the carcinogenicity is not appropriate because on the one hand, we do not have convincing data in human to classify in category 1A and on the other hand, the data are not sufficiently convincing to classify in category 1B, based on strength of evidence.

The CLP criteria for classification in Carc. 2 are as follow:

"The placing of a substance in **Category 2** is done on the basis of **evidence** obtained from **human and/or animal** studies, but which is not sufficiently convincing to place the substance in Category 1A or 1B, based on strength of evidence together with additional considerations (see section 3.6.2.2). Such evidence may be derived either from limited (1) evidence of carcinogenicity in human studies or from limited evidence of carcinogenicity in animal studies."

Overall, based on animals studies performed in the same laboratory, methylmercuric chloride induced renal epithelial cell adenoma and carcinomas in one specie: mice and one sexe: male. In humans, MeHgCl could be responsible for the increased incidence of leukemia.

Based on the fact that tumors are seen in one specie and one sexe on different experiments performed in the same laboratory, classification in category 2 for the carcinogenicity seems to be the more appropriate classification.

4.10.8 Conclusions on classification and labelling

A classification Carc. 2 – H351 in CLP regulation is proposed.

4.11 Toxicity for reproduction

4.11.1 Effects on fertility

4.11.1.1 Non-human information

Studies presented in the TC C&L dossier:

Species	Route	Dose	Exposure time (h/day)	N° of generat° exposed	Observations and Remarks	Ref.				
<u>Reprodu</u>	Reproductive toxicity studies on two generations in Mink :									

N.C. 1	0 1	0105 11				
Mink	Oral	0.1; 0.5 and 1		2	No significant statistical	Dansereau
(male		mg Organic		For G1	difference was found according	et al, 1999
and		Mercury /kg in		exposition	to the various nutrient factors (p	
female)		food (fish)		began at 8	= 0.0001).	
		No free		months of		
		mercury diet			statistically significant decrease	
(for		was constituted		age;	(p = 0.005) of proportion of	
female,		due to		mating at	females G1 giving birth (dose-	
G1:				10 and 20	effect relationship), compared to	
n=46		nonavailability		monuis oi	0.1 mg/kg diet.	
		of		age.		
G2:		noncontaminate		For G2	For the females G2, statistically	
n=47)		d fish		exposition	significant decrease ($p = 0.005$)	
(6		G1 exposed by		began <i>in</i>	or proportion of ternates giving	
(for		food		utero;	birth at 1 mg/kg only.	
male :		1000		-	At 0,1 and 0.5 mg/kg diet: nine	
n=29)		G2 exposed in			G1 and G2 females died. They	
		utero, by		of age.	exhibited loss of appetite and	
		lactation and		of age.		
		food when they			apathy, but didn't demonstrate	
		began to eat			any neurological clinical signs.	
		solid food.			For the author there is no	
		50114 1004.			increased mortality for G1 and	
		No negative			G2 females, and no neurological	
		control group			signs at 0,1 (considered as	
		presented in			control group) and 0.5 mg/kg.	
		this study			At 1.0 mg/kg; increased	
		because			At 1.0 mg/kg: increased	
		impossible to			mortality in G1 $(30/50)$ and G2	
		make a diet			(6/7) females, with neurological	
		with freshwater			signs.	
		fish				
		noncontaminate				
		d by MeHg.				
		d by Merrg.				
		1 mg/kg food				
		regarded as a				
		kind of positive				
		control group				
		because this				
		concentration is				
		considered to				
		be toxic for				
		mink				
		ШШК				
<u>Reprodu</u>	iction tox	cicity studies on	mating trials i	n mouse ar	id in rats:	
Mouse	Oral	0; 1.1 and 2.2	48 days (30	1	General toxicity :	Nobunaga
(n = 42)		mg	days before		At 0 and 1.1 mg/kg bw/day : no	et al, 1979
		methylmercuric			effect	
		chloride /kg	18)		At 2.2 mg/kg bw/day:	
			· ·			

		bw/day			Significantly smaller decreased maternal weight gain at (p < 0.01). At 1.1 mg/kg bw/day : Prolonged length of the estrous cycle by 11% compared to control group. At 2.2 mg/kg bw/day : Prolonged length of the estrous cycle by 27% compared to control group.	
Mouse (Swiss Webster) Males exposed Females unexpos ed (males caged with 3 females and separate d per mating trial)		0, 1, 2.5, and 5 mg methylmercuric chloride /kg bw per day (n = 10-13 per group) experiment 1 : 10-12 males per dose group and 7 mating trials experiment 2 : 12-13 males per dose group and 7 mating trials	Experiment 1: 7 days Experiment 2 : 5 days	1	General toxicity experiment 1: - At 1 and 2.5 mg/kg/day : no evidence of toxic effects - At 5 mg/kg bw per day : 2 of 13 died General toxicity experiment 2 - At 1 and 2.5 mg/kg/day : no evidence of toxic effects - At 5 mg/kg bw per day : no apparent toxic effect No effect on fertility showed in the 7-days experiment and suggested (no significant effect in the 5-days experiment. However, for the author, the lack of reproducibility in these two mouse experiments and the two acute rat experiment makes the suggestion of a mercury-induced antifertility effect in mice unconvincing.	Khera, 1973 (b)
Rat (Wistar) Males exposed Females unexpos ed (males caged with 2 females and separate	Oral	0, 1, 2.5, and 5 mg methylmercuric chloride /kg bw per day experiment 1 : 15-20 males per dose group and 14 mating trials		1	General toxicity : For all doses, no adverse effect on the behaviour or the rate of body weight gain Fertility : The averaged incidence of pregnancy over all mating trials indicated a significant dose effect (p<0.01): 42% at 5 mg/kg, 50% at 2,5 mg/kg, 51% at 1 mg/kg and 57% in control group. The number of viable embryos per litter decreased significantly (p=0.01) when 2.5 or 5 mg/kg	Khera, 1973 (b)

d per		experiment 2 :			bw per day was given for 7 days	
mating		15 males per			(no effect on preimplantation	
trial)		dose group and			rate).	
)		7 mating trials				
Rat	Oral	0, 0.1, 0.5 and	30 days and	1	General toxicity :	Khera,
(Wistar)	orur	1 mg	90 days	1	- At 0.1 and 0.5 mg/kg/day : no	1973 (b)
(· · · istai)		methylmercuric	<i>y</i> u <i>u y v</i>		evidence of toxic effects	1975 (0)
Males		chloride /kg bw			- At 1 mg/kg/day : depressed	
exposed		per day (14-19			rate of body weight gain after 70	
Females		males per dose			days of dosing and during the	
		group and 17-			next 10 days, mild severe motor	
unexpos ed		21 mating			disturbances in 5 of 18 rats. 10	
eu		trials)			days after, one of the affected	
(males		,			rats died.	
caged					The number of viable implants	
with 2					decreased after dosing for 25-30	
females					days at 1 mg/kg bw/day and after	
and					85-90 days at 0.5 mg/kg bw/day.	
separate					The preimplantation losses are	
d per					dramatic at 1 mg/kg bw/day	
mating					(more than two fold increase	
trial)					after 85-90 days).	
Repeated	d toxicity	studies: effects	on the organs	of the repr	roduction	I
		I				
Male	Oral	2.2 mg/kg	8 weeks, in	1	The body weight and the testis	Moussa
Male Wistar	Oral	bw/day MeHg	8 weeks, in tap water	1	weight were altered in poisoned	H. et al.,
	Oral			1		H. et al.,
Wistar Rats	Oral	bw/day MeHg (n=10 control group; n=10		1	weight were altered in poisoned rats (decrease of 30% of the body weight between the control and	H. et al.,
Wistar	Oral	bw/day MeHg (n=10 control		1	weight were altered in poisoned rats (decrease of 30% of the body weight between the control and the contaminated group; and	H. et al.,
Wistar Rats	Oral	bw/day MeHg (n=10 control group; n=10		1	weight were altered in poisoned rats (decrease of 30% of the body weight between the control and the contaminated group; and decrease of 12.6% of the testis	H. et al.,
Wistar Rats	Oral	bw/day MeHg (n=10 control group; n=10 contaminated		1	weight were altered in poisoned rats (decrease of 30% of the body weight between the control and the contaminated group; and decrease of 12.6% of the testis weight between the control and	H. et al.,
Wistar Rats	Oral	bw/day MeHg (n=10 control group; n=10 contaminated		1	weight were altered in poisoned rats (decrease of 30% of the body weight between the control and the contaminated group; and decrease of 12.6% of the testis weight between the control and the contaminated group p <	H. et al.,
Wistar Rats	Oral	bw/day MeHg (n=10 control group; n=10 contaminated		1	weight were altered in poisoned rats (decrease of 30% of the body weight between the control and the contaminated group; and decrease of 12.6% of the testis weight between the control and the contaminated group $p <$ 0.001). But the ratio of testis	H. et al.,
Wistar Rats	Oral	bw/day MeHg (n=10 control group; n=10 contaminated		1	weight were altered in poisoned rats (decrease of 30% of the body weight between the control and the contaminated group; and decrease of 12.6% of the testis weight between the control and the contaminated group $p <$ 0.001). But the ratio of testis weight to bw was not different to	H. et al.,
Wistar Rats	Oral	bw/day MeHg (n=10 control group; n=10 contaminated		1	weight were altered in poisoned rats (decrease of 30% of the body weight between the control and the contaminated group; and decrease of 12.6% of the testis weight between the control and the contaminated group $p <$ 0.001). But the ratio of testis weight to bw was not different to that of control rats.	H. et al.,
Wistar Rats	Oral	bw/day MeHg (n=10 control group; n=10 contaminated		1	weight were altered in poisoned rats (decrease of 30% of the body weight between the control and the contaminated group; and decrease of 12.6% of the testis weight between the control and the contaminated group $p <$ 0.001). But the ratio of testis weight to bw was not different to that of control rats. The plasma testosterone	H. et al.,
Wistar Rats	Oral	bw/day MeHg (n=10 control group; n=10 contaminated		1	weight were altered in poisoned rats (decrease of 30% of the body weight between the control and the contaminated group; and decrease of 12.6% of the testis weight between the control and the contaminated group $p <$ 0.001). But the ratio of testis weight to bw was not different to that of control rats. The plasma testosterone decreased dramatically in	H. et al.,
Wistar Rats	Oral	bw/day MeHg (n=10 control group; n=10 contaminated		1	weight were altered in poisoned rats (decrease of 30% of the body weight between the control and the contaminated group; and decrease of 12.6% of the testis weight between the control and the contaminated group $p <$ 0.001). But the ratio of testis weight to bw was not different to that of control rats. The plasma testosterone decreased dramatically in intoxicated rats (10.68 ng/ml and	H. et al.,
Wistar Rats	Oral	bw/day MeHg (n=10 control group; n=10 contaminated		1	weight were altered in poisoned rats (decrease of 30% of the body weight between the control and the contaminated group; and decrease of 12.6% of the testis weight between the control and the contaminated group $p <$ 0.001). But the ratio of testis weight to bw was not different to that of control rats. The plasma testosterone decreased dramatically in intoxicated rats (10.68 ng/ml and 0.26 ng/ml respectively in	H. et al.,
Wistar Rats	Oral	bw/day MeHg (n=10 control group; n=10 contaminated		1	weight were altered in poisoned rats (decrease of 30% of the body weight between the control and the contaminated group; and decrease of 12.6% of the testis weight between the control and the contaminated group $p <$ 0.001). But the ratio of testis weight to bw was not different to that of control rats. The plasma testosterone decreased dramatically in intoxicated rats (10.68 ng/ml and 0.26 ng/ml respectively in control group and intoxicated	H. et al.,
Wistar Rats	Oral	bw/day MeHg (n=10 control group; n=10 contaminated		1	weight were altered in poisoned rats (decrease of 30% of the body weight between the control and the contaminated group; and decrease of 12.6% of the testis weight between the control and the contaminated group $p <$ 0.001). But the ratio of testis weight to bw was not different to that of control rats. The plasma testosterone decreased dramatically in intoxicated rats (10.68 ng/ml and 0.26 ng/ml respectively in control group and intoxicated group, $p < 0.001$). With this, the	H. et al.,
Wistar Rats	Oral	bw/day MeHg (n=10 control group; n=10 contaminated		1	weight were altered in poisoned rats (decrease of 30% of the body weight between the control and the contaminated group; and decrease of 12.6% of the testis weight between the control and the contaminated group $p <$ 0.001). But the ratio of testis weight to bw was not different to that of control rats. The plasma testosterone decreased dramatically in intoxicated rats (10.68 ng/ml and 0.26 ng/ml respectively in control group and intoxicated group, $p < 0.001$). With this, the concentration of testosterone in	H. et al.,
Wistar Rats	Oral	bw/day MeHg (n=10 control group; n=10 contaminated		1	weight were altered in poisoned rats (decrease of 30% of the body weight between the control and the contaminated group; and decrease of 12.6% of the testis weight between the control and the contaminated group $p <$ 0.001). But the ratio of testis weight to bw was not different to that of control rats. The plasma testosterone decreased dramatically in intoxicated rats (10.68 ng/ml and 0.26 ng/ml respectively in control group and intoxicated group, $p < 0.001$). With this, the concentration of testosterone in the interstitial and seminiferous	H. et al.,
Wistar Rats	Oral	bw/day MeHg (n=10 control group; n=10 contaminated		1	weight were altered in poisoned rats (decrease of 30% of the body weight between the control and the contaminated group; and decrease of 12.6% of the testis weight between the control and the contaminated group $p <$ 0.001). But the ratio of testis weight to bw was not different to that of control rats. The plasma testosterone decreased dramatically in intoxicated rats (10.68 ng/ml and 0.26 ng/ml respectively in control group and intoxicated group, $p < 0.001$). With this, the concentration of testosterone in the interstitial and seminiferous tubules fluids dropped	H. et al.,
Wistar Rats	Oral	bw/day MeHg (n=10 control group; n=10 contaminated		1	weight were altered in poisoned rats (decrease of 30% of the body weight between the control and the contaminated group; and decrease of 12.6% of the testis weight between the control and the contaminated group $p <$ 0.001). But the ratio of testis weight to bw was not different to that of control rats. The plasma testosterone decreased dramatically in intoxicated rats (10.68 ng/ml and 0.26 ng/ml respectively in control group and intoxicated group, $p < 0.001$). With this, the concentration of testosterone in the interstitial and seminiferous tubules fluids dropped respectively about 73% (112.0 ±	H. et al.,
Wistar Rats	Oral	bw/day MeHg (n=10 control group; n=10 contaminated		1	weight were altered in poisoned rats (decrease of 30% of the body weight between the control and the contaminated group; and decrease of 12.6% of the testis weight between the control and the contaminated group $p <$ 0.001). But the ratio of testis weight to bw was not different to that of control rats. The plasma testosterone decreased dramatically in intoxicated rats (10.68 ng/ml and 0.26 ng/ml respectively in control group and intoxicated group, $p < 0.001$). With this, the concentration of testosterone in the interstitial and seminiferous tubules fluids dropped respectively about 73% (112.0 ± 18.0 versus 416.25 ± 20.50;	H. et al.,
Wistar Rats	Oral	bw/day MeHg (n=10 control group; n=10 contaminated		1	weight were altered in poisoned rats (decrease of 30% of the body weight between the control and the contaminated group; and decrease of 12.6% of the testis weight between the control and the contaminated group $p <$ 0.001). But the ratio of testis weight to bw was not different to that of control rats. The plasma testosterone decreased dramatically in intoxicated rats (10.68 ng/ml and 0.26 ng/ml respectively in control group and intoxicated group, $p < 0.001$). With this, the concentration of testosterone in the interstitial and seminiferous tubules fluids dropped respectively about 73% (112.0 ± 18.0 versus 416.25 ± 20.50; p<0.001) and 55% (107.0 ±	H. et al.,
Wistar Rats	Oral	bw/day MeHg (n=10 control group; n=10 contaminated		1	weight were altered in poisoned rats (decrease of 30% of the body weight between the control and the contaminated group; and decrease of 12.6% of the testis weight between the control and the contaminated group $p <$ 0.001). But the ratio of testis weight to bw was not different to that of control rats. The plasma testosterone decreased dramatically in intoxicated rats (10.68 ng/ml and 0.26 ng/ml respectively in control group and intoxicated group, $p < 0.001$). With this, the concentration of testosterone in the interstitial and seminiferous tubules fluids dropped respectively about 73% (112.0 ± 18.0 versus 416.25 ± 20.50;	H. et al.,

					with the controls. The decrease	
					in plasmatic testosterone seems	
					to be due to the fall in the	
					secretion of testosterone (73%)	
					by the Leydig cells, confirmed	
					by the decrease of testosterone in	
					the interstitial fluid. The disorder	
					of the synthesis of testosterone	
					could result in a reduction in the	
					activity of enzymes implied in	
					the biosynthesis of testosterone.	
					No effect was observed on	
					epididymal sperm count after 60	
					days of exposure to	
					Methylmercury $(3.146 \pm 0.323 * 10^{9})$	
					10^9 g ⁻¹ epididymis versus 2.944 ±	
					$0.346 * 10^9 \text{ g}^{-1}$ epididymis).	
					No histological changes were	
					observed in the testes, neither in	
					Leydig cells nor in seminiferous	
A 1 1/	0 1	0.0.5.1.0	$D^{1} - C^{1} + C^{1}$	1	tubules.	
Adult	Oral	0; 0.5; 1.0 or 3.0	-	1	MeHg treatment at 3.0 mg/kg	Fossato et
male		00	days		bw/day reduced body weight	<i>al.</i> , 2011
Wistar		MeHg			gain of 4.2% between initial and	
rats					final body weight (7.2% of	
(n=60)					increase of body weight for the	
					control), absolute and relative weights of the seminal vesicle of	
					31.6% and 27.8% respectively	
					and increased relative kidney	
					weight of 18%. The 0.5 mg/kg	
					bw/day treatment produced a rise	
					(of 30%) in vas deferens weight.	
					MeHg did not markedly alter	
					epididymal or testicular weight.	
					The 0.5 mg/kg bw/day treatment	
					produced a significant rise in the	
					number/proportion of sperm with	
					head abnormalities (control:	
					0.5(0-1) vs. 0.5 mg/kg bw/day	
					MeHg: 2.25(1.12-5.37)**).	
					Sperm motility significantly	
					decreased in type A sperm	
					(mobile with progression) while	
					type B (mobile without	
					progression) and type C	
					(immobile) sperm motility	
					increased in MeHg-treated	
					groups. MeHg treated at 1.0	

15 males Wistar rats	in the	20 mg/L Group 1: mercuric chloride (HgCl2) (inorganic) Group 2: methyl mercuric chloride (CH3HgCl) Control group: demineralized water	For 12 weeks, Every second day	on several	mg/kg displayed a significant elevation in daily sperm production. In contrast, there was a reduction in sperm quantity in the caput-corpus epididymis at all doses and an acceleration of sperm transit time at 1.0 and 3.0 mg/kg bw/day. The rate of spermatogenic process was not significantly affected by MeHg treatment (data not known). Treatment with MeHg produced a significant reduction in serum testosterone levels at the highest dose. No histopathological changes were observed on the morphological structure of the testis and the region containing the caput and the cauda epididymis. No mercury deposits in tissue sections prepared from control group. Mercury deposits are present in the testes from animals in both experimental groups (no obvious difference in the density of mercury-stained cell bodies between these two groups). Mercury was found intracellularly in the seminiferous tubules, exclusively in the lysosomes of Sertoli cells, which closely associated with the developing spermatozoa. No mercury deposits were observed in the spermatogenic cell line. In the interstitial tissue, mercury staining was abundant in the Levdig cells , and more	
		Control group: demineralized			developing spermatozoa. No mercury deposits were observed in the spermatogenic	
					In the interstitial tissue, mercury staining was abundant in the Leydig cells , and more	
					particularly in lysosomes but minor deposits were scattered in the cytoplasm. Lipid droplets were devoid of deposits. Mercury	
					was present in the lysosomes of a few macrophages located in the interstitial tissue.	

