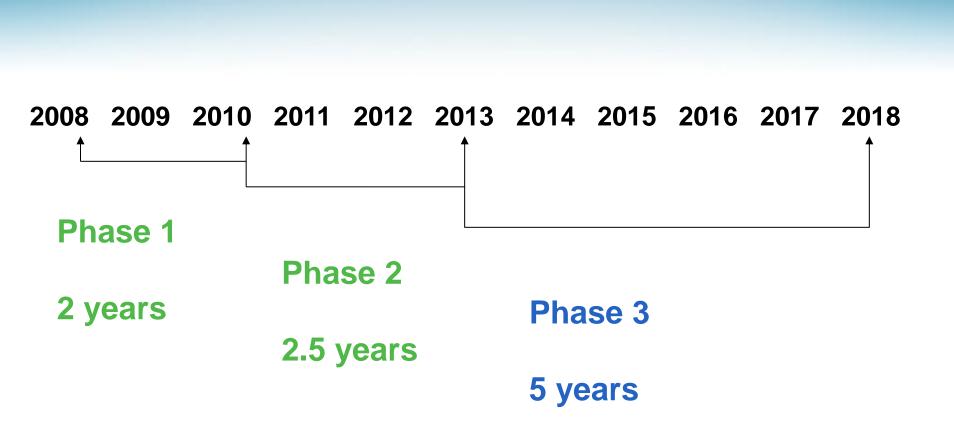


Substance Identity: The Critical Component of Both Lead and Co-registration Dossiers

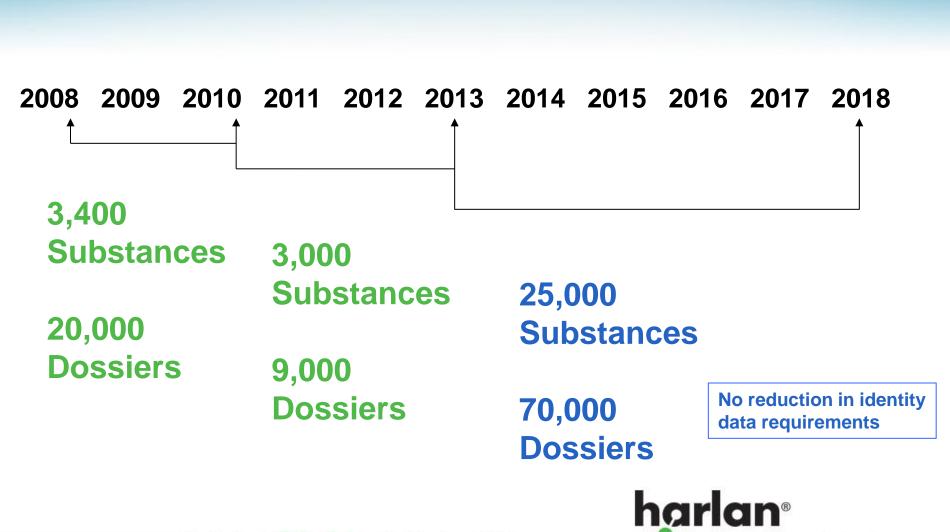
The Lessons from Phase 1 and 2 in Preparation for an Efficient Phase 3

Agenda

- Why Must We Maximise Efficiency?
- Why is Further Advice Needed?
- Substance Categories
- Types of Analysis
- Quality Advice
- Analytics Sharing and Identity Comparison
- Substances from Multiple Sources
- Analytics Dictate Timing
- Liability and Proof



Why Must We Maximise Efficiency?



Why Must We Maximise Efficiency?

Why Must We Maximise Efficiency?

Contract Research Services

Why is Further Advice Needed?

Why is Further Advice Needed?

Phase 1 and 2:

"Correct and unambiguous substance identification is a frequent shortcoming in registration dossiers"

Single Substance ≥80% main component (guidance) Remainder are impurities

Single Substance ≥80% main component (guidance) Remainder are impurities

Multi-Constituent Substance

No single component ≥80% Multiple components ≥10% <80% Impurities possible

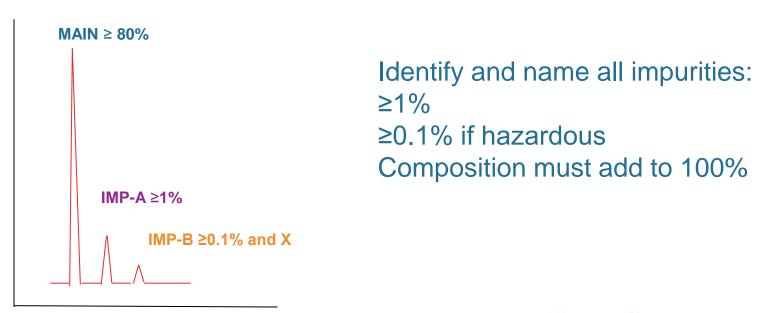
Single Substance ≥80% main component (guidance) Remainder are impurities

