

Kate Z. Guyton PhD DABT Senior Toxicologist Responsible Officer, Volume 112 Monographs Programme

International Agency for Research on Cancer Lyon, France

Conflict of Interest Statement

I declare no financial interests related to the subject matter of my presentation.

How Are the IARC Monograph Evaluations Conducted?

Organization

- Procedural guidelines for participant selection, conflict of interest, stakeholder involvement & meeting conduct
- Separate criteria for review of human, animal and mechanistic evidence
- Decision process for overall evaluations

The IARC Monographs Evaluations: *A Two-Step Process*

- IARC meetings are open and follow transparent, published methods
- All meeting participants have full access to the data being evaluated
- Fully referenced *Monographs* published on-line for free download

Glyphosate: Studies

- \circ ~1000 studies identified and screened
- Laboratory studies
 - "Pure" glyphosate, glyphosate formulations
 - Cancer in mice, rats
 - DNA damage (genotoxicity)
- Human studies (real-world exposures)
 - DNA damage- community residents before and after spraying
 Cancer in humans- farmers, other workers

> Published Monograph: >250 references

Studies of exposed workers provide "limited" evidence for NHL (Non-Hodgkin lymphoma)

Cancer in Humans

1) Case-control studies

- Sweden, Canada, US
- 2592 NHL cases
- **Increased risks**, No significant • not explained by other pesticides

2) Cohort study (Ag Health Study)

- US, 2 states
- 92 NHL cases
- increase in risk

3) Meta-analysis

- Objective method to combine all studies
- Increased risks (meta risk-ratio=1.3; 95% CI,1.03-1.65; $I^2 = 0\%$)

Cancers in Mice Fed Glyphosate

Positive results in 2 of 2 feeding studies

 Rare cancers: extremely important in assessing human risk....but challenging to detect

signal from background noise

- High statistical significance
- Tumours in the absence of toxicity
- Evaluation fully in line with accepted principles
- Causal relationship established

> Sufficient evidence of cancer in animals

Cancer Mechanisms: 10 Key Characteristics of Carcinogens

Key characteristic:

1. Is Electrophilic or can be metabolically activated

- 2. Is Genotoxic
- **3. Alters DNA repair or causes genomic instability**
- 4. Induces Epigenetic Alterations
- **5. Induces Oxidative Stress**
- 6. Induces chronic inflammation
- 7. Is Immunosuppressive
- 8. Modulates receptor-mediated effects
- 9. Causes Immortalization

10. Alters cell proliferation, cell death, or nutrient supply

- Evidence of these characteristics, especially in humans or as intermediate biomarkers in human specimens can provide **biological plausibility** for epidemiological findings and/or early warning if no epidemiology exists
- Provide the basis for a systematic and objective approach to identifying and evaluating mechanistic evidence

International Agency for Research on Cancer

Smith MT, Guyton KZ, Gibbons CF, Fritz JM, Portier CJ, Rusyn I, DeMarini DM, Caldwell JC, Kavlock RJ, Lambert P, Hecht SS, Bucher JR, Stewart BW, Baan R, Cogliano VJ and K Straif. *Env Health Persp.*, 124(6):713-

IARC Vol 112- Mono 4- Glyphosate (2015): Literature Tagtree

Damage to DNA (Genotoxicity)

Residents in sprayed communities

Strong evidence, glyphosate formulations:

- Exposed community residents
- Experiments using:
 - Human cells
 - Animal cells
 - Mammals and non-mammals
 - Negative in bacteria

DNA and chromosome damage in blood

Strong evidence, glyphosate:

- No studies in exposed humans
- Experiments using:
 - Human cells
 - Animal cells
 - Mammals and non-mammals
 - Negative in bacteria

Mechanisms of Cancer 10 Key Characteristics of Carcinogens

Strength of Evidence	Operates in humans?
<i>Not</i> electrophilic	
Strong (glyphosate and formulations)	Can operate in humans
No data	
No data	
Strong (glyphosate, formulations, AMPA)	Can operate in humans
No data	
Weak	
Weak	
No data	
Weak	
	Strength of EvideenceKot electrophilicStrong (glyphosate and ataNo dataStrong (glyphosate, comulations, Ample)No dataVeakNo dataWeakNo dataWeakNo dataWeakNo dataWeakNo dataSto data

Int

Summary: Glyphosate Hazard Evaluation

Cancer in humans (NHL)

Limited evidence

- Studies of realworld exposures (occupational)
- Glyphosate formulations in different regions at different times

Cancer in animals

Sufficient evidence

- Studies of pure glyphosate
- Rare cancers in valid studies

DNA damage & oxidative stress

Strong evidence

- Few studies of realworld exposures (communities)
- Experimental studies of pure *glyphosate*
- Experimental studies of *glyphosate formulations*

Overall evaluation of glyphosate:

Group 2A *Probably carcinogenic to humans*

Question 1: What causes cancer, glyphosate or formulations?