					Excessive accumulation of mercury in lysosomes might therefore damage essential cell function. The mercury deposits in Leydig cells might affect the	
Pekin ducks (Anas platyrhy nchos)	Orally	One control group = 0 Group 1 = 0.5 mg/kg Group 2 = 5 mg/kg Group 3 = 15 mg/kg of MeHgCl	Daily, for 12 weeks	1 generation	function. The mercury deposits in Leydig cells might affect the testosterone synthesis in these cells. Testicular cells of Pekin ducks were examined by electron microscope. Results of Hg analysis in testicular tissue indicated that metal residue tended to increase (0.13 to 24.75 μ g of Hg/g of tissue) with increased doses of CH3HgCl. There were no ultrastructural changes in the seminiferous epithelium of group 1 ducks (0.5 mg of CH3HgCl/kg of basal feed). Cellular damage was more extensive as the dosage of CH3HgCl increased from 5 mg/kg to 15 mg/kg of basal feed. There was a significant difference between the mean value of Hg in ducks from group 2 and 3, when compared with the control mean at 90% confidence level in a 2-sided Student's <i>t</i> test. Sertoli's cell, as a steroid producer, probably regulates local differentiating germ cells. Ultrastructural alterations were evident in Sertoli's cells of groups 2 and 3, along with an increase in large lipid droplets, in which methylated mercury could be sequestering. Reduction in	
					microtubules, microfilaments and smooth endoplasmic reticulum, along with distended Golgi complexes indicate the cellular detoxification machinery cannot cope with the highest concentration of CH3HgCl. Methyl mercury causes disruption of cellular microtubules in a concentration	

Mucuca fusciculu ris monkey s	-	00	Daily for 20 days		and time-dependent manner. Primary spermatocytes were the first germ cells to show extensive degenerative changes, and the severity increased with high dosages. Occurrence of degenerating cells in treated ducks was more marked than expected when compared with the control group. Groups of germ cells in synchronized meiosis showed no apparent cytokinesis. Spindle formation during metaphase was abnormal, probably because CH3Hg was bound to –SH groups or S-S bonds of microtubules of spindle. Mohamed et al. (1987) reported a decreased percentage of motile sperm and increased sperm tail defects in <i>Mucuca fusciculuris</i> monkeys dosed by gavage with 0.025 mg of methyl Hg per	Mohamed et al.; 1987
Rats	Intra peritone al		Daily for 15, 30, 60, or 90 days	-	treated i.p. with 5 pg of methyl	Vaccharaj ani, K.D., et al., 1993
Male mice		A single dose of 1 mg/kg MeHgOH	A single dose	-	A decreased fertility was	Lee, I. P., 1975.

4.11.1.2 Human information

Studies presented in the TC C&L dossier:

Effects on fertility in men

Relationships between male fertility and mercury levels in hair.

The purpose of the study is to examine the relationship between human male infertility and mercury in **seafood**. Hair samples from 94 fertile and 117 subfertile Hong Kong residents were compared over four separate age groups. Two semen analyses were taken two weeks apart for each patient, including sperm count, morphology, motility, velocity and linearity. Azoospermic patients were excluded as they are infertile rather than subfertile and many of them have aetiologies distinct from subfertile men. A series of standard questions were asked concerning the consumption of fish (frequency and type of fish), cigarette smoking, the number of tooth amalgam fillings, the intake of Chinese herbal remedies (some containing heavy metals), the types of perms and hair colouring agents used and the duration of living in Hong Kong (only those living in Hong Kong for a minimum of 5 years were included in the study).

Results: The level of total mercury in hair of the 37 fertile non vegetarians tested from Hong Kong was 3.3 mg/kg. Age corrected estimates of risk indicated that compared with men with low levels of mercury in their hair, men with higher levels were twice as likely to be subfertile (relative risk = 1.95) and there was a dose-response trend that was highly significant (p < 0.0005).

New study added in the present dossier:

 Objective: to compare blood mercury concentrations of infertile couples with those of fertile couples and to examine the relationship between blood mercury concentrations and seafood consumption among infertile couples (in Hong-Kong). The analysis was performed on 150 males and 155 females in the infertile group, compared with 26 males and 26 females in the control group. Among the infertile group, 95 couples suffered from primary infertility; 40 males had abnormal semen and 30 couples had no known cause for their infertile group had significantly higher blood mercury concentrations than the control group. In the subgroup analysis of "infertile males with abnormal semen" and "infertile females with unexplained infertility" also had higher blood mercury concentrations than their fertile counterparts. Besides, blood mercury concentrations were positively correlated with quantity of seafood consumption. Infertile subjects with elevated blood mercury concentrations in the infertile. Higher blood mercury concentration is associated with male and female infertility. Higher seafood consumption is associated with elevated blood mercury concentrations in the infertile 	(Choy <i>et al.</i> 2002)
population. <i>In vitro</i> incubation of fresh human semen with 20 μM methyl Hg resulted in an inhibition of sperm motility.	Ernst, et al., 1991b
Adverse effects on the male reproductive system, including oligospermia, teratospermia, asthenospermia, and reduced libido, have been observed in workers chronically exposed to organic mercury (mean duration of exposure, 10.5 years).	Popesc u, H. I., 1978.

4.11.2 Developmental toxicity

4.11.2.1 Non-human information

Studies presented in the TC C&L dossier:

Specie	Route	*dose	Exposur	Exposure	Observations and remarks	Ref.
s	noute	mg/kg/day	e	period :	observations and remarks	1.01.
5		ppm	time	- number of		
		**Conc.	(h/day)	generations		
		(mg/l)	(II/day)	-		
		(mg/r)		or - number of		
				days during		
Mouse	Oral	0.1.1 and 2.2		pregnancy	Concrel toxicity :	Nobuna
	Ofai	0, 1.1 and 2.2		48 days (30	General toxicity :	
(n = 42)		mg mathulmarauria		days before	At 0 and 1.1 mg/kg bw/day : no effect	ga <i>et al</i> , 1979
42)		methylmercuric		mating to $(D, 18)$		19/9
		chloride /kg		GD 18)	At 2.2 mg/kg bw/day: Significantly	
		bw/day			smaller decreased maternal weight $a_{1} = a_{1} = a_{2} = a_{1} = a_{2}$	
					gain at $(p < 0.01)$.	
					At 0 and 1.1 mg/kg bw/day: no	
					significant decreased in the number	
					of total implants par dam.	
					No significant retard in growth of	
					surviving fetuses.	
					At 1.1 and 2.2 mg/kg bw/day:	
					significant incidences of fetuses with a_{12}^{0} malate ($n < 0.05$). Malformations	
					cleft palate ($p<0.05$). Malformations	
					to 17% of fetuses at the low dose and	
					55% at the high dose.	
					At 2.2 mg/kg bw/day: significant	
					decreased in the number of total	
					implants par dam (p<0.05). Higher	
					incidences of resorptions, dead	
					embryos and dead foetuses.	
					Significant retard in growth of	
	0.1			GD 10 14	surviving fetuses.	
Mouse	Oral	3 mg MeHg/kg		GD 12-14	Neuro-behavioural effects of MeHg	
DATE		bw			on mouse offsprings subjected to a	al, 2000
BALB					prenatal exposure	
/C,		Controls: 3			- Maternal toxicity: none of the	
C57B		equivalent			mother died nor present overt	
L/6J		volumes of			neurological symptoms	
and		Phosphate-			- Decrease in the bw in the male	
C57B		buffer saline			offspring of the 3 strains from week	
L/6Cr					3 to week 12 after birth.	
strains					- The open field test revealed a	
					decrease in the total locomotor	
					activity in male from mother exposed	
Variab					to methyl mercury but no difference	

		1 1			,
le				with control for C57BL/6J strain.	
groups				Decrease in rearing only in	
: 8 to				C57BL/6Cr strain. Increase in	
22				grooming behaviour in C57BL/6J	
indivi				strain and a drastic decrease in	
duals				BALB/C strain.	
				- Significant change in locomotion in	
				BALB/C only/: increase in central	
				locomotion and decrease in	
				peripheral locomotion	
				- Home cage activity (spontaneous	
				activity): decrease of spontaneous	
				activity in the dark phase in BALB/C	
				of the methylmercury group. Strong	
				decrease in the light-phase	
				spontaneous activity in C57BL/6Cr	
				and C57BL/6J methymercury group	
				compared with their respective	
				control groups.	
				- Morris water maze: prolonged	
				latency in the C57BL/6Cr and	
				C57BL/6J strains exposed to	
				methylmercury. No significant effect	
				on BALB/C methylmercury group.	
				- Mercury concentration in tissue:	
				higher Hg level in the brain and liver	
				for all groups compared with control	
				(less than twice levels of control	
				groups)	
Mouse	Oral	12,5 mg of	Single	Induction of physiological and	Belles
(pregn	(gavage)	MeHgCl/kg of	prenatal	anatomical effects in mice	et al,
ant		bw	exposure at	offsprings by a single exposure to	2002
Mice		$\pm 25 \text{ mg/kg}$		MeHgCl at GD10.	
		Lead nitrate or	Observations	All Hg-exposed groups (alone,	
		6 mg/kg sodium		binary or tertiary combinations)	
		arsenite	GD18	showed significant increase of	
CD1		(combined	0010	mortality among females. Presence	
strain		exposure and		of some dams carrying completely	
Suam		no combined		resorbed litters.	
		exposure)		Specific effects of MeHgCl on	
				fetuses	
				- Decrease in average fetal bw/litter.	
				- Skeletal defects : supernumerary	
				and asymmetrical ribs, delayed	
				ossification	
				- Increase of incidence of cleft	
				palates	
				II ·····~~	

Mouse C57B L/6 strain	Oral (drinking water)	Chronic treatment with 0, 4, 6 and 8 mg of MeHgCl/L (continuous exposure) (approximately 0, 0.8, 1.2 and 1.6 mg MeHgCl /kg bw)	GD2 to weaning	 Neuro-behavioural effects of MeHgCl on mice offsprings exposed prenatally and during weaning. Decrease in offspring survival at the age of 5 weeks in the 8 mg/L group compared to controls. Analysis of behavioral functions of offspring between the age of 6 and 12 weeks: Decreased locomotion in the female offspring of all treated females groups. Impairment of working memory in the females offspring of females treated with 6 and 8 mg/L Maternal toxicity was not described 	Goulet et al, 2003
Rat (Fiche r 344) (n =120)	Oral	0, 10, 20 and 30 mg methylmercuric chloride /kg bw (single dose) (n = 30 / dose group)	GD 7	 Maternal body weight declined at all doses : At 10 mg/kg decreasing for 2 days and by 86 % of control on day 20 of gestation. At 20 mg/kg decreasing for 6 days and by 76% of control on day 20 of gestation. At 30 mg/kg decreasing during the experimental period without recovery and by 61.9% of control on day 20 of gestation. Maternal death on day 20 : At 0 mg/kg : 0 % At 10 mg/kg : 6.7 % At 20 mg/kg : 16.7 % At 20 mg/kg : 30 % The decrease in the number of live fetuses on day 20 of gestation. Survival rate of fetuses : At 0 mg/kg : 97.4 % At 10 mg/kg : 77.8 % At 20 mg/kg : 7.6 % A dose-dependent decrease in ossification centres was seen. The concentrations of mercury for the doses 0, 10, 20 and 30 mg/kg were respectively 0.02, 2.6, 9, and 21 	Lee <i>et</i> <i>al</i> , 1995

					μ g/g in maternal brain, 0.19, 3.5, 11, and 15 μ g/g in fetal brain.	
Rat (dam s)	Oral (gavage)	0, 0.02, 0.04, 0.4, or 4 mg methylmercuri c chloride /kg bw		GD 6-9	No sign of adverse effects in the pregnant rats. At 4 mg/kg bw, swimming behaviour of pups at 4-35 days of age was impaired and changes in the dendritic spines of the pyramidal neurones. At 0.04, 0.4 and 4 mg/kg bw, increased passiveness and decreased habituation to an auditory startle were observed 60-210 days postnatally, in pups.	Stolten berg- Diding er <i>et</i> <i>al</i> , 1990
Rat Sprag ue Dawle y	oral and	Oral : 2 mg MeHg/kg/day Inhalation 1.8 mg Hg ⁰ /m ³ air for 1.5 per day (equivalent to 0.1 mg Hg/kg.day) And combined exposures : MeHg+ Hg0 And control group	-	(12 animals per group): MeHg, Hg ⁰ , MeHg +Hg ⁰ and control Pregnant rats: - orally during days 6-9 of gestation - inhalation during gestation days 14-19	No sign of adverse effects in the pregnant rats. Offsprings were observed up to weaning: - No difference between groups (including control) in clinical observations and developmental markers (body weight, pinna unfolding, surface righting reflex and tooth eruption). Offsprings of 4-5 months were involved in behavioral tests: - MeHg group: no significant functional alterations in the brain at the dose used. - those of dams exposed to Hg ⁰ showed hyperactivity in locomotion, rearing and total activity this effect is potentiated in the (MeHg + Hg ⁰) group - Exposure to MeHg and MeHg + Hg ⁰ vapours induces alterations of both spontaneous and learned behaviour reflected by delayed behavioural responses and deficits in spatial learning, and hyperactivity (ambulation and rearing) - MeHg seems to potentiate the effects of Hg ⁰ .	Fredrik sson <i>et</i> <i>al</i> , 1996

Rat	Oral	0, 0.5 and 6.4	Maternal	Exposure to MeHgCl accelerates the	Newlan
	(drinking	ppm Hg as	exposure 28d	decline in training performances.	d et al,
	water)	MeHgCl in	and 49d	With aging, the behaviour may reveal	2000
		drinking water	before	consequences of MeHg exposure that	
		resulting in	mating	had taken place early in	
		daily intakes of	continued to	development.	
		0, 40-50 or 500-	postnatal day		
		700 μg/kg/day	16		
Rat	Oral	Adult female:	4 females	On the day of parturition:	Sakamo
Wistar		diet containing	control and	concentration of Hg in the brain of	to <i>et al</i> ,
		5 ppm Hg (as	10 exposed	newborns 1.4 times higher than in the	2002
		MeHg) during 8	to MeHg	mothers.	
		weeks		During lactation, rapid decrease of	
		Then mating,	Offspring	Hg in the brain of the offspring $(1/5)$	
		same diet	were	of concentration at birth).	
		throughout	exposed via	Elimination by milk limited.	
		gestation and	the mother	Gradual increase when the offspring	
		after parturition	prenatally	is fed with diet containing MeHg.	
			and up to	Behavioral tests on the MeHg	
		Control group	weaning	exposed offspring and control at 5-6	
			(prolonged	weeks of age: deficit in motor	
			to d 30	coordination and learning disability	
			postnatal)	in the MeHg group.	
			and then fed	Histopathological abnormalities	
			during 2	observed in the cerebellum. Maybe	
				induced by accumulation of MeHg	
				especially during gestation period.	
			contaminated		
			with MeHg.		