Multi-Constituent Substance

No single component ≥80% Multiple components ≥10% <80% Impurities possible

UVCB

Undefined, Variable, Complex, Biological Defined by starting materials and process No impurities, all are components

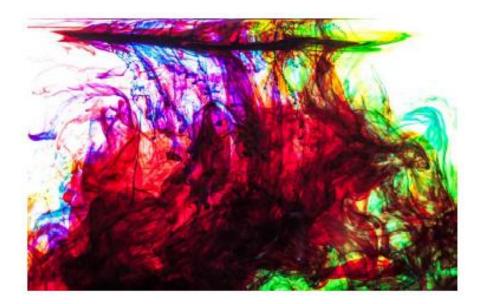


Single Substance ≥80% main component (guidance) Remainder are impurities

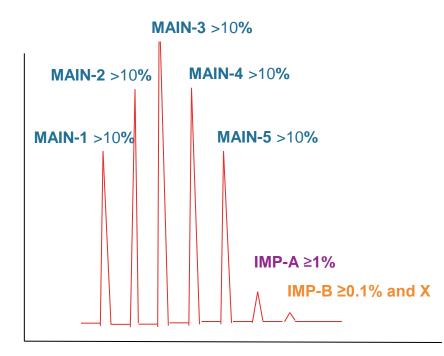
Single Substance ≥80% main component (guidance) Remainder are impurities

SINGLE SUBSTANCE DEVIATION

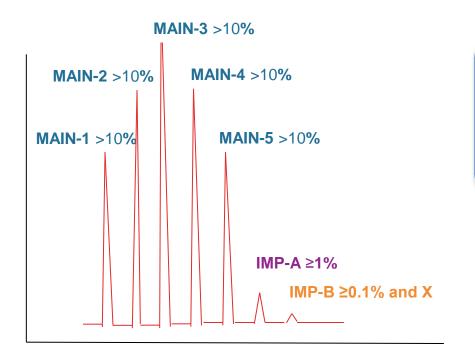
Single Substance ≥80% main component (guidance) Remainder are impurities


MAIN ≥ 80%	Deviation from 80/20 rule is possible
	When component-2 results from an unintentional impurity then Single
COMPONENT-2 ≤	When component-2 results from a deliberately added starting material consider Multi-Constituent or Two Singles

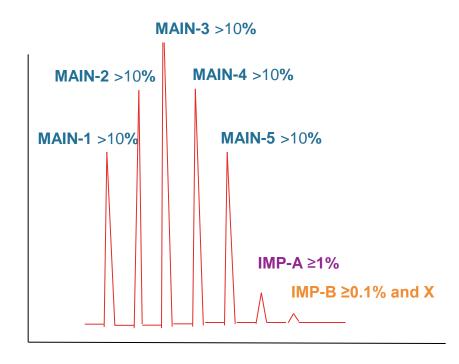
Multi-Constituent Substance No single component ≥80% Multiple components ≥10% <80% Impurities possible



Multi-Constituent Substance No single component ≥80% Multiple components ≥10% <80% Impurities possible


When it is physically impossible to create the substances individually and maintain the same properties (not just a formulation)

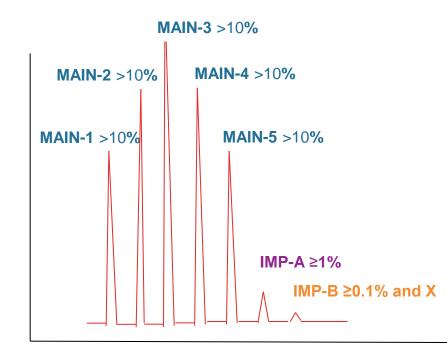
Multi-Constituent Substance No single component ≥80% Multiple components ≥10% <80% Impurities possible


Multi-Constituent Substance No single component ≥80% Multiple components ≥10% <80% Impurities possible

Identify and name all impurities: ≥1% ≥0.1% if hazardous Composition must add to 100%

MULTI-CONSTITUENT DEVIATION

Mains 1,2,3,4 and 5 can be registered as single substances when;