Real-world exposures to formulations, **BUT...** similar increases in the same type of cancer (NHL) in:

- Different geographic regions
- Different times

Studies of "pure" glyphosate:

- Sufficient evidence for cancer in animals
- Strong evidence of DNA damage (genotoxicity)

Solve the second state is probably carcinogenic to humans

Question 2: How was the US AHS study weighed in the evaluation?

- AHS is one of the largest studies of pesticides and cancer, BUT...
 - Not the largest study of NHL (fewer NHL cases)
 Short follow-up time

> Limited ability to detect rare cancers

- Increased risk in case-control studies
- Increased risk in combined data from all studies
- The AHS does not negate other studies
 Altogether, the evidence is "limited"

Question 3: What do unpublished toxicology studies show?

Some industry toxicology studies considered by IARC were not evaluated (not in the public domain in sufficient detail for independent review)

- Cancer studies in rodents:
 - induction of mouse tumours at high doses; as summarized by JMPR:
 - kidney adenomas, uncommon tumour, in males (4 of 7 studies)
 - lymphomas in males (3 of 7 studies) and females (1 of 7 studies)
 - Additional negative "guideline" studies (*e.g.*, in bacteria)
 (consistent with IARC conclusion)

International A No additional studies in exposed humans, human cells

Prioritising Pesticides for IARC Evaluation: Overview

Diverse "pesticides" recommended for IARC evaluation Data assembly, integration and visualization

(980 pesticide actives)

New or updated classifications

Data Assembly, Integration and Visualization: *Results*

Prioritization approach:

- Comprehensive list of pesticides
- Automated text mining of public databases
- ~1000 pesticides mapped by chemical similarity
- Objective prioritisation for evaluation in 2015-2016

http://ehp.niehs.nih.gov/EHP186/

A. Organophosphates B. Organochlorines

New or Updated Classifications: Organophosphorous Pesticides

Name	Rank (within class)	Usage notes	PubMed human cancer	PubMed Mechanisms	Prior IARC (year)	Current IARC (2015)
Parathion	1	Restricted	6	578	3 (1987)	2B
Malathion	2	High	12	370	3 (1987)	2A
Diazinon	5	High	16	215	-	2A
Glyphosate	7	High	9	204	-	2A
Tetrachlor- ntern xinphos y for	13 Research on Ca	Active	1	40	3 (1987)	2B

New or Updated Classifications: Organochlorine Pesticides

	Name	Rank (within class)	Usage notes	PubMed human cancer	PubMed Mechanisms	Prior IARC (year)	Current IARC (2015- 2016)
	DDT	1	Restricted POP	190	953	2B (1991)	2A
	Lindane	2	Active POP	51	545	2B (1987)	1
	РСР	5	Restricted POP	25	573	2B (1987)	1
Interna	Dieldrin (Aldrin → ^{tio} Dieldrin) ^{Re}	3/7 search on Cance	Restricted POP	57/25	484	3 (1987)	2A

IARC Classifications of Pesticides 1971-2016

Classification	Number	Details/Comments
Group 1	3	Arsenic and arsenical compounds, including pesticides; Lindane; Pentachlorophenol
Group 2A	9	Captafol; DDT; Diazinon; Dieldrin, Aldrin metabolised to Dieldrin; Dimethylcarbamoyl chloride; Ethylene dibromide; Glyphosate; Malathion; Tetrachloroazobenzene (contaminant)
Group 2B	27	Examples evaluated in 2015-2016: Parathion, Tetrachlorvinphos, 2,4,6- Trichlorophenol
Group 3	48	

We gratefully acknowledge financial support for the IARC Monographs, from:

- U.S. National Cancer Institute (since 1982)
- U.S. National Institute of Environmental Health Sciences (since 1992)
- European Commission, DG Employment, Social Affairs and Inclusion (since 1986)

Thank you!<u>http://www.iarc.fr</u> http://monographs.iarc.fr