Rat	Oral	0, 0.5 and 6.4	Maternal	1.7 and 2.3 year old offenring	Newlan
	(drinking	mg/L Hg (as	Exposure	1.7 and 2.3-year-old offspring behaviour observed.	d <i>et al</i> ,
Long Evans	(urinking water)	MeHgCl)	during 28 or	benaviour observed.	<i>a el al</i> , 2004
Evans	water)	<u> </u>	49 days	No overt meternal toxicity	2004
		resulting in daily intakes of 0, 40-50 or 500- 700 µg/kg/day	before	No overt maternal toxicity.	
				Same avidance but not significant of	
			mating and	Some evidence but not significant, of	
				small litter sizes in the 500-700	
				μg/kg/d exposure group.	
			16		
				Hg detected in neonatal brains for the	
			1.7 and 2.3-	0.5 and 6.4 ppm groups, not in the 0	
			year-old	group.	
			offspring	No difference between 28- and 49-	
			-	day groups, so the groups were	
			1 =Group	combined.	
			1.7 year-old		
			Group 0: 10	No significant exposure via lactation.	
			(5 ♂)		
			Group 0.5:	For the group 1.7 year-old: No	
			10 (5)	effect of prenatal MeHgCl exposure.	
			Group 6.4:		
			11 (6ථ)	For the group 2.3 year-old:	
				Retarded acquisition of choice in	
			e ,	training tests	
			6 litters	The results were lower for the rats	
				exposed prenatally to 40 μ g/kg/d.	
			Experiment		
			2=Group	Results described here replicate	
			2.3 year-old	earlier similar observations on	
			Group 0: 8	monkeys (squirrel) (see hereafter	
			(4 ්)	Newland 1994) but some important	
				difference: in rodents, apparent	
			(23)	interaction with age.	
			Group 6.4: 9	-	
			(5 ්)		
			correspondin		
			g to $4, 5$ and		
			5 litters		
Mous	Oral	2, 4 and 4,8	GD 6-13	At 2 mg/kg bw : few malformations.	Fuyuta
e		mg		At 4 mg/kg bw : decreased fetal	et al.,
		methylmercuri		weights and large increase in the	1978
		c chloride /kg		frequency of malformations	
		bw per day		At 4,8 mg/kg bw : decreased fetal	
		en per auj		weights and large increase in the	
				frequency of malformations	
				Increased post-implantation loss	
				mercascu post-implantation 1088	

Rat	Oral	2, 4 and 6 mg methylmercuri	GD 7-14 or 18-	No effect at 2 mg/kg bw. At 4 mg/kg bw : malformations	Fuyuta <i>et al.</i> ,
		c chloride /kg bw per day	20	consisting mostly of cleft palate and vertebral defects in the offspring of	1978
				dams	
				At 6 mg/kg bw : Resorptions,	
				deaths. Malformations consisting	
				mostly of cleft palate and vertebral	
				defects in the offsprings of dams.	
Mous	Oral	0, 0.001, 0.01,	GD 6-17	At 0.1, 0.01 and 0.001, no effect	Khera
e		1, 5 and 10 mg		At 1 mg/kg bw/day, no evident	et al.,
(Swis		methylmercuri		toxic effects in the dams. Number of	1973
S-		c chloride /kg		live pups and survival after 28 days	(c)
Webs		bw per day		of age not affected but there was	
ter				transitory inhibition of cerebellar	
femal		(single daily		cellular migration from the external	
e) (n		dose in food)		granular layer.	
=				At 5 mg/kg bw/day, no evident	
148)				toxic effects in the dams, but	
				reduction of the number of live	
				pups, and live-born pups died within	
				2 days.	
				At 10 mg /kg bw/day, all the dams	
				died	
D (0 1	0.0002.001		(Results statistically significant)	
Rat	Oral	0, 0.002, 0.01,	Exposure	At 0.002, 0.01 and 0.05 mg /kg	
(Wist		0.05, 0.25 mg	between	bw/day, no effect	
ar		methylmercuri	female	At 0.25 mg /kg bw/day, no toxic	
strain		c chloride /kg	weaning	effects evident in the dams. No	
femal		bw per day	and	apparent adverse effect on fetuses,	
e) (n		(ainala daile	whelping	and the only abnormality seen	
= 175)		(single daily		postnatally was eyelid lesions	
175)		dose in food)		associated with hardening of the	
				lacrymal glands. The dose-response relationship was significant (p =	
				0.01)	
Semi	Oral	Feeding with	2	Reproductive effects	Danser
-	Ofai	fresh water	generations	G1 and G2 females:	eau <i>et</i>
- dome		fish	of female	- no effect on gestation length	al,
sticat		Contaminated	mink (G1	- decrease in whelping percentages	1999
ed		inMe Hg	and G2)	with increasing dose of Hg but not	1,,,,
mink		3 diets: 0.1,	G1	statistically significative	
(Mus		0.5, 1.0 mg/kg	females:	- no effect on litter size	
tela		of food total	20+20+20	G1 and G2 kits	
vison		mercury	with	no influence on the survival of G1	
)			respectively	and G2 kits between birth and	
,		no control	each of	weaning.	
		group: no diet	3 diets:	no influence on growth of G1 and	
		without Hg	during 60	G2 kits between birth and day 35.	
			days before	Kits had higher liver Hg	1

				matina	concentration then non	T
				mating	concentration than non exposed kits	
				G2	(in another study)	
				females:	Transfer of Hg through placenta	
				Kits born	and/or milk but did not affect	
				from G1	growth.	
				groups	Adult mortality among G1 and	
				Exposure of	G2 females	
				kits in utero	Increased mortality in G1 (30/50)	
				and /or	and G2 (6/7) females exposed at	
				throughout	1.0 ppm Hg diet, with	
				lactation	neurological signs.	
				and then	0.1 and 0.5 ppm Hg diets: no	
				through diet	increase mortality for G1 and G2	
				contaminate	females, and no neurological signs	
				d in Hg. G1 Kits	Accumulation of Hg in the liver is	
					dose-dependant Reproductive function of mink	
				After 430d	Reproductive function of mink	
				of exposure,	exposed to Hg could interact with	
				G1 females	other environmental factors.	
				(20 of 0.1		
				ppm, 20 of		
				0.5 ppm, 6		
				of 1.0 ppm)		
				mated with		
				0.1 ppm Hg		
				males		
				G2 Kits		
				After 300		
				days of		
				exposure,		
				G2 females		
				(20 of		
				0.1ppm, 20		
				of 0.5ppm,		
				7 of		
				1.0ppm)		
				mated with		
				0.1 ppm Hg		
				males		
				Exposure of		
				G1 and G2		
				kits in utero		
				and /or		
				lactation		
Mon	Oral,	0 (n=8), 50	One	1	Maternal Toxicity:	Burba
keys	mixed	(n=7), 90	year.	generation	Four females receiving 90 µg/kg	cher <i>et</i>
(Mac	with	$(n=7) \mu g$	124	Seneration	bw/day and one receiving 50 μ g/kg	al,
aca	apple	methylmercur	days	Treatment	bw/day showed signs toxicity	1984
fascic	juice.	-	before	began	(change in the sucking response,	170-1
103010	juice.	У		ocgan	Condinge in the sucking response,	1

1 .	[1 1	1 1		CP	1
ularis		hydroxide/kg	breedin	approximat	finger movement loss, gross motor	
,		bw per day	g, and	ely 124	in coordination and blindness) were	
Fema			during	days	terminated.	
les)			pregna	(equivalent	No effect on the menstrual cycle,	
(n =			ncy, on	with 4	conception rate, or size of offspring	
22)			a daily	menstrual	at birth, but a maternal blood	
			basis	cycles)	concentration > 1.5 μ g/ml decreased	
				before	the number of viable deliveries and	
				mating.	a concentration > 2 μ g/ml is toxic to	
				Female	the dams. In addition, reproductive	
				bred to	failure was associated with a	
				nontreated	significantly higher mean blood Hg	
				males.	concentration than reproductive	
					success.	
					The results of this investigation	
					indicate that reproductive	
					dysfunction is one of the earliest	
					effects of MeHg administration in	
					adult female. Increased blood Hg	
					concentrations were associated with	
					decreased fertility and increased	
					early spontaneous abortion.	
Mon	Oral	0.04 or 0.06		For 198-	Randomness in visual attention to	Gunde
keys		mg		747 days	novel stimuli	rson <i>et</i>
(Mac		methylmercur		before	The mean maternal blood	al,
aque		y/kg bw per		mating	concentrations at birth were 0.84	1988
Fema		day		Infants	and 1.04 μ g/ml, and the blood	
le)				were	concentrations of the offspring were	
- /				separated	0.88 and 1.7 μg/ml	
				from their		
				mothers at		
				birth and		
				were tested		
				210 and 220		
				days after		
				conception		
				(50-60 days		
				after birth).		
Squir		maternal		Offspring	Reduced sensitivity to changes in	Newla
rel		blood		exposed to	the source of reinforcement,	nd <i>et</i>
monk		concentrations		methylmerc	indicating learning impairment at	al,
eys		of 0.7 and 0.9		ury during	five to six years of age	1994
2,5		mg		the second		
		methylmercur		half or the		
		y /ml		last third of		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		pregnancy		
1	1	1	l	Problamey		

Porci	oral	0, 0.5, 5 mg		Over	No significant variation of the	Chang
ne		methylmercuri		pregnancy	number of born piglets per gilt, of	et al,
		c chloride /kg		and	their birth weight; of the number of	1977
		of food		lactation	born dead piglets, or abnormal	
				Growing of	piglets.	
				gilts and	(No teratogenic effect likely related	
				barrow; one	to the anatomy of the placenta in	
				couple per	Pigs: six intervening placental	
				treatment	tissues between fetal and maternal	
					blood of the porcine).	
Cat	Oral	0.03, 0.083,		GD 10-58	Cats were killed on day 59 of	Khera,
	(gavage)	0.25, 0.75 mg			gestation:	1973
		methylmercuri			- at lower levels (0.03 and 0.083	(a)
		c chloride/kg			mg/kg): no sign of poisoning in	
		/day : corn oil			maternal cats	
		suspension in			- at 0,25 mg/kg : decrease in body	
		gelatine			weight of 12 of 13 cats	
		capsules			- at 0.25 and 0.75 mg/kg: increased	
					incidence of abortion and fetal	
					osseous anomalies : in surviving	
					fetuses (at the dose 0.25 and 0.75)	
					there was reduced neuronal	
					population in the external granular	
					layer of the cerebellum.	
					- at 0,75 mg/kg: vomiting, ataxia,	
					convulsions, etc. and death within	
					32 days (4 cats)	
New st	tudies adde	ed in the present	dossier:			
Mon	Oral	n = 4 for the	Group	For the <i>in</i>	Assessment of the vibration	Rice et
keys	Substanc	control group	(1): 5	utero	sensitivity:	al.,
(Mac	e tested:	(0)	days	exposure	Of the monkey exposed	1995
aca	methylm	(0)	per	group (2):	postnatally only, one monkey	1775
fascic	ercuric	For the	week	exposure	exhibited normal somatosensory	
ularis	chloride.	postnatal	on day	from the	function while three monkeys	
	cinoriae.	exposed	1 of	beginning of	exhibited substantially elevated	
)		group (1): n =	life	the	vibration thresholds. One monkey	
		5 infants	until 7	gestational	exhibited difficulties to learn the	
		exposed to 50		period and	task, and were tested at the both	
		-	years.	-		
		μg/kg/day and examined at	Crown	continuing	hands: he had extremely impaired	
			Group	postnatally.	vibration sensitivity in the fingers	
		18 years old.	(2):	2 ~~~ +:-	of both hands even at the lowest	
		Ean that is	females	2 generations	1 5	
		For the <i>in</i>	expose	tested	to learn the task seem to be caused	
		utero +	d 3	(mothers and	by the severely reduced	
		postnatal	times	infants).	perception of the vibratory	
		exposed	per		stimulus since this monkey were	
		group (2): n =	week;		able to learn previous task for	
		20 females	infants		auditory tests.	

		(5/dose) exposed to 0, 10, 25, 50 µg/kg/day. Infants dosed at the same doses of their mother and examined at 15 years old.	dosed 5 days per week until 4 or 4.5 years.		For the <i>in utero</i> plus postnatal exposed monkeys, one monkey was clearly unimpaired; another exhibited slightly elevated thresholds for two of the five frequencies tested; both monkeys from the lower dose group exhibited impairment at all but the lowest frequency. These results suggest permanent impairment in vibration sensitivity, after a long term exposure and even after a long period without treatment , beginning during developmental period.	
Mon keys (Mac aca fascic ulari s)	Maternal oral ingestion of methylm ercuric chloride added to a small amount of juice	0, 10, 25, 50 µg/kg/day 5 monkeys for the high dose, 2 for the intermediate, 1 at the low dose;	<i>In</i> <i>utero</i> : 3 times per week (by the expose d mother). Postnat ally: 5 days a week until 3.5-4.5 years. After, dosing was discont inued.	Experiment on the second generation (infants). Beginning at 11 to 19 years of age.	Assessment of the auditory function: At the high dose, thresholds were elevated in both ears, at all frequencies and more particularly at the highest frequencies. These effects were more severe at 19 years of age than at 11 years of age. At the middle dose, thresholds were more elevated at 19 years than 11 years at all but the highest frequency. At the low dose, no impaired thresholds were observed at 11 years compare to the control while at 19 years, thresholds were elevated in the both ears at all frequencies but the highest frequencies.	(Rice 1998)
Offsp ring of the	Maternal Oral ingestion	0, 50, 70, or 90 μg/kg/day of MeHg	Daily exposu re of	Prior to and throughout pregnancy.	Assessment of the visual function: Results indicate a significant loss of contrast sensitivity functioning	(Burba cher <i>et</i> <i>al</i> .
Adult femal e maca que	mixed with apple juice	hydroxide Control group: n=9	the adult females , 7 days per	Experiment on the second generation (infants), between 11	in exposed monkeys, particularly for higher frequency visual images, 11-14 years after cessation of exposure. The loss of contrast is permanent in adult primates	2005)
Mon		MeHg	week.	and 14.5	exposed to chronic but moderate	

keys (Mac aca fascic ulari s)		exposed group: n=12	years old.	dose MeHg during gestation but clinically normal at birth. This finding indicates that <i>in utero</i> exposure to MeHg can have irreversible effects on sensory functioning long after cessation of exposure.	
Sprag ue Dawl ey femal e rats	Intragastr ic intubatio n at 1ml/kg bw	Control: n=8; Group 1: n=8, 4 mg/kg. Group 2: n=8, 8 mg/kg.	On gestational day (GD) 15	At 4 mg/kg MeHg, there is an increase in the neuronal vulnerability in the cerebral cortex, and a reduction of cell viability and apoptotic cell death . At 8 mg/kg MeHg, necrotic death of cortical neurons and degeneration of neuritic processes was observed. This dose level caused a significant deficit in the retention performance in a memory task. MeHg effects are dose dependent and hight MeHg levels impaired the developing brain with consequent permanent behavioral dysfunctions.	(Ferrar o <i>et al.</i> 2009)
OLA 129/ C57 BL/6 strain mice (wild type) and MT- Null (knoc kout) mice	Orally by diet: 5 µg/g during gestation , starting at GD0 through 10 days after delivery at PND10	N=6-7 per group Group of wild type mice at 12 weeks and at 52 weeks of age Group of MT null mice at 12 weeks and at 52 weeks of age		This study included metallothionein (MT) knockout mice because studies have suggested the potential susceptibility of this strain to the neurodevelopmental toxicity of MeHg. Open Field locomotor activity (OPF) : At 12 weeks of age, a significant (p<0.001, ANOVA) longer distance was traveled by the MT-Null mice compared to the wild type mice. Strain was also a significant factor for the proportion of the central area locomotion: this was higher in MT-Null females exposed to MeHg than in the control (no observed in the other strain mice). At 52 weeks of age, the strain * Hg interaction was highly significant (p<0.001) in an ANOVA of locomotion distance; MeHg exposure was associated	(Yoshi da et al. 2008)

				 with decreased locomotion distance in wild type mice and with increased distance in MT-null mice. A strain-wise two-way ANOVA (with sex and Hg as the factors) revealed that only Hg was significant in both strains (p<0.01). PA: At 12 weeks of age, no consistent effect of MeHg was observed regardless strain or sex. At 52 weeks of age, a significant effect of MeHg between both strains on learning in MT null mice was observed: this group showed significantly shorter latency times compared to control mice. Morris Water Maze (MWM): no effects of MeHg at 13 weeks. At 52 weeks of age, the both strains showed a longer latency, hampering learning performance. The most important observation of the study was that the effects of low-level MeHg exposure were detected only at later stages in the lives of the mice. Except for the central area occupancy in OPF in MT-null females, no statistically significant effects of MeHg were observed in any of the three behavioral tests 	
				(OPF, PA, MWM) at 12 weeks of age. In contrast, significant effects were observed in all three tests at 52 weeks of age.	
Mous e: ARE- hPA P trans genic mice backc rosse	Orally, via drinking water	0.5 mg/kg/day (0.47 mg/kg/day) of MeHg n=6-8 per group Continuing exposure	From GD7 until day 7 after delivery Two sessions of experiments: 1)5-15 weeks old (=youngs) 2)26-36	No behavioral changes are observed in female offspring exposed to MeHg during development. Results on male offspring behavior: Locomotor activity (spontaneous locomotion): no differences in distance covered over 1 h at both ages (data not shown).	(Onish chenk o <i>et al.</i> 2007)

d to		1		Motor coordination (coordination
d to			ts old	Motor coordination (accelerating
C57		(=ad	uits)	rotarod tests): not affected at both
BL/6				ages by MeHg exposure ($F_{1.12} =$
/Bkl				$0.287; p = 0.60 \text{ and } F_{1.12} = 0.066;$
				p = 0.80, repeated measures
				ANOVA for young and adult
				mice, respectively).
				Behavioral parameters studied
				in the IntelliCage: in the young
				animals, the average latency to first visit into the corner chamber
				was three fold longer time $(9.7 \pm 1.9 \text{ s})$ for the MeHg exposed mice
				and 3.3 ± 0.9 s for the control
				animals.
				Less visits for the MeHg exposed
				mice over the first 30 min period
				after introduction in the intellicage
				$(11.6 \pm 0.6 \text{ and } 15.0 \pm 1.7 \text{ for})$
				MeHg exposed and controls,
				respectively; $F_{1,12} = 4.75$; $p < 0.05$,
				one-way ANOVA).
				Less activity in the young exposed
				animals during "sunset" and
				"night".
				Lower number of visits in the dark
				period in the young MeHg
				exposed group than in the control
				group both in the new environment
				$(F_{1.12} = 6.8; p < 0.05, repeated$
				measures ANOVA) and the
				familiar home environment ($F_{1.12}$
				= 5.0; $p < 0.05$, repeated measures
				ANOVA).
				Difference in the adults group in
				exploratory behavior when the
				environment was new but no
				difference when the environment
				was familiar.
				Spatial learning (Morris Water
				Maze): No significant difference
				between treated or control groups
				(in escape latency or swim length).
				Depression-like behavior (forced
				swimming test): significant longer
				immobility time of both ages than control animals $(E_{1}) = 8.22(1 \text{ m})$
				control animals ($F_{1.11} = 8.336; p < 0.05$ and $E_{1.11} = 4.001; p < 0.05$
				0.05 and $F_{1.11} = 4.991$; $p < 0.05$,
				one-way ANOVA for young and
				adults animals, respectively).