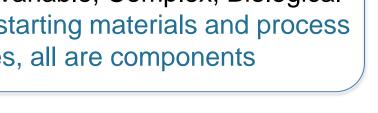


Multi-Constituent Substance No single component ≥80% Multiple components ≥10% <80% Impurities possible

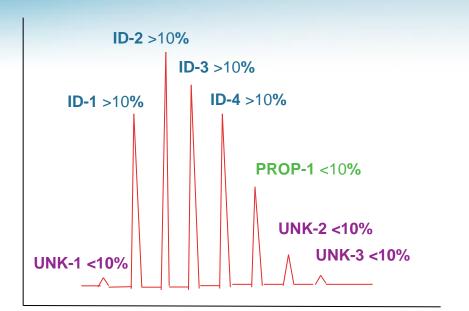
MULTI-CONSTITUENT DEVIATION

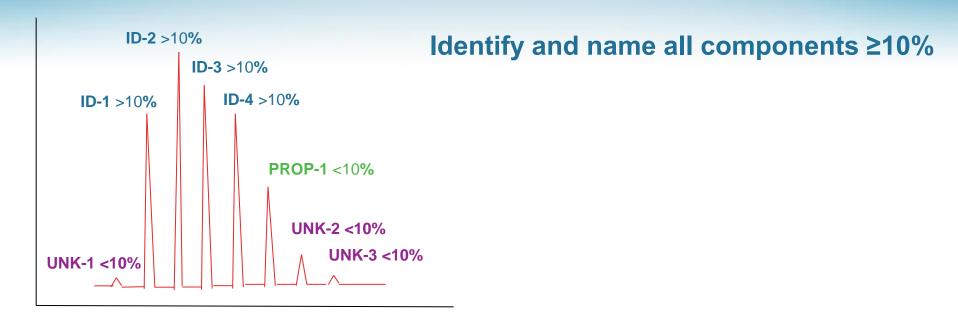
Mains 1,2,3,4 and 5 can be registered as single substances when;

Multi-Constituent Substance No single component ≥80% Multiple components ≥10% <80% Impurities possible


- It creates a more efficient situation
- Sufficient data exists to justify the approach
- There is no reduction in data requirement
- No need for new vertebrate testing

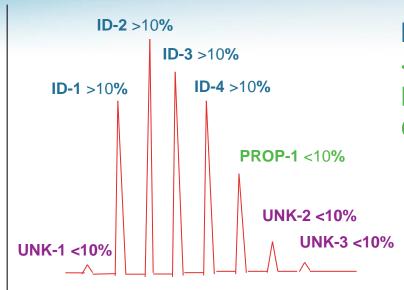
UVCB


Undefined, Variable, Complex, Biological Defined by starting materials and process No impurities, all are components



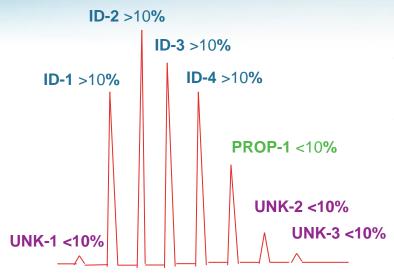
UVCB

Undefined, Variable, Complex, Biological Defined by starting materials and process No impurities, all are components



UVCB

Undefined, Variable, Complex, Biological Defined by starting materials and process No impurities, all are components


Identify and name all components ≥10%

<10% naming is an advantage Make naming proposals Group and categorise unknowns

UVCB

Undefined, Variable, Complex, Biological Defined by starting materials and process No impurities, all are components

UVCB

Undefined, Variable, Complex, Biological Defined by starting materials and process No impurities, all are components

Identify and name all components ≥10% <10% naming is an advantage

Make naming proposals Group and categorise unknowns

> Average m.wt 200 Identified m.wts 180-220 Unknowns:

- 10 substances in total
- All under 5%
- Total contribution 20%
- M.wts 170-230
- GCMS breakdowns show key main component similarities

IDENTIFY WELL !!!