Adult	Orally	For motor and	Offspring weaned at 30 days of	(Mont
male	daily	coordination	age and coordination and activity	gomer
and		tests:	testing commenced at 2 months of	y et al.
femal		n = 13 males	age.	2008)
e G57	mg/kg	and	Sex difference: in the open field,	
C57	bw of		females reared less than males. No	
BL/6 +/+	methylm ercury	n = 8 females	other sex effects were observed in	
wild	(95% of	for the control	the other tests.	
type	methylm	group;	In the footprint analysis MoHa	
mice	ercuric	n = 15 males	In the footprint analysis, MeHg exposed mice demonstrated a	
	chloride	and	significantly narrower foot angle	
	into	n = 4 females	in comparison to control mice	
	water)	for the	(F _{1.36} =10.66, P<0.005). No main	
	(total dose of		effect of exposure was observed	
	dose of 0.11	group;	on the distance between the two	
	mg/kg)	Ear the enotial	hind feet or stride length.	
		For the spatial learning	In the rotarod task, all animals	
		assessment: n	increased time spent on the rotarod	
		= 9 males and	across days (two factors ANOVA:	
		n = 8 females	exposure*day) $(F_{2.74}=15.45,$	
		control and	P<0.0001) but there was a main	
		idem for the	effect of exposure such that MeHg exposed mice spent significantly	
		control group.	less time on the rotarod than the	
		Pups exposed	control mice ($F_{1,37}$ =8.72, P<0.01).	
		to the	When analyzing the entire 30 min	
		substance	session, the effects of MeHg on	
		from GD8 to	behavior were no significant.	
		GD18 for 11	In the open field task , analyses of	
		days	the initial 10 minutes revealed a	
		For motor and	significant main effect of exposure	
		coordination	on each performance measure,	
		tests:	such that the exposed mice moved	
		Start at 1	less overall (rearing: $F_{1.36}=10.45$,	
		month of age.	P < 0.01; total distance traveled:	
		C	$F_{1.36}$ =8.07, p<0.01) and spent less time in the center of the quadrant	
		For the spatial	than did controls ($F_{1.36}$ =8.862,	
		learning test: start at 6	P < 0.01).	
		months of age.		
		monuis or age.	Only the Morris water maze task	
			commenced at 6 months of age.	
			Swim speed did not differ between groups across days (cue training:	
			$F_{1,32}=0.19$, p>0.05; place training:	
			$F_{1.32} = 0.15$, p ^{-0.05} , place training. $F_{1.30} = 1.16$, p>0.05). Analyses of	
			place training trials across days	
			revealed that all mice improved	

Mice	Orally, in palatable	N=20 in the chronic group		impaired relative to control mice ($F_{1.32}$ =4.52, P<0.05). Time spent in target quadrant were significantly increased for the both groups during the 30 seconds interpolated probe trials ($F_{2.64}$ =3.753, P<0.05) but on the last 10s of the 30s probe trials, MeHg exposed mice demonstrated less accurate searches for platform over the duration of the probe trials than controls ($F_{1.30}$ =6.522; P<0.05). Despite the low level exposure used here, gait, assessed by footprinting and the ability to maintain balance on a rotarod were both significantly impaired in MeHg exposed mice relative to controls. The current results of the morris water maze task show that low level prenatal MeHg exposure impairs the ability to learn and recall the spatial location of a hidden platform in adult mouse offspring.	(Liang
C57 BL/6 strain	food, methyl mercury chloride (MeHgCl)	N=20 in the bolus group Chronic condition 1.4 μ g/g (bw/day) from GD1 to 18. Bolus condition 0.85 μ g/g bw/day plus bolus dose of 6 μ g/g bw/day on all days except GD12 and GD16		modest indication that the chronic group had slightly decreased vertical movement on the last 2 days of testing but no other measure in that test further supported an impact of methylmercury. Motor coordination : the most consistent effect is shown in the climbing test: the time taken to climb to the top of the apparatus was longer for the both experimental groups than the control ($F_{2.55}$ =4.24; P<0.001). The other motor coordination tasks did not significantly show effects	

of MeHg.
Emotional reactivity: Emergence: no significant effect. (measure of anxiety)
Elevated plus maze: no significant effect but a tendency for the chronic group to show increased anxiety (increased time spent in the closed arm).
In the radial arm maze , both groups had impaired spatial learning abilities: there was a group effect in the number of errors made by animals $(F_{2.55}=4.27; P<0.02)$. Post-hoc tests revealed significant difference between the chronic and the control group. A similar trend was observed for the bolus group but that difference was not significant because these animals performed as well or better than the control group on 10 of 20 days of testing. The second measure was the time to complete the maze: there was a group effect $(F_{2.55}=10.2; P<0.001)$ which indicated that overall both experimental groups took longer than the control group to complete the task.
Finally both experimental groups had impaired spatial learning abilities in the radial maze while learning of an operant task was not impaired.
Taken together, the results generally revealed that chronic group produced the largest impairments in all tasks while the performance of bolus group was closer but not equivalent to the control group.

4.11.2.2 Human information

Data are available for the effects on development in children exposed in utero during massive exposures of the mother or during lower exposures linked to a monotone diet (consumption of fish). Investigations of the possible neurodevelopmental effects of prenatal exposure to methylmercury are case series of children who manifested clinical signs of poisoning (Japan and Iraq) and then cohort studies of asymptomatic children considered to have 'low' exposure or at least exposure lower than that at which clinical signs and symptoms appear. The populations chosen were mostly those known to consume large amounts of fish, which contain variable amounts of methylmercury (Faroe Island, Seychelles...). When it is not specified, the concentrations of mercury in hair are expressed in total mercury.

Studies presented in the TC C&L dossier:

Effects on development in children during massive exposure (poisoning cases)

Poisoning by seafood in Minamata (JAPAN) because of pollution of sea by a chemical plant. Children born from women living in Minamata at the period of poisoning by seafood suffered mental retardation (100% of children), primitive reflex (100%), cerebellar ataxia (100%), disturbances in physical development and nutrition (100%), dysarthria (100%), deformity of the limbs (100%), hyperklinesia (95%), hypersalivation (95%), paroxysmal symptoms (82%), strabismus (77%) and pyramidal symptoms (pathological reflexes) (75%). Cerebral palsy was abnormally high. Mothers were first declared asymptomatic but subsequent examination showed mild symptoms of Minamata disease: sensory disturbances (100% of mothers), focal cramps (100%), mild ataxia (79%), auditory disturbances (75%), pain in the limbs (64%), constriction of visual field (57%), dysarthria (43%), tremor (39%). The degree of the symptoms was less severe than in their children. Mercury level in mothers' hair was analysed from 5 to 8 years after the birth : concentrations ranged from 1.82 ppm to 191 ppm while that of congenital patients ranged from 5.25 ppm to 110 ppm. Mercury level was measured in umbilical cord. In most cases, those whose MeHg content was 1.0 ppm or higher suffered from congenital Minamata disease but some with lower mercury levels were also congenital patients. The pathological findings of congenital Minamata disease are generally atrophy and hypoplasia of the brain cortex and abnormality of the cytoarchitecture, remaining matrix cells, hypoplasia of the corpus callosum, intramedullary preservation of the nerve cells, and dysmyelinisation from 100% to 45%, primitive reflex and abnormal limb posture from 100% to 51%, and incoordination (ataxia) from 100% to 60%. However, dysarthria and nifelligence disturbances were left unimproved and subjective signs that had not been previously observed such as headache, insomnia, arthrialgia, numbness, dizziness, and anorexia increased. 89 mothers living in the most contaminated area were interviewed later: in	Harada, 1995
Case report of a child exposed in utero following the consumption by his mother of meat contaminated with methylmercury. At the time, the mother began to ingest contaminated meat, she was 3 months pregnant. She ate no more contaminated meat after 6 months of pregnancy. Examination during the 7th month of pregnancy was within normal, neurologic findings and visual fields were normal. The urinary mercury levels were high during the 7th	Snyder, 1971
(0.06 ppm) and the 8th (0.18 ppm) months of pregnancy. The mother never suffered with symptoms. A 3 062 g male infant was delivered at term. At 1 minute of life, he became dusky, gross tremulous movements of the extremities developed. These movements persisted for several days. The cry was weak and high pitched. In other respects, the child appeared normal on general and neurologic examinations. In the neonatal period, urinary mercury	Pierce <i>et</i> <i>al</i> , 1972

levels were high (2.7 ppm at 1 day of age, 2.0 at 4 days of age), decreasing to less than 0.01 ppm at 6 weeks of age and to less than 0.0005 ppm at 3 months of age. Blood electrolytes, glucose, calcium, magnesium and bilirubin were normal. When examined at 6 weeks of age. the child was very irritable, with a high-pitched, weak cry, increased tone in the extremities and cortical thumb posturing. An electroencephalogram was within the range of normal variation for age at the two examinations. Electromyography performed at 3 days and 6 weeks of age showed normal conduction velocities for age and normal muscle-action potentials. At 6 months of age, the encephalogram was abnormal with the widespread occurrence of spike activity more abundant in the left central and parietal regions. Electromyography performed at 3 months of age remained normal for conduction velocities age and normal muscle-action potentials were observed. By 6 months of age, generalised myoclonic jerks developed and the electroencephalogram was markedly abnormal, with paroxysmal highvoltage spikes, polyspike and spike and slow-wave patterns. This activity was more marked over the right hemisphere but occurred bilaterally. At 8 months of age, the infant was hypotonic and irritable and had nystagmoid eye movements without evidence of visual fixation. The child remained blind and unable to sit up. He was never breast fed. During his first 6 months, he was only fed with commercially prepared products.

Relationships between maternal exposure to methylmercury and a possible impact on child development (IRAQ)

Prenatal exposure to **methyl mercury** occurred during a large epidemic of methyl mercury poisoning in Iraq, resulting from ingestion of home-made bread prepared from wheat treated with a **methylmercury fungicide**. Body content would be expected to rise to a maximum at the end of approximately a two-months period of consumption. Thereafter, it should undergo an exponential decline to pre-exposure values at the end of one year, assuming a biological halftime in the adult human of 70 days. Thus, possibilities existed for prenatal foetal exposure, and for post-natal exposure of suckling infants due to transmission of methylmercury in their mother's milk. Infants born during the 12-month period immediately prior to the epidemic could have received methylmercury from maternal milk ingestion. Infants approximately 12 to 18 months of age at the time of epidemic might have also ingested contaminated bread. Infants born during and shortly after maternal consumption of contaminated bread received maximal exposure late in gestation and had a relatively large postnatal intake from milk. Infants born six Aminto nine months after maternal consumption of methylmercury were maximally exposed early in Zaki et pregnancy and received minimal intake from milk ingestion. In this study, all infants were al, 1974 exposed prenatally. C15 pairs mother-infant were studied from one month after cessation of ingestion of contaminated bread by mothers to 11 months later. Six of 15 mothers complained from symptoms linked to methylmercury toxicity. The most frequent symptoms were malaise, vague muscle and joint pains and loss of sensation in the perioral region and in the extremities. Motor weakness and exaggerated reflexes were observed in 5 cases. Visual changes (constriction fields, blurred vision, dimness) were reported in 4 cases. Ataxia, auditory changes and dysarthria also occurred. One woman whose child was severely affected refused examination but claimed to be quite well. Infants having blood levels in excess of 3,000 ppb were severely affected. One infant having a blood level of 1,053 ppb when examined was also severely affected. The lowest blood level associated with signs of poisoning was 564 ppb. Generally mercury blood levels are higher in children than in their mothers when they simultaneously have their blood collected. At least 6 of the 15 children had clinical evidence of poisoning. In the five infants severely affected, there was evidence of gross impairment of motor and mental development, with cerebral palsy, deafness and blindness in four. Three of infants had microencephaly at an early age. In the 15 infant-mother pairs, only one pair was noted in which the infant had signs of poisoning and the mother claimed to be free of

any symptoms or signs of methylmercury poisoning.	
Longitudinal study (5 years) of children born just before the poisoning of farmers in Iraq following the contamination of bread by seeds which had been covered with a fungicide containing methylmercury (IRAQ). Those children were breast fed and were exposed via their mother's milk. 30 pairs mother-child were included in the study, 2 children died during it. Standard clinical tests were made to assess the general clinical state of the mothers and the children with special attention on the central nervous system functions. Vision and audition were assessed. The developmental milestones of the infants were evaluated according to Gesell's developmental screening tests. Motor development was considered to be delayed when the infant failed to sit without support by the age of 12 months, to pull himself to standing position by 18 months, or to walk 2 steps without support at the age of 2 years. Language development was considered to be delayed when, at the age of 2 years, a child with good hearing failed to respond to simple verbal communication. The 11 males and 19 females ranged from 1 month to 10 months at the time of exposure. Abnormal neurological signs become more obvious with time. Hyperreflexia was found in only 8 of the 22 infants at the first examination, in 17 of the 22 infants at the second examination and in 16 of the 21 infants by the 5 year. The finding of an extensor Babinski's reflex was also higher in the second (8 patients) and third (7 patients) examinations than in the first examination (4 patients). In 5 children, walking was delayed beyond the age of 2 years. Hearing was normal but language development, language development, language development, language development, toilet training together with brisk deep tendon reflexes and sometimes a bilaterally positive Babinski's reflex was considered evidence of damage to the central nervous system.	Amin- zaki <i>et al</i> , 1979; Amin- Zaki and Majeed, 1981
Mercury was measured in hair samples of mothers of children exposed to mercury during gestation to assess the level of exposure during the foetal period (IRAQ). Mothers from Iraq were exposed to methylmercury because of the consumption of bread made with seeds treated with a based methylmercury pesticide. The clinical evaluation of children was conducted via a questionnaire applied to the mother and the grandmother of the child to assess birth weights, the age at which the child was able to sit safe without help, to stand and walk unaided, and speak two or three meaningful words. Other questions concerned observations of involuntary movements, seizures, impaired vision or hearing, incoordination and the mother's overall impression of whether the child's physical and mental development had been normal. The physical examination of the child included observation, measurement of head circumference and body length, cranial nerve signs, speech, involuntary movements, limb tone, strength, deep tendon reflexes, plantar responses, co-ordination, dexterity, primitive reflexes, sensation, posture, and ability to sit, stand, walk and run. The clinical evaluation was made at home in the villages of rural areas of the country. The exact date of birth of children was not known but the month of birth could be assessed. 81 mother-infant pairs were studied. Hair mercury concentrations of mothers ranged 1-674 ppm (22 mothers having concentrations ranging from 154 to 674 ppm). Larger effects were seen in boys than in girls. 7 of the 28 most highly exposed children were reported to have seizures; none in the 53 less exposed children. All children with seizures had features of retarded early development. This was a doserelated effect. 4 children had very severe psychomotor retardation. All were in the highest exposure group. A boy whose mother was contaminated during the third trimester of pregnancy experienced numbness and weakness of arms and legs for several weeks. These resolved and he had no persisting symptoms. The maxi	Marsh <i>et</i> <i>al</i> , 1987

generalised convulsive seizures, which the occurred about once every three months but were not treated. When first seen, he was aged 3 years 1 month. The mother reported that he was severely retarded physically and mentally. He made sounds but spoke no words. He could not sit without support, stand or crawl. His head circumference was 45.8 cm, his length 75 cm. The pupils were equal and reacted well and the fundi appeared normal. He had alternative strabismus. There appeared to be deafness, even if he reacted to loud noises. There were constant athetoids movements of the arms. Limb tone was greatly increased, especially in the legs, where there were also adductor spasms. All deep tendon reflexes were increased. There was sustained ankle clonus, and the plantar responses were extensor. All limbs were weak. He could not hold his head erect. There were grasp reflexes and increased jaw reflexes. The main features were spastic quadriparesis, severe speech and mental retardation, some athetosis, and convulsive disorder. When re-evaluated at age of 5 years 9 months, there was no change.

The second case is a girl whose mother had transient numbress of limbs and headaches during pregnancy. There were no problems during labour or delivery. The maximum mercury hair concentration was 405 ppm. The baby was described as small and floppy. She was breast-fed by her mother who said that the child was mentally retarded, did not sit without support until 3 years of age, and began to talk at that time but her speech was extremely slow. There were no seizures. When first examined, she was 2 years 2 months old. Her head circumference was 45 cm, her body length, 76 cm. The pupils and fundi appeared normal and there were no cranialnerve signs apart from deafness. She was unable to stand or walk, and had no speech. Tone was increased in the limbs and decreased in the trunk. The deep tendon reflexes were increased, with ankle clonus, and extensor plantar responses, dystonic posturing of the hands and ataxia in the arms. When reexaminated at age of 4 years 9 months, she walked with a wide-based ataxic gait. The deep tendon reflexes were normal. The right plantar response was extensor, the left flexor. Her speech was restricted to a few words. The other signs were unchanged. At age of 6 years 9 months, her head circumference was 49.5 cm, her height, 1.03 m. She exhibited no cranial-nerve signs. She appeared to be mentally retarded with little speech. Her gait was slow, spastic and ataxic and accompanied by prominent athetoid movements in the arms. There was no weakness, deep tendon reflexes were normal and plantars extensor. She had no sensory deficit. The main features were mental and speech retardation, ataxia and athetosis.

The third case is a boy whose mother was asymptomatic during pregnancy. The maximum mercury hair concentration was 418 ppm. The labour and delivery were normal. He appeared normal at birth but the first seizure occurred 7 days later and was followed by other seizures. When first seen at the age of 2 years 2 months, the mother stated that he was mentally retarded, could not sit or stand without support and had no speech. His head circumference was 43.5 cm, his body length, 78 cm. There were no cranial-nerve signs, apart strabismus. The posture was opisthotonic with adductor spasms. Deep tendon reflexes were increased and plantar responses extensor. At age 4 years 4 months, he remained unable to stand or walk and had no speech. The previous signs remained unchanged. His head circumference was 43 cm, his body length, 87 cm. The main features were mental and speech retardation, spasticity and convulsive disorder.

The last case is a boy whose mother was asymptomatic during pregnancy. The maximum mercury hair concentration was 443 ppm. The labour and delivery were normal. He appeared "very small" at birth. When seen at age of 3 years 1 month, he was described as normal by his mother. He spoke 2 or 3 words. There had been no seizures. He had just started walking and walked with a wide-based ataxic gait with hyperextension of the legs. There were no cranial-nerve signs apart from deafness. Limb tone and reflexes were decreased. Plantar reflexes were extensor. When seen 2 years later, his speech was dysarthric. There was ataxia of gait and limbs. His hearing appeared to be normal and there were no cranial-nerve signs. He exhibited

no weakness. Limb tone was mildly decreased. Plantar responses were extensor. The main features were mental and speech retardation, dysarthria and severe ataxia.

Other children with less disabling signs had an upper motor neurone syndrome with increased tone, reflexes, extensor plantar responses, and developmental delay. The least affected children had a history of being slow in walking and/or talking with no definite neurological signs.

Effects on development in children during lower exposures

Studies presented in the TC C&L dossier:

Longitudinal neurodevelopmental study of Seychellois children following in utero exposure to methylmercury from maternal ingestion: outcomes at 19 and 29 months (SEYCHELLES). The cohort consisted of 738 mother-child pairs at 19 months and 736 pairs at 29 months, representing 94% of the cohort of 779 pairs initially enrolled, and approximately 50% of all births in 1989. Infant intelligence was measured by the Bayley Scales of Infant Development (BSID) Mental and Psychomotor Scales. Both scales were given in Creole to each child at each session. To measure adaptive behaviours, a modified version of the BSID behaviour Record was completed at the 29 months session by the examiner administering the tests. All primary care-givers (defined as the family member in whose home the child spent more than five nights a week) were interviewed to obtain an interim health history and to ascertain family socioeconomical data. At the 19-month session, the Raven Standard Progressive Matrices Davidso (Raven, 1958) (a standard intelligence test) was administered to the primary caregiver. Prenatal n et al. exposure was assessed by measurement of the concentration of total mercury in a segment of 1995 maternal hair representing growth during pregnancy. Samples of 21 species of oceanic fish found in Seychelles were analysed for inorganic and methylmercury. The median prenatal mercury exposure of the cohort was 5.9 ppm (range = 0.5 - 26.7 ppm) in maternal hair. Cognitive developmental outcomes up to 2.5 years of age appear essentially normal following intrauterine exposure to a maternal hair mercury level of about 6 ppm through maternal fish consumption. This cohort performed cognitive, perceptual, memory, motor, and language tasks as well as US toddlers. One functional behaviour (the examiner's subjective rating of the child's test session activity level) was related to maternal hair mercury levels in the mothers of male children: activity level decreased as maternal hair mercury level increased (p = 0.007). This outcome might represent a subtle influence of mercury on behaviour without detectable residual effects on cognition.

The cohort consisted of 711 mother-child pairs living in the Republic of Seychelles, representing 91 % of the 779 pairs originally included in the Seychellois **child development study (SEYCHELLES).** Each child was evaluated at 66 months (\pm 6 months). The test battery included : the General Cognitive Index of the McCarthy Scales of Childrens' Abilities to estimate cognitive ability; the Preschool Language Scale total score to measure both expressive and receptive language ability; the letter and Word Recognition and the Applied Problems subtests of the Woodcock-Johnson Tests of Achievement to measure reading and arithmetic achievement; the Bender Gestalt test to measure visual-spatial ability; and the total T-score from the child Behaviour checklist to measure the child's social and adaptive behaviour (this questionnaire was given to each child's primary caregiver). All tests were given in Creole. Pure tone hearing thresholds were tested using a portable audiometer. Caregiver's IQ was measured to minimise the

effects of culture on the measurement of the child's IQ. When the children were between 42 and 56 months of age, the Home Observation for Measurement of the Environment Inventory for Families and Preschool Age children was administered during home visits. Prenatal exposure to mercury was assessed by measuring the concentration of total mercury in a segment of maternal hair representing growth during pregnancy. PCBs were also measured in serum of 49 children at the age of 66 months. Mercury in fish was measured in 350 samples. The median concentration for each of the 25 species ranged from 0.004 ppm to 0.75 ppm, with most medians in the range of 0.05 to 0.25 ppm. The mean maternal hair mercury level during pregnancy was 6.8 (SD = 4.5; range = 0.5 - 26.7 ppm) ppm (n = 711) and the mean child hair level at 66 months was 6.5 (SD = 3.3; range = 0.9 - 25.8 ppm) ppm (n = 708). No test indicated a deleterious effect of methylmercury exposure. Four of the six measures showed better scores in the highest methyl mercury groups compared with lower groups for both prenatal and postnatal exposure. As mercury exposure is closely linked to consumption of fish, it seems that children with the highest exposure to mercury have also a best dietary pattern than other children which could explain why methylmercury exposure seems to result in better developmental outcomes in children. Children of the Seychelles cohort (n = 738). At the 19 month examination, a questionnaire was applied to the child's parent or caregiver present during the tests to assess the age of walking without support and the age at which the child began to speak using words other

than "mamma" or "dada" (SEYCHELLES). The measure of exposure during pregnancy was the mean of the total mercury concentration in segments of hair of the mother representing growth of the hair during the pregnancy. Walking appeared at a later age as exposure increased in the range from 0 to 7 ppm (especially in male children) but appeared slightly earlier for exposure above 7 ppm which makes difficult to conclude to a cause and effect relationship. No influence of the level of exposure to mercury was seen concerning the age of talking.

al.

Relationships between a diet rich in fish and possible impact on child development were studied (SEYCHELLES). The cohort consisted of 779 children enrolled at the age of 6.5 months. Of these, 711 were available for the 66-months test battery. Prenatal exposure was measured in a segment of maternal hair corresponding to pregnancy. Postnatal exposure was measured in a scalp hair sample from each child at the time of the 66-month evaluation. The children's neurological and developmental status has been evaluated at 6.5, 19, 29 and 66 months of age using standard methods of assessment. The battery yielded to a total of six primary endpoints : the General Cognitive Index (GCI) of the McCarthy Scales of children's ability, the Preschool Language Scale Total Score (PLS) to measure receptive and expressive language, the Letter and word Recognition and the Applied Problems subtests of the Woodcock-Johnson Tests of Achievement to document reading and math readiness, the total error score from the Bender Axtell Gestalt test to estimate visual-spatial ability, and the total T score from the Child Behaviour al. et checklist (CBCL) measuring social and adaptive behaviour. For all tests except the Bender and 2000 CBCL, an increase in the score is associated with an improvement in performance on the test. All tests were given in Creole, the language spoken in over 98% of Seychellois homes. For the PLS, the trend involved a decline of 0.8 points between 0 and 10 ppm followed by an increase (representing improvement) of 1.3 points above 10 ppm. For the CBCL, there was an increase of 1 point from 0 to 15 ppm and then a decline (improvement) of 4 points above 15 ppm. The GCI increased by 1.8 points through 10 ppm and then declined 3.2 points (representing worse performance) above 10 ppm. In every case, the trend changes direction so that an effect in one direction is followed by a trend in the opposite direction. Overall, there was no clear evidence for consistent (across the entire range of exposure levels) adverse effects of exposure on the six developmental outcomes. Authors think that apparent beneficial effects of exposure could be linked to the association of exposure to mercury and the nutritional benefits of fish consumption.

Relationships between maternal exposure to methylmercury and a possible impact on child development (SEYCHELLES).

The population under investigation consisted in 87 children from a pilot cohort living in the Republic of Seychelles. These children were exposed to mercury during their foetal life because of the maternal diet based on seafood and during the rest of their life because of their own diet. They reached the age of 108 months \pm 6 months. Prenatal exposure was assessed by measurement of total mercury in a segment of maternal hair representing growth during pregnancy. 23 children had maternal hair levels \leq 3 ppm, 23 between 4 and 8 ppm, and 41 children ≥ 9 ppm. 55 % of the children were male. Each child was administered a battery of tests assessing specific cognitive, visual motor and motor skills (13 subtests of the Wechsler Davidso Intelligence Test for Children- III, the California Verbal Learning test, The Boston naming test n et al, (BNT), the Beery-Buktenica Developmental Test of Visual Motor integration, the Design 2000 memory subtest of the Wide Range Assessment of memory and Learning, the Grooved Pegboard, the Trail making test, The Finger Trapping Test). Each test was standardised on western populations representing a wide range of socio-economic and cultural variation. All tests were translated in Creole, the language spoken at home by 98 % of the Seychellois children. The outcomes of this study show enhancement of performances on a number of neuropsychological tests associated with increasing prenatal exposure to methyl mercury in the range of exposures studied. There was a significant difference between gender with the Grooved pegboard and the test of Visual integration, with scores generally improved as exposure increases. Only one test, the Grooved Pegboard, showed decreasing performance associated with increasing prenatal methyl mercury exposure in females. A secondary analysis including both prenatal and postnatal exposures showed evidence of only one adverse association between postnatal methylmercury exposure and the California Verbal Learning test short delay

subtest.

The aim of this study is to identify adverse neurodevelopmental effects in a fish consuming population (SEYCHELLES) (an average of 12 meals per week). In 1989-90, 779 mother-child pairs were enrolled (about 50% of live births during this period. 643 children were investigated at the age of nine. Prenatal methyl mercury exposure was determined from maternal hair growing during pregnancy. Postnatal exposure was assessed by measurements of the mercury concentration of a 1cm hair segment closest to the scalp of the child at the age of 9. The mean prenatal total methylmercury exposure was 6.9 µg/g (SD 4.5). The mean postnatal hair concentration was 6.1 µg/g (SD 3.5). The correlation coefficient between prenatal and postnatal exposure was -0.08 (p = 0.04). Concentrations of total mercury in maternal hair at delivery correlated highly with concentrations of mercury in brain samples taken at autopsy from Seychellois infants who died from natural causes. The mean age at testing was 107 months (SD 4). Individual tests measured intelligence (the Wechsler intelligence scale for children III full scale IQ); learning and achievement (the Woodcock-Johnson test of achievement, letter-word Myers recognition, and applied problems subtests and the California verbal learning test); memory (the et al. visual memory subtest of the wide-range assessment of memory and learning); motor functions 2003 (finger tapping, trailmaking, grooved pegboard, and most of the Bruininks-Oseretsky test of language (Boston naming test); visual-motor integration (the Beerymotor proficiency); Buktenica developmental test of visual motor integration and a test of haptic matching); and sustained attention (Connor's continuous performance test). Behaviour was assessed with the Connor's teacher rating scale and the parent-child behaviour checklist. Two of the 21 endpoints were associated with prenatal methylmercury exposure and developmental outcomes at 9 years of age. One association involved diminished performance (grooved pegboard non-dominant hand in males only) and the other an enhancement (hyperactivity index of the Connor's teacher rating scale). But according to the distribution of p values, authors conclude that both these outcomes are probably due to chance. So authors conclude that the Seychelles Child development Study longitudinal assessments at 9 years of age indicate no detectable adverse effects in a population consuming large quantities of a wide variety of ocean fish.

The aim of this study is to identify adverse neurodevelopmental effects in a fish (concentrated in methylmercury) consuming population (FAROE). A cohort of 1022 singleton births was assembled in the Faeroe islands during a 21-month period of 1986-1987. Mercury concentrations varied considerably. 15 percents of mothers had hair mercury concentrations above 10 µg/mercury whereas cord blood concentrations ranged up to 10 to 350 µg/l. However, obvious cases of congenital methylmercury poisoning were not found. Because the effects of foetal childhood exposure to methyl mercury are persistent, detailed examination of children with prenatal exposure to this neurotoxicant would be appropriate at school age. At this time, they have developed sufficiently to perform a wide variety of neurobehavioral tests, and they are able Grandje to cooperate for most functional tasks. 917 children were tested. Neuropsychological tests an et al. included Finger Tapping, Hand-eye co-ordination : reaction time on a Continuous Performance 1997 Test, Wechsler intelligence scale for children - revised digit Spans, Similarities and Block designs; Bender Visual Motor Gestalt Test; Boston Naming test and California Verbal learning test (children). Clinical examination and neurophysiological testing did not reveal any clear-cut mercury-related abnormalities. However, mercury-related neuropsychological dysfunctions were more pronounced in the domains of language, attention, and memory, and to a less extent, in visuospatial and motor functions. These associations remained after adjustment for covariates (especially PCB exposure) and after exclusion of children with mercury hair concentration above 10 µg/g. The effects on brain function associated with prenatal methylmercury exposure therefore appear widespread, and early dysfunction is detectable at exposure levels currently

considered as safe.

Relationships between maternal exposure to methylmercury and a possible impact on child development (GUYANA).

156 children (and their 104 mothers) were examined in the Upper Maroni communities, 153 in Awala (115 mothers) and 69 in Camopi (51 mothers). Geometric means for hair mercury levels in children were 10.2 μ g/g for children of Upper Maroni, 6.5 μ g/g for children of Camopi and 1.4 $\mu g/g$ for children of Awala. The geometric mean hair mercury levels for mothers were 12.7 $\mu g/g$ for Upper Maroni, 6.7 µg/g for Camopi and 2.8 µg/g for Awala. No hair sample could be obtained from 39 mothers (14%) and 19 children (5%). There was no trend toward increasing Cordier mercury concentration with increasing age among children between 1 and 12 years old. 97 et al. children between 9 months and 6 years old from the Upper Maroni Communities had 2002 neurological examination, 69 in Camopi and 82 in Awala. 103 children from 5 to 12 years old from the Upper Maroni Communities had neuropsychological examination and 103 in Awala. There is an association between the level of exposure to mercury of the mother and the increased deep tendon reflexes, the poorer co-ordination of the legs, and a deficit in the Copying test score. These associations held if the population is restricted to that in the exposed region but with a lower degree of significance, and they seemed to depend on the sex of the child. Although drawing errors in copying designs are part of normal development, frequent rotation errors after age 6 years are likely to result from insult in the parietal lobes of the brain.

Relationships between mercury exposure during pregnancy and neurodevelopment among British child born in 1991-92 were studied. To evaluate their children, over 5000 mothers from the Avon Longitudinal Study of pregnancy and Childhood completed the Denver Developmental Screening test at 6 and 18 months after birth and the Mac Arthur Communicative Development Inventory at 15 months. Reported dental treatment and fish intake during pregnancy served as markers of exposure to mercury vapours and methylmercury respectively. Cord tissue mercury was measured for 1100 children. Total mercury levels were higher among those who had dental work and ate fish **but were not associated with developmental test scores**. Neither dental work nor fish intake was associated with decreased overall developmental test scores. Most developmental scores increased with fish intake (Mac Arthur : no fish = 123.5, fish < 1/week = 130.3, fish > 1/week = 129.8, trend p < 0.02).

In Canada, a study of prenatal methylmercury exposure in 234 Cree Indian infants and children whose mean maternal hair level was 6 ppm showed that maternal exposure was related to abnormal muscle tone (deep tendon reflex) in male infants.

In 73 children from New-Zealand whose maternal hair was above 6 ppm, early sensorimotor dysfunction was evidenced with the Denver Development Screening Test at the age of four. In 61 of these children involved in a subsequent study at the ages of 6-7 years, results showed that in children with poor score on the Denver development Screening Test at the age of 4, tended to have decreased scores on the WISC-R Intelligence test later in childhood. These neurobehavioral effects were associated with maternal blood methylmercury levels of only 20 to 80 ppb.

In Inuits whose source of contamination is the occasional consumption of highly contaminated whales, the foetal methyl mercury in cord blood averaged 80.2 ppb and the highest levels of exposures were related to decreased birth bodyweights of children.

New studies added in the present report:

Study performed on 780 children with mean blood MeHg concentrations of 0.5 μ g/L that were enrolled in the Treatment of Lead (Pb)-exposed children clinical trial (TLC) with 396 children allocated to the succimer and 384 to the placebo groups. Almost all Hg in the blood (> 80%) was methylmercury (MeHg). The study examined the postnatal methylmercury exposure and cognition (IQ) and behaviour.	<i>al.</i> 2010)	
The children's IQ and neurobehavioral were tested at the age 2, 5 and 7 years.		
There is a weak, non-significant but consistently positive association between blood MeHg and IQ tests scores in stratified spline regression and generalized linear model data analysis.		
The neuropsychological and behavioural test scores were not significantly associated with MeHg concentration.		
This study cannot determine a threshold above which postnatal MeHg exposure has detectable neurological and developmental consequences in children but we can conclude that at the present postnatal MeHg exposure level (blood MeHg < 1µg/L), adverse effects on children's cognition and behaviour were not detectable.		
Study performed on 498 pregnant women which delivered on march 2004.	(Suzul	
Maternal hair levels less than 10 μ g/g (median level of hair MeHg =1.96 μ g/g).	<i>et</i> 2010)	al.
The results of the study indicated that prenatal exposure to methylmercury, even at low doses, at maternal hair levels of less than 10 μ g/g (median level of hair THg = 1.96 μ g/g, range of 0.29 to 9.35 μ g/g) adversely affect neonatal neurobehavioral function (evaluated by the Neonatal Behavioral Assessment Scale, NBAS) in the 3 models (p=0.047 in model 1; p=0.01 in model 2; and p=0.01 in model 3) in a multiple regression analysis (negative relation to the motor cluster, Pearson product-moment correlation coefficients, hair THg (p=0.01)).		