- Sameness is very difficult to justify
- Category justification can be extremely complex
- Read-across is even more problematic
- "All under 10% so no naming" is a proven failure

UVCB

Undefined, Variable, Complex, Biological Defined by starting materials and process No impurities, all are components

Types of Analysis

Types of Analysis STANDARD METHODS

• Type-1: Basic identity

• Type-2: Detailed identity

• Type-3: Purity

Types of Analysis

STANDARD METHODS

- Type-1: Basic identity
 - UV-Vis Spectroscopy
 - IR Spectroscopy
- Type-2: Detailed identity
 - NMR and/or Mass Spectrometry
- Type-3: Purity
 - GC or HPLC

Types of Analysis STANDARD METHODS

MAXIMISE SPECTRAL COVERAGE TO AVOID REPEATS

- UV-vis
 - 200 750 nm, consider acid and alkaline environments
- Infra-Red
 - 600 4000 cm⁻¹
- H-NMR and C-NMR
 - 0 15 ppm for ¹H, 0 250 ppm for ¹³C
- Mass Spectrum
 - 0 to full m/z

- Do not consider the list of techniques as exhaustive
- Add further tests to suit the substance
- Aim to **JUSTIFY**, not just **COMPLY**

Types of Analysis

ADDITIONAL METHODS

- Inorganics
 - XRD
 - Atomic absorption
- Organic salts
 - Carbon v Metal balance
- Oligomers
 - GPC
- Database comparisons
 - GCMS
 - XRD
 - IR and NMR

- Organics
 - CHN by combustion
 - GCMS
- Inorganics
 - Karl Fischer (water)
 - Silver Nitrate (chloride)
- Chiral substances
 - Optical activity
- Solid particles
 - BET surface area
 - Electon microscopy

Quality Advice

• Traceability data essential for high quality reporting (consider also full GLP if material is to be used for studies)

• Traceability data essential for high quality reporting (consider also full GLP if material is to be used for studies)

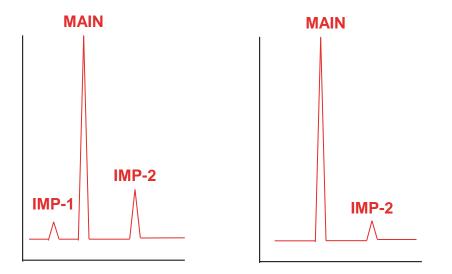
Substance name:	
CAS number:	
Batch number*:	
Manufacture date:	
Expiry date:	
Purity:	
Substance nature:	

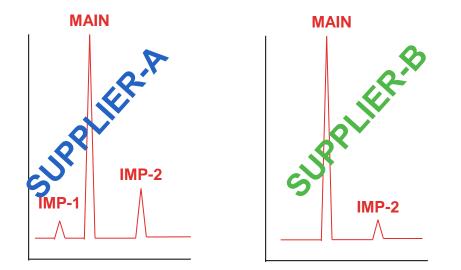
Laboratory name:	
Laboratory address:	
Operator name:	
Operator signature:	
Laboratory head name:	
Laboratory head signature:	
Analysis date:	

*All analyses on the same batch as far as possible

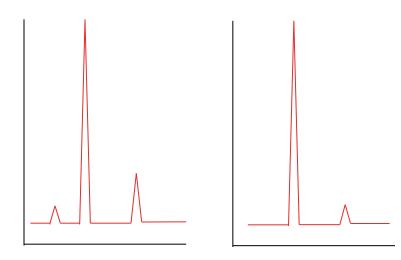
• Full technical data and interpretation required

Full technical data and interpretation required

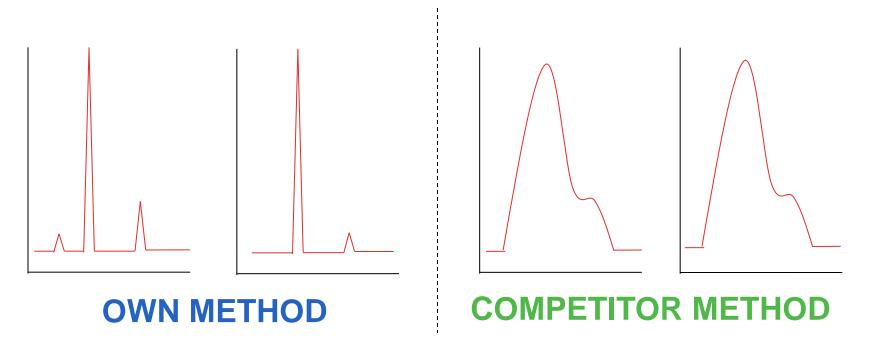

Technique:Machine details:Run conditions:	Full Spectrum:
Description of results:	
Interpretation of results:	
Detailed method:	



Sharing can reveal business sensitive information


Sharing can reveal business sensitive information

• Do you want your competitors to know your sources ?