2000 US birth ashart	(Traces
2000 US birth cohort.	(Trasan de <i>et al</i> .
Analysis of the burden of mental retardation (MR) associated with methylmercury exposure emitted to the atmosphere by American electric generation facilities: it causes clinically significant mental retardation in hundreds of American babies born each year.	2006)
The aggregate loss in cognition associated with MeHg exposure in the 2000 US birth cohort was estimated using two previously published dose-response models that relate increases in cord blood Hg concentrations (upper or equal in 3.5, 4.84, 5.8, 7.13, 15 μ g/L) with decrements in IQ (losses of cognition of 0.22, 0.48, 1.39 IQ points respectively for the last three MeHg-concentrations).	
Downward shifts in IQ resulting from prenatal exposure to MeHg of anthropogenic origin are associated with 1566 excess cases of mental retardation annually, or 3.2% of MR cases in the US.	
After incorporating uncertainties in the relationship of IQ loss with increases in blood mercury levels and applying a conservative range of 1-1.7 for the true cord/maternal Hg ratio, between 376 and 14293 excess cases of MR, or 0.8% - 29.2% of MR cases in the US are associated with MeHg toxicity.	
After applying base-case assumptions and incorporating a 36% factor to specify the burden of anthropogenic MeHg exposure attributable to American sources, mercury emissions from American anthropogenic sources are associated with 564 cases of MR or 1.1% of MR cases in the US. After incorporating these assumptions, $68 - 5145 (0.1\% - 10.5\%)$ of MR cases in the US are associated with MeHg toxicity.	
After applying an additional fraction of 41% in this analysis to convert the burden of mental retardation attributable to all American emissions to the burden attributable to American electric power generation facilities, Hg from American power plants accounts for 231 cases of MR/year (range: 28-2109), 0.5% (range: 0.06%-4.3%) of all cases in the US.	
Study conducted on 300 mothers in the republic of Seychelles. Analysis of the prenatal effects of methylmercury exposure on child development from eating fish during pregnancy. The average prenatal MeHg exposure was 5.9 ppm in maternal hair.	
229 children were evaluated by the Bayley Scales of Infant Development-II (BSID-II) performed at 9 and 30 months of age, by the Psychomotor Developmental Index (PDI) score performed at 30 months.	
The primary analysis examined the associations between MeHg, maternal nutritional measures and children's scores on the BSID-II and showed an adverse association between MeHg and the mean PDI score at 30 months.	
Analyses of the association between the PDI score and only MeHg alone or nutritional factors alone showed only a borderline significant association between MeHg and the PDI at 30 months and no associations with nutritional factors.	

A cohort of 1022 births in the Faroe Islands. At age 14 years, 878 of 1010 living cohort members Debes underwent detailed neurobehavioral examination. The same tests were performed at the age of 7. Exposure levels at age 14 years averaged about one-fifth of those experienced prenatally, although exposures at age 7 years were slightly higher.

This study presents results on neuropsychological performance of adolescents with widely differing degrees of prenatal exposure to MeHg from maternal seafood diets during pregnancy and lower postnatal exposures to this neurotoxicant. Adverse effects were identified in regard to motor speed, attention and language. These findings are in accordance with the results obtained from examination of the same cohort members at age 7 years (Grandjean et al, 1997) and suggest that prenatal MeHg exposure is associated with enduring neurotoxic effects on CNS function.

4.11.3 Other relevant information

4.11.4 Summary and discussion of reproductive toxicity

Effects on fertility

Animals

Numerous fertility animal studies show reproductive effects of methylmercury on several species, in both sexes (decreased mating success of male in rats and decreased sperm motility in monkeys and rats, sperm with abnormal head in rats, prolonged length of oestrous cycle of female mice and alteration of reproductive performance in mink, accumulation of mercury in seminiferous tubules in rats and in ovary in mice, decrease of plasma and serum testosterone in rats). Effects also occur at doses exerting no other toxic effects.

The old studies displayed contradictory results in terms of effects on fertility, wistar rats being the most responsive (Khera, 1973 (b)). The "new" studies performed on wistar rats (Ernst *et al.* 1991a; Moussa H. *et al.*, 2010; Fossato *et al.*, 2011, Vaccharajani, K.D., et al., 1993) but also in Pekin ducks (McNeil and Bhatnagar 1985), monkeys (Lee, I. **P.**, 1975) and mice (Mohamed et al. 1987) show that MeHgCl induce a decrease in testosterone biosynthesis, which affect spermatocytes formation.

Humans

A study describes effects of methylmercury on fertility, leading to subfertility in men (Dickman and al., 1999) but is not considered as sufficient to establish a clear causal link.

Another study (Choy et al., 2002) establishes a possible relationship between the infertility of couples in Hong-Kong and the high blood mercury level. The association between *in vivo* exposure to mercury and male infertility found in this study is biologically possible to be a causal relationship.

Effects on development

Animals

The studies on development show increase of embryonic lethality, decrease of fetus body weight and teratogenicity in rats (cleft palates, vertebral defects, histological abnormalities in the cerebellum, effects on lacrymal glands and ribs).

Neuro-behavioral effects are observed in mice (locomotion, memorisation), rats (locomotion, memorisation and hyperactivity) and monkeys (visual defects, impairment of the auditory function and of vibration sensitivity). In certain cases, adverse effects are unmasked by aging. The loss of contrast sensitivity functioning is persistent until 11-14 years after the cessation of the exposure (Burbacher, 2005) and also for the auditory function (Rice, 1998) and the vibration sensitivity (Rice, 1995) for which permanent impairments are observed after long term exposure, beginning during developmental period. These effects could be irreversible. Besides, these effects appear even in absence of maternal toxicity in several studies.

The study of Onishchenko, designed for the chronic early life exposure of mice at low doses of MeHg (0.5 mg/kg/day), provide evidence for the long-lasting effects on learning ability and motivational behavior, with a persistent predisposition to depressive behavior.

These effects were observed only in male mice; the same gender-related difference is observed in the open field test of Montgomery. In contrast in the study of Yoshida, a sex-wise two-way ANOVA for the central area occupancy in OPF shows significant effects of MeHg only in MT-null females (p<0.001). Mechanisms underlying such gender-related differences are not clarified.

The long-lasting effects at low doses shown in the study of Onishchenko are consistent with the study of Yoshida which shows significant effects in the three neurobehavioral tests (OPF, PA, MWM) only at 52 weeks of age and not at 12 weeks. This is confirmed by the study of Liang: between two different lengths of treatments, the one chronic and the other acute treatment by bolus administration, the chronic group produced the largest impairments in all tasks while the performance of bolus group was closer but not equivalent to the control group.

The lack of effect on motor coordination of MeHg-exposed mice in the rotarod test (Onishchenko) is consistent with the study of Stringari *et al.*, 2006 (repeated subcutaneous exposure), showing that low doses of MeHg do not lead to gross motor deficit in mice. However, Montgomery showed that MeHg exposed mice spent significantly less time on the rotarod than the control mice, although in low doses administered during 11 days.

So, MeHg chronic exposure adversely affects mice at low doses (0.5 mg/kg/day) after exposure from gestational day 7 until day 7 after delivery, early in the life (at 5 to 36 weeks of age), with neurotoxic long-lasting effects on **motor coordination and neurobehavioral** (less intensive exploratory activity).

Humans

Effects of methylmercury are described on neurodevelopment: very severe effects appear in children exposed *in utero* during periods of poisoning via food (via bread in Iraq, via fish in Japan). Children are frequently deaf, blind, unable to sit or walk without help, unable to speak fluently. For children, the handicap seems to become more severe with aging. For other children, the handicap appears few months after birth. There is mental retardation, even when mothers experienced no or mild symptoms. So effects on neurodevelopment do not seem to be linked to maternal toxicity.

In cases of mothers who are exposed to lower doses of mercury via food but during a long period, several differences between the cohort studies may have contributed to the apparent discrepancy in the findings (absence of effect or no observed effect). The children were evaluated for neurobehavioural endpoints at different ages and with tests of different reliability. Moreover, the studies may also differ with regard to exposure to other factors that can affect the neurobehavioural development of children, and the intake patterns may have differed (more mercury eaten less frequently or less mercury consumed almost daily, nutritional status). Perhaps there is a dose dependent effect linked not to the total dose of mercury to which the foetus is exposed during the pregnancy but to peaks of concentrations of methylmercury that can occur during the pregnancy. That would explain why effects appear for massive exposures and for milder exposures but with peaks of concentrations of methylmercury in food.

All the studies performed on human tend to show the link between the MeHg exposure and the neurotoxic effects.

In the study of Cao et al., 2010, the association between blood MeHg and IQ tests scores is not significant but consistently positive although at low doses, effects on cognition and behavior were not significantly detectable.

The studies of Suzuki and Davidson show that even at low doses, prenatal exposure of MeHg adversely affects neurobehavioral functions. In the study of Trasande, the toxicity of MeHg is attributed to the atmosphere by American electric generation facilities, responsible for the mental retardation in prenatal-exposed babies.

Finally, Debes performed clinical studies on children of 7 and 14 years, showing adverse effects in regard to motor speed, attention and language.

Low doses of MeHg-exposure (prenatally or postnatally exposure) are responsible for neurotoxic effects on human, such as losses of points in IQ, mental retardation, attention deficit hyperactivity disorder and adverse effects on cognition, neurobehavioral and neuropsychological comportment. Besides, long-term exposure increases the risk of neurotoxic effects incidence, even at low doses.

Effects via lactation

In addition, taking into account the elements presented at chapter 4.7.2 (metabolism), methylmercury is eliminated in breast milk. The studies of Amin-Zaki et al. (1979, 1981) show neurological effects in breast-fed children (see chapter 4.1.3.2. and chapter 4.11.2.6). The concentration in breast-milk was up to 200 ng/g. This value is about 100 fold greater than the concentrations in milk of women from several non poisoned populations (see chapter 4.7.2).

4.11.5 Comparison with criteria

The CLP criteria for classification in **Repr.1A** are as follow:

"Substances are classified in Category 1 for reproductive toxicity when they are known to have produced an adverse effect on sexual function and fertility, or on development in humans or when there is evidence from animal studies, possibly supplemented with other information, to provide a strong presumption that the substance has the capacity to interfere with reproduction in humans. The classification of a substance is further distinguished on the basis of whether the evidence for classification is primarily from human data (Category 1A) or from animal data (Category 1B)."

Effect on fertility

Studies performed to show MeHg-effects on fertility in animals and humans are not sufficient to demonstrate a clear effect-causal link. Indeed, the studies performed on animals are not acceptable because of the choice of the species, the mink, in the study of Dansereau; because of the lack of reproducibility in the study of Khera and the study of Mohamed was performed with methyl mercury hydroxide. Finally, the study of Nobunaga is insufficient to prove the effect of MeHg on fertility. Moreover, the new studies added in the present dossier did not show this relationship more clearly and did not allow classifying Repr 1B in the CLP.

Effect on development

Based on animal studies, development is severely impacted in several species (rats, mice...).

The studies on development show teratogenicity in rats and neuro-behavioral effects in mice (locomotion, memorisation), rats (locomotion, memorisation and hyperactivity) and monkeys (visual defects).

Besides, epidemiological studies after exposure of children *in utero* show deleterious effects of methyl mercury on children neurodevelopment.

Classification in Repr.1A is appropriate as human data shows a causal relationship between *in utero* exposure to methylmercury and adverse effects on development.

A classification **Lact. Effects** – H362 is also required taking into account the possible poisoning of human populations (intake of methyl mercury by mothers could be toxic for the infants if they are strongly exposed via maternal milk).

4.11.6 Conclusions on classification and labelling

A classification **Repr.1A – H360Df** is proposed in the CLP regulation.

Effects via lactation

A classification Lact. Effects – H362 is proposed in the CLP regulation.

4.12 Other effects

STOT RE 2, in CLP

The rationale that has justified STOT RE 2, in CLP in the existing generic entry is not specifically known. However, according to the criteria in Annex VI, STOT RE 2 applies when data are not sufficient to justify a classification STOT RE 1, in CLP. Here, STOT RE 1 is warranted and STOT R2 (R33 in DSD) may therefore be removed.

5 ENVIRONMENTAL HAZARD ASSESSMENT

Not evaluated in this dossier. Based on the priority defined by CLP, French CA decided to focus the CLH report of hand-over substances on CMR effects only and to propose their harmonisation consistently with what was discussed at TC C&L. Therefore, the environment

effects are not considered for their harmonization in this CLH report. However, we consider that the classification for the environment endpoints coming from the generic entry of the mercury compounds should apply.

6 OTHER INFORMATION

No other information available.

7 **REFERENCES**

Popescu, H. I., Poisoning with alkylmercury compounds, Br. Med. J., I, 1347, 1978.

Lee, I. **P.** and Dixon, R. L., Effects of mercury on spermatogenesis studied by velocity sedimentation. Cell separation and serial mating, *J. Pharniacol. Exp. Ther.*. 194. 171, 1975.

Vaccharajani, K.D., Chowdhury, A.R., and Dutta, K. K., Testicular toxicity of methyl mercury: an analysis of cellular distribution pattern at different stages of the seminiferous epithelium, *Reprod.Toxicol.*, 6, 355, 1993.

Ernst, E. and Lauritsen, J. G., Effect of organic and inorganic mercury on human sperm motility. *Pharmacol., Toxicol.*, 69. 440. 1991b.

Mohamed, M. K., Burbacher, T. M., and Mottet, N. K., Effects of methyl mercury on testicular functions in Macaca fascicularis monkeys, Pharmacol.Toxicol.. 60, 29, 1987

Tas S., Lauwerys R., and Lison D.; Occupational Hazards for the Male Reproductive System. Critical Reviews in Toxicology, 26(2):261-307 (1996)

Ahlmar A. Poisoning by methylmercury compounds. Br J Ind Med 1948; 5:117-119.

Amin-Zaki L, Elhassani S, Majeed M A, Clarckson T W, Doherty R A, Grennwood M. Intra-uterine methylmercury poisoning in Iraq. Pediatrics. 1974; 54(6) : 587-595

Amin-Zaki L, Majeed MA, Clarkson T W, Greenwood M. Methylmercury poisoning in Iraqi children: clinical observations over two years. Brit Med J. 1978; 1 : 613 – 616

Amin-Zaki L, Majeed MA, Elhassani SB, Clarckson T W, Greenwood, M Doherty RA. Prenatal methylmercury poisoning. Am J Dis Child. 1979; 133 : 172 - 177

Amin-Zaki L, Majeed MA, Greenwood M, Elhassani SB, Clarckson T W, Doherty RA. Methylmercury poisoning in the Iraqi suckling infant: a longitudinal study over five years. J Applied Toxicol. 1981; 1(4): 210 - 214

Amin-Zaki L., Elhassani S., Majeed M.A., et al. Perinatal methylmercury poisoning in Iraq. American Journal of Diseases of Children. Volume 130, Issue 10, 1976, Pages 1070-1076.

Amorim MI, Mergler D, Bahia MO, Dubeau H, Miranda D, Lebel J, Burbano RR, Lucotte M. Cytogenetic damage related to low levels of methyl mercury contamination in the Brazilian Amazon. An Acad Bras Cienc. 2000 Dec;72(4):497-507.

Arito H, Takahashi M. Effects of methylmercury in sleep patterns in rats. In: Suzuki, T., Imura, I. & Clarkson, T.W., eds, Advances in Mercury Toxicology, New York : Plenum

Press, pp. 1991 : 381-394.

ATSDR. 1999. Toxicological Profile for Mercury. Atlanta, GA: Agency for Toxic Substances and Disease Registry.

Axtell C D, Cox C, Myers G J, Davidson P W, Choi AL, Cernichiari E, Sloane-Reeves J, Shamlaye C F, Clarkson TW. Association between methylmercury exposure from fish consumption and child development at five and a half years of age in the Seychelles child development study : an evaluation of nonlinear relationships. Environ Res. 2000; A84 : 71-80

Grosman Marie, Professeur agrégé en Sciences de la Vie et de le Terre ; Conseiller Scientifique : Dr Jean Jacques Melet ; Le mercure des amalgames dentaires : Quels risques pour la santé et l'environnement ? Quels enjeux financiers ? Toxicité du Mercure. 1ère partie

Axtell CD, Myers G J, Davidson P W, Choi AL, Cernichiari E, Sloane-Reeves J, Shamlaye C F, Cox C, Clarkson TW. Semiparametric modeling of age at achieving developmental milesyones after prenatal exposure to methylmercury in the Seychelles child development study. Environ Health Perspectives. 1998; 106(9) : 559-564

Bakir, F., S.F. Kamluji, L. Amin-Zaki, et al. 1973. Methylmercury poisoning in Iraq. Science 181:230-241.

Bala KV Sridevi K Rao KP. 1993. Inhibition of methyl mercury chloride-induced chromosomal damage by gamma-linolenic acid. Food Chem Toxicol 31(6):431-4.

Baluja, G., Hernandez, L.M., Gonzalez, M.J., Rico, M.C. Presence of organochlorine pesticides, polychlorinated biphenyls, and mercury in Spanish human milk samples. Bulletin of Environmental Contamination and Toxicology. Volume 28, Issue 5, 1982, Pages 573-577.

Belles M, Albina ML, Sanchez DJ, Corbella J, Domingo JL. Interactions in developmental toxicology. Effects of concurrent exposure to lead, organic mercury and arsenic in pregnant mice. Arch Environ Contam Toxicol. 2002 Jan;42(1):93-98.

Betti C, Davini T, Barale R. 1992. Genotoxic activity of methyl mercury chloride and dimethyl mercury in human lymphocytes. Mutat Res 281(4):255-260.

Betti C, Davini T, He J, et al. 1993. Liquid holding effects on methylmercury genotoxicity in human lymphocytes. Mutat Res 301(4):267-273.

Burbacher T K, Monnett C, Grant K S and Mottet N K. Methylmercury exposure and reproductive dysfunction in the nonhuman primate. Toxixology and applied pharmacology. 1984; 75: 18-24.

Burbacher Thomas M., Kimberly S. Grant, David B. Mayfield, Steven G. Gilbert and Deborah C. Rice, Prenatal methylmercury exposure affects spatial vision in adult monkeys, Toxicology and Applied Pharmacology, Volume 208, Issue 1, 1 October 2005, Pages 21-28.

Burbacher TM, Grant KS, Mayfield DB, Gilbert SG, Rice DC (2005) Prenatal methylmercury exposure affects spatial vision in adult monkeys. *Toxicology and Applied Pharmacology* **208**, 21-28.

Callahan M, Slimak M, Gabel N, et al. 1979. Water-Related Environmental Fate of 129

Priority Pollutants. Vol 1 & 2. Office of Water and Waste Management, U.S. Environmental Protection Agency, Washington, DC. EPA-440/4-79-029a, EPA-440/4-79-029b. pp. 14-1 to 14-15.

Cao Y, Chen A, Jones RL, Radcliffe J, Caldwell KL, Dietrich KN, Rogan WJ (2010) Does background postnatal methyl mercury exposure in toddlers affect cognition and behavior? *NeuroToxicology* **31**, 1-9.

Carta P, Flore C, Alinovi R, Ibba A, Tocco MG, Aru G, Carta R, Girei E, Mutti A, Lucchini R, Randaccio FS. Sub-clinical neurobehavioral abnormalities associated with low level of mercury exposure through fish consumption. Neurotoxicology. 2003 Aug;24(4-5):617-23.

Chang C W and al. Effect of varied dietary levels and forms of mercury on swine. Journal of Animal Science. 1977; 2(45): 279-285

Chang, L.W. & Hartmann, H.A. (1972) II. Pathological changes in nervous fibers. *Acta Neuropathol.*, <u>20</u>, 316-334.

Cheuk DKL, Wong V (2006) Attention-deficit hyperactivity disorder and blood mercury level: A case-control study in Chinese children. *Neuropediatrics* **37**, 234-240.

Choy CMY, Lam CWK, Cheung LTF, Briton-Jones CM, Cheung LP, Haines CJ (2002) Infertility, blood mercury concentrations and dietary seafood consumption: A case-control study. *BJOG: An International Journal of Obstetrics and Gynaecology* **109**, 1121-1125.

Clarkson T. W. Mercury. Journal of the american college of toxicology. 1989; 8(7) : 1291-1295

Cordier S, Garel M, Mandereau L, Morcel H, Doineau P, Gosme-Seguret S, Josse D, White R, Amiel-Tison C. Neurodevelopmental investigations among methylmercury-exposed chilgren in French Guiana. Env Res. 2002; A89 : 1-11

Costa M, Christie NT, Cantoni O, et al. 1991. DNA damage by mercury compounds: An overview. In: Suzuki T, Imura N, Clarkson TW, eds. Advances in mercury toxicology. New York, NY: Plenum Press, 255-273.

Crespo-Lopez ME, Lima de Sa A, Herculano AM, Rodriguez Burbano R, Martins do Nascimento JL (2007) Methylmercury genotoxicity: A novel effect in human cell lines of the central nervous system. *Environment International* **33**, 141-146.

Daniels J L, Rowland A S, Longnecker MP, Cook M, Golding J. Dental treatment, fish consumption and mercury exposure during pregnancy in relation to child neurodevelopment. Am J Epidemiol. 2001; 153(11): 184

Dansereau M, Larivière N, Du Tremblay D, Bélanger D. Reproductive of two generations of females semidomesticated mink fed diets containing organic mercury contaminated freshwater. Arch Env Contam Toxicol. 1999; 36: 221-226

Davidson PW, Myers G J, Cox C, Axtell C, Shamlaye C F, Sloane-Reeves J, Cernichiari E, Needham L, Choi A, Wang Y, Berlin M, Clarkson T W. Effects of prenatal and postnatal methylmercury exposure from fish consumption on neurodevelopment. Outcomes at 66 months of age in the Seychelles child development study. JAMA. 1998; 280(8) : 701-707

Davidson PW, Myers G J, Cox C, Shamlaye C F, Marsh D O, Tanner M A, Berlin M, Sloane-Reeves J, Cernichiari E, Choisy O, Choi A, Clarkson T W. Longitudinal

neurodevelopmental study of Seychellois children following in utero exposure to methylmercury from maternal fish ingestion : outcomes at 19 and 29 months. Neurotox. 1995, 16(4) : 677-688

Davidson PW, Palumbo D, Myers G J, Cox C, Shamlaye C F, Sloane-Reeves J, Cernichiari E, Wilding G E, Clarkson T W. Neurodevelopmental outcomes of Secheyllois children from the pilot cohort at 108 months following prenatal exposure to methylmercury from a maternal fish diet. Env Res. 2000; A84 : 1-11

Davidson PW, Strain JJ, Myers GJ, Thurston SW, Bonham MP, Shamlaye CF, Stokes-Riner A, Wallace JMW, Robson PJ, Duffy EM, Georger LA, Sloane-Reeves J, Cernichiari E, Canfield RL, Cox C, Huang LS, Janciuras J, Clarkson TW (2008) Neurodevelopmental effects of maternal nutritional status and exposure to methylmercury from eating fish during pregnancy. *NeuroToxicology* **29**, 767-775.

Davies T S, Nielsen S W, Jortner B S. Pathology of chronic and subacute canine methylmercurialism. J. Am. Anim. Hosp. Assoc. 1977; 13 : 369-381.

Davies T S, Nielsen S W, Kircher C H. The pathology of subacute methyl mercurialism in swine. Cornell Vet. 1976; 66 : 32-55.

Davies T S, Nielsen S W. Pathology of subacute methylmercurialism in cats. Am. J. Vet. Res. 1977; 38 : 59-67.

Debes F, Budtz-Jørgensen E, Weihe P, White RF, Grandjean P.; Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years. Neurotoxicol Teratol. 2006 May-Jun;28(3):363-75. Epub 2006 May 2.

Dickman M D, Leung K M C, Koo L C L. Mercury in human hair and fish : is there a Hong Kong male subfertility connection?. Marine Poll Bull. 1999; 39(1-2) : 352-356

EHC; vol 101. International Programme on Chemical Safety. Methylmercury. Geneva: World Health Organization, 1990.

El-Sherbeeny AM, Odom JV, Smith JE (2006) Visual system manifestations due to systemic exposure to mercury. *Cutaneous and Ocular Toxicology* **25**, 173-183.

Ernst E, M+©ller-Madsen B, Danscher G (1991a) Ultrastructural demonstration of mercury in sertoli and leydig cells of the rat following methyl mercuric chloride or mercuric chloride treatment. *Reproductive Toxicology* **5**, 205-209.

Ferraro L, Tomasini MC, Tanganelli S, Mazza R, Coluccia A, Carrat+[|] MR, Gaetani S, Cuomo V, Antonelli T (2009) Developmental exposure to methylmercury elicits early cell death in the cerebral cortex and long-term memory deficits in the rat. *International Journal of Developmental Neuroscience* **27**, 165-174.

Fiskesjo G. 1979. Two organic mercury compounds tested for mutagenicity in mammalian cells by use of the cell line V 79-4. Hereditas 90:103-110.

Fossato da Silva DA, Teixeira CT, Scarano WR, Favareto AP, Fernandez CD, Grotto D, Barbosa F Jr, Kempinas WD. Effects of methylmercury on male reproductive functions in Wistar rats. Reprod Toxicol. 2011 Jan 22.

Fowler B.A., Ultrastructural evidence for nephropathy induced by long-term exposure to

small amounts of methyl mercury. Science, Volume 175, Issue 4023, 1972, Pages 780-781

Franchi E, Loprieno G, Ballardin M, et al. 1994. Cytogenetic monitoring of fishermen with environmental mercury exposure. Mutat Res 320:23-29.

Fredriksson A, Dencker L, Archer T, Danielsson B. Prenatal coexposure to metallic mercury vapour and methylmercury produce interactive behavioural changes in adults rats. Neurotoxicol teratol. 1996; 18 : 129-134

Fujita and al; Mercury levels in human maternal and neanatal blood, hair and milk. Bulletin of environmental contamination & toxicology. 1977; 18(2) : 205-209

Fuyuta M, Fujimoto T, Hirata S. Embryotoxic effects of methylmercuric chloride administered to mice and rats during organogenesis. Teratology. 1978; 18 : 353-366.

Galster W.A, Mercury in Alaskan Eskimo mothers and infants. Environmental Health Perspectives Volume Vol.15, 1976, Pages 135-140

Garcia Gomez M., Boffeta P., Caballero Klink J.D., Espanol S., Gomez Quintana J., Colin D., Mortalidad por cancer en los mineros del mercurio, Gac Sanit. 2007:21(3):210-7.

Gilbert SG, Grant-Webster KS. Neurobehavioral effects of developmental methylmercury exposure. Environ Health Perspect. 1995; 103(suppl 6) : 135-142

Grandjean P, Weihe P, White R F, Debes F, Araki S, Yokoyama K, Murata K, Sorensen N, Dahl R, Jorgensen P J. Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotox Teratol. 1997; 19(6) : 417-428

Grandjean, P., Weihe, P., White, R.F. Milestone development in infants exposed to methylmercury from human milk. NeuroToxicology, Volume 16, Issue 1, 1995, Pages 27-33.

Grotto D, de Castro MM, Barcelos GR, Garcia SC, Barbosa F Jr. Low level and sub-chronic exposure to methylmercury induces hypertension in rats: nitric oxide depletion and oxidative damage as possible mechanisms. Arch Toxicol. 2009 Jul;83(7):653-62. Epub 2009 May 26.

Guallar E, Sanz-Gallardo MI, van't Veer P, Bode P, Aro A, Gómez-Aracena J, Kark JD, Riemersma RA, Martín-Moreno JM,Kok FJ; Heavy Metals and Myocardial Infarction Study Group. Mercury, fish oils, and the risk of myocardial infarction. N Engl J Med. 2002 Nov 28;347(22):1747-54.

Gunderson V M, GrantWebster K S, Burbacher T M. Visual recognition deficits in methylmercuryexposed Macaca fascicularis infants. Neurotoxicol. Teratol. 1988; 10 : 373-379.

Harada M. Minamata disease : methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol. 1995; 25(1) : 1 - 24

Hirano M et al. (1986) Further carcinogenicity study on methylmercury chloride in ICR mice. Nippon Juigaku Zasshi, 48: 127-135.

Hoskins B B, Hupp E W. Methylmercury effects in rat, hamster, and squirrel monkey. Lethality, symptoms, brain mercury, and amino acids. Environ Res. 1978; 15 : 5-19.

Hunter D. And Russell D. S. ; Focal Cerebral And Cerebellar Atrophy In A Human Subject

Due To Organic Mercury Compounds; J Neurol Neurosurg Psychiatry. 1954 November; 17(4): 235–241.

Friberg L.; Inorganic mercury.; Environmental health criteria, 1991, 118: 3-168.

Friberg, L., Skog, E. et Wahlberg, J.E. Resorption of mercuric chloride and methylmercury dicyanidamine in guinea pigs through normal skin and through skin pre-treated with acetone, alkylaryl sulphonate and soap. Acta Derm.-Venereol., 41: 40 (1961).

Glover CN, Zheng D, Jayashankar S, Sales GD, Hogstrand C, Lundebye AK.; Methylmercury speciation influences brain gene expression and behavior in gestationally-exposed mice pups. Toxicol Sci. 2009 Aug;110(2):389-400. Epub 2009 May 22.

Hunter, D., Bomford, R.R. and Russel, D.S. 1940: Poisoning by methyl mercury compounds. *Quarterly Journal of Medicine* 9, 193₁/213.

Ikeda, Y., Tobe, M., Kobayashi, K., Suzuki, S., Kawasaki, Y. & Yonemaru, H. (1973) Longterm toxicity study of methylmercuric chloride in monkeys (First report). *Toxicology*, <u>1</u>, 361-375.

Ilbäck Nils-Gunnar. Effects of methyl mercury exposure on spleen and blood natural killer (NK) cell activity in the mouse. Toxicology Volume 67, Issue 1, 25 March 1991, Pages 117-124.

International Programme on Chemical Safety (IPCS), <u>Environmental Health Criteria (EHC)</u> <u>monographs</u>. Mercury. 1976; 1

International Programme on Chemical Safety (IPCS), <u>Environmental Health Criteria (EHC)</u> <u>monographs</u>. Mercury. 1976; 101

International Programme on Chemical Safety (IPCS), <u>Environmental Health Criteria (EHC)</u> <u>monographs</u>. Mercury. 1976; 118

Jacky Liang et al., "Neurobehavioral effect of chronic and bolus doses of methylmercury following prenatal exposure in C57BL/6 weanling mice," *Neurotoxicology and Teratology* 31, no. 6 (Décembre 2009): 372-381.

Kanematsu N, Hara M, Kada T. 1980. REC assay and mutagenicity studies on metal compounds. Mutat Res 77:109-116.

Kawasaki, Y., Ikeda, Y. Yamamoto, T. & Ikeda, K. (1986) Longterm toxicity study of methylmercuric chloride in monkeys. *J. Food Hyg.* Soc. *Jpn*, <u>27</u>, 528-552.

Kenow KP, Meyer MW, Hines RK, Karasov WH.; Distribution and accumulation of mercury in tissues of captive-reared common loon (Gavia immer) chicks. Environ Toxicol Chem. 2007 May;26(5):1047-55.

Khera K S, Tabacova S A. Effects of methymercuric chloride on the progeny of rats treated before and during gestation. Food Cosmet. Toxicol. 1973(c); 11 : 245-254.

Khera K S. Teratogenic effects of methylmercury in the Cat: note on the use of this species as a model for teratogenicity studies. Teratology. 1973(a); 8(3) : 293-303

Khera KS. Reproductive capability of male rats and mice treated with methyl mercury. Toxicol. Appl. Pharmacol. 1973(b); 24 : 167-177.

Kim CY, Nakai K, Kasanuma Y, Satoh H. Comparison of neurobehavioral changes in three inbred strains of mice prenatally exposed to methylmercury. Neurotoxicol Teratol. 2000; 22(3) : 397-403

Lee J-H, Han D-H. Maternal and fetal toxicity of methylmercuric chloride administered to pregnant Fischer 344 rats. J. Toxicol. Environ. Health. 1995; 45 : 415-425.

Liang J, Inskip M, Newhook D, Messier C (2009) Neurobehavioral effect of chronic and bolus doses of methylmercury following prenatal exposure in C57BL/6 weanling mice. *Neurotoxicology and Teratology* **31**, 372-381.

Lin F M, Malaiyandi M, Romero-Sierra C. Toxicity of methylmercury : Effects on different ages of rats. Bull. Environ. Contam Toxicol. 1975; 14 : 140-148.

Magos L, Butler W H. Cumulative effects of methylmercury dicyandiamide given orally to rats. Food Cosmet. Toxicol. 1972; 10 : 513-517.

Mailhes JB (1983) Methylmercury effects on Syrian hamster metaphase II oocyte chromosomes. Environ. Mutagen., 5: 679-686.

Marsh D O, Clarckson T W, Cox C, Myers G.J, Amin-Zaki L, Al-Tilkriti S. Fetal methylmercury poisoning, Arch. Neurol. 1987; 44 : 1017-1022

Matsumoto N, Spindle A. 1982. Sensitivity of early mouse embryos to methylmercury toxicity. Toxicol Appl Pharmacol 64:108-117.

McNeil SI, Bhatnagar MK (1985) Ultrastructure of the testis of Pekin ducks fed methyl mercury chloride: Seminiferous epithelium. *American Journal of Veterinary Research* 46, 2019-2025.

Merigan WH, Weiss B, eds. Neurotoxicity of the visual system. New York: Raven, 1980.

Miller CT et al.(1985) Methylmercury-induced mitochondrial DNA synthesis in neural tissue of cats. Fundam. appl. Toxicol., 5(2): 251-264.

Miller CT, Zawidska Z, Nagy E, et al. 1979. Indicators of genetic toxicity in leukocytes and granulocytic precursors after chronic methylmercury ingestion by cats. Bull Environ Contam Toxicol 21:296-303.

Miskimmin, B.M., 1991. Effect of natural levels of dissolved organic carbon (DOC) on methylmercury formation and sediment-water partitioning. Bull. Environ. Contam. Toxicol. 47, 743–750.

Mitsumori K et al. (1981) Carcinogenicity of methylmercuric chloride in ICR mice: preliminary note on renal carcinogenesis. Cancer Lett., 12: 305-310.

Mitsumori K et al. (1990) Chronic toxicity and carcinogenicity of methylmercury in B6C3Fl mice. Fundam. Appl. Toxicol., 14, 179-190.

Mohamed Y A, Burbacher TM, Mottet N K. Methylmercury on testicular functions in Macaca fascicularis monkeys. Pharmacol. Toxicol. 1987; 62 : 29-36.