Analytical <u>methods</u> can also be the market advantage

OWN METHOD

Analytical <u>methods</u> can also be the market advantage

• Do you want to train your competitors?

- The lead registrant is not responsible for certifying the analytics and identity of co-registrant substances
- Method advice from lead registrants usually only comes in special cases (such as with difficult category justifications)
- Comparisons (if needed) should be done via a trustee
- UVCB and Reaction Product comparisons may be essential

Submitted dossier must cover all sources

- Submitted dossier must cover all sources
 - Declare multiple compositions

COMPOSITION-1

Main Component95%Impurity-A5%

COMPOSITION-2

Main Component95%Impurity-B5%

- Submitted dossier must cover all sources
 - Declare multiple compositions
 - Declare one composition with all possible impurities

COMPOSITION-1

Main Component95%Impurity-A5%

COMPOSITION-2

Main Component95%Impurity-B5%

COMPOSITION

Main Component 95%Impurity-A0 - 5%Impurity-B0 - 5%

- Submitted dossier must cover all sources
 - Declare multiple compositions
 - Declare one composition with all possible impurities

COMPOSITION-1

Main Component95%Impurity-A5%

COMPOSITION-2

Main Component95%Impurity-B5%

COMPOSITION

Main Component 95%Impurity-A0 - 5%Impurity-B0 - 5%

As a minimum, have a purity trace for every source

Analytics Dictate Timing

Analytics Dictate Timing

- Main substance identity is not what you thought
- New impurity found which affects classification
- Non-compliance with lead SIP or SIEF sameness

Analytics Dictate Timing

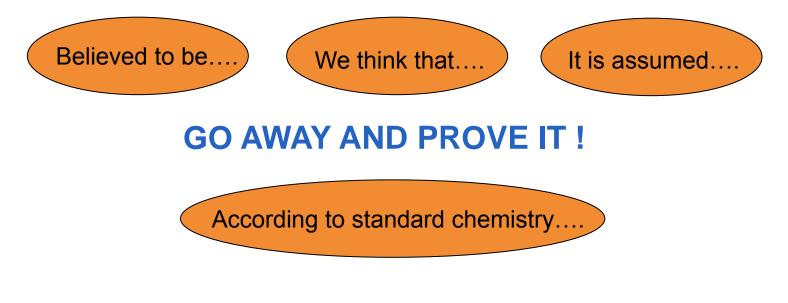
- Main substance identity is not what you thought
- New impurity found which affects classification
- Non-compliance with lead SIP or SIEF sameness

BETTER TO FIND THIS NOW RATHER THAN LATER ?

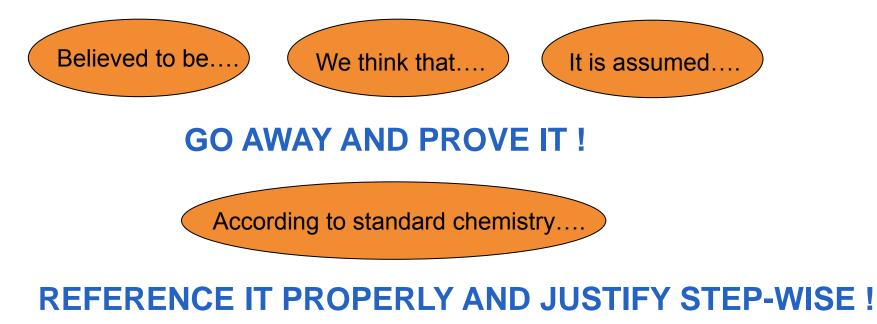
LEAD REGISTRANTS ARE NOT RESPONSIBLE FOR YOUR LATE PROBLEMS !

- All liability rests with the registrant
- The agency and authorities will not accept liability

- All liability rests with the registrant
- The agency and authorities will not accept liability


- All liability rests with the registrant
- The agency and authorities will not accept liability

GO AWAY AND PROVE IT !



- All liability rests with the registrant
- The agency and authorities will not accept liability

- All liability rests with the registrant
- The agency and authorities will not accept liability

- The registrant is fully responsible for the identity of their substance
- **Defined substance categories have been created**
- Analysis selection and quality are vital for identity justification
- Sharing is dangerous and avoided except in extreme cases
- **Incomplete identification is not excused**

If these guys do not or can't identify their substance.....

....why should these guys use it?

....and why should these guys assume anything other than worst case?

.....because these guys certainly can't take the responsibility!

.....and neither can these!

Dr Stuart Niven

Head of Regulatory Affairs, Switzerland Office