Montgomery KS, Mackey J, Thuett K, Ginestra S, Bizon JL, Abbott LC (2008) Chronic, lowdose prenatal exposure to methylmercury impairs motor and mnemonic function in adult C57/B6 mice. *Behavioural Brain Research* **191**, 55-61.

Morimoto K et al. (1982) Selenite prevents the induction of sister-chromatid exchanges by methylmercury and mercuric chloride in human whole-blood cultures. Mut. Res., 102: 183-192.

Moussa H, Hachfi L, Trimèche M, Najjar MF, Sakly R., Accumulation of mercury and its effects on testicular functions in rats intoxicated orally by methylmercury. Andrologia. 2011 Feb;43(1):23-7. doi: 10.1111/j.1439-0272.2009.01003.x. Epub 2010 Nov 28.

Myers G J, Davidson P W, Cox C, Shamlaye CF, Palumbo D, Cernichiari E, Sloane-Reeves J, Wilding G E, Kost J, Huang L, Clarkson T W. Prenatal methylmercury exposure from ocean fish consumption in the Seychelles child development study. The Lancet. 2003; 361 : 1686-1692

Nakai S, Machida I. 1973. Genetic effect of organic mercury on yeast. Mutat Res 21:348.

Newland M C, Yezhou S, Lodgdberg B, Berlin M. Prolonged behavioral effects of in utero exposure to lead and methylmercury reduced sensitivity to changes in reinforcement contingencies during behavioral transitions and steady state. Toxicol. Appl. Pharmacol. 1994; 126 : 6-15.

Newland MC, Rasmussen EB. Aging unmasks adverse effects of gestational exposure to methylmercury in rats. Neurotoxicol Teratol. 2000; 22(6) : 819-28

Newland MC, Reile PA, Langston JL. Gestational exposure to methylmercury retards choice in transition in aging rats. Neurotoxicol Teratol. 2004; 26(2) : 179-94

Nobunaga T, Satoh H, Suzuki T. Effects of sodium selenite on methylmercury embryotoxicity and teratogenecity in mice. Toxicol. Appl. Pharmacol. 1979; 47 : 79-88.

Oliveira (de) RB, Gomes Leal W, Picanço-Diniz DL, Torres Neto JB, Lins N, Malm O, Picanço-Diniz CW. Three dimensional morphometric analyses of axon terminals early changes induced by methylmercury intoxication in the adult cat striate cortex. Brain Res. 2008 Dec 9;1244:155-63. Epub 2008 Sep 20.

Onishchenko N, Tamm C, Vahter M, H+Âkfelt T, Johnson JA, Johnson DA, Ceccatelli S (2007) Developmental exposure to methylmercury alters learning and induces depression-like behavior in male mice. *Toxicological Sciences* **97**, 428-437.

Oskarsson A. et al. Total and inorganic mercury in breast milk and blood in relation to fish consumption and amalgam fillings in lactating women. Archives of environmental health. 1996; 51(3)

Picot A., Proust N., 1998. Mercury And Its Compounds: from speciation to toxicity. *Actualite Chimique*, 4: 16-24.

Pierce PE, Thompson JF, Likosky WH, Nickey LN, Barthel F, Hinman AR. Alkyl mercury poisoning in humans. Report of an outbreak. JAMA. 1972 Jun 12;220(11):1439-42.

Pitkin R. M. and al. Mercury in human maternal and cord blood, placenta, and milk. 1976; 151 : 565-567

Rao Mv, Chinoy Nj, Suthar Mb, Rajvanshi Mi. Role of ascorbic acid on mercuric chlorideinduced genotoxicity in human blood cultures. Toxicol in vitro. 2001 dec;15(6):649-54.

Rice DC (1998) Age-related increase in auditory impairment in monkeys exposed in utero plus postnatally to methylmercury. *Toxicological Sciences* **44**, 191-196.

Rice DC, Gilbert SG; Effects of developmental methylmercury exposure or lifetime lead exposure on vibration sensitivity function in monkeys. <u>Toxicol appl pharmacol.</u> 1995 sep;134(1):161-9.

Rice DC. Age-related increase in auditory impairment in monkeys exposed in utero plus postnatally to methylmercury. Toxicol Sci. 1998 Aug;44(2):191-6.

Sakamoto M, Kakita A, Wakabayashi K, Takahashi H, Nakano A, Akagi H. Evaluation of changes in methylmercury accumulation in the developing rat brain and its effects: a study with consecutive and moderate dose exposure throughout gestation and lactation periods. Brain Res. 2002 ; 13 949(1-2) : 51-9

Skerfving S (1974) Methylmercury exposure, mercury levels in blood and hair, and health status in Swedes consuming contaminated fish. Toxicology, 2: 3-23.

Skerfving S. Mercury in women exposed to methylmercury through fish consumption, and in their newborn babies and breast milk. 1988; 41 : 475-482

Skog, E. et Wahlberg, J.E. A comparative investigation of the percutaneous absorption of metal compounds in the guinea pig by means of radioactive isotopes:⁵¹Cr, ⁵⁸Co, ⁶⁵Zn, ^{110m}Ag, ²⁰³Hg. J. Invest. Dermatol., 43: 187 (1964).

Snyder MD. Congenital mercury poisoning. New Eng J Med. 1971; 284(18) : 1014 – 1016

Stoltenberg-Didinger G, Markwort S. Prenatal methylmercury exposure results in dendritic spine dysgenesis in rats. Neurotoxicol. Teratol. 1990; 12 : 573-576.

Stringari J, Meotti FC, Souza DO, Santos ARS, Farina M (2006) Postnatal methylmercury exposure induces hyperlocomotor activity and cerebellar oxidative stress in mice: Dependence on the neurodevelopmental period. *Neurochemical Research* **31**, 563-569.

Sundberg J, Jonsson S, Karlsson MO, Hallen IP, Oskarsson A 1998. Kinetics of methylmercury and inorganic mercury in lactating and nonlactating mice Toxicol Appl Pharmacol 151:319–329.9707508.

Sundberg J, Oskarsson, A. Placental and lactational transfer of mercury from rats exposed to methylmercury in their diet: Speciation of mercury in the offspring. Journal of Trace Elements in Experimental Medicine, Volume 5, Issue 1, 1992, Pages 47-56.

Suzuki K, Nakai K, Sugawara T, Nakamura T, Ohba T, Shimada M, Hosokawa T, Okamura K, Sakai T, Kurokawa N, Murata K, Satoh C, Satoh H (2010) Neurobehavioral effects of prenatal exposure to methylmercury and PCBs, and seafood intake: Neonatal behavioral assessment scale results of Tohoku study of child development. *Environmental Research* **110**, 699-704.

Suzuki T, Imura N, Clarkson TW, eds. Advances in mercury toxicology. New York, NY: Plenum Press, the cell line V 79-4. Hereditas 90:103-110.

Trasande L, Schechter CB, Haynes KA, Landrigan PJ (2006) Mental retardation and prenatal methylmercury toxicity. *American Journal of Industrial Medicine* **49**, 153-158.

Verschaeve L et al.(1984a); Dominant lethal test in female mice treated with methylmercuric chloride. Mutat. Res., 136: 131-136.

Verschaeve L., Kirsch-Volders M., Susanne C. (1984b) ; Mercury-induces segregational errors of chromosomes in human lymphocytes and in Indian muntjac cells. Toxicology letters, 21, 247-253.

Verschuuren et al. (1976) Toxicity of methylmercuric chloride in rats III. Long-term study. Toxicology, 6,107-123.

Wakita Y., Hypertension induced by methyl mercury in rats. Toxicology and Applied Pharmacology

Volume 89, Issue 1, 1987, Pages 144-147.

Ware R A, Burkholder P, Chang LW. Ultrastructural changes in renal proximal tubules after chronic organic and inorganic mercury intoxication. Environ. Res. 1975; 10: 121-140.

WHO Food Additives Series, No. 44, 2000, nos 965-986 on INCHEM. Safety evaluation of certain food additives and contaminants.

Wild LG, Ortega HG, Lopez M, Salvaggio JE., Immune system alteration in the rat after indirect exposure to methyl mercury chloride or methyl mercury sulfide. Environ Res. 1997;74(1):34-42.

Wulf HC et al.(1986) Sister chromatid exchange (SCE) in Greenlandic Eskimos. Doserespone relationship between SCE and seal diet, smoking and blood cadmium and mercury concentrations. Sci. Total Environ., 48: 81-94.

Yasutake Y, Hirayama K, Inouye M. Sex differences of nephrotoxicity by methylmercury in mice. In: Bach, P H Gregg, N J, Wilks M F, Delacruz L. eds, Nephrotoxicity: Mechanisms, Early Diagnosis, and Therapeutic Management, New York : Marcel Dekker. 1991 : 389-396.

Yorifuji T, Tsuda T, Kawakami N (2007) Age standardized cancer mortality ratios in areas heavily exposed to methyl mercury. *International Archives of Occupational and Environmental Health* **80**, 679-688.

Yoshida M, Shimizu N, Suzuki M, Watanabe C, Satoh M, Mori K, Yasutake A (2008) Emergence of delayed methylmercury toxicity after perinatal exposure in metallothionein-null and wild-type C57BL mice. *Environmental Health Perspectives* **116**, 746-751.

Yoshida, M., Satoh, H., Kishimoto, T., Yamamura, Y. Exposure to mercury via breast milk in suckling offspring of maternal guinea pigs exposed to mercury vapor after parturition. Journal of Toxicology and Environmental Health. Volume 35, Issue 2, 1992, Pages 135-139.

8 ANNEXES

ANNEX I

Extract from summary records of TC C&L meetings

TC C&L meeting of November 2005

Organic Mercury compounds:

Methyl mercury [3] (CAS number: 22967-92-6)

Methyl mercuric chloride [4] (CAS number: 115-09-3)

Current classification T+; R 26/27/28 – R33 - N; R50-53 Classification proposal T+; R 26/27/28 – R33 – Repr Cat 1; R61 – Repr Cat 3; R62 – R64 - N; R50-53

ECBI/09/05 [1] and Add. 1 [2], 2 [3, 4]

During the discussion a number of issues were raised by member states including the relevance of R64 and the appropriate classification for acute toxicity. **France agreed to revise their proposal in the light of these points.**

Summary Record

Technical Committee on Classification and Labelling of Dangerous Substances

Meeting on Health Effects of Pesticides, Biocides, Existing Chemicals, New Chemicals and General issues

Hotel Concorde, Arona, 21 - 24 March 2006

Methyl mercury [3] (CAS number: 22967-92-6)

Methyl mercuric chloride [4] (CAS No: 115-09-3, EC No: 204-064-2)

Current classification T+; R 26/27/28 – R33 - N; R50-53 Classification proposal T+; R 26/27/28 – R33 – Repr Cat 1; R61 – Repr Cat 3; R62 – R64 - N; R50-53

ECBI/09/05 Rev 1, Add 1 Rev 1 and Add 2 Rev 1 – revised proposals for mercury compounds.

In **November 2005** member-states held a general discussion of the proposal and commented on a number of issues including the appropriate classification for acute toxicity and the need for R 64.

France summarised their revised proposal commencing with consideration of methyl mercury. There was good animal data to support T+; R 28 but no relevant information to support the current classification for skin or inhalation toxicity. In terms of repeat dose toxicity there was both human poisoning experience and animal data to justify T; R 48/25. Again there was no dermal or inhalation data and R 33 was not appropriate in view of R 48. For mutagenicity there was sufficient data to justify Muta Cat 3; R 68. Carcinogenicity data supported Carc Cat 3; R 40 with several studies showing effects in male mice. For reproductive toxicity there was human evidence to support Repr Cat 1; R 61 but classification for fertility effects was not justified because of maternal toxicity.

Acute and repeat dose toxicity

Member states broadly supported the French proposal and agreed to T+; R 28, T; R 48/25 It was agreed that R 26 and R 27 would be further investigated during the follow-up period to see if the evidence which led to the original classification with these phrases could be identified.

Carcinogenicity

In discussion of carcinogenicity Germany wondered if the mutagenicity evidence would lead to Category 2 classification but overall member-states preferred to classify with Carc Cat 3.

<u>Mutagenicity</u>

Member States agreed to Muta Cat 3; R 68.

<u>Reproductive toxicity</u>

Member States also supported the French proposal for Repr Cat 1; R 61 but disagreed that there was no case for classification for fertility. It was agreed to assign Repr Cat 3; R 62. It was also agreed that MS supporting R 64 could make a proposal during the follow up procedure.

Conclusion:

Discussion closed with agreement by the TC C&L to the following: Carc Cat 3; R 40, Muta Cat 3; R 68, Repr Cat 1; R 61, Repr Cat 3; R 62, R64, T+; R 28, T; R 48/25. T+; R 26/27 would be considered during the follow up period.

Member States agreed that the same classification as for methyl mercury would apply to methyl mercuric chloride.

Follow-up:

MS that would support no deletion of the current classification with T+; R26/27 should react in the Follow-up period. F sent in their rational for the R26/27 classification in ECBI/09/05 Add. 4. MS should react in case this information changed any classification agreed at the meeting. BE agreed with France (ECBI/09/05 Add.4) when they were proposing to keep skin and the inhalation route of exposure for acute toxicity.

NL sent in a proposal to classify with R64 (ECBI/09/05 Add. 3). In case other MS disagree to this proposal they should react during Follow-up II. DK and F agreed to the NL proposal.

The S proposal (ECBI/09/05 Add. 5) sent in during the Follow-up period to read across for other end-points between the mercury compounds should also be discussed at the next meeting.

Conclusion (Follow-up):

T+; R26/27 should be re-considered at the next meeting and classification with R64 should be confirmed. In addition the possibility to read across for other end-points based on the S proposal will be discussed in October 2006.

TC C&L meetings of October 2006

Monomethyl mercury compounds (Index No: 080-004-00-7)

Methyl mercury (CAS number: 22967-92-6)

Methyl mercuric chloride (CAS No: 115-09-3, EC No: 204-064-2)

Current classification T+; R 26/27/28 – R33 - N; R50-53 Classification proposal T+; R 26/27/28 – R33 – Repr Cat 1; R61 – Repr Cat 3; R62 – R64 - N; R50-53

ECBI/09/05 Rev 1, F, revised proposals for mercury compounds.

ECBI/09/05 Add 1 Rev 1 F, revised proposals for mercury compounds.

ECBI/09/05 Add. 3	NL, Proposal for the classification of methyl-mercury with R64
<u>ECBI/09/05</u> Add. 4	F, Additional elements on mercury compounds
ECBI/09/05 Add. 5	S, proposal to read across to other mercury compounds
ECBI/09/05 Add. 6	S, Mercury study report of the US EPA.

ECBI/09/05 Add 2 Rev 1 F, revised proposals for mercury compounds.

In **November 2005** member-states held a general discussion of the proposal and commented on a number of issues including the appropriate classification for acute toxicity and the need for R 64.

In March 2006 the discussion was closed with agreement by the TC C&L to the following: Carc Cat 3; R 40, Muta Cat 3; R 68, Repr Cat 1; R 61, Repr Cat 3; R 62, R64, T+; R 28, T; R 48/25. T+; R 26/27 would be considered during the follow up period. Member States agreed that the same classification as for methyl mercury would apply to methyl mercuric chloride.

During the **follow up procedure** several MS supported the T+; R26/27 classification, NL distributed a proposal for R64 classification and S proposed to read across for other endpoints as well. T+; R26/27 should be reconsidered at the next meeting and classification with R64 should be confirmed. In addition the possibility to read across for other end-points based on the S proposal will be discussed in October 2006.

Acute toxicity:

F supported to keep T+; R26/27 because there is respiratory and dermal absorption. The other Member States agreed.

<u>R64:</u>

NL proposed to classify with R64. The TC C&L agreed.

Read across:

S appreciated the work by F. A proposal was sent in by **S**, proposing to read across to other mercury compounds. In the human body elemental mercury was oxidised and methyl mercury was reduced. These were reactions within the body. Different forms of mercury would be metabolised into the same compound within the body. Therefore **S** suggested that read across to other mercury compounds should be applicable.

The level of chronic toxicity was difficult to determine, but because there was evidence existing from the literature similar labelling for all compounds was warranted for chronic toxicity by oral route. The acute toxicity by all three routes should also be considered. For reprotoxicity endpoints it were relevant for both fertility and development. Methyl mercury had been classified with Repr. Cat. 1; R61 and Repr. Cat. 3; R62. This classification should also be applied to the other mercury compounds. Most difficult was to determine the level of toxicity for chronic toxicity.

F said that in general at reading across for the different end-points the TC C&L must be careful because the different substances do not behave the same in the body. They are not equally soluble and it is not easy to read across between one and the other. **F** explained for which substances they agreed or did not agree to read across between mercury compounds.

DE understood that S wanted to have more data included. That could be supported but at this point read across could not be discussed.

ECB proposed to come back at the next meeting with proposals for the other mercury compounds. **BE** also wanted to take better care on how to apply read across in this case.

S, F, DK and BE agreed to look into different endpoints for classification for additional mercury compounds and then come back with a proposal to the TC C&L.

Conclusion:

In October 2006 in was confirmed that T+; R26/27 should still be applied. R64 was added based on a proposal from NL (ECBI/09/05 Add. 3). The TC C&L then agreed to the final classification proposal: Carc. Cat. 3 ; R40 - Muta. Cat. 3 ; R68 - Repr Cat 1; R61 - Repr Cat 3; R62 - T+; R26/27/28 - T ; R48/25 - R64 - N; R50-53, accompanied with the labelling: Symbols: T+, N; R-phrases: 61-26/27/28-40-48/25-62-64-68-50/53; S-phrases: 53-45-60-61.

The classification proposals for other inorganic mercury compounds will be placed on a future meeting agenda when the classification proposals have been provided from the volunteering Member States.
